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ABSTRACT

Localization is among one of the interesting subjects in robotics and can be spread
from Unmanned Ground Vehicles (UGVSs) to aerial ones. It is a point of interest for
instance to localize robots in a warehouse or within an open area to define specific
tasks. Unmanned Aerial Vehicles are also being used vastly indoors with GPS-

denied environments.

There are many localization methods recently being used in industry and research as
such as Ultra-Wide Band (UWB), Bluetooth and (Global Positioning System) GPS.
They have their own point of application in industry depending on their

specifications. One of the best solutions is UWB with the least number of errors.

In this thesis, we implemented a localization method based on Deep Learning. 16
patterns on the floor are used to make a specific map for localization. The proposed
Deep Learning algorithm were able to detect each pattern correctly with 100%
accuracy using majority voting for decision making in 3 seconds. The detection is
performed real-time with the video feed of 30fps. Training and testing the network is
done on Mobilenet which is based on Fast R-CNN deep learning architecture. All the
processes are done on the quadcopter itself from navigation, control, and deep
pattern detection using a single embedded computer. The quadcopter is equipped
with a Raspberry Pi, Google Edge TPU embedded device with a flight controller in
addition to a tracking and an RGB camera. The whole decision making of the
patterns is performed via the embedded device connected to the Raspberry Pi in 30

fps and no pattern recognition process is employed on the ground computer. The



drone odometry data is acquired via an Intel Realsense camera which provides IMU
data to the drone. Only the codes for simple movements over the map have been sent
to the drone from the ground station. Heading data is also provided by the tracking

camera mounted on the quadcopter.

Markov weights and the final decision weights have 100% confidence after each
random path has been travelled over by the quadcopter. The drone was able to
localize itself as a kidnapped robot, after flying over an average of two or maximum

three patterns.

Keywords: deep learning, markov localization, unmanned aerial vehicle



0z

Lokalizasyon, robotic galismalar1 arasinda yer alan ilgi ¢ekici konulardan biridir ve
Insansiz Kara Araglarindan (UGV'ler) hava araglarina kadar Kkullamlmaktadir.
Ornegin, belirli gorevleri tanimlamak icin bir depoda veya acik bir alanda robotlari
lokalize etmek 6nemli bir konudur. insansiz Hava Araglari da GPS'in olmadig1

ortamlarda biiyiik ol¢lide i¢ mekanlarda kullanilmaktadir.

UWRB, Bluetooth ve GPS gibi son zamanlarda endiistride ve aragtirmalarda kullanilan
bircok lokalizasyon yontemi bulunmaktadir. Spesifikasyonlarina bagli olarak
endustride kendi uygulama noktalarina sahiptirler. En iyi ¢oziimlerden biri, en az

hataya sahip UWB'dir.

Bu tezde Derin Ogrenmeye dayali bir lokalizasyon yéntemi uyguladik. Lokalizasyon
icin belirli bir harita olusturmak icin zeminde 16 6ruintii kullanildi. Onerilen Derin
Ogrenme algoritmasi, 3 saniyenin altinda, ¢ogunluk oylamasi1 yontemini kullanarak
her bir orintiyd %100 dogrulukla tespit edebildi. Algilama, 30 fps'lik video
beslemesi ile ger¢cek zamanli olarak gerceklestirimistir. Agin egitimi ve testi, Fast R-
CNN derin 6grenme mimarisine dayali Mobilenet temel alinarak yapildi.
Navigasyon, kontrol ve derin 6grenme dahil tiim islemler quadcopter iizerinde
gerceklestirildi. Quadcopter, bir takip ve bir RGB kameraya ek olarak bir ugus
kontrol cihazina sahip bir Raspberry Pi, Google Edge TPU gomiilii bir sistem ile
donatilmistir. Modellerin tiim karar verme islemi Raspberry Pi'ye bagl gémiilii cihaz
tizerinden 30 fps'de yapildi ve yer bilgisayarinda herhangi bir 6riintii tanima islemi

yapilmadi. Drone odometri verileri, drone'a IMU verileri saglayan bir Intel Realsense



kamera araciligiyla elde edildi. Yer istasyonundan drone'a sadece harita tzerindeki
basit hareketler icin kodlar gonderildi. Yon verileri ayrica quadcopter {izerine monte

edilmis izleme kamerasi tarafindan saglanmaktadir.

Markov agirliklar1 ve nihai karar agirliklari, quadcopter tarafindan her rastgele yol
kat edildikten sonra %100 giiven gostermistir. Drone, ortalama iki veya en fazla {i¢
Orlntl  tizerinde uctuktan sonra, kacirilmis bir robot olarak kendisini

konumlandirmay1 basarmistir.

Anahtar Kelimeler: derin 6grenme, markov lokalizasyonu, insansiz hava araci
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Chapter 1

INTRODUCTION

1.1 Motivation

There had been a huge interest during last years in industry for autonomous vehicles.
In academia, this interest has been raised as well especially in Robotics field. Among
these vehicles, drones have attracted many researchers from industry and academia
for research purposes and to use them. The huge amount of interest has led the
industries to use the drones for many different purposes these days. Localization for
drones is also one of the areas to pay attention to since there are many methods

introduced and still indoor navigation for drones is an attractive research topic.

Deep learning on the other hand has made a huge impact in the industry and indeed
in academia being used in a vast number of applications and research papers. This
topic has been among highly demanded ones recently and has helped industry to

develop traditional methods to more efficient ones.

Adding up these two topics mentioned in the previous paragraphs made this research
possible which is about localizing a quadcopter using deep learning with Markov
algorithm.

1.2 Thesis Objective

As the drones have taken over in the industry recently and as they are a point of

interest, any research about the same topic may open current obstacles. In [1], there



has been special patterns on the floor (here 16 of them) to do localization. The setup
proposed in the paper consists of all operation in the simulation environment. The

objective in this thesis is to bring this into action by using deep learning.

The proposed method on the original paper has used image analysis with feature
extraction from each photo that is considered as a localization pattern. The general
idea is, a quadcopter starts flying over a pattern at the beginning without orientation
and its place being considered. A map of all patterns and their placement with their
relative positions has been saved on the computer. The quadcopter has a camera
facing downwards that streams the videos to the main computer. As it is hovering on
top of a pattern, the streamed photo is detected via the above-mentioned method an
initial guess of the position is produced. Then the drone goes over the next pattern
and the guesses are updated accordingly. After the confidence level of the predicted
position reaches to a certain threshold the drone is localized. The operation can
continue afterwards on the whole map since the system is aware of the position. Each
time the guesses are stored as Markov weights and they are updated in each

displacement. Markov algorithm is a statistical solution in robotics for localization

2]

In this thesis we have replaced the method of feature detection with Deep Learning
method to recognize patterns. An approximate of 30 photos from each pattern are fed
as a dataset to a R-CNN object detection network and trained accordingly. The
training checkpoints are based on COCO dataset pre-trained network. Only the six
last layers of the network are unfrozen to train and then they are frozen again after
the training. Mobilenet SSD v1 is chosen as a training network. The processor is an

Edge TPU processor from Google. These devices are embedded and small scale

2



(small USB stick) which can provide a high frequency (30 fps) object detection with

more than 80% of confidence as the results will mention about them later.
1.3 Thesis Contributions

The implemented method has successfully been tested on the patterns. The results
have been satisfactory because the data was limited for each input. This hesis has
replaced deep learning with the proposed simple image processing in [1] to have the
ability to extend the training patterns and data addition for future implementations.
This thesis has also brought the proposed method in [1] into action and practically
analysed its possibility although it had been only simulated in the original paper.

1.4 Thesis Organization

This thesis is about localization of a quadcopter using specific patterns by help of
deep learning. As the subject states, the first chapter will give information about
localization definition and how it is being used right now in industry. Then the most
important and related kinds of localization technologies will be discussed in the same
chapter in addition to the algorithms. Chapter 2 will discuss about deep learning
definition. How deep learning networks are used and trained in addition to the
method our object detection has followed will be discussed in that chapter. The
following chapter after that will be discussing about the implementation method and
how the whole setup has been planned. The setup and the method are based on [1]
basically with some slight changes. In the paper, the setup is chosen ideally since the
authors had not considered how possible the method can be when implemented
practically. Here we have done some slight changes such that the outputs are possible
but also not to diverge from the main source implementation. The results from the

implementations also will be mentioned in the same chapter. Chapter will be about



the discussions, conclusions, and future possible works to extend this research further

in the future.



Chapter 2

LOCALIZATION

2.1 Localization Systems Technologies

Indoor areas such as airports, supermarkets, train stations, and hospitals are
becoming increasingly interesting as the Internet of Things (loT) grows in popularity
[3], [4]. In supermarkets, customers can grab a cart with tags on a radio-frequency
identification (RFID) and personal digital assistant (PDA) screen , and because
location of each cart is known via a system of combination of hybrid Wi-Fi and
RFID, the PDA screen can be used to search for a specific product and their location,
and then to receive directions to that target by the customer [5]. Instead of handing
out pamphlets to visitors, a gadget with Wi-Fi and Bluetooth can aid these roaming
tourists. The gadget may provide detailed information on the work of art as well as
directions to it in a specific area of the gallery. Tourists can also be alerted if there is
a traffic jam in a certain location, allowing them to save time and visit alternative

locations [6].

Bluetooth beacons can be used in libraries to lead students to book locations. When
the location of the book is needed, the student's coordinates will be compared to the
network and recommended to him using a downloaded mobile application. Because
the localization precision is within meters, the student is guaranteed to be near to the
appropriate shelf [7]. In most situations, RFID technology can be used to track the

movements of people suffering from mental illnesses such as Alzheimer's [8].



Patients who require home healthcare may have an RFID tag implanted in their body
to report if they are sitting, walking, standing, or collapsing, requiring immediate
treatment [9]. A dual-shoe combined inertial sensor and range sensor may be
installed to detect a firefighter's location and distance to other team members within
a building in the event that one of them becomes trapped or incapacitated while on
mission. [10], [11]. A fire detection system that uses ZigBee-based sensor networks
can improve the localization of the fire source [12]. Figure 1 has demonstrated a

method of localization for an indoor drone to transfer a better idea of localization.

