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ABSTRACT 

Localization is among one of the interesting subjects in robotics and can be spread 

from Unmanned Ground Vehicles (UGVs) to aerial ones. It is a point of interest for 

instance to localize robots in a warehouse or within an open area to define specific 

tasks. Unmanned Aerial Vehicles are also being used vastly indoors with GPS-

denied environments.  

There are many localization methods recently being used in industry and research as 

such as Ultra-Wide Band (UWB), Bluetooth and (Global Positioning System) GPS. 

They have their own point of application in industry depending on their 

specifications. One of the best solutions is UWB with the least number of errors.  

In this thesis, we implemented a localization method based on Deep Learning. 16 

patterns on the floor are used to make a specific map for localization.  The proposed 

Deep Learning algorithm were able to detect each pattern correctly with 100% 

accuracy using majority voting for decision making in 3 seconds. The detection is 

performed real-time with the video feed of 30fps. Training and testing the network is 

done on Mobilenet which is based on Fast R-CNN deep learning architecture. All the 

processes are done on the quadcopter itself from navigation, control, and deep 

pattern detection using a single embedded computer. The quadcopter is equipped 

with a Raspberry Pi, Google Edge TPU embedded device with a flight controller in 

addition to a tracking and an RGB camera. The whole decision making of the 

patterns is performed via the embedded device connected to the Raspberry Pi in 30 

fps and no pattern recognition process is employed on the ground computer. The 



iv 

drone odometry data is acquired via an Intel Realsense camera which provides IMU 

data to the drone. Only the codes for simple movements over the map have been sent 

to the drone from the ground station. Heading data is also provided by the tracking 

camera mounted on the quadcopter. 

Markov weights and the final decision weights have 100% confidence after each 

random path has been travelled over by the quadcopter. The drone was able to 

localize itself as a kidnapped robot, after flying over an average of two or maximum 

three patterns. 

Keywords: deep learning, markov localization, unmanned aerial vehicle 
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ÖZ 

Lokalizasyon, robotic çalışmaları arasında yer alan ilgi çekici konulardan biridir ve 

İnsansız Kara Araçlarından (UGV'ler) hava araçlarına kadar kullanılmaktadır. 

Örneğin, belirli görevleri tanımlamak için bir depoda veya açık bir alanda robotları 

lokalize etmek önemli bir konudur. İnsansız Hava Araçları da GPS'in olmadığı 

ortamlarda büyük ölçüde iç mekanlarda kullanılmaktadır. 

UWB, Bluetooth ve GPS gibi son zamanlarda endüstride ve araştırmalarda kullanılan 

birçok lokalizasyon yöntemi bulunmaktadır. Spesifikasyonlarına bağlı olarak 

endüstride kendi uygulama noktalarına sahiptirler. En iyi çözümlerden biri, en az 

hataya sahip UWB'dir. 

Bu tezde Derin Öğrenmeye dayalı bir lokalizasyon yöntemi uyguladık. Lokalizasyon 

için belirli bir harita oluşturmak için zeminde 16 örüntü kullanıldı. Önerilen Derin 

Öğrenme algoritması, 3 saniyenin altında, çoğunluk oylaması yöntemini kullanarak 

her bir örüntüyü %100 doğrulukla tespit edebildi. Algılama, 30 fps'lik video 

beslemesi ile gerçek zamanlı olarak gerçekleştirimiştir. Ağın eğitimi ve testi, Fast R-

CNN derin öğrenme mimarisine dayalı Mobilenet temel alınarak yapıldı. 

Navigasyon, kontrol ve derin öğrenme dahil tüm işlemler quadcopter üzerinde 

gerçekleştirildi. Quadcopter, bir takip ve bir RGB kameraya ek olarak bir uçuş 

kontrol cihazına sahip bir Raspberry Pi, Google Edge TPU gömülü bir sistem ile 

donatılmıştır. Modellerin tüm karar verme işlemi Raspberry Pi'ye bağlı gömülü cihaz 

üzerinden 30 fps'de yapıldı ve yer bilgisayarında herhangi bir örüntü tanıma işlemi 

yapılmadı. Drone odometri verileri, drone'a IMU verileri sağlayan bir Intel Realsense 
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kamera aracılığıyla elde edildi. Yer istasyonundan drone'a sadece harita üzerindeki 

basit hareketler için kodlar gönderildi. Yön verileri ayrıca quadcopter üzerine monte 

edilmiş izleme kamerası tarafından sağlanmaktadır. 

Markov ağırlıkları ve nihai karar ağırlıkları, quadcopter tarafından her rastgele yol 

kat edildikten sonra %100 güven göstermiştir. Drone, ortalama iki veya en fazla üç 

örüntü üzerinde uçtuktan sonra, kaçırılmış bir robot olarak kendisini 

konumlandırmayı başarmıştır. 

Anahtar Kelimeler: derin öğrenme, markov lokalizasyonu, insansız hava aracı 
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Chapter 1 

INTRODUCTION 

1.1 Motivation 

There had been a huge interest during last years in industry for autonomous vehicles. 

In academia, this interest has been raised as well especially in Robotics field. Among 

these vehicles, drones have attracted many researchers from industry and academia 

for research purposes and to use them. The huge amount of interest has led the 

industries to use the drones for many different purposes these days. Localization for 

drones is also one of the areas to pay attention to since there are many methods 

introduced and still indoor navigation for drones is an attractive research topic. 

Deep learning on the other hand has made a huge impact in the industry and indeed 

in academia being used in a vast number of applications and research papers. This 

topic has been among highly demanded ones recently and has helped industry to 

develop traditional methods to more efficient ones.  

Adding up these two topics mentioned in the previous paragraphs made this research 

possible which is about localizing a quadcopter using deep learning with Markov 

algorithm.  

1.2 Thesis Objective 

As the drones have taken over in the industry recently and as they are a point of 

interest, any research about the same topic may open current obstacles. In [1], there 
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has been special patterns on the floor (here 16 of them) to do localization. The setup 

proposed in the paper consists of all operation in the simulation environment. The 

objective in this thesis is to bring this into action by using deep learning.  

The proposed method on the original paper has used image analysis with feature 

extraction from each photo that is considered as a localization pattern. The general 

idea is, a quadcopter starts flying over a pattern at the beginning without orientation 

and its place being considered. A map of all patterns and their placement with their 

relative positions has been saved on the computer. The quadcopter has a camera 

facing downwards that streams the videos to the main computer. As it is hovering on 

top of a pattern, the streamed photo is detected via the above-mentioned method an 

initial guess of the position is produced. Then the drone goes over the next pattern 

and the guesses are updated accordingly. After the confidence level of the predicted 

position reaches to a certain threshold the drone is localized. The operation can 

continue afterwards on the whole map since the system is aware of the position. Each 

time the guesses are stored as Markov weights and they are updated in each 

displacement. Markov algorithm is a statistical solution in robotics for localization 

[2]. 

In this thesis we have replaced the method of feature detection with Deep Learning 

method to recognize patterns. An approximate of 30 photos from each pattern are fed 

as a dataset to a R-CNN object detection network and trained accordingly. The 

training checkpoints are based on COCO dataset pre-trained network. Only the six 

last layers of the network are unfrozen to train and then they are frozen again after 

the training. Mobilenet SSD v1 is chosen as a training network. The processor is an 

Edge TPU processor from Google. These devices are embedded and small scale 
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(small USB stick) which can provide a high frequency (30 fps) object detection with 

more than 80% of confidence as the results will mention about them later.  

1.3 Thesis Contributions 

The implemented method has successfully been tested on the patterns. The results 

have been satisfactory because the data was limited for each input. This hesis has 

replaced deep learning with the proposed simple image processing in [1] to have the 

ability to extend the training patterns and data addition for future implementations. 

This thesis has also brought the proposed method in [1] into action and practically 

analysed its possibility although it had been only simulated in the original paper.  

1.4 Thesis Organization 

This thesis is about localization of a quadcopter using specific patterns by help of 

deep learning. As the subject states, the first chapter will give information about 

localization definition and how it is being used right now in industry. Then the most 

important and related kinds of localization technologies will be discussed in the same 

chapter in addition to the algorithms. Chapter 2 will discuss about deep learning 

definition. How deep learning networks are used and trained in addition to the 

method our object detection has followed will be discussed in that chapter. The 

following chapter after that will be discussing about the implementation method and 

how the whole setup has been planned. The setup and the method are based on [1] 

basically with some slight changes. In the paper, the setup is chosen ideally since the 

authors had not considered how possible the method can be when implemented 

practically. Here we have done some slight changes such that the outputs are possible 

but also not to diverge from the main source implementation. The results from the 

implementations also will be mentioned in the same chapter. Chapter will be about 
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the discussions, conclusions, and future possible works to extend this research further 

in the future.  
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Chapter 2 

LOCALIZATION 

2.1 Localization Systems Technologies 

Indoor areas such as airports, supermarkets, train stations, and hospitals are 

becoming increasingly interesting as the Internet of Things (IoT) grows in popularity 

[3], [4]. In supermarkets, customers can grab a cart with tags on a radio-frequency 

identification (RFID) and personal digital assistant (PDA) screen , and because 

location of each cart is known via a system of combination of hybrid Wi-Fi and 

RFID, the PDA screen can be used to search for a specific product and their location, 

and then to receive directions to that target by the customer [5]. Instead of handing 

out pamphlets to visitors, a gadget with Wi-Fi and Bluetooth can aid these roaming 

tourists. The gadget may provide detailed information on the work of art as well as 

directions to it in a specific area of the gallery. Tourists can also be alerted if there is 

a traffic jam in a certain location, allowing them to save time and visit alternative 

locations [6]. 

Bluetooth beacons can be used in libraries to lead students to book locations. When 

the location of the book is needed, the student's coordinates will be compared to the 

network and recommended to him using a downloaded mobile application. Because 

the localization precision is within meters, the student is guaranteed to be near to the 

appropriate shelf [7]. In most situations, RFID technology can be used to track the 

movements of people suffering from mental illnesses such as Alzheimer's [8]. 
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Patients who require home healthcare may have an RFID tag implanted in their body 

to report if they are sitting, walking, standing, or collapsing, requiring immediate 

treatment [9]. A dual-shoe combined inertial sensor and range sensor may be 

installed to detect a firefighter's location and distance to other team members within 

a building in the event that one of them becomes trapped or incapacitated while on 

mission. [10], [11]. A fire detection system that uses ZigBee-based sensor networks 

can improve the localization of the fire source [12]. Figure 1 has demonstrated a 

method of localization for an indoor drone to transfer a better idea of localization.  

