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ABSTRACT 

Traveling Salesman Problem has been one of the most interesting and challenging 

problem in the literature. It is include a large area in combinatorial optimization 

problem. A variety of Exact and Heuristic Algorithms are usable algorithms for solving 

TSP. Branch and Bound Algorithm is an exact algorithm that is developed for solving 

TSP type problems. Furthermore, Genetic Algorithm is one of the extensively algorithm 

within the Heuristic Algorithm. In this work, we looked into symmetric and asymmetric 

matrices to solve TSP. We used Genetic and Branch-and-Bound Algorithms as the 

solution methods to get the shortest path. 
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ÖZ 

Gezgin Satıcı Problemi, literatürdeki en ilginç ve en iddealı problem olarak çalışılan, 

kombinasyonel eniyileme problemlerinin başında gelmektedir. Çözümü için birçok 

Sezgisel ve Kesin Çözüm Yöntemleri geliştirilmektedir. Dal ve Sınır Algoritmaları, 

gezgin satıcı ve benzer yapıdaki problemlerin çözümü için geliştirilen Kesin Çözüm 

Yöntemi olmakla birlikte, Genetik Algoritmalar da Sezgisel Yöntemlerin başında 

gelmektedir. Bu çalışmada Gezgin Satıcı Problemlerinin çözümü için simetrik ve 

asimetrik matrisler ele alınmıştır. En kısa turları elde etmek için de Dal ve Sınır ve 

Genetik Algoritmaları kullanılmaktadır.  

 

 

 

 

 

Anahtar Kelimeler: Gezgin Satıcı Problemi, Sezgisel Yöntem, Kesin Çözüm Yöntemi, 

Dal ve Sınır Algoritması, Genetik Algoritma  
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Chapter 1  

INTRODUCTION 

Traveling Salesman Problem has been of the great interest for many years. It plays an 

important role in different solving algorithms such as Branch and Bound and Genetic 

Algorithm. In hand, it has a simple modeling, on the other hand it has a difficult solution 

way. Therefore, users should know the type of algorithms and their solution ways very 

well to overcome of these problems. In this sense, the thesis includes the solution 

algorithms of the TSP. 

In Chapter 2, we search the progress of the TSP, and also some topics are collected with 

the relevant definitions and main information about it. Throughout this chapter, we point 

out the mathematical formulation and an example of TSP. 

In the next chapter, we consider the Branch & Bound Algorithm which is the exact 

algorithm of TSP. The goal of this chapter is giving definitions, rules and how does it 

work on the examples. 

In Chapter 4, we take the Genetic Algorithm that is the another solving algorithm of the 

TSP. In general, the procedure of genetic algorithm is explained with the related 

definitions and examples as well. 
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In the rest of the chapter, we talk about the hold results of this study and we give 

suggestions for the future studies. 
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Chapter 2  

THE TRAVELING SALESMAN PROBLEM 

2.1 History  

Before starting to give information about the TSP, I would like to state a brief history of 

the TSP. 

The story of TSP is starting with Euler. TSP emerged from his studies “Studied the 

Knight’s tour Problem” in 1766. After Euler, the important well-known study was 

carried out in 18
th

 century by the mathematicians Sir William Rowaw Hamilton and 

Thomas Penyngton Kirkman from Ireland and Britain respectively [1]. It was about 

finding paths and circuits on the dodecahedral graph, satisfying certain conditions [2]. 

Most of research into TSP history as a whole was done in the period from 1800 to 1900. 

We can meet Kirkman’s, Menger’s or Tucker’s studies in ancient history as well. Then, 

Lawler, Lenstr, Rinnoy Kan and Shmoys didn`t say anything for TSP. Karl Menger give 

attention to his colleagues in 1920. After that, Merrill Meeks Flood submitted result 

related with TSP in 1940. It was the year 1948 when Flood publicized the travelling 

salesman problem by presenting it at the RAND Corporation. The RAND Corporation is 

a non-profit organization that is the focus of intellectual research and development 

within the United States. In its early days, RAND provided research and analysis to the 

United States armed forces, but then expanded to provide such services for the 
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government and other organizations [3]. After those years the TSP became more 

popular. This popularity was probably caused by a few factors, one of which is the 

prestige of the RANK Corporation [3]. The Linear Programming was investigated as a 

vital force in computing solutions to combinatorial optimization problems in 1950. As 

mentioned, this is one of the reasons why the TSP was in the interest of RAND
1
. Later 

on Dantzig, Fulkerson, and Johnson find a method for solving the TSP in 1950. They 

proved the effectiveness of their method by solving a 49-city instance. However, it 

became evident, as early as the mid 1960’s, that the general instance of the TSP could 

not be solved in polynomial time using Linear Programming techniques. Finally, these 

categories of problem became known as NP-hard
2
 [3]. Great progress was made in the 

late 1970’s and 1980, when Grötschen, Padberg, Rinaldi and others managed to exactly 

solve instance with up to 2392 cities, using cutting planes and branch-and-bound [4].  