1 Drone

CtrueY truerZ true)

0.1

y 0 0

Figure 1. A Drone Localization Using Wireless Sensors [13]

2.1.1 Navigation Based on Satellites

The most recognized system for outdoor positioning is the Global Positioning
System (GPS). It should be emphasized that because of line of sight (LOS) needed
within the satellites and the device, it will be rendered entirely useless for interior
location-based applications due to walls and buildings. [14]. in front of a GPS
receiver, a high gain, steerable directional antenna is installed to access the GPS.

[14]. Pseudosatellites are useful in situations where the GPS signal cannot be utilized



as a stand-alone method of position. Pseudosatellites, transmitter and receiver
antennas, target receivers, and reference receivers are all part of these systems [15].
The aim is to use inside transmitters to replicate the GPS signal that has been
received [16].

2.1.2 Navigation System with Inertial Sensors

Inertial Navigation System (INS) can define the directional movement of objects in
addition to their location by occupying inertial measuring units (IMU) like gyroscope
and accelerometer compared to an initial location, angle, and velocity [17]. In spite
of the fact that the sensor has to be connected to surface of the object, INS excels in
terms of energy economy and precision [18]. However, because INS may be
vulnerable to reading mistakes, a sophisticated filtering mechanism such as the
Kalman filter is necessary [19]. Another drawback is the expense and work required
to create the location sensor's infrastructure [20]. A unique initial location estimate
technique has been implemented in [21] with a combination of concurrent WiFi
access points and iBeacons. [22] proposes the iBILL system, which integrates inertial
sensors and iBeacons by having two states: localization with iBeacon and particle
filter localization (PFL). To help PFL cope with magnetic field variations, ensuring
that no mistakes accumulate while walking and lowering PFL's processing cost,
iBeacons are used. When iBILL, Magicol (geomagnetism and inertial sensors fusing
system), and dead reckoning (DR) were compared, it was concluded that iBILL can

reduce mistakes and has higher performance when walking distance is increased.

A hybrid localization approach incorporating acoustic localization and inertial

sensor-based dead reckoning, followed by Kalman filter fusion, outperformed the



independent system and compensated for its shortcomings [23]. In addition, a blend
of Wi-Fi fingerprinting and inertial sensors outperforms separate methods [24].

2.1.3 Radio Frequency (RF) Based Navigation

The most widely used localization method is RF-based, which is more in a point of
interest since it covers a larger region with low-cost hardware [25]. Because RF
waves can flow through things such as walls and human bodies, this is easy to
understand. Their superior outcomes over other localization methods such as infrared
and ultrasonic can also be considered. These systems, on the other hand, should be
avoided in planes and hospitals due to the significant risk of interfering with current

systems utilizing RF.

Since in the radio spectrum the frequency is lower than 300 GHz, wireless
technologies which are a part of localization indoors may be divided based on the
different radio frequencies they operate on [26]. Wireless technology's capabilities,
such as coverage, wall penetration, and obstacle resistance, are also affected by its
frequency. For location-based applications, long, medium and short distance wireless
technologies are the three kinds of wireless technologies to be considered [25]. The
complexity, accuracy, and environmental factors all influence the kind of distance
measurement system that should be utilized for a certain application [27]-[29]. In a
Wireless Sensor Network (WSN), node position information is used for routing,
clustering, and context-based applications. A network of nodes that detect and
wirelessly transmit environmental fields (such as temperature, humidity, and
brightness) is defined as WSN [30]. This information is transmitted to the sink node,
which collects data. Indoor fire suppression, smart homes, and resuscitation

responsibilities are just a few examples [31]. IEEE 802.15.4 has been used to build



wireless personal area networks, (WPAN) or WSNs. WSN localization is the
technique of finding an object utilizing wireless sensors’ network [32], [33].
Measurements are useless without Knowing the nodes’ location making them
essential for a WSN. As an example of WSN localization, the usage of RSSI using
the ZigBee standard [34]. WSN may utilize range-based (based on internode
measurements) and free-range based methods jointly for localization [35], [36].
There are two kinds of lateration and trilateration: exact that is categorized to

lateration and trilateration and approximate that is by scene and proximity analysis.

Five sensors are integrated in firefighters’ suits, according to [37], that monitor core
temperature, blood pressure, heart rate, oxygen saturation, wind speed and heat flux.
This information is provided to the team leader on a regular basis to keep tabs on the
members' health. In the case of a fire, [38] proposed a similar concept in which
victims might be tracked and safe escape routes established. Ultrasonic waves, which
are unaffected by smoke, ashes, or fire flames, may be used to assess the status of
firefighters inside structures. If the target position is computed by a single computer,
the localization system is centralized; however, having target position evaluated by
many nodes means spread localization system [39]. WiFi [40], Bluetooth [41]
,Zigbee [42], Ultra-Wideband (UWB) [43], and Radio Frequency Identification
(RFID) [26] are examples of RF-based navigation systems. The following sections
will shortly mention about them.

2.1.3.1 Frequency Modulation Technology

It has been shown recently that by using frequency modulation (FM) indoor and
outdoor localization can be achieved [44]. As a result of its smaller frequency range

(88-108 MHz), FM is used less than Wi-Fi (2.45 GHz) and cellular networks (0.9—



1.8GHz). Moreover, broadcasting FM radio is less susceptible to the weather, and
terrain, and can pass through obstacles with greater ease as a consequence [45]. As a
result of its larger wavelength (3 m), it has a different interaction with interior objects
and furnishings than Wi-Fi does Other 2.4 GHz RF components are not affected by
FM operation [46]. In addition, less power is consumed when using FM receivers.
Fingerprinting for indoor localisation is what RSS relies on for licalisation.
According to the information in [47], Gaussian processes (GP) regression, k-nearest
neighbour (kNN) and support vector machine (SVM) classifiers were used to assess
fingerprinting performance. There is evidence of yielding the results with KNN
technique application. Using stations with stronger broadcasts was also
recommended to improve accuracy. While Wi-Fi has superior localisation
capabilities in large regions such as floors, FM has superior performance in smaller

areas such as rooms.

2.1.3.2 Cellular Based Technology

In addition to the three commonly used cellular frequencies, 0.9 GHz, 1.8 GHz, and
2.8 GHz bands are used by cellular networks. This wireless network has a far larger
coverage area than Wi-Fi, while without requiring any extra equipment. At first, the
idea was to use proximity to ascertain the mobile location. Unfortunately, this
approach produced unsatisfactory results [48]. The best method for doing
localization with RSS is using the fingerprinting technique. Other scholars are
thinking about the alternative solution, in which trilateration is used as a technique
for localization. As of the RSS fingerprinting case is assumed, cell-site APs are
considered as APs, and the accuracy was inspected to land between 2.5 and 5.4

meters [49].
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RSS fingerprinting and radio signals from the Global System for Mobile
Communications were used for localization in [50] (GSM). After collecting 29 GSM
channels and 6 cells for fingerprint analysis, researchers discovered that fingerprints
could be found on both types of media. There was an inaccuracy of less than 5
meters, as if [51] got those findings. To gather fingerprints, a UMTS cell tower was
used with interior coverage. In an office environment, measurements were taken in
[43]. The tiny cell localization seen in UMTS is comparable to that found in WLAN.
When designing an indoor setting, Long-Term Evolution (LTE) was also utilized;
according to [52] localization using TOA was performed, and the inaccuracy was
less than 8 m in half of the instances. LTE may be utilized for a root mean square
error (RMSE) with the value of 3.5 meters approximately with an inertial measuring
unit (IMU) [53]. In [54], the synthetic aperture navigation (SAN) architecture has
been utilised to minimize multipath signals’ effect. An artificial antenna may be used
to gather different frequencies at distinct times. Like obtaining a signal from an
array, this process is almost identical. SAN will use The ESPRIT (Estimation of
Signal Parameters through Rotational Invariance Technique) method will be used by
SAN for identifying DOA; according to their study, the RMSE of localization for

LTE-SAN was about 4m, while the RMSE for a single LTE was 7 m approximately.

[55] conducted research on localization using only LTE and fingerprinting with LTE-
WLAN, finding that poor results come from LTE-only fingerprinting, which at the
same time performance is increased by 3.5x with the use of LTE WLAN
fingerprinting. To assist them, other current RF localisation systems, such as RFID

[56], Wi-Fi [57]-[59], and cellular systems, can be used.
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2.1.3.3 Wifi Technology

The term "Wi-Fi" refers to a widely used wireless networking technology. The IEEE
802.11a spectrum utilizes the 5 GHz frequency range, whereas IEEE 802.11b, g, and
n use the 2.5 GHz range. Large indoor settings like universities and business
buildings have already used WiFi hotspots as network access points that span the
whole building. A wide range of devices uses Wi-Fi technology, including video
game consoles, computers , mobile phones, cameras, digital music players and tablet
computers [60], [61].Costs associated with installing Wi-Fi networks and related
equipment may be extremely low, and range has improved from a previous of about
100 meters to approximately 1 kilometre (km). Furthermore, (Received Signal
Strength) RSS fingerprinting is used to determine Wi-Fi localisation [62], [63]. Other
RF localisation methods, such as RFID [64], might be used with Wi-Fi. While
Bluetooth has a more limited range, Wi-Fi offers a wider range of coverage and a
higher throughput, making it easier to use [65]. Companies that provide Wi-Fi-based
locating solutions include companies such as HERECAST, PlaceLab, RADAR,
HORUS and COMPASS [66], [67].

2.1.3.4 ZigBee

ZigBee is an IEEE 802.15.4 standard-based specification which operates in 915 MHz
band in the United States and Australia, the 868 MHz band in Europe, and the 2.4
GHz spectrum in the rest of the world. In a wireless mesh network, it is utilized for
communication over long-distances between two devices. Compared to WiFi
standards, it is inexpensive, has a modest data transfer rate, and has a short latency
time. To measure the distance between two or more ZigBee sensor devices in this
technology the RSS technique is used [68], [69]. The scanning of access points (APS)

via the WiFi interface consumes a lot of electricity. To mitigate this impact, authors
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in [70] proposed ZIL, an energy-efficient indoor localization system based on
ZigBee that collects Wi-Fi signals via the ZigBee interface. In [71], a proximity
learning-based ZigBee localization algorithm was presented; the proposed approach
differs from previous standard triangulation-based strategies in that it decreases
computing time while retaining accurate placement.