 
Figure 1. A Drone Localization Using Wireless Sensors [13] 

2.1.1 Navigation Based on Satellites 

The most recognized system for outdoor positioning is the Global Positioning 

System (GPS). It should be emphasized that because of line of sight (LOS) needed 

within the satellites and the device, it will be rendered entirely useless for interior 

location-based applications due to walls and buildings. [14]. in front of a GPS 

receiver, a high gain, steerable directional antenna is installed to access the GPS. 

[14]. Pseudosatellites are useful in situations where the GPS signal cannot be utilized 
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as a stand-alone method of position. Pseudosatellites, transmitter and receiver 

antennas, target receivers, and reference receivers are all part of these systems [15]. 

The aim is to use inside transmitters to replicate the GPS signal that has been 

received [16].  

2.1.2 Navigation System with Inertial Sensors 

Inertial Navigation System (INS) can define the directional movement of objects in 

addition to their location by occupying inertial measuring units (IMU) like gyroscope 

and accelerometer compared to an initial location, angle, and velocity [17]. In spite 

of the fact that the sensor has to be connected to surface of the object, INS excels in 

terms of energy economy and precision [18]. However, because INS may be 

vulnerable to reading mistakes, a sophisticated filtering mechanism such as the 

Kalman filter is necessary [19]. Another drawback is the expense and work required 

to create the location sensor's infrastructure [20]. A unique initial location estimate 

technique has been implemented in [21] with a combination of concurrent WiFi 

access points and iBeacons. [22] proposes the iBILL system, which integrates inertial 

sensors and iBeacons by having two states: localization with iBeacon and particle 

filter localization (PFL). To help PFL cope with magnetic field variations, ensuring 

that no mistakes accumulate while walking and lowering PFL's processing cost, 

iBeacons are used. When iBILL, Magicol (geomagnetism and inertial sensors fusing 

system), and dead reckoning (DR) were compared, it was concluded that iBILL can 

reduce mistakes and has higher performance when walking distance is increased. 

A hybrid localization approach incorporating acoustic localization and inertial 

sensor-based dead reckoning, followed by Kalman filter fusion, outperformed the 
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independent system and compensated for its shortcomings [23]. In addition, a blend 

of Wi-Fi fingerprinting and inertial sensors outperforms separate methods [24].  

2.1.3 Radio Frequency (RF) Based Navigation 

The most widely used localization method is RF-based, which is more in a point of 

interest since it covers a larger region with low-cost hardware [25]. Because RF 

waves can flow through things such as walls and human bodies, this is easy to 

understand. Their superior outcomes over other localization methods such as infrared 

and ultrasonic can also be considered. These systems, on the other hand, should be 

avoided in planes and hospitals due to the significant risk of interfering with current 

systems utilizing RF. 

Since in the radio spectrum the frequency is lower than 300 GHz, wireless 

technologies which are a part of localization indoors may be divided based on the 

different radio frequencies they operate on [26]. Wireless technology's capabilities, 

such as coverage, wall penetration, and obstacle resistance, are also affected by its 

frequency. For location-based applications, long, medium and short distance wireless 

technologies are the three kinds of wireless technologies to be considered [25]. The 

complexity, accuracy, and environmental factors all influence the kind of distance 

measurement system that should be utilized for a certain application [27]–[29]. In a 

Wireless Sensor Network (WSN), node position information is used for routing, 

clustering, and context-based applications. A network of nodes that detect and 

wirelessly transmit environmental fields (such as temperature, humidity, and 

brightness) is defined as WSN [30]. This information is transmitted to the sink node, 

which collects data. Indoor fire suppression, smart homes, and resuscitation 

responsibilities are just a few examples [31]. IEEE 802.15.4 has been used to build 
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wireless personal area networks, (WPAN) or WSNs. WSN localization is the 

technique of finding an object utilizing wireless sensors’ network [32], [33]. 

Measurements are useless without Knowing the nodes’ location making them 

essential for a WSN. As an example of WSN localization, the usage of RSSI using 

the ZigBee standard [34]. WSN may utilize range-based (based on internode 

measurements) and free-range based methods jointly for localization  [35], [36]. 

There are two kinds of lateration and trilateration: exact that is categorized to 

lateration and trilateration and approximate that is by scene and proximity analysis. 

Five sensors are integrated in firefighters’ suits, according to [37], that monitor core 

temperature, blood pressure, heart rate, oxygen saturation, wind speed and heat flux. 

This information is provided to the team leader on a regular basis to keep tabs on the 

members' health. In the case of a fire, [38] proposed a similar concept in which 

victims might be tracked and safe escape routes established. Ultrasonic waves, which 

are unaffected by smoke, ashes, or fire flames, may be used to assess the status of 

firefighters inside structures. If the target position is computed by a single computer, 

the localization system is centralized; however, having target position evaluated by 

many nodes means spread localization system [39]. WiFi [40], Bluetooth [41] 

,Zigbee [42], Ultra-Wideband (UWB) [43], and Radio Frequency Identification 

(RFID) [26] are examples of RF-based navigation systems. The following sections 

will shortly mention about them.  

2.1.3.1 Frequency Modulation Technology 

It has been shown recently that by using frequency modulation (FM) indoor and 

outdoor localization can be achieved [44]. As a result of its smaller frequency range 

(88–108 MHz), FM is used less than Wi-Fi (2.45 GHz) and cellular networks (0.9–



10 

1.8GHz). Moreover, broadcasting FM radio is less susceptible to the weather, and 

terrain, and can pass through obstacles with greater ease as a consequence [45]. As a 

result of its larger wavelength (3 m), it has a different interaction with interior objects 

and furnishings than Wi-Fi does Other 2.4 GHz RF components are not affected by 

FM operation [46]. In addition, less power is consumed when using FM receivers. 

Fingerprinting for indoor localisation is what RSS relies on for licalisation. 

According to the information in [47], Gaussian processes (GP) regression, k-nearest 

neighbour (kNN) and support vector machine (SVM) classifiers were used to assess 

fingerprinting performance. There is evidence of yielding the results with kNN 

technique application. Using stations with stronger broadcasts was also 

recommended to improve accuracy. While Wi-Fi has superior localisation 

capabilities in large regions such as floors, FM has superior performance in smaller 

areas such as rooms. 

2.1.3.2 Cellular Based Technology 

In addition to the three commonly used cellular frequencies, 0.9 GHz, 1.8 GHz, and 

2.8 GHz bands are used by cellular networks. This wireless network has a far larger 

coverage area than Wi-Fi, while without requiring any extra equipment. At first, the 

idea was to use proximity to ascertain the mobile location. Unfortunately, this 

approach produced unsatisfactory results [48]. The best method for doing 

localization with RSS is using the fingerprinting technique. Other scholars are 

thinking about the alternative solution, in which trilateration is used as a technique 

for localization. As of the RSS fingerprinting case is assumed, cell-site APs are 

considered as APs, and the accuracy was inspected to land between 2.5 and 5.4 

meters [49]. 
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RSS fingerprinting and radio signals from the Global System for Mobile 

Communications were used for localization in [50] (GSM). After collecting 29 GSM 

channels and 6 cells for fingerprint analysis, researchers discovered that fingerprints 

could be found on both types of media. There was an inaccuracy of less than 5 

meters, as if [51] got those findings. To gather fingerprints, a UMTS cell tower was 

used with interior coverage. In an office environment, measurements were taken in 

[43]. The tiny cell localization seen in UMTS is comparable to that found in WLAN. 

When designing an indoor setting, Long-Term Evolution (LTE) was also utilized; 

according to [52] localization using TOA was performed, and the inaccuracy was 

less than 8 m in half of the instances. LTE may be utilized for a root mean square 

error (RMSE) with the value of 3.5 meters approximately with an inertial measuring 

unit (IMU) [53]. In [54], the synthetic aperture navigation (SAN) architecture has 

been utilised to minimize multipath signals’ effect. An artificial antenna may be used 

to gather different frequencies at distinct times. Like obtaining a signal from an 

array, this process is almost identical. SAN will use The ESPRIT (Estimation of 

Signal Parameters through Rotational Invariance Technique) method will be used by 

SAN for identifying DOA; according to their study, the RMSE of localization for 

LTE-SAN was about 4m, while the RMSE for a single LTE was 7 m approximately. 

[55] conducted research on localization using only LTE and fingerprinting with LTE-

WLAN, finding that poor results come from LTE-only fingerprinting, which at the 

same time performance is increased by 3.5x with the use of LTE WLAN 

fingerprinting. To assist them, other current RF localisation systems, such as RFID 

[56], Wi-Fi [57]–[59], and cellular systems, can be used. 
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2.1.3.3 Wifi Technology 

The term "Wi-Fi" refers to a widely used wireless networking technology. The IEEE 

802.11a spectrum utilizes the 5 GHz frequency range, whereas IEEE 802.11b, g, and 

n use the 2.5 GHz range. Large indoor settings like universities and business 

buildings have already used WiFi hotspots as network access points that span the 

whole building. A wide range of devices uses Wi-Fi technology, including video 

game consoles, computers , mobile phones, cameras, digital music players and tablet 

computers [60], [61].Costs associated with installing Wi-Fi networks and related 

equipment may be extremely low, and range has improved from a previous of about 

100 meters to approximately 1 kilometre (km). Furthermore, (Received Signal 

Strength) RSS fingerprinting is used to determine Wi-Fi localisation [62], [63]. Other 

RF localisation methods, such as RFID [64], might be used with Wi-Fi. While 

Bluetooth has a more limited range, Wi-Fi offers a wider range of coverage and a 

higher throughput, making it easier to use [65]. Companies that provide Wi-Fi-based 

locating solutions include companies such as HERECAST, PlaceLab, RADAR, 

HORUS and COMPASS [66], [67]. 