2.2 Definition 

Traveling Salesman Problem is an extremely important problem in operational research. 

We first define the problem and then we study the methods and algorithms to solve the 

TSP.  

                                                 

1
 Rand is a function which can generate a random number between   and  . 

2
 For any problem P is NP-Hard if a polynomial time algorithm for P would imply a polynomial-time 

algorithm for every problem in NP. 
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TSP or Hamiltonian tour is a type of classic and problem which shows one from to solve 

the more complex ones. Hamiltonian tour starts with a given edge, visits each of the 

specific groups of edges and then returns to the original point of departure. TSP is the 

shortest walk in a circuit provided that it passes from all vertices only once. 

In mathematical formulation, there is a group of distinct cities *          +, and there 

is a corresponding edge for each pair of cities {     } and a closed path    

{  ( )   ( )     ( )}. The objective then is to find an ordering   of cities such that the 

total time for the salesman is minimized. The lowest possible time is called the optimal 

time. The objective function is given as:  

∑ (  ( )   (   ))  

   

   

 (  ( )   ( )) 

[5]. 

In other words, TSP of NP-Hard problem class is known as one of the well known 

combinatorial optimization problems. This means for TSP, the solution techniques have 

not been improved in polynomial time. Thats why to solve TSP, there are many intuitive 

techniques. More precisely, it is complete for the complexity class (FP
NP

)
3
, and the 

                                                 

3
 The complexity class NP is the set of decision problems that can be verified in polynomial time.  



6 

 

decision problem version is NP-complete. If an efficient algorithm is found for the TSP 

problem, then efficient algorithms could be found for all other problems in the NP-

complete class. Although it has been shown that, theoretically, the Euclidean TSP is 

equally hard with respect to the general TSP, it is known that there exists a sub 

exponential time algorithm for it. The most direct solution for a TSP problem would be 

to calculate the number of different tours through   cities. Given a starting city, it has 

    choices for the second city,     choices for the third city, etc. Multiplying these 

together one gets (   )  for one city and    for the   cities. Another solution is to try 

all the permutations (ordered combinations) and see which one is cheapest. At the end, 

the order is also factorial of the number of cities. Briefly, the solutions which appear in 

the literature are quite similar. The factorial algorithm’s complexity motivated the 

research in two attack lines: exact algorithms or heuristics algorithms. The exact 

algorithms search for an optimal solution through the use of branch-and-bound, linear 

programming or branch-and-bound plus cut based on linear programming techniques. 

Heuristic solutions are approximation algorithms that reach an approximate solution 

(close to the optimal) in a time fraction of the exact algorithm. TSP heuristic algorithms 

might be based on genetic and evolutionary algorithms, simulated annealing, Tabu 

search, neural network, ant system, among some states in [6]. 

The reason of attention on TSP is that it has a wide range of applications area. Problems 

like, telecommunication networks, circuit board designing, logistic and many others can 
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be modeled by the TSPs. Furthermore, the TSP can be used to formulate other 

combinatorial optimization problems such as QAP
4
. 

The aim of TSP is to find the shortest tour that visits all the vertices exactly once. At the 

same time, the main purpose of the TSP is to minimize the total weight in TSP tour. 

We can categorize TSP in two classes: Symmetric TSP and Asymmetric TSP. In STSP, 

the distance between two edges is always equal in opposite orientation. For ATSP, this 

condition may not be satisfied for all direction. Sometimes another factor like different 

distance or different departure time will affect our problem.  

2.2.1 Mathematical Formulation of TSP 

The TSP can be defined on a complete undirected graph   (   ) if it is symmetric or 

on a directed graph   (   ) if it is asymmetric. The set   *     + is the vertex 

set,   *(   )          + is an edge set and   *(   )          + is an arc set. 