2.1.3.5 Bluetooth

With the standard of IEEE 802.15.1, Bluetooth is designed to allow devices to
communicate wirelessly across short distances. Bluetooth, like Wi-Fi, communicates
using radio waves with frequencies ranging from 2.402 GHz to 2.480 GHz. It
features low transmission power, cost-effectiveness, secure and efficient
communications, long battery life, and easily available choices [72], [73]. Bluetooth
Low Energy (BLE) is a new Bluetooth version that can span between 70 to 100 m
and offer improved power efficient 24 Mbps of bandwidth [98]. As a result,
Bluetooth is unsuitable to be considered for large-area localisation [41]. In [73],
neural networks (NN) are taught in the training phase using the corresponding
coordinates of received signal strength values; once trained, the determination of user
position based on live measurements from RSS by using the NN is possible. During
the recent years, BLE-based localization is being used as Eddystone (Google) and
iBeacons (Apple) in smartphones, where within airports, train stations, large markets,
malls, and restaurants, the smartphone can be used for localization by sending the
area map to the smartphone and then BLE-based localization is done [74].

2.1.3.6 Ultra-Wide Band

A carrier frequency of over 2.5 GHz and bandwidth of upper than 500MHz is a
UWB signal characteristic, based on the Federal Communications Commission

(FCC) of the United States [75]. In UWB the power consumption that is low results
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in a high-speed communication, broad bandwidth, high temporal resolution, short-
wavelength, and high data rate, that makes UWB more resistant to fading and
multipath interference. The other advantageous feature of UWB is to be able to
operate at low carrier frequencies, in which signals may readily flow through barriers
more; moreover by being resistant to interference due to its considerably different
spectrum UWB stands out [76]. All these qualities make UWB an excellent choice
for indoor wireless positioning. Greater accuracy of TOA and time difference of
arrival (TDOA) than other localization methods are expected from UWB signals due
to their high temporal resolution, with a reduced multipath effect. UWB is capable of
minimizing error to millimetres [43], [77]. The authors of [78] suggested a hybrid
localisation method utilizing UWB and Wi-Fi, which can be done by having UWB
beacons added to an existing Wi-Fi network. By deploying their algorithms, a
combination of UWB and Wi-Fi infrastructure can reduce the precision and cost of
UWB; the localization error was restricted to 20 cm. A limited number of tags can be
localized by typical UWB systems; according to [79] an unlimited number of tags
can be localized using SnapLoc, which is another type of UWB system. [80]
investigated the performance of UWB localization systems in LOS and NLOS
conditions. The location was calculated using weighted centroid estimation (WCE),
linearized least square estimation (LLSE) and fingerprint estimation (FPE),the
position was calculated; The research proved that while FPE performs the best, the
worst performance is from LLSE.

2.1.3.7 Radio Frequency lIdentification (RFID)

RFID systems rely on backscattering of RFID tags communication, and the same
time they need the created signals within tags and readers to be processed with RFID

readers [81]. Tags with RFID are classified as passive, active or semi-active. Tags is
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active status have a built-in battery incorporated as a part of electronics. With a
detection range of up to 100 m, active RFIDs operate at ultra-high (UHF) and super-
high frequencies (SHF) spectrum. As a result, object tracking and long-distance
localisation can be achieved by an active RFID [82]-[84]. Active RFID technology,
on the other hand, is unreliable for expecting precisions less than a meter and lacks
availability on the most of portable devices. Lack of built-in batteries and instead
backscatter the signal received from the base station are also disadvantages of
passive tags. Because of its multiple advantages passive RFID is widely used for a
variety of applications and can bring and ease of manufacturing compared to active
RFID, which requires only a tag chip and an antenna, low cost, and reduced size.
Sub-meter detections by utilizing passive RFID can be helpful since they can identify
targets within a range maximum 10 meters [84]. Because of their low cost, Radio
Frequency Identification (RFID) technology have gone widespread. In such
technologies, a huge number of reference tags are readily deployed. The Radio
Signal Strength Indicator (RSSI) information from the readers around each tag that
transmitted the signal will be measured. The reference tags with the RSSI
information closest to the RSSI information of the target tag can approximate the
position [85], [86]. In [87], an RFID reader, infrared sensor pair and tags, a light-
emitting diode LED and a light resistor were utilized as sensor pairs for localisation.
In terms of precision and stability, RFID-based localization outperforms traditional
sensors. The characteristics of existing localization methods are shown in Table 1

[74], [88]-[93].
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Table 1. Comparison Between Different Localization Methods [97]

Technology Technique Method | Accuracy(m) Cost Coverage Pros Cons
. . : TOA 3-5
Satellite Trilateration TDOA Floorlevel | Cheap
Inertial Dead Reckoning - 2 Low Floor level | Cheap iig?smulatwe
. Trilateration 2 Low . .
Magnetics Based Fingerprinting - Floorlevel | Good Accuracy | Requires mapping
. . : TOA 0.01-1 Medium- No effect of Interference cost
Ultrasonic Based | Trilateration TDOA High Room level multipath for hardware
. . . Met Low
Acoustic Trilateration TOA elers oW Room level | Cheap Poor accuracy
1-2 Medium Cheap Sunlight
Room level No effect of interference
Infrared Proximity Trilateration | TOA multipath Short-range
(few meters)
Low power Cost for hardware
consumption
.. . . 0.1 Medi . . E iv
Visible light Angulation AOA S Bloor level | No interfering CXP CHSIVE
onstruction
10 (Proximity) | Low Floor level | Good accuracy RF interference
.. 1-5 (around 35) | Low cost . .
Proximity APID WiFi sienals with devices
Trilateration RSS can- enegtila te operating at 2.4
Wi-Fi Angulation TOA ol GHz
Fingerprinting TDOA ' Fingerprinting
. No need for )
RSS-Propagation model | AOA . requires a huge
additional effort
infrastructure
Proximity APID |3-5 Medium | Floor level | Low Cost Reauires Special
ZigBee Trilateration RSS Low power 4 P
! L. . equipment
Fingerprinting consumption




RSS-Propagation model

Proximity 2-5 Low- Around 10 | Good accuracy
i:firlllla;era;ﬁﬁﬁl APID Medium | meters I\(Tj(:j ?leed for RE inference
Bluetooth EeIp g RSS adcutiona Limited coverage
infrastructure o
TOA and mobility
Low power
consumption
Trilateration TOA 0.01-1 High Few meters | Accurate Expensive
UWR Angulation TDOA
RSS
AOA
Proximity 1-5 Low Room level | Cheap Low accurac
Trilateration APID Real-time ey
RFID . oo L Response time is
Fingerprinting RSS localization high
RSS-Propagation model g
, e 2-4 Low 100 km Low sensitivity
FM Fingerprinting RSS to objects Vast
Fingerprinting RSS 2.5-25 Low 80 km Networks
Cellular network Proximity Trilateration | TOA available all Low Accuracy

OVEr arcas




2.2 Localization Detection Techniques

2.3 Technique of Using Proximity

(Also known as relative positioning/connectivity) is a low-cost also simple method of
estimating the distance between a mobile and an AP location. As long as being
within communication range, it makes no difference whether the AP and the mobile
exist on the fading channel same as each other or not [94]. The AP’s coordinates are
used to approximate the mobile’s location. Its accuracy is restricted to AP radio
coverage while the proximity method is frequently used and simple [95]. In general,
there are three types of approaches for proximity technique. The first is sensing
physical contact, which uses sensors such as touch sensors, pressure sensors, and
capacitive field detectors for detecting physical contact. Another method involves
monitoring the wireless signal of a mobile device inside the access point’s range.
Lastly, credit card payment terminals that are a type of automatic identification
systems can be examined by it [96].

2.3 Scene Analysis

By analysing the scene in this method, virtual images, videos, or electromagnetic
properties received from the target are compared with the dataset available, allowing
the feature to be mapped to a position on the target [98], [99]. Wearable cameras, for
example, can associate collected virtual pictures with the target's position.
Commonly referred to as fingerprinting is when wireless signal characteristics of
specified places may be acquired for generating a radio map and by mapping the
mobile's signal data to it can deduce the position of a mobile device. Localization of
this form is well-known for its simplicity; nevertheless, it necessitates the collection
of a significant quantity of data; moreover [100], altering the environment may result

in changes to the feature characteristics, necessitating to update the dataset [96].
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2.3.1 Triangulation

The target position may be established using triangulation by constructing triangles
from known locations to that same destination. Lateration and angulation are the two
types of lateration. Lateration is a distance-based method used in the Time of Arrival
(TOA) and Received Signal Strength (RSS) approaches, when a direction-based
technique called angulation is used in the Angle of Arrival (AOA) implementation.
2.3.2 Lateration

What determines the distance from mobile to AP depends on the ratio of power to
travelling time. The connection may be expressed with a mathematical equation. will
be available 2D measurements with two equations can have two potential solutions.
For there to be a unique solution, there are three equations necessary; the
combination of these equations will decide how the mobile phone is located as
illustrated in Figure 2. Lateration is also an option to estimate position using
differential measures (signal intensity receipt/time of arrival). The impacts of
environmental changes are reduced through differential measurements. The
transmitted power is in this instance unknown (DRSS) or if the (TDOA) is not

known [101]-[103].

Figure 2. Trilateration Localization [97]
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m(m—1)

In localization in case of m Aps collaborating, there is going to be (——)
differential equations formulated, with (m — 1) fundamental equations and the
redundant ones as the rest. Each fundamental equation's solution will be on a
hyperbola, and the intersection of these hyperbolas provides the mobile's coordinates
[76]. There will be two fundamental equations in the 3 APs system, a linear
combination of the first two yields the third equation. Different types of localization

detection approaches and their accuracies, cost and measurement type compared

have been mentioned on Table 2 [26], [91], [92], [109].
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Table 2. Comparison Between Localization Techniques

Technique

Accuracy

Measurement type

Cost

Notes

Proximity

Fingerprinting

Time

Direction

Dead Reckoning

Medium

High

High

Medium

Low-Medium

RSS

RSS

TOA

AOA

Velocity
Acceleration

Low

Low

High

High

Low

Adding more AP will increase accuracy and cost
Accuracy is specified by AP cell size

Not affected by the multipath effect

No need for extra hardware

Requires massive work to construct a radio map
Adding/removing AP will require to update the radio map
Not affected by the multipath effect

No need for extra hardware

Suffer from multipath
AP location should be identified

Suffer from multipath
Requires array antennas with specific angular properties
AP location should be identified

Suffers from accumulative errors




2.3.3 Angulation

As shown in Figure 3, to localize an item in two dimensions, measurements of two
angle and a measurement of single range are needed. The distance between the two
arrays may be the range measurement. For 3D measurements, a single azimuth
measurement, a single range measurement and two angle measurements are needed

[98].