2.1.3.4 ZigBee 

ZigBee is an IEEE 802.15.4 standard-based specification which operates in 915 MHz 

band in the United States and Australia, the 868 MHz band in Europe, and the 2.4 

GHz spectrum in the rest of the world. In a wireless mesh network, it is utilized for 

communication over long-distances between two devices. Compared to WiFi 

standards, it is inexpensive, has a modest data transfer rate, and has a short latency 

time. To measure the distance between two or more ZigBee sensor devices in this 

technology the RSS technique is used [68], [69]. The scanning of access points (APs) 

via the WiFi interface consumes a lot of electricity. To mitigate this impact, authors 
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in [70] proposed ZIL, an energy-efficient indoor localization system based on 

ZigBee that collects Wi-Fi signals via the ZigBee interface. In [71], a proximity 

learning-based ZigBee localization algorithm was presented; the proposed approach 

differs from previous standard triangulation-based strategies in that it decreases 

computing time while retaining accurate placement. 

2.1.3.5 Bluetooth 

With the standard of IEEE 802.15.1, Bluetooth is designed to allow devices to 

communicate wirelessly across short distances. Bluetooth, like Wi-Fi, communicates 

using radio waves with frequencies ranging from 2.402 GHz to 2.480 GHz. It 

features low transmission power, cost-effectiveness, secure and efficient 

communications, long battery life, and easily available choices [72], [73]. Bluetooth 

Low Energy (BLE) is a new Bluetooth version that can span between 70 to 100 m 

and offer improved power efficient 24 Mbps of bandwidth [98]. As a result, 

Bluetooth is unsuitable to be considered for large-area localisation [41]. In [73], 

neural networks (NN) are taught in the training phase using the corresponding 

coordinates of received signal strength values; once trained, the determination of user 

position based on live measurements from RSS by using the NN is possible. During 

the recent years, BLE-based localization is being used as Eddystone (Google) and 

iBeacons (Apple) in smartphones, where within airports, train stations, large markets, 

malls, and restaurants, the smartphone can be used for localization by sending the 

area map to the smartphone and then BLE-based localization is done [74]. 

2.1.3.6 Ultra-Wide Band 

A carrier frequency of over 2.5 GHz and bandwidth of upper than 500MHz is a 

UWB signal characteristic, based on the Federal Communications Commission 

(FCC) of the United States [75]. In UWB the power consumption that is low results 
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in a high-speed communication, broad bandwidth, high temporal resolution, short-

wavelength, and high data rate, that makes UWB more resistant to fading and 

multipath interference. The other advantageous feature of UWB is to be able to 

operate at low carrier frequencies, in which signals may readily flow through barriers 

more; moreover by being resistant to interference due to its considerably different 

spectrum UWB stands out [76]. All these qualities make UWB an excellent choice 

for indoor wireless positioning. Greater accuracy of TOA and time difference of 

arrival (TDOA) than other localization methods are expected from UWB signals due 

to their high temporal resolution, with a reduced multipath effect. UWB is capable of 

minimizing error to millimetres [43], [77]. The authors of [78] suggested a hybrid 

localisation method utilizing UWB and Wi-Fi, which can be done by having UWB 

beacons added to an existing Wi-Fi network. By deploying their algorithms, a 

combination of UWB and Wi-Fi infrastructure can reduce the precision and cost of 

UWB; the localization error was restricted to 20 cm. A limited number of tags can be 

localized by typical UWB systems; according to [79] an unlimited number of tags 

can be localized using SnapLoc, which is another type of UWB system. [80] 

investigated the performance of UWB localization systems in LOS and NLOS 

conditions. The location was calculated using weighted centroid estimation (WCE), 

linearized least square estimation (LLSE) and fingerprint estimation (FPE),the 

position was calculated; The research proved that  while FPE performs the best, the 

worst performance is from LLSE. 

2.1.3.7 Radio Frequency Identification (RFID) 

RFID systems rely on backscattering of RFID tags communication, and the same 

time they need the created signals within tags and readers to be processed with RFID 

readers [81]. Tags with RFID are classified as passive, active or semi-active. Tags is 
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active status have a built-in battery incorporated as a part of electronics. With a 

detection range of up to 100 m, active RFIDs operate at ultra-high (UHF) and super-

high frequencies (SHF) spectrum. As a result, object tracking and long-distance 

localisation can be achieved by an active RFID [82]–[84]. Active RFID technology, 

on the other hand, is unreliable for expecting precisions less than a meter and lacks 

availability on the most of portable devices. Lack of built-in batteries and instead 

backscatter the signal received from the base station are also disadvantages of 

passive tags. Because of its multiple advantages passive RFID is widely used for a 

variety of applications and can bring and ease of manufacturing compared to active 

RFID, which requires only a tag chip and an antenna, low cost, and reduced size. 

Sub-meter detections by utilizing passive RFID can be helpful since they can identify 

targets within a range maximum 10 meters [84]. Because of their low cost, Radio 

Frequency Identification (RFID) technology have gone widespread. In such 

technologies, a huge number of reference tags are readily deployed. The Radio 

Signal Strength Indicator (RSSI) information from the readers around each tag that 

transmitted the signal will be measured. The reference tags with the RSSI 

information closest to the RSSI information of the target tag can approximate the 

position [85], [86]. In [87], an RFID reader, infrared sensor pair and tags, a light-

emitting diode LED and a light resistor were utilized as sensor pairs for localisation. 

In terms of precision and stability, RFID-based localization outperforms traditional 

sensors. The characteristics of existing localization methods are shown in Table 1 

[74], [88]–[93].  

  



Table 1. Comparison Between Different Localization Methods [97] 
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2.2 Localization Detection Techniques

2.3 Technique of Using Proximity

(Also known as relative positioning/connectivity) is a low-cost also simple method of 

estimating  the  distance  between  a  mobile  and  an  AP  location. As  long  as  being 

within communication range, it makes no difference whether the AP and the mobile 

exist on the fading channel same as each other or not [94]. The AP’s coordinates are 

used  to  approximate  the  mobile’s  location. Its  accuracy  is  restricted  to  AP  radio 

coverage while the proximity method is frequently used and simple [95]. In general, 

there  are  three  types  of  approaches for  proximity  technique.  The  first  is  sensing 

physical  contact,  which  uses  sensors  such  as touch  sensors, pressure  sensors,  and 

capacitive  field  detectors for  detecting physical  contact. Another method  involves 

monitoring  the  wireless  signal  of  a  mobile  device  inside  the  access  point’s  range. 

Lastly, credit  card  payment  terminals that  are  a  type  of automatic  identification 

systems can be examined by it [96].

2.3 Scene Analysis

By  analysing  the  scene  in  this  method,  virtual images, videos, or  electromagnetic 

properties received from the target are compared with the dataset available, allowing 

the feature to be mapped to a position on the target [98], [99]. Wearable cameras, for 

example, can associate collected virtual  pictures  with  the  target's  position. 

Commonly  referred  to  as  fingerprinting is  when wireless  signal  characteristics of 

specified places  may be acquired  for generating a radio  map and by  mapping  the 

mobile's signal data to it can deduce the position of a mobile device. Localization of 

this form is well-known for its simplicity; nevertheless, it necessitates the collection 

of a significant quantity of data; moreover [100], altering the environment may result 

in changes to the feature characteristics, necessitating to update the dataset [96]. 
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2.3.1 Triangulation 

The target position may be established using triangulation by constructing triangles 

from known locations to that same destination. Lateration and angulation are the two 

types of lateration. Lateration is a distance-based method used in the Time of Arrival 

(TOA) and Received Signal Strength (RSS) approaches, when a direction-based 

technique called angulation is used in the Angle of Arrival (AOA) implementation. 

2.3.2 Lateration 

What determines the distance from mobile to AP depends on the ratio of power to 

travelling time. The connection may be expressed with a mathematical equation. will 

be available 2D measurements with two equations can have two potential solutions. 

For there to be a unique solution, there are three equations necessary; the 

combination of these equations will decide how the mobile phone is located as 

illustrated in Figure 2. Lateration is also an option to estimate position using 

differential measures (signal intensity receipt/time of arrival). The impacts of 

environmental changes are reduced through differential measurements. The 

transmitted power is in this instance unknown (DRSS) or if the (TDOA) is not 

known [101]–[103].  

 
Figure 2. Trilateration Localization [97] 
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In localization in case of 𝑚 Aps collaborating, there is going to be (
𝑚(𝑚−1)

2
) 

differential equations formulated, with (𝑚 − 1) fundamental equations and the 

redundant ones as the rest. Each fundamental equation's solution will be on a 

hyperbola, and the intersection of these hyperbolas provides the mobile's coordinates 

[76]. There will be two fundamental equations in the 3 APs system, a linear 

combination of the first two yields the third equation. Different types of localization 

detection approaches and their accuracies, cost and measurement type compared 

have been mentioned on Table 2 [26], [91], [92], [109]. 



Table 2. Comparison Between Localization Techniques 
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2.3.3 Angulation 

As shown in Figure 3, to localize an item in two dimensions, measurements of two 

angle and a measurement of single range are needed. The distance between the two 

arrays may be the range measurement. For 3D measurements, a single azimuth 

measurement, a single range measurement and two angle measurements are needed 

[98].  

 
Figure 3. Angulation with Angles And Distances Known from Two Sources [97] 

The inertial measurement unit sensors used in the DR method can track target 

movement using gyroscopes, accelerometers and magnetometers [104]. The position 

of a target is recalculated by adding the last displacement estimated before [105], 

being aware of the velocity of the target at a known location. This method is simple 

and that is why it stands out. However, in order to avoid mistakes, a precise starting 

position is required, even when errors for correction grow over time since no external 

reference signals are utilized [106]. To achieve more precise findings, hybrid 

methods are employed [105]–[107]. In [108], pedestrian DR (PDR) and Wi-Fi 

fingerprinting were used to conduct localization; led to a conclusion that PDR has the 

poorest performance, but the greater performance comes from the combination of 

PDR and Wi-Fi.  
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2.4 Algorithms And Methods for Localization 

2.4.1 Angle of Arrival Measurement 

Beamforming and localization are using the direction of arrival (DOA) [109]. To 

determine angle of arrival arrays of antenna are employed. DOA needs the use of 

antenna arrays, making it more costly and a power consumption higher than TOA 

and RSS [110]; nevertheless, less equipment is required because two Aps only are 

required to calculate the position of the mobile [111].  

2.4.2 Time of Arrival Measurements 

Utilizing the velocity of wave to estimate distance among two sensors, TOA 

measurements calculate the time of flight between the AP and mobile [112]. RF and 

acoustic signals are examples of waves used for localization [112]. Radio waves have 

a velocity of 3× 108  m/s, which at the same time acoustic waves have a speed of 

343.59 m/s [113] and accordingly, measurements with RF are more susceptible to 

mistakes. When utilizing RF waves, a measurement mistake of 1s will result in a 300 

m inaccuracy, whereas using acoustic waves will result in a 0.00034359 m error 

[114]. The receiver resolution will be around 1 10–9 when the receiver bandwidth is 

1 GHz. As a result, the highest error will be 0.3 m, but the resolution of the receiver 

is going to be approximately 1 × 10−7  and the maximum error will approximately 

be 30 m when utilizing 10 MHz bandwidth [65]. The idea of  lateration is used in 

TOA localization [115]. It must contain three equations to answer these equations 

(i.e., three APs measurements must be used). To have a unique solution in a 3-

Dimensional case (x, y, z), minimum of four APs must be employed. The coordinates 

of the mobile are deduced by transforming TOA data into circular equations and 

solving the same equations [116].  
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The time difference of arrival (TDOA) is a related measurement of time in which 

difference of time between two TOA measurements is utilized for creating a single 

equation. Two TDOA values will be obtained from three TOA measurements, but 

the third equation will be reliant on the other equations and therefore will not offer 

further information. Four AP measures are utilized to provide a unique solution 

[116]. The mobile's possible locations will be plotted on a hyperbola [116]. As 

illustrated in Figure 4, the intersection of two hyperbolae yields the position [116]. 

To have a unique solution, three fundamental equations are necessary, that is 

accomplished with another AP included, as illustrated in Figure 4. As a result, 4 APs 

are required for 2D localization. 

 
Figure 4. Hyperbolic Localization [97] 

In TOA, every sensor, the mobile included, must be synchronized since the 

mobile phone's time is not the same as the clock in the base station accuracy-wise. 

As a consequence, there can be errors in estimating flight duration and, as a result, 

errors in localization; nevertheless, in TDOA, only APs must be synchronized [118]. 

While TOA uses existing data better, it does not provide the same amount of 

flexibility for the mobile, which is confined to a circle when using one measurement, 

and able to be in two places when using two measures; two measurements will allow 

the mobile to be located on a hyperbola; and three measurements will allow the 
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mobile to be in three locations. TOA can predict a single solution, but TDOA can 

predict one or maybe two [119]. Another disadvantage of employing TDOA is the 

occurrence of sensitivity LOS [120]; because to the hyperbolic nature of the curve, a 

tiny bit of inaccuracy will cause a huge shift within the curve, making less accurate 

results [121]. Assume the LOS route has been attenuated and has fallen below the 

noise rejection threshold. In such scenario, the next path with power over the noise 

level is treated as the initial arrival path, resulting in inaccurate TOA estimate and, as 

a result, incorrect localization [110]. During its spread, the wave ran against walls. 

2.4.2.1 Techniques Using Correlation 

The most thorough approach for estimating TOA is cross-correlation is one of the 

most [110]. Figure 5 shows TOA estimate; after the signal came, a match filter 𝑀𝐹 

correlated it to a template known 𝑝(𝑡). The associated signal's sign is eliminated 

using a square law device, and a time instant having a maximum value of peak 

reflects the moment when first the signal is received [122]. Received peaks are going 

to have similar amplitudes to the proper one in multipath propagation nearby; hence, 

picking the correct peak becomes confusing, resulting in significant mistakes [122]. 

Because of its simplicity, this technique is popular; nonetheless, it is susceptible to 

multipath and noise. 

 
Figure 5. Cross-Correlation Using TOA Estimation [122] 
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Chapter 3 

DEEP LEARNING FOR LOCALIZATION 

3.1 Introduction 

One of the most frequently used methods for computational intelligence is Artificial 

neural networks (ANNs) today which began as a software and tailored hardware 

attempt to imitate adaptive organic nerve systems [123]. For more than 70 years 

ANNs have been a point of interest in research [124], their popularity has risen and 

fallen during that period. Following pioneering work by several scholars [125], they 

have recently made a significant comeback as pattern recognition techniques. Given 

adequate computer resources and training data, multilayered artificial neural 

networks have been shown indisputably to be capable of learning complicated, non-

linear functional mappings. The intellectual neighborhood has experienced 

exponential development, both in industry and academia, as a result of these 

amazing, substantial breakthroughs in strong pattern recognition. Furthermore, 

multilayer ANNs eliminate much of the human labor previously required for setting 

up traditional pattern recognizers. In fact, they are unknown systems offering 

outstanding practical performance that demand unstructured, high dimensional data 

insights with minimum human intervention [126]–[131].  

  

  

3.1.1 What Is an Artificial Neural Network?

To  tackle  classification  or  regression  issues,  an  artificial  neural  network  consists  of 

vast  amount  of linked,  simple  functional  neurons, which work  together  as data
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processors in parallel. That example, they can divide the range of all potential input 

values to discrete classes or estimate the function that can do mapping between 

inputs and outputs (the black box). When layers of these massively connected 

neurons are stacked to form a network, the resulting computing infrastructure can:  

1. Receive information of one input neurons (a part of the neural network's input 

layers) and respond to the environment. 

2. Invoke design goals and learning rules to transfer information between layers 

inside the black-box enabling processing (known as a part of the hidden layers of 

the network). 

3. There are atomic units in the neural network's output layers that are known to 

transmit processed information to the surrounding environment. 

Each neuron's output in a hidden layer is linked to a subset (or all) of neurons from 

the previous layer. The neuron computes the sum of the products of earlier 

mentioned outputs in addition to weights associated with them. A projection of one 

vector onto the other or a measure of similarity between the two may be considered 

of as the dot product of an input vector and a weight vector. Suppose the input 

vectors and weights are both n-dimensional, and the layer has m neurons. The layer's 

output is an m-dimensional vector generated by multiplying the training set by a 

𝑚 × 𝑛 weights matrix, since weight vector is in each neuron and, given an n-

dimensional input vector, the output is an m-dimensional vector. The output of each 

neuron is essentially a classifier of linear kind, with the input vector lying on one 

side or the other and the weight vector forming a border between two classes. An m-

dimensional hyperplane splits the n levels of the input to two m-dimensional classes 

in the output classes when all m neurons' outputs are added together. If the weights 
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are generated using least mean squared (LMS) estimation from matched pairs of 

input–output data, they create a regression line, i.e. the hyperplane which is 

the nearest to all the outputs given the inputs in the LMS sense. 

The hyperplane translates incoming input values to output which are compatible with 

the original input data by reducing the error function between calculated outputs and 

real outputs in the training data. The result of one linear classifier's can be used for 

the input of another, thus many layers of linear maps are the same as a unique 

classifier or regression. This is because multiplying the inputs by a 𝑞 × 𝑛 matrix, 

which is   the result of the k matrices multiplied, lowers the output of k distinct levels 

to a single 𝑞 × 𝑛 matrix one per layer. To classify inputs nonlinearly or simulate a 

nonlinear function using a regression, each neuron provides a numerical bias number 

to the output of its input sum of products (the linear classifier) and passes it via a 

nonlinear activation function. The exact form of the activation function is a design 

parameter. They all, however, translate the real line via a monotonic rising function 

with a zero-inflection point. The bias effectively changes the activation function's 

inflection point to the bias's value in a single neuron. Therefore, the total of products 

is mapped using a bias centered activation function. Any pair of such specified 

activation functions may generate a pulse across their turning points if each is scaled 

and one is subtracted from the other. Each pair of neurons effectively samples the 

input space and produces a single value for all inputs within the pulse's limits. From 

training data consisting of input–output pairs - input vectors each with a 

corresponding output vector - the ANN learns an approximation to the function that 

generated each of the outputs from its related input. The split of the input space into 

samples that minimizes the error function between the ANN's output and its training 
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inputs and outputs given its training inputs is known as this approximation. The 

universal approximation theorem says that if an ANN has enough neurons in a 

sufficient number of layers with a given activation function, it can approximate any 

functional mapping between input and output vectors with arbitrary accuracy [132]–

[135]. Figure 6 represents a perception learning model which encapsulates these 

ideas. By optimizing on the pairs of input and output the weights are generated and 

the error function is minimized, giving the size of the vectors of input and output, the 

layers’ numbers, an error function, the shape of the activation function and the 

number of neurons in each layer. Consequently, the resultant network is a close 

match to the known input–output data.  

 
Figure 6. The Perceptron Learning Model [136] 

3.1.2 How Do These Networks Learn? 

Learning is feasible with neural networks, as it is probable to estimate a function 

representational the input patterns by altering the weight distribution. The 

fundamental concept is a black-box re-stimulation the with additional data till it 

achieves a suitable representation that is well-structured. Weights are given a little 
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amount the proper direction each time of stimulation, assuming that the algorithm for 

learning is suitable in application. This ends when the approximation error vs.  well-

defined measure falls less than a minimum set by the practitioner. The accumulation 

of neural computations variable length in causal chains [137] attempting for 

mimicking a specific task of pattern recognition by linearity regulation with activated 

neurons throughout the architecture is therefore learning. Non-linearity assists the 

modulation process when a failure of implicit chains of linear activation happens to 

understand structure related to them. In this application, the term "deep" refers to the 

spatial complexity of the aggregation chain, which must span several hidden layers in 

order to acquire suitably comprehensive representations. Although the current limits 

of the discipline are well known, theorists joint with empiricists have had a 

contribution to an exponential increase in research employing DNNs [138]–[140]. In 

contrast to the problem-specific and hard coded, architectures of pattern recognition 

in the past, deep learning has raised for being the most important components of 

contemporary artificial intelligence research due to its capability for scaling using 

data form the input and generalizing through similar underlying feature distributions 

problems. 