Figure 3. Angulation with Angles And Distances Known from Two Sources [97]

The inertial measurement unit sensors used in the DR method can track target
movement using gyroscopes, accelerometers and magnetometers [104]. The position
of a target is recalculated by adding the last displacement estimated before [105],
being aware of the velocity of the target at a known location. This method is simple
and that is why it stands out. However, in order to avoid mistakes, a precise starting
position is required, even when errors for correction grow over time since no external
reference signals are utilized [106]. To achieve more precise findings, hybrid
methods are employed [105]-[107]. In [108], pedestrian DR (PDR) and Wi-Fi
fingerprinting were used to conduct localization; led to a conclusion that PDR has the
poorest performance, but the greater performance comes from the combination of
PDR and Wi-Fi.
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2.4 Algorithms And Methods for Localization

2.4.1 Angle of Arrival Measurement

Beamforming and localization are using the direction of arrival (DOA) [109]. To
determine angle of arrival arrays of antenna are employed. DOA needs the use of
antenna arrays, making it more costly and a power consumption higher than TOA
and RSS [110]; nevertheless, less equipment is required because two Aps only are
required to calculate the position of the mobile [111].

2.4.2 Time of Arrival Measurements

Utilizing the velocity of wave to estimate distance among two sensors, TOA
measurements calculate the time of flight between the AP and mobile [112]. RF and
acoustic signals are examples of waves used for localization [112]. Radio waves have
a velocity of 3x 108 m/s, which at the same time acoustic waves have a speed of
343.59 m/s [113] and accordingly, measurements with RF are more susceptible to
mistakes. When utilizing RF waves, a measurement mistake of 1s will result in a 300
m inaccuracy, whereas using acoustic waves will result in a 0.00034359 m error
[114]. The receiver resolution will be around 1 10-9 when the receiver bandwidth is
1 GHz. As a result, the highest error will be 0.3 m, but the resolution of the receiver
is going to be approximately 1 x 107 and the maximum error will approximately
be 30 m when utilizing 10 MHz bandwidth [65]. The idea of lateration is used in
TOA localization [115]. It must contain three equations to answer these equations
(i.e., three APs measurements must be used). To have a unique solution in a 3-
Dimensional case (X, y, z), minimum of four APs must be employed. The coordinates
of the mobile are deduced by transforming TOA data into circular equations and

solving the same equations [116].
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The time difference of arrival (TDOA) is a related measurement of time in which
difference of time between two TOA measurements is utilized for creating a single
equation. Two TDOA values will be obtained from three TOA measurements, but
the third equation will be reliant on the other equations and therefore will not offer
further information. Four AP measures are utilized to provide a unique solution
[116]. The mobile's possible locations will be plotted on a hyperbola [116]. As
illustrated in Figure 4, the intersection of two hyperbolae yields the position [116].
To have a unique solution, three fundamental equations are necessary, that is
accomplished with another AP included, as illustrated in Figure 4. As a result, 4 APs

are required for 2D localization.

AP:

Figure 4. Hyperbolic Localization [97]

In TOA, every sensor, the mobile included, must be synchronized since the
mobile phone's time is not the same as the clock in the base station accuracy-wise.
As a consequence, there can be errors in estimating flight duration and, as a result,
errors in localization; nevertheless, in TDOA, only APs must be synchronized [118].
While TOA uses existing data better, it does not provide the same amount of
flexibility for the mobile, which is confined to a circle when using one measurement,
and able to be in two places when using two measures; two measurements will allow

the mobile to be located on a hyperbola; and three measurements will allow the
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mobile to be in three locations. TOA can predict a single solution, but TDOA can
predict one or maybe two [119]. Another disadvantage of employing TDOA is the
occurrence of sensitivity LOS [120]; because to the hyperbolic nature of the curve, a
tiny bit of inaccuracy will cause a huge shift within the curve, making less accurate
results [121]. Assume the LOS route has been attenuated and has fallen below the
noise rejection threshold. In such scenario, the next path with power over the noise
level is treated as the initial arrival path, resulting in inaccurate TOA estimate and, as
a result, incorrect localization [110]. During its spread, the wave ran against walls.
2.4.2.1 Techniques Using Correlation

The most thorough approach for estimating TOA is cross-correlation is one of the
most [110]. Figure 5 shows TOA estimate; after the signal came, a match filter MF
correlated it to a template known p(t). The associated signal's sign is eliminated
using a square law device, and a time instant having a maximum value of peak
reflects the moment when first the signal is received [122]. Received peaks are going
to have similar amplitudes to the proper one in multipath propagation nearby; hence,
picking the correct peak becomes confusing, resulting in significant mistakes [122].
Because of its simplicity, this technique is popular; nonetheless, it is susceptible to

multipath and noise.
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received signal

Figure 5. Cross-Correlation Using TOA Estimation [122]
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Chapter 3

DEEP LEARNING FOR LOCALIZATION

3.1 Introduction

One of the most frequently used methods for computational intelligence is Artificial
neural networks (ANNSs) today which began as a software and tailored hardware
attempt to imitate adaptive organic nerve systems [123]. For more than 70 years
ANNSs have been a point of interest in research [124], their popularity has risen and
fallen during that period. Following pioneering work by several scholars [125], they
have recently made a significant comeback as pattern recognition techniques. Given
adequate computer resources and training data, multilayered artificial neural
networks have been shown indisputably to be capable of learning complicated, non-
linear functional mappings. The intellectual neighborhood has experienced
exponential development, both in industry and academia, as a result of these
amazing, substantial breakthroughs in strong pattern recognition. Furthermore,
multilayer ANNs eliminate much of the human labor previously required for setting
up traditional pattern recognizers. In fact, they are unknown systems offering
outstanding practical performance that demand unstructured, high dimensional data

insights with minimum human intervention [126]-[131].

3.1.1 What Is an Artificial Neural Network?
To tackle classification or regression issues, an artificial neural network consists of

vast amount of linked, simple functional neurons, which work together as data
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processors in parallel. That example, they can divide the range of all potential input
values to discrete classes or estimate the function that can do mapping between
inputs and outputs (the black box). When layers of these massively connected
neurons are stacked to form a network, the resulting computing infrastructure can:

1. Receive information of one input neurons (a part of the neural network's input
layers) and respond to the environment.

2. Invoke design goals and learning rules to transfer information between layers
inside the black-box enabling processing (known as a part of the hidden layers of
the network).

3. There are atomic units in the neural network's output layers that are known to

transmit processed information to the surrounding environment.

Each neuron's output in a hidden layer is linked to a subset (or all) of neurons from
the previous layer. The neuron computes the sum of the products of earlier
mentioned outputs in addition to weights associated with them. A projection of one
vector onto the other or a measure of similarity between the two may be considered
of as the dot product of an input vector and a weight vector. Suppose the input
vectors and weights are both n-dimensional, and the layer has m neurons. The layer's
output is an m-dimensional vector generated by multiplying the training set by a
m X n weights matrix, since weight vector is in each neuron and, given an n-
dimensional input vector, the output is an m-dimensional vector. The output of each
neuron is essentially a classifier of linear kind, with the input vector lying on one
side or the other and the weight vector forming a border between two classes. An m-
dimensional hyperplane splits the n levels of the input to two m-dimensional classes

in the output classes when all m neurons' outputs are added together. If the weights
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are generated using least mean squared (LMS) estimation from matched pairs of
input—output data, they create a regression line, i.e. the hyperplane which is

the nearest to all the outputs given the inputs in the LMS sense.

The hyperplane translates incoming input values to output which are compatible with
the original input data by reducing the error function between calculated outputs and
real outputs in the training data. The result of one linear classifier's can be used for
the input of another, thus many layers of linear maps are the same as a unique
classifier or regression. This is because multiplying the inputs by a g X n matrix,
which is the result of the k matrices multiplied, lowers the output of k distinct levels
to a single g X n matrix one per layer. To classify inputs nonlinearly or simulate a
nonlinear function using a regression, each neuron provides a numerical bias number
to the output of its input sum of products (the linear classifier) and passes it via a
nonlinear activation function. The exact form of the activation function is a design
parameter. They all, however, translate the real line via a monotonic rising function
with a zero-inflection point. The bias effectively changes the activation function's
inflection point to the bias's value in a single neuron. Therefore, the total of products
is mapped using a bias centered activation function. Any pair of such specified
activation functions may generate a pulse across their turning points if each is scaled
and one is subtracted from the other. Each pair of neurons effectively samples the
input space and produces a single value for all inputs within the pulse's limits. From
training data consisting of input—output pairs - input vectors each with a
corresponding output vector - the ANN learns an approximation to the function that
generated each of the outputs from its related input. The split of the input space into

samples that minimizes the error function between the ANN's output and its training
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inputs and outputs given its training inputs is known as this approximation. The
universal approximation theorem says that if an ANN has enough neurons in a
sufficient number of layers with a given activation function, it can approximate any
functional mapping between input and output vectors with arbitrary accuracy [132]-
[135]. Figure 6 represents a perception learning model which encapsulates these
ideas. By optimizing on the pairs of input and output the weights are generated and
the error function is minimized, giving the size of the vectors of input and output, the
layers’ numbers, an error function, the shape of the activation function and the
number of neurons in each layer. Consequently, the resultant network is a close

match to the known input—output data.