3.1.3 Deep Neural Networks Are Getting Attention So Much, Why Is That? 

Neural networks with a multi-layer architecture were present since the second half of 

the twentieth century. Why have deep neural networks attracted a huge amount of 

focus from academia and industry recently is a reasonable inquiry? Many factors 

have contributed to the rapid increase in research funding and output. New software 

platforms such as PyTorch [141], Tensorflow [142], Caffe [143], Chainer [144], 

Keras [145], BigDL [146], etc. allow architecture integrations seamlessly into a 

computing environment with GPU. Improved regularization techniques have been 
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introduced over time to help avoid overfitting as we scale up: techniques such as data 

augmentation, batch normalization, early stopping, dropout and others are 

significantly effective to eliminate overfitting and can make an improvement on 

model performance that scale on their own. Algorithms that are equipped with 

adaptive learning rates (Ada- Grad, RMSProp, Adaboost, Adam), Particle Swarm 

Optimization, Stochastic Gradient Descent (with standard or Nesterov momentum), 

Differential Evolution, and other algorithms produce solutions nearly optimal while 

being the one with optimization robustness.   

3.2 A Short Description of Deep Learning Architectures 

A plethora of deep learning architectures exists in the literature, and the number is 

expanding by the day. It's difficult to provide comparison that is fair for those 

architectures because different architectures offer different benefits depending on the 

application and the data characteristics. Convolutional Neural Networks [147] and 

Recurrent Neural Networks [148] are preferred in computer vision and sequence and 

time series modeling, respectively. Deep learning is a rapidly expanding discipline, 

with new architectures and learning algorithms being developed on a regular basis to 

meet the demand for human-like efficient machines in a variety of applications. 

3.2.1 Convolutional Neural Networks 

Convolutional Neural Networks (CNNs) are inspired from human’s vision system. 

Considering the fact that LeCun et al. [147] suggested the notion in 1998, the deep 

learning community first experienced it in action in 2012, the same time Krizhevsky 

et al. [149] with AlexNet architecture proposed won the ILSVRC-2012 competition 

[149]. Artificial intelligence experienced a new era when this astounding victory 

ushered, with witnessing CNN's and its descendants' extraordinary classification 

capabilities by the community of computation. Many derivative architectures have 
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been presented and are still being explored in the years since. The CNN architectures 

easily could go over human recognition capabilities in many circumstances. Figure 7 

depicts the basic architecture of CNN, which includes numerous convolutions 

pooling layers and convolutions, as well as a consistently linked layer at the 

conclusion. Pooling layers minimize the feature map dimensionality while keeping 

the information of features, whereas extractions of essential characteristics 

convolution layers from the input image while considering how the input pixels are 

spatially related [99]. When connected fully, each layer can join the network to the 

output layer (discriminative layer), that produces the outputs required.  

 
Figure 7. CNN With Pooling Layers And Convolution [136] 

What CNNs are especially good at is the ability to extract picture descriptors from 

spatial data that is latent. Gradients, edges, strokes, contours, textures, color, and 

orientation are all properties of a picture. A CNN decomposes an image into these 

types of simple features, which it then learns as representations in different layers 

[150]. The learning system depicted in Figure 8 is a good illustration of it. 
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Figure 8. Handwritten Image Digit Learned By CNN [151] 

Image detection [152], [153], image segmentation [154], [155], picture classification 

[156], and image super-resolution reconstruction[157], [158] are only a few of the 

computer vision tasks that CNNs are used for. Several CNN architectures have been 

designed to address the needs of real-time applications while also fulfilling high 

accuracy standards. Recent architectures include YOLO (You Only Look Once) 

[159] and R-CNN (Region-based CNN) [154]. Because it evaluates a large number 

of area recommendations to locate an object within an image, the basic approaches of 

CNN [160] are computationally quite expensive. R-CNN, on the other hand, is a 

CNN with region-based type which can overcome the limitations of naïve CNN by 

using a selective search to choose the regions of interest (ROI) and limiting the 

proposed regions to 2000 [154]. The authors then proposed Fast R-CNN [161] for 

applying R-CNN to processing in real-time. In contrast to R-CNN, F-RCNN is a 

faster approach where the convolution operation is performed on each of the 2000 

interest regions independently on a single image, the convolution process is only 

once performed for the entire image. Feature maps extracted are then subjected to a 

selection search to discover region recommendations. However, the time-consuming 

part is still selection search method that brings down the speed of object detection 

process when using Fast R-CNN. Faster R-CNN [162] reduces the time complexity 

by substituting the selective search strategy with a unique Region Proposal Network 
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(RPN). The variants of R-CNN outlined utilize a two-stage approach and search 

within the image’s different regions to locate the item inside it [154], [161], [162]. 

That said, they restrict the capabilities of the network in order to achieve the goal of 

real-time object detection. Redmon et al. [159] proposed YOLO (You Only Look 

Once) in 2016, that in comparison to R-CNN records very fast with little 

performance change. It knows the generalized representation of the image with a 

single convolutional neural network by looking once at the object. The algorithm, on 

the other hand, has a spatial constraint when it comes to recognizing smaller things. 

This issue has been mentioned in Single Shot MultiBox Detector (SSD) [163], that 

uses multiple anchor box scales [164] as an option to the fixed grid used in YOLO. 

This might successfully handle objects of various sizes and resolutions, with real-

time inference capabilities like YOLO. As a result, various to enhance accuracy 

while keeping the pipeline intact, YOLO tweaks have been proposed and are 

speedier overall. Compared to prior versions, YOLOv2 [165] and YOLOv3 [166] 

have provided considerable gains in accuracy and have also been modified detecting 

small objects. Aside from these CNN designs, there are various versions of existing 

traditional ones, such as GoogleNet [167], LeNet [147], VGGNet [168], ResNet 

[169], ZFNet [170], AlexNet [149] and more. The CNN architectures have had an 

extraordinary impact on AI-guided vision research, and they appear to be powering it 

for the promising future. 

3.2.2 Recurrent Neural Networks (RNNs) 

By the chance of expressing dependencies on time, Hidden Markov Models (HMM) 

may become impractical computationally especially for ling-term dependencies, that 

is what RNNs are there for. Using differential equations, [171] provides a 

comprehensive derivation of the Recurrent Neural Network. RNNs are nets with 
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feed-forward type that span neighboring time steps, with each node taking hidden 

node values as well as the current data input collecting information from previous 

time steps at any one time. A Recurrent Neural Network architecture is shown in 

Figure 9. 

 
Figure 9. Architecture Of A Recurrent Neural Network [136] 

The problem of gradients that are exploding and vanishing occurs during the 

backpropagation of mistakes across several timesteps, which can be avoided using 

Hochreiter and Schmidhuber's Long Short Term Memory (LSTM) Networks[172]. 

"Forget" gate regulates the quantity of information to be kept from earlier time steps, 

while "input gate" chooses on the new content to be saved in the cell. Finally, the 

output is controlled by the output gate and the hyperbolic tangent activated candidate 

value of the state. Figure 10 in LSTM, number 10 depicts a repeating module. LSTM 

networks with peephole connections [173] use cell state information to update the 

three gates. In the Gated Recurrent Unit (GRU) [174], a single update gate replaces 

the forget and input gates, integrating the hidden and cell states. Sak et al. proposed 

training LSTM RNNs on multicore CPUs in a distributed manner utilizing 

asynchronous SGD (Stochastic Gradient Descent) optimization for acoustic 
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modeling in [175]. They demonstrated a two-layer deep LSTM architecture with a 

linear recurrent projection layer on each layer, allowing for more effective usage of 

model parameters. Doetch et al. [176] suggested an LSTM-based training framework 

for handwriting recognition that consists of sequence chunks that comprise mini 

batches. To minimize runtime by a factor of three, the design employs modified 

gating units with layer-specific weights for each gate. Palangi et al. [177] used 

LSTM-RNN to develop a sentence embedding model that systematically collects 

information out of each phrase and embeds it in a semantic vector until the 

conclusion of the sentence to produce an overall semantic representation of the entire 

phrase. In web document retrieval applications, the model's capacity to attenuate 

insignificant phrases while recognizing important keywords is particularly effective. 

Pota et al. [178] developed a Bi-LSTM architecture to correlate words’ sequence to a 

sequence of POS tags, which has applications in Natural Language Processing. Gao 

et al. Using a layered architecture cognition module with long short-term memory 

and multi-layer perceptron, [179] created a middle point model to segregate 

targets and visual tracking  localization applications. 

 
Figure 10. A Repeating Module In LSTM [177] 
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3.2.3 MobileNet Architecture 

3.2.3.1 Depth Wise Separable Convolution 

The model of MobileNet is built on separable depthwise convolutions, which are a 

type of convolution factorized that divides a standard convolution into a pointwise 

convolution and depthwise. In the depthwise MobileNets single filter is applied to 

input channels separately. Outputs of the depthwise convolution are then combined 

using an 1 × 1 convolution by the pointwise convolution. In one step, a combination 

of inputs to create new outputs is done by convolution filters. This is separated into 

two layers by the depthwise separable convolution, one for filtering and the other for 

combining. This factorization reduces computing time and model size significantly. 

Figure 11 depicts the factorization of a standard convolution 11(a) into a depthwise 

convolution 11(b) and a 1 × 1 pointwise convolution 11(c).  

 
(a) Standard Convolution Filters 

 
(b) Depth wise Convolutional Filters 
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(c) 1 × 1  Convolutional Filters called Pointwise Convolution in the context 

of Depth wise Separable Convolution 

Figure 11. The Standard Convolutional Filters 

A standard convolutional layer gets in a 𝐷𝑓 × 𝐷𝑓 × 𝑀 feature map F as input while 

outputting a 𝐷𝑓 × 𝐷𝑓 × 𝑁 feature map G, where 𝐷𝑓 is the spatial width and height of 

a square input feature map, M is the number of input channels (input depth), 𝐷𝐺  is 

the spatial width and height of a square output feature map, and N is the number of 

output channels (output depth). The conventional convolutional layer is 

parameterized by a convolution kernel K of size 𝐷𝑘 × 𝐷𝑘 × 𝑀 × 𝑁, where 𝐷𝑘 is the 

spatial dimension of the kernel, M is the number of input channels, and N is the 

number of output channels, as previously specified.  

For standard convolution with stride one and padding, the resulting feature map is as 

follows: 

                (1) 

The computational cost of standard convolutions is: 

                                                        𝐷𝐾 . 𝐷𝐾 . 𝑀. 𝑁. 𝐷𝐹 . 𝐷𝐹      (2) 

It can be inferred that computational cost is affected by the number of output 

channels N, the number of input channels M, the size of the feature map 𝐷𝑓 × 𝐷𝑓 and 

the kernel size 𝐷𝑘 × 𝐷𝑘. Each of these terms, as well as their relationships, are 

addressed in MobileNet models. To begin, depth wise separable convolutions are 
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used to eliminate the relationship between the kernel size and the number of output 

channels. The normal operation of convolution has the effect of filtering and merging 

data based on convolutional kernels to create a new representation. For a significant 

reduction in computing cost, the filtering and combination phases can be divided into 

two parts using depthwise separable convolution which is considered as a factorized 

convolution. There are two layers to depth wise separable convolutions: depthwise 

convolutions and pointwise convolutions. To apply a single filter to each input 

channel, we employ depthwise convolutions (input depth). The output of the 

depthwise layer is then linearly combined using pointwise convolution, a simple 

1 × 1 convolution. Both layers of MobileNets use batchnorm and ReLU 

nonlinearities. 

Depthwise convolution with one filter per input channel (input depth) can be written 

as: 

 

𝑲̂ is the 𝐷𝑘 × 𝐷𝑘 × 𝑀 depthwise convolutional kernel, and the 𝑚𝑡ℎ filter in 𝑲̂ is 

applied to the 𝑚𝑡ℎ channel in F to form the 𝑚𝑡ℎ channel of the filtered output feature 

map 𝑮̂.  

The cost of computing depthwise convolution is:  

                                                     𝐷𝐾 . 𝐷𝐾 . 𝑀. 𝐷𝐹 . 𝐷𝐹        (4) 

In comparison to ordinary convolution, depthwise convolution is incredibly efficient. 

This will not, however, combine input channels for producing new features; it just 

filters them. An additional layer is required that calculates a combination with 

linearity containing depthwise convolution output via 1 × 1 convolution for 

(3) 
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generating these new features. Depthwise separable convolution, proposed first in 

[180], is a resultant of 1 × 1 (pointwise) convolution and depthwise convolution.  

Cost of depthwise separable convolutions: 

                                           𝐷𝐾 . 𝐷𝐾 . 𝑀. 𝐷𝐹 . 𝐷𝐹 + 𝑀. 𝑁. 𝐷𝐹 . 𝐷𝐹                          (5) 

This is equal to the sum of depthwise and 1 × 1  pointwise convolutions. 

We gain a decrease in computation of: by defining convolution as a two-step filtering 

and combining procedure: 

(6) 

Extra factorization in the spatial dimension, as in [181], [182], does not save much 

additional work because depthwise convolutions need very little processing. 

3.2.4 Mobilenet Structure and Training 

Except for the first layer, which is a full convolution, the MobileNet structure is 

based on depthwise separable convolutions, as discussed in the previous section. We 

may quickly explore network topologies to identify a nice network by defining the 

network in such simple terms. Table 3 depicts the MobileNet architecture. With the 

exception of the final fully connected layer, which has no nonlinearity and feeds into 

a SoftMax layer for classification, all layers are followed by a batch norm [183] and 

ReLU nonlinearity.  
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Table 3. MobileNet Body Architecture [136] 

 

Simply defining networks in terms of a small number of Mult-Adds is insufficient. 

It's also crucial to ensure that these procedures can be carried out efficiently. 

Unstructured sparse matrix operations, for example, are often slower than dense 

matrix operations unless the sparsity is quite high. The dense 1 × 1  convolutions in 

our model structure handle practically all the computation. This can be done using 

GEMM functions, which are highly optimized general matrix multiply functions. 

Convolutions are frequently implemented using GEMMs, but they require an initial 

memory reordering termed im2col in order to translate it to a GEMM. This method is 

used, for example, in the popular Caffe package [143]. 1 × 1 convolutions don't 

require any memory reordering and can be implemented directly with GEMM, one of 



42 

the most optimal numerical linear algebra techniques. As seen in Table 4, MobileNet 

spends 95 percent of its computing time on 1 × 1 convolutions, which also have 75 

percent of the parameters. The completely connected layer contains nearly all the 

additional parameters. TensorFlow [142] was used to train MobileNet models using 

RMSprop [184] and asynchronous gradient descent, comparable to Inception V3 

[182]. We utilize fewer regularization and data augmentation approaches when 

training tiny models than when training large models because small models are less 

prone to overfitting. We do not employ side heads or label smoothing while training 

MobileNets, and we also restrict the number of visual distortions by minimizing the 

size of small crops used in big Inception training [182]. We also discovered that 

because the depthwise filters have so few parameters, it was critical to apply very 

little or no weight decay (l2 regularization) to them. All models, regardless of size, 

were trained using the same training parameters for the ImageNet benchmarks in the 

next section. Table 4 compares a factorized layer with depthwise convolution, 1 × 1  

pointwise convolution, batch norm, and ReLU nonlinearity to a layer with standard 

convolutions, batch norm, and ReLU after each convolutional layer. In the depthwise 

convolutions as well as the first layer, down sampling is handled via striding 

convolution. Before the completely linked layer, a last average pooling reduces the 

spatial resolution to 1. MobileNet contains 28 layers when depthwise and pointwise 

convolutions are counted separately. 

Table 4. Resource per Layer Type [136] 
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3.2.5 Mobilenet for Object Detection 

In contemporary object detection systems, MobileNet can also be used as a reliable 

base network. Based on the recent work that won the 2016 COCO challenge [185], 

we describe the results for MobileNet trained for object detection on COCO data. In 

Table 5, the Faster-RCNN [162] and SSD [163] frameworks are used to compare 

MobileNet to VGG and Inception V2 [183]. SSD is tested with 300 input resolution 

(SSD 300), while Faster-RCNN is tested with both 300 and 600 input resolution 

(Faster-RCNN 300, Faster-RCNN 600) in our studies. Per image, the Faster-RCNN 

model assesses 300 RPN proposal boxes. The models are trained and evaluated using 

COCO train+val except for 8k minival images. MobileNet offers equivalent 

outcomes to other networks with a fraction of the computational cost and model size 

in both frameworks. 

Table 5. COCO Object Detection Results Comparison Using Different Frameworks 

and Network Architectures. mAP is Reported with COCO Primary Challenge Metric 

(AP at IoU=0.50:0.05:0.95) 

Framework 

Resolution 
Model mAP 

Bilion Mult-

Adds 

Milion 

Parameters 

SSD 300 

deeplab-VGG 

Inception V2 

MobileNet 

21.1 % 

22 % 

19.13 % 

34.9 

3.8 

1.2 

33.1 

13.7 

6.8 

Faster-RCNN 

300 

VGG 

Inception V2 

MobileNet 

22.9% 

15.4% 

16.4% 

64.3 

118.2 

25.2 

138. 

13.3 

6.1 

Faster-RCNN 

300 

VGG 

Inception V2 

MobileNet 

25.7% 

21.9% 

19.8% 

149.6 

129.6 

30.5 

138.5 

13.3 

6.1 

 

Figure 12 can show the performance of a trained COCO dataset with SSD 

architecture. 



44 

 
Figure 12. Example Objection Detection Results Using Mobilenet 

3.2.6 Single Shot Detector Approach 

The Single Shot Detector (SSD) is a feed-forward convolution-based object detector 

that generates a set of bounding boxes with values and assigns classes to each of 

them. To be employed in the training process, SSD requires picture input and ground 

truth boxes, which are a type of square used to designate items to be detected. The 

architecture of the SSD is shown in Figure 13. Meanwhile, there are various features 

on SSD that yield high accuracy values, including multi-scale feature maps for 

detection, convolutional predictors, default boxes, and aspect ratios [161]. 

 
Figure 13. SSD Network Structure
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Chapter 4 

DEEP LEARNING BASED MARKOV LOCALIZATION 

4.1 Introduction 

This section will provide information on how the implementation has been done and 

the steps followed to achieve the results. The overall progress is to have a quadcopter 

not aware of his initial position within the map hovering on top of the patterns and 

receives the frames, then decides the pattern detection. Markov weights are also 

updates in each section and the whole process stops when the final decision comes 

from with high confidence (more than 99%) from Markov weights.  

At the beginning of this chapter, we will go through a comparison with the method 

mentioned in the reference paper and the proposed method by this thesis. Then the 

hardware setup will be introduced in addition to how they are used. Afterwards, 

Deep Learning network training procedure and the outputs will be described. We will 

continue with the algorithm followed to localize the vehicle. Finally, we will jump 

into results and their comparison with the literature this work is inspired from.  

The proposed method in the original research [1] made use of image analysis with 

feature extraction from each shot, which was then utilized to create what was deemed 

to be a pattern of localization. The main concept is that a quadcopter begins flying 

over a pattern at the beginning of the flight without taking its orientation or location 

into consideration. On the computer, a map of all the patterns and their placements, 
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as well as their relative positions, has been saved. The quadcopter is equipped with a 

camera that is pointed downwards and that sends videos to the main computer. Since 

the streamed photo is hovering on top of a pattern, it is detected using the above-

mentioned method, and an initial prediction as to its location is made. The drone then 

flies over the next pattern, and the predictions are updated to reflect the new 

information. Drone localization is completed once the anticipated position's 

confidence level has reached a predetermined level of confidence.  

Because the system is aware of the location, the operation can be carried out on the 

entire map when it has been completed. When the estimates are made, they are kept 

as Markov weights, which are updated with each displacement. In robotics, the 

Markov method is a statistical approach for localization that is used in [1].  