Inputs Weights

o —p Output

Summation Activation Function

Wp

Figure 6. The Perceptron Learning Model [136]

3.1.2 How Do These Networks Learn?

Learning is feasible with neural networks, as it is probable to estimate a function
representational the input patterns by altering the weight distribution. The
fundamental concept is a black-box re-stimulation the with additional data till it

achieves a suitable representation that is well-structured. Weights are given a little
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amount the proper direction each time of stimulation, assuming that the algorithm for
learning is suitable in application. This ends when the approximation error vs. well-
defined measure falls less than a minimum set by the practitioner. The accumulation
of neural computations variable length in causal chains [137] attempting for
mimicking a specific task of pattern recognition by linearity regulation with activated
neurons throughout the architecture is therefore learning. Non-linearity assists the
modulation process when a failure of implicit chains of linear activation happens to
understand structure related to them. In this application, the term "deep" refers to the
spatial complexity of the aggregation chain, which must span several hidden layers in
order to acquire suitably comprehensive representations. Although the current limits
of the discipline are well known, theorists joint with empiricists have had a
contribution to an exponential increase in research employing DNNs [138]-[140]. In
contrast to the problem-specific and hard coded, architectures of pattern recognition
in the past, deep learning has raised for being the most important components of
contemporary artificial intelligence research due to its capability for scaling using
data form the input and generalizing through similar underlying feature distributions
problems.

3.1.3 Deep Neural Networks Are Getting Attention So Much, Why Is That?
Neural networks with a multi-layer architecture were present since the second half of
the twentieth century. Why have deep neural networks attracted a huge amount of
focus from academia and industry recently is a reasonable inquiry? Many factors
have contributed to the rapid increase in research funding and output. New software
platforms such as PyTorch [141], Tensorflow [142], Caffe [143], Chainer [144],
Keras [145], BigDL [146], etc. allow architecture integrations seamlessly into a

computing environment with GPU. Improved regularization techniques have been
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introduced over time to help avoid overfitting as we scale up: techniques such as data
augmentation, batch normalization, early stopping, dropout and others are
significantly effective to eliminate overfitting and can make an improvement on
model performance that scale on their own. Algorithms that are equipped with
adaptive learning rates (Ada- Grad, RMSProp, Adaboost, Adam), Particle Swarm
Optimization, Stochastic Gradient Descent (with standard or Nesterov momentum),
Differential Evolution, and other algorithms produce solutions nearly optimal while
being the one with optimization robustness.

3.2 A Short Description of Deep Learning Architectures

A plethora of deep learning architectures exists in the literature, and the number is
expanding by the day. It's difficult to provide comparison that is fair for those
architectures because different architectures offer different benefits depending on the
application and the data characteristics. Convolutional Neural Networks [147] and
Recurrent Neural Networks [148] are preferred in computer vision and sequence and
time series modeling, respectively. Deep learning is a rapidly expanding discipline,
with new architectures and learning algorithms being developed on a regular basis to
meet the demand for human-like efficient machines in a variety of applications.

3.2.1 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are inspired from human’s vision system.
Considering the fact that LeCun et al. [147] suggested the notion in 1998, the deep
learning community first experienced it in action in 2012, the same time Krizhevsky
et al. [149] with AlexNet architecture proposed won the ILSVRC-2012 competition
[149]. Artificial intelligence experienced a new era when this astounding victory
ushered, with witnessing CNN's and its descendants' extraordinary classification

capabilities by the community of computation. Many derivative architectures have
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been presented and are still being explored in the years since. The CNN architectures
easily could go over human recognition capabilities in many circumstances. Figure 7
depicts the basic architecture of CNN, which includes numerous convolutions
pooling layers and convolutions, as well as a consistently linked layer at the
conclusion. Pooling layers minimize the feature map dimensionality while keeping
the information of features, whereas extractions of essential characteristics
convolution layers from the input image while considering how the input pixels are
spatially related [99]. When connected fully, each layer can join the network to the

output layer (discriminative layer), that produces the outputs required.

Pooling Flatten Full Connection

Convolution

Pooling

Convolution | | | r‘
% l
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\ ) \ ) \ J
| ! !
Input Data layer 1 layer 2 .
( Convolution + Pooling ) ( Convolution + Pooling ) Classifier

Figure 7. CNN With Pooling Layers And Convolution [136]

What CNNs are especially good at is the ability to extract picture descriptors from
spatial data that is latent. Gradients, edges, strokes, contours, textures, color, and
orientation are all properties of a picture. A CNN decomposes an image into these
types of simple features, which it then learns as representations in different layers

[150]. The learning system depicted in Figure 8 is a good illustration of it.

32



L1 L2 L3 L4
Representation Representation Representation Representation

- o

]

Input
Image

L3 : L4

L;=i-th CNN Layer

Figure 8. Handwritten Image Digit Learned By CNN [151]

- N N R SN

s E | I
Ed =
P

“\
N E

L1 L2

Image detection [152], [153], image segmentation [154], [155], picture classification
[156], and image super-resolution reconstruction[157], [158] are only a few of the
computer vision tasks that CNNs are used for. Several CNN architectures have been
designed to address the needs of real-time applications while also fulfilling high
accuracy standards. Recent architectures include YOLO (You Only Look Once)
[159] and R-CNN (Region-based CNN) [154]. Because it evaluates a large number
of area recommendations to locate an object within an image, the basic approaches of
CNN [160] are computationally quite expensive. R-CNN, on the other hand, is a
CNN with region-based type which can overcome the limitations of naive CNN by
using a selective search to choose the regions of interest (ROI) and limiting the
proposed regions to 2000 [154]. The authors then proposed Fast R-CNN [161] for
applying R-CNN to processing in real-time. In contrast to R-CNN, F-RCNN is a
faster approach where the convolution operation is performed on each of the 2000
interest regions independently on a single image, the convolution process is only
once performed for the entire image. Feature maps extracted are then subjected to a
selection search to discover region recommendations. However, the time-consuming
part is still selection search method that brings down the speed of object detection
process when using Fast R-CNN. Faster R-CNN [162] reduces the time complexity

by substituting the selective search strategy with a unique Region Proposal Network
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(RPN). The variants of R-CNN outlined utilize a two-stage approach and search
within the image’s different regions to locate the item inside it [154], [161], [162].
That said, they restrict the capabilities of the network in order to achieve the goal of
real-time object detection. Redmon et al. [159] proposed YOLO (You Only Look
Once) in 2016, that in comparison to R-CNN records very fast with little
performance change. It knows the generalized representation of the image with a
single convolutional neural network by looking once at the object. The algorithm, on
the other hand, has a spatial constraint when it comes to recognizing smaller things.
This issue has been mentioned in Single Shot MultiBox Detector (SSD) [163], that
uses multiple anchor box scales [164] as an option to the fixed grid used in YOLO.
This might successfully handle objects of various sizes and resolutions, with real-
time inference capabilities like YOLO. As a result, various to enhance accuracy
while keeping the pipeline intact, YOLO tweaks have been proposed and are
speedier overall. Compared to prior versions, YOLOv2 [165] and YOLOv3 [166]
have provided considerable gains in accuracy and have also been modified detecting
small objects. Aside from these CNN designs, there are various versions of existing
traditional ones, such as GoogleNet [167], LeNet [147], VGGNet [168], ResNet
[169], ZFNet [170], AlexNet [149] and more. The CNN architectures have had an
extraordinary impact on Al-guided vision research, and they appear to be powering it
for the promising future.

3.2.2 Recurrent Neural Networks (RNNs)

By the chance of expressing dependencies on time, Hidden Markov Models (HMM)
may become impractical computationally especially for ling-term dependencies, that
is what RNNs are there for. Using differential equations, [171] provides a

comprehensive derivation of the Recurrent Neural Network. RNNs are nets with
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feed-forward type that span neighboring time steps, with each node taking hidden
node values as well as the current data input collecting information from previous

time steps at any one time. A Recurrent Neural Network architecture is shown in

Figure 9.
Output (Ot) Output (Ot-1) Output (Ot) Output (Ot+1)
Output Layer Output Layer Output Layer Output Layer
A A A A
Who Who Who Who
Whh Whh Whh Whh
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A A A A
Wih Whh Wih Wih Wih
Input Layer Input Layer Input Layer Input Layer
Input (Xt) Input (Xt-1) Input (Xt) Input (Xt+1)

Figure 9. Architecture Of A Recurrent Neural Network [136]

The problem of gradients that are exploding and vanishing occurs during the
backpropagation of mistakes across several timesteps, which can be avoided using
Hochreiter and Schmidhuber's Long Short Term Memory (LSTM) Networks[172].
"Forget" gate regulates the quantity of information to be kept from earlier time steps,
while "input gate" chooses on the new content to be saved in the cell. Finally, the
output is controlled by the output gate and the hyperbolic tangent activated candidate
value of the state. Figure 10 in LSTM, number 10 depicts a repeating module. LSTM
networks with peephole connections [173] use cell state information to update the
three gates. In the Gated Recurrent Unit (GRU) [174], a single update gate replaces
the forget and input gates, integrating the hidden and cell states. Sak et al. proposed
training LSTM RNNs on multicore CPUs in a distributed manner utilizing

asynchronous SGD (Stochastic Gradient Descent) optimization for acoustic
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modeling in [175]. They demonstrated a two-layer deep LSTM architecture with a
linear recurrent projection layer on each layer, allowing for more effective usage of
model parameters. Doetch et al. [176] suggested an LSTM-based training framework
for handwriting recognition that consists of sequence chunks that comprise mini
batches. To minimize runtime by a factor of three, the design employs modified
gating units with layer-specific weights for each gate. Palangi et al. [177] used
LSTM-RNN to develop a sentence embedding model that systematically collects
information out of each phrase and embeds it in a semantic vector until the
conclusion of the sentence to produce an overall semantic representation of the entire
phrase. In web document retrieval applications, the model's capacity to attenuate
insignificant phrases while recognizing important keywords is particularly effective.
Pota et al. [178] developed a Bi-LSTM architecture to correlate words’ sequence to a
sequence of POS tags, which has applications in Natural Language Processing. Gao
et al. Using a layered architecture cognition module with long short-term memory
and multi-layer perceptron, [179] created a middle point model to segregate

targets and visual tracking localization applications.
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Figure 10. A Repeating Module In LSTM [177]
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3.2.3 MobileNet Architecture

3.2.3.1 Depth Wise Separable Convolution

The model of MobileNet is built on separable depthwise convolutions, which are a
type of convolution factorized that divides a standard convolution into a pointwise
convolution and depthwise. In the depthwise MobileNets single filter is applied to
input channels separately. Outputs of the depthwise convolution are then combined
using an 1 x 1 convolution by the pointwise convolution. In one step, a combination
of inputs to create new outputs is done by convolution filters. This is separated into
two layers by the depthwise separable convolution, one for filtering and the other for
combining. This factorization reduces computing time and model size significantly.
Figure 11 depicts the factorization of a standard convolution 11(a) into a depthwise

convolution 11(b) and a 1 x 1 pointwise convolution 11(c).