In this thesis, we have replaced the feature detection approach with a Deep Learning 

method to recognize patterns, which is more accurate. A specified number of 

photographs from each pattern are fed as a dataset to an object detection network, 

which is then trained in the appropriate manner. The training milestones are based on 

the pre-trained network from the COCO dataset. Only the last six layers of the 

network are unfrozen during the training process, and they are frozen again after the 

training is completed. As a training network, Mobilenet SSD v1 has been selected.  

4.2 The Utilized Hardware 

The following setup has been used for the system based on the following reasons: 

a. Hardware accessibility 

b. Deep learning ease of training  

c. Available testbed for the actual tests. 
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Figure 14 shows the architecture of the system which has been used for the setup. In 

following paragraphs, the system architecture has been described in details. 

 
Figure 14. The Architecture of System 

As it can be seen from the figure 14, a companion computer (Raspberry Pi4) is 

mounted on a quadcopter which is getting video feeds from an RGB camera in RTPS 

format (Real Time Protocol of Streaming) with 30 frames per second. There is an 

accelerator connected to the companion computer (Google TPU device) to take care 

of pattern detection. The Intel camera (T265) is also used to acquire Odometry 

information. Companion computer is also connected to the flight controller 

(Pixhawk4 mini) for commanding movements. The companion computer is 

wirelessly communicating with the Ground station using User Datagram Protocol 

(UDP) to view the position changes and pattern detection decision makings. Figures 

15 and 16 show the actual hardware used for this thesis.  

 



48 

 
Figure 15. Quadcopter Frame Used for Localization 

 
Figure 16. Quadcopter Bottom View Containing the Computing Modules and The 

Camera 

4.2.1 Google Edge TPU 

Google IoT includes the Google Edge TPU. They're built to run inferences at the 

edge with the support of cloud-trained machine learning models. The Google Edge 

TPU is coupled with the Coral Development Board, which is an ASIC (Application-

Specific Integrated Circuit) designed to allow on-device machine learning (Machine 

RGB-Camera 

Edge TPU 

Raspberry Pi 
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Learning). Coral Development Board is a Single Board Computer (SBC) with 

Wireless capabilities for high-speed machine learning inferencing. It comes with a 

removable SoM. (System-on-Module). The operating system on this board is 

Mendel, a Debian Linux derivative. 

The Edge TPU coprocessor can execute 4 trillion Operations Per Second (TOPS) 

while only consuming 0.5 watts per TOPS. Both C++ and Python programming 

languages are supported. It makes use of the Mendel Development Utility (MDT), a 

command-line tool for working with connected Mendel devices. Google TensorFlow 

Lite and AutoML Vision Edge are both supported. TensorFlow Lite models can only 

be used using the Python and C++ APIs to make inferences. The EdgeTPU module 

can be imported to use the Python API, and the edgetpu.h header file can be included 

to use the C++ API. This development board is mostly used for picture classification 

and object identification, but it can be utilized for a variety of other tasks. Working 

with this Dev Board is made easier with good documentation and support. [186] 

implemented real-time image classification and received quick results, indicating that 

this development board has a lot of potential for executing real-time ML calculations. 

[187]. Using a camera module, implemented an object detection demo from video 

and image categorization. The hardware specifications are listed in Table 6. 

Table 6. Hardware Specifications of Coral USB Accelerator. 

ML accelerator 
Google Edge TPU coprocessor: 

4 TOPS (int8); 2 TOPS per watt 

Connector USB 3.0 Type-C* (data/power) 

Dimensions 65 m x 30 mm 
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4.3 Patterns and Their Placement  

The map which the drone must occupy to do the localization according to the paper 

[1] consists of six different patterns shown in Figure 17.  

 
Figure 17. Patterns Classes for Recognition 

Each pattern has the dimensions of 50 × 50 𝑐𝑚 which compared to the main 

reference paper has been reduced to half due to space and expenses’ limitations. 

They are apart from each other for approximately 60𝑐𝑚 . The quadcopter flies over 

them at a height of 1.0𝑚 and accordingly each pattern can be seen in the camera 

separately each time without any interference of other patterns.  

These patterns are then put on the ground in a random combination of 16 of them 

which can be seen in Figure 18. Figure 19 shows the patterns in action and how we 

put them.  
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Figure 18. Map of 16 Patterns Retrieved From [1] 

 
Figure 19. Patterns Actual Placement in the Electrical and Electronics Engineering 

Department 

4.4 Markov Localization Theory 

Markov localization is a probabilistic localization of a kidnapped robot algorithm. It 

uses an arbitrary probability density function to represent the robot's position to track 

its belief state. It does not focus on the location of the car, but rather on the 

50 cm 

50 cm 



52 

probability distribution of where it might be. These probabilistic representations 

allow it to mathematically express many hypotheses [2]. The map has already been 

preoccupied by the algorithm. When the algorithm receives measurement data from 

the camera, it refers to the preoccupied map and uses the prediction and 

measurement update equations to update the probabilities. Prediction update is 

calculated as below: 

                               𝐵𝑒𝑙(𝑥𝑡) = ∑ 𝑝(𝑥𝑡|𝑢𝑡 , 𝑥𝑡−1)𝑏𝑒𝑙(𝑥𝑡−1)𝑑𝑥𝑡−1 (8) 

And the measurement update is: 

                                          𝐵𝑒𝑙(𝑥𝑡) = 𝜂𝑝(𝑧𝑡|𝑥𝑡 , 𝑀)𝐵𝑒𝑙(𝑥𝑡) (9) 

where 𝑥𝑡 denotes the quadrotor's state or location at time instant 𝑡 , and 𝑢𝑡 is the 

control input. The robot's belief in being at position 𝑥𝑡 is expressed by 𝐵𝑒𝑙(𝑥𝑡). 

Initially, the notion is that all poses have a uniform distribution. Just before including 

the new observation 𝑧𝑡, which is the sensor readings, 𝐵𝑒𝑙(𝑥𝑡) is computed. In 

addition, 𝜂 represents the environment map and indicates a normalization factor that 

ensures that the total of probabilities equals one [188]. 

4.5 Data Collection 

There are totally 6 patterns to be included for training. From each pattern 30 samples 

have been collected via the same camera which will be on the drone later to take care 

of the video feed. These photos are then rotated randomly up to 10 degrees maximum 

and went through a blurred filter to produce more samples. The labeled samples have 

been fed through the network to be trained. Figure 20 shows how samples are 

collected. 
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Figure 20. A Sample of Pattern's Data Collected for Training 

 The collected data then is labeled and added with augmentation and rotation as show 

some examples of them and how the more data have been prepared by adding noise 

and augmenting the original one. Figures 21 and 22 show the operation sample 

applied to the training data.  

  
Figure 21. Quality Change (Left) And Introducing Noise (Right) to the Dataset 
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Figure 22. A Sample of Data with Brightness Change (Left) and Rotation Applied 

(Right) 

4.6 Deep Learning Network Training 

The network chosen for training is Mobilenet_V1 SSD using TensorFlow. The 

trained data are then compiled and quantized to be capable of being processed via 

Edge TPU devices. The network has been trained with transfer learning method 

using a pre-trained COCO dataset. According to Google Coral Edge TPU device 

documentation the training steps have been modified to be done up to 5000 epochs, 

feeding 30 photos from the whole dataset randomly. 80% percent of the collected 

data have been used for training and 20% for verification of trained network in each 

training step.  

Figure 23 shows the training loss. The horizontal axis shows the number of training 

epochs. Training loss starts with a random initialized value according to our pipeline 

configuration that here we used the default one from the hardware provider. As the 

network learns more about the dataset and tests with evaluation data provided for it, 

this loss decreases till reaching an optimum value.  
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Figure 23. Loss Values During Object Detection Training 

Figure 24 represents that our detection boxes can perform an overlapping accuracy of 

almost 75% between ground truth of data and the represented data up to 80% only 

after near 1200 steps of training. 

 
Figure 24. Mean Average Precision for Detection Boxes at 0.75IoU 

Precision of detection boxes as can be inferred from Figure 25 can barely reach to 

70% on average over the whole training dataset which is compensated by our 

proposed majority voting decision making method later to achieve near 100% 

confidence of the detected pattern within a specific timeframe.  
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Figure 25. The Precision Detection for Each Epoch of Training 

As it can be seen in Fig. 26, after 1000 steps the network is ready for object detection 

since learning rate has reached to zero. The learning rate starts from a random 

number and it shows the network’s convergence as after each step the training data is 

compared to the evaluation data.  

 
Figure 26. Learning Rate Coefficient Per Epochs of Training 

4.7 The Algorithm of Implementation 

On the Grid-Map of the world the location of the quadrotor is not known at the 

beginning and it is considered as a kidnapped robot. It starts by hovering on top of an 
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initially random unknown pattern. Each detected frame within each second is fed to a 

list by software and after 90 detection frames, the mode of these decisions is chosen.  

The aim here is to find the robot’s place on this map. It might be located anywhere 

on the map, and the likelihood of finding it in all cells is 
1

16
 . Then when a pattern is 

observed, the frame is transmitted to the image processing algorithm, which retrieves 

the information. After all the locations have been discovered, the likelihood is 

divided based on the number of probable places and the grid-map is updated 

accordingly. A prediction update is performed whenever the quadrotor traverses from 

one cell in the grid-map to another cell which can start from anywhere on the map 

and go in any straight direction. This is referred to as the prediction update. In each 

cell, the prediction and measurement updates will be repeated until the chance of the 

quadrotor being localized is 100 percent, at which point the quadrotor will be 

localized and aware of its position on the map.  Figure 27 shows the algorithm 

followed for localization. 
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Figure 27. The Algorithm for Localization 

4.8 Results and Outputs 

First, we have tested our pattern detection and decision-making method with 

hovering the drone on each of 6 classes separately. Because we do not have more 

than 80% confidence in pattern detection from each frame and at the same time, we 

need to decide with a confidence of 100%, we have introduced majority voting 

method to make the final decision about the correct detection of each pattern. In this 

method, the drone hovers on top of each pattern for 3 seconds and captures 90 

frames. Since there are some wrong detections may happen within these 90 frames, 

the corresponding numbers of each detected class is added to a list. This means our 
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list contains 90 detected classes after 3 seconds. By taking the mode of this list we 

can find out how many times a pattern has been detected the most and choose it as 

our final decision for the pattern detection.  

The following tables can visualize the confusion table. Each table is for hovering on 

an arbitrary class. The highlighted columns state the pattern we have flown on top of. 

We have chosen odd numbers of frames with a specific gap of frames to make the 

tables short. The percentages in each row represent the share of a detected class by 

our trained neural network among other patterns up to that specific number of 

frames. It can be inferred that after 90 frames we have only one class which has been 

detected the most and we choose it as our right detected pattern with 100% 

confidence. Tables 7 to 12 can show this for each pattern respectively.  

Table 7. Detection Accuracy of Pattern 1 within 90 detection frames. 

No. of 

Frames 

Pat1 Pat2 Pat3 Pat4 Pat5 Pat6 

Detection Accuracy 

3 33% 33% 0 0 0 33% 

11 36% 55% 0 0 0 9% 

19 42% 53% 0 0 0 5% 

27 52% 44% 0 0 0 4% 

35 63% 34% 0 0 0 3% 

43 75% 24% 0 0 0 2% 

51 78% 20% 0 0 0 2% 

59 81% 18% 0 0 0 1% 

67 81% 18% 0 0 0 1% 

75 79% 20% 0 0 0 1% 

90 78% 21% 0 0 0 1% 
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Table 8. Detection Accuracy of Pattern 2 Within 90 Detection Frames. 

No. of 

frames 

Pat1 Pat2 Pat3 Pat4 Pat5 Pat6 

Detection Accuracy 

3 64% 9% 0% 0% 27% 0% 

11 68% 16% 0% 0% 16% 0% 

19 59% 30% 0% 0% 11% 0% 

27 46% 46% 0% 0% 9% 0% 

35 31% 63% 0% 0% 6% 0% 

43 27% 68% 0% 0% 5% 0% 

51 24% 72% 0% 0% 4% 0% 

59 22% 74% 0% 0% 4% 0% 

67 20% 77% 0% 0% 4% 0% 

90 18% 79% 0% 0% 3% 0% 

 

Table 9. Detection Accuracy of Pattern 3 Within 90 Detection Frames. 

No. of 

frames 

Detection Accuracy 

Pat 1 Pat2 Pat 3 Pat4 Pat5 Pat 6 

3 0% 0% 0% 0% 100% 0% 

11 0% 0% 0% 0% 100% 0% 

19 0% 0% 0% 0% 100% 0% 

27 0% 0% 11% 0% 89% 0% 

35 0% 0% 31% 0% 69% 0% 

43 0% 0% 53% 0% 47% 0% 

51 0% 0% 59% 0% 41% 0% 

59 0% 0% 64% 0% 36% 0% 

67 0% 0% 67% 0% 33% 0% 

75 0% 1% 69% 0% 30% 0% 

90 0% 2% 67% 0% 26% 4% 
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Table 10. Detection Accuracy of Pattern 4 Within 90 Detection Frames. 
No. of 

Frames 

Detection Accuracy 

Pat1 Pat2 Pat3 Pat4 Pat5 Pat6 

3 0% 0% 0% 0% 100% 0% 

11 0% 0% 0% 36% 64% 0% 

19 0% 0% 0% 37% 58% 5% 

27 0% 0% 0% 26% 70% 4% 

35 0% 0% 0% 26% 69% 6% 

43 0% 0% 0% 39% 51% 10% 

51 0% 0% 0% 42% 46% 12% 

59 0% 0% 0% 48% 42% 10% 

67 0% 0% 0% 52% 38% 10% 

90 0% 0% 0% 56% 35% 10% 

 

Table 11. Detection Accuracy of Pattern 5 within 90 Detection Frames. 

No. of 

Frames 

Detection accuracy 

Pat1 Pat2 Pat3 Pat4 Pat5 Pat6 

3 0% 0% 0% 0% 100% 0% 

11 0% 0% 0% 9% 91% 0% 

19 0% 0% 0% 16% 84% 0% 

27 0% 0% 0% 11% 89% 0% 

35 0% 0% 0% 9% 91% 0% 

43 0% 0% 0% 6% 94% 0% 

51 0% 0% 0% 5% 95% 0% 

59 0% 0% 0% 4% 96% 0% 

67 0% 0% 0% 4% 96% 0% 

75 0% 0% 0% 4% 96% 0% 

90 0% 0% 0% 3% 97% 0% 
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Table 12. Detection Accuracy of Pattern 6 Within 90 Detection Frames. 
No. of 

frames 

Detection Accuracy 

Pat1 Pat2 Pat3 Pat4 Pat5 Pat6 

3 0% 0% 0% 0% 100% 0% 

11 0% 0% 0% 0% 64% 36% 

19 0% 0% 0% 0% 58% 42% 

27 0% 0% 0% 0% 48% 52% 

35 0% 0% 0% 0% 37% 63% 

43 0% 0% 0% 0% 25% 75% 

51 0% 0% 0% 0% 22% 78% 

59 0% 0% 0% 0% 19% 81% 

67 0% 0% 0% 0% 18% 82% 

75 0% 0% 0% 0% 16% 84% 

90 0% 0% 0% 0% 14% 86% 

 

As the decision is made via the above tables, we have two outputs on top of each 

frame on our ground station. Figure 28 shows that on the left side, the number shown 

is our majority voting decision making algorithm output while at the same time the 

number on right side is showing the current frame can only be Pattern 6 with 79% of 

confidence. 

 
Figure 28. Comparison Between Pattern Recognition Confidence and Final Decision 
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Secondly, we started implementing Markov algorithm to localize our quadcopter on 

the map. Markov algorithm works easier when no noise is present in each 

measurement (here each detected pattern) and we have eliminated that noise by using 

our majority voting algorithm for decision making.  

Figure 29 shows the first route. At the beginning the drone hovers on top of the 

bottom right pattern (pattern 1) without any information of its location. Pattern 1 is 

detected and since we have Pattern 1 four times repeated in the whole map, the 

probability of being on top of any of them is 25% as the map is already predefined by 

our computer. At this point, for the sake of optimization for our algorithm, we have 

added border condition checks. To be clearer, if the drone is on top of Pattern 1, we 

send the drone to the right side. This means the next 3 seconds we are going to have 

no pattern detected. We have limited this time to one second which means 

localization is done in total 4 seconds. At this moment the localization process is 

done and the drone is aware of its location on the map with 100% confidence.  

 
Figure 29. Localization Using Route 1 (Left to Right Is Start to End) 
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With the proposed method for optimization, we can ensure to have the least amount 

of time needed for localization. For instance, pattern 6 will take only 3 seconds to 

achieve localization and it is only one on the whole map leading to a 100% 

confidence at the first period of detection.  

There are indeed middle patterns that the drone may start to fly off from. In this case 

for having an optimized timing to localize, the predefined map condition will prevent 

the drone to go to a direction which localization may take longer. For instance, as 

shown in Figure 30, if we start from Pattern 3 in the middle, going to the left will 

make us longer to do localization and we choose moving to right side which after 

two patterns localization is achieved.  

 
Figure 30. Localization Using Route 3 

4.9 Comparison of Results with The Concurrent Methods 

This implementation had been able to do the detection within 90 frames over each 

detection period. Below we have the comparison between the original paper and the 

ones we have proposed here as results. Figure 31 shows the convergence of the 
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estimated error from the prediction and it can be clearly seen that after about 6 

second, localization has been successful. 

 
 

Figure 31.  Estimated Time to Localize the Drone from The Concurrent Solution 

Table 13 shows how our proposed method can be compared to the concurrent 

method already implemented by the reference research paper.  

Table 13. Comparison Between Thesis Proposed Method the One In [1] 

 
Overall time 

consumption for a 

localization task 

Overall number of 

patterns to achieve near 

100% confidence for 

localization 

Concurrent method Approx. 6 seconds 4 

Implemented method 

in this thesis 
Between 4 to 6 seconds Between 1 to 2 

 

  

Estimated 

error in 

meters 

Time (sec) 
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Chapter 5 

CONCLUSION AND FUTURE WORKS 

5.1 Conclusions 

In this work we localized a quadcopter using deep learning and Markov algorithm. 

Localization is among one the most favorite topics in robotics and can be done in 

many ways that we have earlier mentioned in this thesis. We have brought an idea of 

using pattern in 6 different classes to be used for feeding our training network. By 

using Google Coral Edge TPU which is one of the widely used embedded tensor 

processors in the industry, we have made the decision making for each pattern 

detection scenario. Near total of 300 images have been fed to the training network to 

the retrained in 5000 epochs. The Tensor processor decisions were then given most 

of the voting within each 91 frames received in real time. The drone hovered over 2 

to 3 consecutive patterns and Markov decisions for the location were with 100% 

confidence in all tested case scenarios relying on a pre-defined map of pattern’s 

placement relative to each other. Each time the drone can come to a final accurate 

decision of the detected pattern within three seconds and then it traverses to the next 

one.  

On the other hand, this thesis has contributed to the performance of detection. Tables 

7 to 12 show that within each inference of 90 frames fed to the detection network 

how the accuracy of final decision increases based on Sum and Product probability 

rules. 
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5.2 Future Work 

This thesis was the first practical implementation of a research paper with a different 

method. In the paper only the simulation results were mentioned and feature 

extraction had been used to detect patterns. Since the time was limited to have the 

hardware ready and at the same time do the implementation, we had to limit our 

work within these 16 patterns. Markov algorithm has worked very fast here since 

there were no uncertainty in our decision making which if the number of patterns are 

extended, indeed the certainty will be noisy and we will need more patterns or other 

routes to be surfed as well for localization that could be a part of any future research.  

Additionally, another work indeed can be to compare the accuracy and speed of 

detection using feature extraction and deep learning. This must also bring the 

hardware change into account since TPU will not be used anymore in feature 

extraction.  

The other work is to make the patterns smaller and have more of different and more 

complex ones with more colors. In this case detection with deep learning can be 

compared with the current method.  

Finally, this localization method can be compared to any other ones available in 

market to give the insight of how this method performs compared to the other ones 

available in the market now. 
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