D —N —

(a) Standard Convolution Filters

Dy

Dk — M —

(b) Depth wise Convolutional Filters
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(c) 1 x 1 Convolutional Filters called Pointwise Convolution in the context
of Depth wise Separable Convolution

Figure 11. The Standard Convolutional Filters

A standard convolutional layer gets in a D X Dy X M feature map F as input while
outputting a Dy X Dy X N feature map G, where Dy is the spatial width and height of
a square input feature map, M is the number of input channels (input depth), D is
the spatial width and height of a square output feature map, and N is the number of
output channels (output depth). The conventional convolutional layer is
parameterized by a convolution kernel K of size D, X D,, X M X N, where Dy, is the
spatial dimension of the kernel, M is the number of input channels, and N is the

number of output channels, as previously specified.

For standard convolution with stride one and padding, the resulting feature map is as

follows:

Gk,l,n - Z Ké,j,m,n : Fk+i—1,l+j—1,'rrz (1)
2,7, m
The computational cost of standard convolutions is:
Dy.Dg.M.N.Dg. Dy (2)
It can be inferred that computational cost is affected by the number of output
channels N, the number of input channels M, the size of the feature map Dy X Dy and
the kernel size D, X D,. Each of these terms, as well as their relationships, are

addressed in MobileNet models. To begin, depth wise separable convolutions are
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used to eliminate the relationship between the kernel size and the number of output
channels. The normal operation of convolution has the effect of filtering and merging
data based on convolutional kernels to create a new representation. For a significant
reduction in computing cost, the filtering and combination phases can be divided into
two parts using depthwise separable convolution which is considered as a factorized
convolution. There are two layers to depth wise separable convolutions: depthwise
convolutions and pointwise convolutions. To apply a single filter to each input
channel, we employ depthwise convolutions (input depth). The output of the
depthwise layer is then linearly combined using pointwise convolution, a simple
1 x 1 convolution. Both layers of MobileNets use batchnorm and RelLU

nonlinearities.

Depthwise convolution with one filter per input channel (input depth) can be written

as:

Gk,l,-m = E Ki,j,m, : Fk:+‘ifl,l+j71.m (3)

i,J
K is the D, x D, x M depthwise convolutional kernel, and the m,,, filter in K is
applied to the m,, channel in F to form the m,;, channel of the filtered output feature

map G.

The cost of computing depthwise convolution is:

Dx.Dg.M. Dy Dy 4)
In comparison to ordinary convolution, depthwise convolution is incredibly efficient.
This will not, however, combine input channels for producing new features; it just
filters them. An additional layer is required that calculates a combination with

linearity containing depthwise convolution output via 1 x 1 convolution for
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generating these new features. Depthwise separable convolution, proposed first in

[180], is a resultant of 1 x 1 (pointwise) convolution and depthwise convolution.

Cost of depthwise separable convolutions:
Dy.Dg.M.Dp.Dp + M.N.Dg. Dy (5)

This is equal to the sum of depthwise and 1 x 1 pointwise convolutions.

We gain a decrease in computation of: by defining convolution as a two-step filtering

and combining procedure:

Dg-Dg-M-Dp-Dp+M-N-Dp-Dp
Dyg Dy -M-N-Dg Dp ©)

_1 1
N D%

Extra factorization in the spatial dimension, as in [181], [182], does not save much

additional work because depthwise convolutions need very little processing.

3.2.4 Mobilenet Structure and Training

Except for the first layer, which is a full convolution, the MobileNet structure is
based on depthwise separable convolutions, as discussed in the previous section. We
may quickly explore network topologies to identify a nice network by defining the
network in such simple terms. Table 3 depicts the MobileNet architecture. With the
exception of the final fully connected layer, which has no nonlinearity and feeds into
a SoftMax layer for classification, all layers are followed by a batch norm [183] and

ReLU nonlinearity.
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Table 3. MobileNet Body Architecture [136]

Type / Stride Filter Shape Input Size
Conv /s2 3 x3Ix3x32 224 x 224 x 3
Conv dw / sl 3x 3 x32dw 112 x 112 x 32
Conv /sl 1 x1x32x64 112 x 112 x 32
Conv dw / s2 3 x 3 x 64dw 112 x 112 x 64
Conv /sl 1 x1x64x128 56 x 56 x 64
Conv\dw/sl 3 x 3 x 128 dw 56 x H6 x 128
Conv /sl 1 x1x128 x 128 56 x Hh6 x 128
Conv dw / s2 3 x 3 x 128 dw 56 x 56 x 128
Conv /sl 1 x1x128 x 256 28 x 28 x 128
Conv dw / sl 3 x 3 x 256 dw 28 x 28 x 256
Conv /sl 1 x 1 x 256 x 256 28 x 28 x 256
Conv dw / s2 3 x 3 x 256 dw 28 x 28 x 256
Conv /sl 1 x1x256x 512 14 x 14 x 256
5><Convdw/sl 3 x 3 x512dw 14 x 14 x 512
Conv /sl 1 x1x512x512 14 x 14 x 512
Conv dw / s2 3 x 3 x512dw 14 x 14 x 512
Conv /sl 1 x1x512x 1024 7TxT7x512
Conv dw / s2 3 x 3 x 1024 dw 7Tx7x1024
Conv /sl 1 x1x1024 %1024 | 7x 7 x 1024
Avg Pool / sl Pool 7 x 7 7T x7x1024
FC /sl 1024 x 1000 1x1x1024
Softmax / sl Classifier 1 x 1 x 1000

Simply defining networks in terms of a small number of Mult-Adds is insufficient.
It's also crucial to ensure that these procedures can be carried out efficiently.
Unstructured sparse matrix operations, for example, are often slower than dense
matrix operations unless the sparsity is quite high. The dense 1 x 1 convolutions in
our model structure handle practically all the computation. This can be done using
GEMM functions, which are highly optimized general matrix multiply functions.
Convolutions are frequently implemented using GEMMs, but they require an initial
memory reordering termed im2col in order to translate it to a GEMM. This method is
used, for example, in the popular Caffe package [143]. 1 x 1 convolutions don't

require any memory reordering and can be implemented directly with GEMM, one of
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the most optimal numerical linear algebra techniques. As seen in Table 4, MobileNet
spends 95 percent of its computing time on 1 X 1 convolutions, which also have 75
percent of the parameters. The completely connected layer contains nearly all the
additional parameters. TensorFlow [142] was used to train MobileNet models using
RMSprop [184] and asynchronous gradient descent, comparable to Inception V3
[182]. We utilize fewer regularization and data augmentation approaches when
training tiny models than when training large models because small models are less
prone to overfitting. We do not employ side heads or label smoothing while training
MobileNets, and we also restrict the number of visual distortions by minimizing the
size of small crops used in big Inception training [182]. We also discovered that
because the depthwise filters have so few parameters, it was critical to apply very
little or no weight decay (12 regularization) to them. All models, regardless of size,
were trained using the same training parameters for the ImageNet benchmarks in the
next section. Table 4 compares a factorized layer with depthwise convolution, 1 X 1
pointwise convolution, batch norm, and ReLU nonlinearity to a layer with standard
convolutions, batch norm, and ReL.U after each convolutional layer. In the depthwise
convolutions as well as the first layer, down sampling is handled via striding
convolution. Before the completely linked layer, a last average pooling reduces the
spatial resolution to 1. MobileNet contains 28 layers when depthwise and pointwise

convolutions are counted separately.

Table 4. Resource per Layer Type [136]

Type Mult-Adds | Parameters
Conv 1 x 1 94.86% 74.59%
ConvDW 3 x 3 | 3.06% 1.06%
Conv 3 x 3 1.19% 0.02%
Fully Connected | 0.18% 24.33%
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3.2.5 Mobilenet for Object Detection

In contemporary object detection systems, MobileNet can also be used as a reliable
base network. Based on the recent work that won the 2016 COCO challenge [185],
we describe the results for MobileNet trained for object detection on COCO data. In
Table 5, the Faster-RCNN [162] and SSD [163] frameworks are used to compare
MobileNet to VGG and Inception V2 [183]. SSD is tested with 300 input resolution
(SSD 300), while Faster-RCNN is tested with both 300 and 600 input resolution
(Faster-RCNN 300, Faster-RCNN 600) in our studies. Per image, the Faster-RCNN
model assesses 300 RPN proposal boxes. The models are trained and evaluated using
COCO traint+val except for 8k minival images. MobileNet offers equivalent
outcomes to other networks with a fraction of the computational cost and model size

in both frameworks.

Table 5. COCO Object Detection Results Comparison Using Different Frameworks
and Network Architectures. mAP is Reported with COCO Primary Challenge Metric
(AP at 10U=0.50:0.05:0.95)

Framework Bilion Mult- Milion
Resolution Model MAP Adds Parameters

deeplab-VGG 21.1 % 34.9 33.1
SSD 300 Inception V2 22 % 3.8 13.7
MobileNet 19.13 % 1.2 6.8
VGG 22.9% 64.3 138.
FaSte;'O%CNN Inception V2 |  15.4% 118.2 13.3
MobileNet 16.4% 25.2 6.1

VGG 25.7% 149.6 138.5
FaSte;'O%CNN Inception V2 |  21.9% 129.6 13.3
MobileNet 19.8% 30.5 6.1

Figure 12 can show the performance of a trained COCO dataset with SSD

architecture.
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Figure 12. Exam-ple Objection Detection Results Using Mobilenet

3.2.6 Single Shot Detector Approach

The Single Shot Detector (SSD) is a feed-forward convolution-based object detector
that generates a set of bounding boxes with values and assigns classes to each of
them. To be employed in the training process, SSD requires picture input and ground
truth boxes, which are a type of square used to designate items to be detected. The
architecture of the SSD is shown in Figure 13. Meanwhile, there are various features
on SSD that yield high accuracy values, including multi-scale feature maps for

detection, convolutional predictors, default boxes, and aspect ratios [161].
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Figure 13. SSD Network Structure
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Chapter 4

DEEP LEARNING BASED MARKOV LOCALIZATION

4.1 Introduction

This section will provide information on how the implementation has been done and
the steps followed to achieve the results. The overall progress is to have a quadcopter
not aware of his initial position within the map hovering on top of the patterns and
receives the frames, then decides the pattern detection. Markov weights are also
updates in each section and the whole process stops when the final decision comes

from with high confidence (more than 99%) from Markov weights.

At the beginning of this chapter, we will go through a comparison with the method
mentioned in the reference paper and the proposed method by this thesis. Then the
hardware setup will be introduced in addition to how they are used. Afterwards,
Deep Learning network training procedure and the outputs will be described. We will
continue with the algorithm followed to localize the vehicle. Finally, we will jump

into results and their comparison with the literature this work is inspired from.

The proposed method in the original research [1] made use of image analysis with
feature extraction from each shot, which was then utilized to create what was deemed
to be a pattern of localization. The main concept is that a quadcopter begins flying
over a pattern at the beginning of the flight without taking its orientation or location

into consideration. On the computer, a map of all the patterns and their placements,
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as well as their relative positions, has been saved. The quadcopter is equipped with a
camera that is pointed downwards and that sends videos to the main computer. Since
the streamed photo is hovering on top of a pattern, it is detected using the above-
mentioned method, and an initial prediction as to its location is made. The drone then
flies over the next pattern, and the predictions are updated to reflect the new
information. Drone localization is completed once the anticipated position's

confidence level has reached a predetermined level of confidence.

Because the system is aware of the location, the operation can be carried out on the
entire map when it has been completed. When the estimates are made, they are kept
as Markov weights, which are updated with each displacement. In robotics, the

Markov method is a statistical approach for localization that is used in [1].

In this thesis, we have replaced the feature detection approach with a Deep Learning
method to recognize patterns, which is more accurate. A specified number of
photographs from each pattern are fed as a dataset to an object detection network,
which is then trained in the appropriate manner. The training milestones are based on
the pre-trained network from the COCO dataset. Only the last six layers of the
network are unfrozen during the training process, and they are frozen again after the
training is completed. As a training network, Mobilenet SSD v1 has been selected.

4.2 The Utilized Hardware

The following setup has been used for the system based on the following reasons:
a. Hardware accessibility
b. Deep learning ease of training

c. Available testbed for the actual tests.

46



Figure 14 shows the architecture of the system which has been used for the setup. In

following paragraphs, the system architecture has been described in details.

RGBVGA | Rtps video feed
camera

Google Edge
TPU _
accelerator
Companion
Computer (Raspberr
Realsense . P . (Rasp y Ground Station
T265 Pi4 running MAVROS (MAVSDK+QGC)
and pattern detection
applicaiton)

Pixhawk4
mini

Figure 14. The Architecture of System

As it can be seen from the figure 14, a companion computer (Raspberry Pi4) is
mounted on a quadcopter which is getting video feeds from an RGB camera in RTPS
format (Real Time Protocol of Streaming) with 30 frames per second. There is an
accelerator connected to the companion computer (Google TPU device) to take care
of pattern detection. The Intel camera (T265) is also used to acquire Odometry
information. Companion computer is also connected to the flight controller
(Pixhawk4 mini) for commanding movements. The companion computer is
wirelessly communicating with the Ground station using User Datagram Protocol
(UDP) to view the position changes and pattern detection decision makings. Figures

15 and 16 show the actual hardware used for this thesis.
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Figure 15. uadcopter Frame Used for Locaizatidh\

Figure 16. Quadcopter Bottom View Containing the Computing Modules and The
Camera

4.2.1 Google Edge TPU

Google 10T includes the Google Edge TPU. They're built to run inferences at the
edge with the support of cloud-trained machine learning models. The Google Edge
TPU is coupled with the Coral Development Board, which is an ASIC (Application-

Specific Integrated Circuit) designed to allow on-device machine learning (Machine
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Learning). Coral Development Board is a Single Board Computer (SBC) with
Wireless capabilities for high-speed machine learning inferencing. It comes with a
removable SoM. (System-on-Module). The operating system on this board is

Mendel, a Debian Linux derivative.

The Edge TPU coprocessor can execute 4 trillion Operations Per Second (TOPS)
while only consuming 0.5 watts per TOPS. Both C++ and Python programming
languages are supported. It makes use of the Mendel Development Utility (MDT), a
command-line tool for working with connected Mendel devices. Google TensorFlow
Lite and AutoML Vision Edge are both supported. TensorFlow Lite models can only
be used using the Python and C++ APIs to make inferences. The EdgeTPU module
can be imported to use the Python API, and the edgetpu.h header file can be included
to use the C++ API. This development board is mostly used for picture classification
and object identification, but it can be utilized for a variety of other tasks. Working
with this Dev Board is made easier with good documentation and support. [186]
implemented real-time image classification and received quick results, indicating that
this development board has a lot of potential for executing real-time ML calculations.
[187]. Using a camera module, implemented an object detection demo from video

and image categorization. The hardware specifications are listed in Table 6.

Table 6. Hardware Specifications of Coral USB Accelerator.

Google Edge TPU coprocessor:
4 TOPS (int8); 2 TOPS per watt

Connector USB 3.0 Type-C* (data/power)
Dimensions 65 m x 30 mm

ML accelerator
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4.3 Patterns and Their Placement

The map which the drone must occupy to do the localization according to the paper

[1] consists of six different patterns shown in Figure 17.

N W

Class 1 Class 2 Class 3
Class 4 Class 5 Class 6

Figure 17. Patterns Classes for Recognition

Each pattern has the dimensions of 50 X 50 cm which compared to the main
reference paper has been reduced to half due to space and expenses’ limitations.
They are apart from each other for approximately 60cm . The quadcopter flies over
them at a height of 1.0m and accordingly each pattern can be seen in the camera

separately each time without any interference of other patterns.

These patterns are then put on the ground in a random combination of 16 of them
which can be seen in Figure 18. Figure 19 shows the patterns in action and how we

put them.
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Figure 18. Map of 16 Patterns Retrieved From [1]

Figure 19. Patterns Actual Placement in the Electrical and Electronics Engineering
Department

4.4 Markov Localization Theory

Markov localization is a probabilistic localization of a kidnapped robot algorithm. It
uses an arbitrary probability density function to represent the robot's position to track
its belief state. It does not focus on the location of the car, but rather on the
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probability distribution of where it might be. These probabilistic representations
allow it to mathematically express many hypotheses [2]. The map has already been
preoccupied by the algorithm. When the algorithm receives measurement data from
the camera, it refers to the preoccupied map and uses the prediction and
measurement update equations to update the probabilities. Prediction update is
calculated as below:

B_el(xt) = X p(xe|us, xe—1)bel(xp_1)dxe_q (8)
And the measurement update is:

Bel(x;) = np(Ztlxt.M)E(xt) )

where x; denotes the quadrotor's state or location at time instant t, and u, is the
control input. The robot's belief in being at position x; is expressed by Bel(x;).

Initially, the notion is that all poses have a uniform distribution. Just before including

the new observation z,, which is the sensor readings, Bel(x;) is computed. In
addition, n represents the environment map and indicates a normalization factor that

ensures that the total of probabilities equals one [188].
4.5 Data Collection

There are totally 6 patterns to be included for training. From each pattern 30 samples
have been collected via the same camera which will be on the drone later to take care
of the video feed. These photos are then rotated randomly up to 10 degrees maximum
and went through a blurred filter to produce more samples. The labeled samples have
been fed through the network to be trained. Figure 20 shows how samples are

collected.

52



. . e

v T

Figure 20. A Sample of Pattern's Data Collected for Training

The collected data then is labeled and added with augmentation and rotation as show
some examples of them and how the more data have been prepared by adding noise
and augmenting the original one. Figures 21 and 22 show the operation sample

applied to the training data.

Figure 21. Quality Change (Left) And Introducing Noise (Right) to the Dataset
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Figure 22. A Sample of Data with Brightness Change (Left) and Rotation Applied
(Right)

4.6 Deep Learning Network Training

The network chosen for training is Mobilenet_ V1 SSD using TensorFlow. The
trained data are then compiled and quantized to be capable of being processed via
Edge TPU devices. The network has been trained with transfer learning method
using a pre-trained COCO dataset. According to Google Coral Edge TPU device
documentation the training steps have been modified to be done up to 5000 epochs,
feeding 30 photos from the whole dataset randomly. 80% percent of the collected
data have been used for training and 20% for verification of trained network in each

training step.

Figure 23 shows the training loss. The horizontal axis shows the number of training
epochs. Training loss starts with a random initialized value according to our pipeline
configuration that here we used the default one from the hardware provider. As the
network learns more about the dataset and tests with evaluation data provided for it,

this loss decreases till reaching an optimum value.
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Figure 23. Loss Values During Object Detection Training

Figure 24 represents that our detection boxes can perform an overlapping accuracy of
almost 75% between ground truth of data and the represented data up to 80% only

after near 1200 steps of training.

Box Precision mAP at 0.75loU

mAP

0 1000 2000 3000 4000 5000 6000
Epochs

Figure 24. Mean Average Precision for Detection Boxes at 0.751o0U

Precision of detection boxes as can be inferred from Figure 25 can barely reach to
70% on average over the whole training dataset which is compensated by our
proposed majority voting decision making method later to achieve near 100%

confidence of the detected pattern within a specific timeframe.
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Figure 25. The Precision Detection for Each Epoch of Training

As it can be seen in Fig. 26, after 1000 steps the network is ready for object detection
since learning rate has reached to zero. The learning rate starts from a random
number and it shows the network’s convergence as after each step the training data is

compared to the evaluation data.
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Figure 26. Learning Rate Coefficient Per Epochs of Training

4.7 The Algorithm of Implementation

On the Grid-Map of the world the location of the quadrotor is not known at the

beginning and it is considered as a kidnapped robot. It starts by hovering on top of an
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initially random unknown pattern. Each detected frame within each second is fed to a

list by software and after 90 detection frames, the mode of these decisions is chosen.

The aim here is to find the robot’s place on this map. It might be located anywhere
on the map, and the likelihood of finding it in all cells is % . Then when a pattern is

observed, the frame is transmitted to the image processing algorithm, which retrieves
the information. After all the locations have been discovered, the likelihood is
divided based on the number of probable places and the grid-map is updated
accordingly. A prediction update is performed whenever the quadrotor traverses from
one cell in the grid-map to another cell which can start from anywhere on the map
and go in any straight direction. This is referred to as the prediction update. In each
cell, the prediction and measurement updates will be repeated until the chance of the
quadrotor being localized is 100 percent, at which point the quadrotor will be
localized and aware of its position on the map. Figure 27 shows the algorithm

followed for localization.
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Figure 27. The Algorithm for Localization

4.8 Results and Outputs

First, we have tested our pattern detection and decision-making method with
hovering the drone on each of 6 classes separately. Because we do not have more
than 80% confidence in pattern detection from each frame and at the same time, we
need to decide with a confidence of 100%, we have introduced majority voting
method to make the final decision about the correct detection of each pattern. In this
method, the drone hovers on top of each pattern for 3 seconds and captures 90
frames. Since there are some wrong detections may happen within these 90 frames,

the corresponding numbers of each detected class is added to a list. This means our
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list contains 90 detected classes after 3 seconds. By taking the mode of this list we
can find out how many times a pattern has been detected the most and choose it as

our final decision for the pattern detection.

The following tables can visualize the confusion table. Each table is for hovering on
an arbitrary class. The highlighted columns state the pattern we have flown on top of.
We have chosen odd numbers of frames with a specific gap of frames to make the
tables short. The percentages in each row represent the share of a detected class by
our trained neural network among other patterns up to that specific number of
frames. It can be inferred that after 90 frames we have only one class which has been
detected the most and we choose it as our right detected pattern with 100%

confidence. Tables 7 to 12 can show this for each pattern respectively.

Table 7. Detection Accuracy of Pattern 1 within 90 detection frames.

No. of Patl Pat2 Pat3 Pat4 Pat5 Pat6
Frames Detection Accuracy
3 33% 33% 0 0 0 33%
11 36% 55% 0 0 0 9%
19 42% 53% 0 0 0 5%
27 52% 44% 0 0 0 4%
35 63% 34% 0 0 0 3%
43 5% 24% 0 0 0 2%
51 78% 20% 0 0 0 2%
59 81% 18% 0 0 0 1%
67 81% 18% 0 0 0 1%
75 79% 20% 0 0 0 1%
90 78% 21% 0 0 0 1%
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Table 8. Detection Accuracy of Pattern 2 Within 90 Detection Frames.

No. of Patl Pat2 Pat3 Pat4 Pat5 Pat6
frames Detection Accuracy
3 64% 9% 0% 0% 27% 0%
11 68% 16% 0% 0% 16% 0%
19 59% 30% 0% 0% 11% 0%
27 46% 46% 0% 0% 9% 0%
35 31% 63% 0% 0% 6% 0%
43 27% 68% 0% 0% 5% 0%
51 24% 2% 0% 0% 4% 0%
59 22% 74% 0% 0% 4% 0%
67 20% 77% 0% 0% 4% 0%
90 18% 79% 0% 0% 3% 0%
Table 9. Detection Accuracy of Pattern 3 Within 90 Detection Frames.
No. of Detection Accuracy
frames Pat 1 Pat2 Pat 3 Pat4 Pat5 Pat 6
3 0% 0% 0% 0% 100% 0%
11 0% 0% 0% 0% 100% 0%
19 0% 0% 0% 0% 100% 0%
27 0% 0% 11% 0% 89% 0%
35 0% 0% 31% 0% 69% 0%
43 0% 0% 53% 0% 47% 0%
51 0% 0% 59% 0% 41% 0%
59 0% 0% 64% 0% 36% 0%
67 0% 0% 67% 0% 33% 0%
75 0% 1% 69% 0% 30% 0%
90 0% 2% 67% 0% 26% 4%
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Table 10. Detection Accuracy of Pattern 4 Within 90 Detection Frames.

No. of Detection Accuracy
Frames a1 Pat2 Pat3 Patd Pat5 Pat6
3 0% 0% 0% 0% 100% 0%
11 0% 0% 0% 36% 64% 0%
19 0% 0% 0% 37% 58% 5%
27 0% 0% 0% 26% 70% 4%
35 0% 0% 0% 26% 69% 6%
43 0% 0% 0% 39% 51% 10%
51 0% 0% 0% 42% 46% 12%
59 0% 0% 0% 48% 42% 10%
67 0% 0% 0% 52% 38% 10%
90 0% 0% 0% 56% 35% 10%
Table 11. Detection Accuracy of Pattern 5 within 90 Detection Frames.
No. of Detection accuracy
Frames Pat1 Pat2 Pat3 Pat4 Pat5 Pat6
3 0% 0% 0% 0% 100% 0%
11 0% 0% 0% 9% 91% 0%
19 0% 0% 0% 16% 84% 0%
27 0% 0% 0% 11% 89% 0%
35 0% 0% 0% 9% 91% 0%
43 0% 0% 0% 6% 94% 0%
51 0% 0% 0% 5% 95% 0%
59 0% 0% 0% 4% 96% 0%
67 0% 0% 0% 4% 96% 0%
75 0% 0% 0% 4% 96% 0%
90 0% 0% 0% 3% 97% 0%
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Table 12. Detection Accuracy of Pattern 6 Within 90 Detection Frames.

No. of Detection Accuracy

frames ™ parp Pat2 Pat3 Patd Pat5 Pat6
3 0% 0% 0% 0% 100% 0%
11 0% 0% 0% 0% 64% 36%
19 0% 0% 0% 0% 58% 42%
27 0% 0% 0% 0% 48% 52%
35 0% 0% 0% 0% 37% 63%
43 0% 0% 0% 0% 25% 75%
51 0% 0% 0% 0% 22% 78%
59 0% 0% 0% 0% 19% 81%
67 0% 0% 0% 0% 18% 82%
75 0% 0% 0% 0% 16% 84%
90 0% 0% 0% 0% 14% 86%

As the decision is made via the above tables, we have two outputs on top of each
frame on our ground station. Figure 28 shows that on the left side, the number shown
is our majority voting decision making algorithm output while at the same time the
number on right side is showing the current frame can only be Pattern 6 with 79% of

confidence.
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Figure 28. Comparison Between Pattern Recognition Confidence and Final Decision
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Secondly, we started implementing Markov algorithm to localize our quadcopter on
the map. Markov algorithm works easier when no noise is present in each
measurement (here each detected pattern) and we have eliminated that noise by using

our majority voting algorithm for decision making.

Figure 29 shows the first route. At the beginning the drone hovers on top of the
bottom right pattern (pattern 1) without any information of its location. Pattern 1 is
detected and since we have Pattern 1 four times repeated in the whole map, the
probability of being on top of any of them is 25% as the map is already predefined by
our computer. At this point, for the sake of optimization for our algorithm, we have
added border condition checks. To be clearer, if the drone is on top of Pattern 1, we
send the drone to the right side. This means the next 3 seconds we are going to have
no pattern detected. We have limited this time to one second which means
localization is done in total 4 seconds. At this moment the localization process is

done and the drone is aware of its location on the map with 100% confidence.
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Figure 29. Localization Using Route 1 (Left to Right Is Start to End)
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With the proposed method for optimization, we can ensure to have the least amount
of time needed for localization. For instance, pattern 6 will take only 3 seconds to
achieve localization and it is only one on the whole map leading to a 100%

confidence at the first period of detection.

There are indeed middle patterns that the drone may start to fly off from. In this case
for having an optimized timing to localize, the predefined map condition will prevent
the drone to go to a direction which localization may take longer. For instance, as
shown in Figure 30, if we start from Pattern 3 in the middle, going to the left will
make us longer to do localization and we choose moving to right side which after

two patterns localization is achieved.
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Figure 30. Localization Using Route 3

4.9 Comparison of Results with The Concurrent Methods

This implementation had been able to do the detection within 90 frames over each
detection period. Below we have the comparison between the original paper and the
ones we have proposed here as results. Figure 31 shows the convergence of the
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estimated error from the prediction and it can be clearly seen that after about 6

second, localization has been successful.
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Figure 31. Estimated Time to Localize the Drone from The Concurrent Solution

Table 13 shows how our proposed method can be compared to the concurrent

method already implemented by the reference research paper.

Table 13. Comparison Between Thesis Proposed Method the One In [1]
Overall number of
patterns to achieve near
100% confidence for

Overall time
consumption for a
localization task

localization
Concurrent method Approx. 6 seconds 4
Impl_e memd m_ethod Between 4 to 6 seconds Between 1to 2
in this thesis
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Chapter 5

CONCLUSION AND FUTURE WORKS

5.1 Conclusions

In this work we localized a quadcopter using deep learning and Markov algorithm.
Localization is among one the most favorite topics in robotics and can be done in
many ways that we have earlier mentioned in this thesis. We have brought an idea of
using pattern in 6 different classes to be used for feeding our training network. By
using Google Coral Edge TPU which is one of the widely used embedded tensor
processors in the industry, we have made the decision making for each pattern
detection scenario. Near total of 300 images have been fed to the training network to
the retrained in 5000 epochs. The Tensor processor decisions were then given most
of the voting within each 91 frames received in real time. The drone hovered over 2
to 3 consecutive patterns and Markov decisions for the location were with 100%
confidence in all tested case scenarios relying on a pre-defined map of pattern’s
placement relative to each other. Each time the drone can come to a final accurate
decision of the detected pattern within three seconds and then it traverses to the next

one.

On the other hand, this thesis has contributed to the performance of detection. Tables
7 to 12 show that within each inference of 90 frames fed to the detection network
how the accuracy of final decision increases based on Sum and Product probability

rules.
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5.2 Future Work

This thesis was the first practical implementation of a research paper with a different
method. In the paper only the simulation results were mentioned and feature
extraction had been used to detect patterns. Since the time was limited to have the
hardware ready and at the same time do the implementation, we had to limit our
work within these 16 patterns. Markov algorithm has worked very fast here since
there were no uncertainty in our decision making which if the number of patterns are
extended, indeed the certainty will be noisy and we will need more patterns or other

routes to be surfed as well for localization that could be a part of any future research.

Additionally, another work indeed can be to compare the accuracy and speed of
detection using feature extraction and deep learning. This must also bring the
hardware change into account since TPU will not be used anymore in feature

extraction.

The other work is to make the patterns smaller and have more of different and more
complex ones with more colors. In this case detection with deep learning can be

compared with the current method.

Finally, this localization method can be compared to any other ones available in
market to give the insight of how this method performs compared to the other ones

available in the market now.
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