A cost matrix   (    ) is defined on   or on  . The cost matrix satisfies the triangle 

inequality whenever            , for all      . In particular, this is the case of a 

planar problem for which the vertices are points    (     ) in the plane, and     

                                                 

4
 QAP is one of the hardest combinatorial optimization problem and also it is in the class of NP-Hard 

Problems. The aim of this problem is to minimize the total weighted cost. 
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√(     )
 
 (     )

 
 is the Euclidean distance. The triangle inequality is also 

satisfied if     is the length of the shortest path from   to   on   [1]. 

2.3 Symmetric Travelling Salesman Problem 

Let   *       + be a set of cities,   *(   )      + be the edge set, and     

    be a cost measure associated with edge (   )     

The STSP is the problem of finding a closed tour of minimal length that visits each city 

once. In the case where cities      are given by their coordinates (     ) and     is the 

Euclidean distance between   and  , we have an Euclidean TSP [1].  

2.3.1 Integer Programming Formulation of STSP 

This formulation associates a binary variable     with each edge (   ), which is equal to 

  if and only if the latter appears in the optimal tour. The formulation of TSP is as 

follows. 

         

 ∑          
 

           

∑        ∑                    (    ) 

 1.2

 2.2
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∑          | |       (      | |     ) 

                        (   )    

In this formulation, constraints (2.2), (2.3) and (2.4) are referred to as degree constraints, 

sub-tour elimination constraints and integrality constraints, respectively. In the presence 

of (2.2), constraint (2.3) is algebraically equivalent to the connectivity constraint 

∑    
             

        (      | |     )  

[1].  

2.4 Asymmetric Travelling Salesman Problem 

If         for at least one (   ), then the TSP becomes an ATSP [1].  

2.4.1 Integer Programming Formulation of ATSP 

Here     is a binary variable, associated with arc (   ) and equals to   if and only if the 

arc appears in the optimal tour. The formulation is as follows. 

         

∑      
   

 

           

 3.2

 4.2
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∑   

 

   

                  (       ) 

∑   

 

   

                  (       ) 

∑    
     

 | |       (      | |     ) 

                                                               (   )          [1]. 

2.5 Example: Travelling Salesman Problem 

In this section, branch and bound algorithm will be showed as a solution algorithm of 

the TSP in the following numerical example. I used to basic method to solve this 

example and throughout the next chapter; the technique of implicit enumeration
5
 will be 

discussed on a couple example. 

Case 1:  Let us consider the symmetric matrix, 

                                                 

5
 Implicit enumeration can be applied within the family of optimization problems mainly if all variables 

have discrete nature.  
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Step 1:  The lower bound of total distance is   

   ∑    (  )

 

   

              

and the tour has to travel at least   . Optimal solution will have to be more than or equal 

to the lower bound of      

Step 2:  We create (   )  (   )    branches and say           

               We do not have       becouse     is a subtour of length  . The 

same thing holds for all     which means    ,    ,    ,     and     are all sub-tours. 

Step 3:  Fixing    and   , by leaving out the first row and the second column to 

get additional minimum distance, we obtain 
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The minimum travelling is 

                  or                 

Then the lower bound is  

               

Repeating the same calculation,    to    will be             ,    to    will 

be              and    to    will be               

Step 4:  We want to minimize the total distance travelling so we branch further 

from    because it has the minimum value of lower bound. Therefore, we have to create 

three more branches as                     
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Step 5:  We will find out the new lower bound. Now we will free    to    and    

to    then we calculate the minimum travelling value. Here    to    is a sub-tour so we 

will choose it as     

          

          

         

         

 

The minimum travelling is 

                               

Then the lower bound is  

               

Repeating the same calculation,    to    will be              ,    to    will 

be             . 
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Step 6:  Evaluate up to this point, find the minimum value and then draw new 

branches. In the solution    is the new lower bound so spread in branches from this 

node. We create three new branches here like                    

Step 7:  Now we will go back to find out the new lower bound. For the first one 

we put       and      . When       and       go,       will be sub-tour. 

          

         

         

         

 

The minimum travelling is 

                              or   . 

Then the lower bound is  

               

As the same calculation,    to    will be             ,    to    will be 

            . 
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Step 8:  Out of these values we will try again to find the one with the smallest in 

term. We will branch from either    to    or     to   . Let us continue from    to   , we 

get       and       branches. Again     and     are sub-tours. 

Step 9:  We fix three terms and when we have only two more terms to go, we 

don’t look for the lower bound but the upper one. This upper bound becomes the 

feasible solution. Therefore the way of feasible solution for    to    is  

                             . 

Then the feasible solution is 

                  

When we get the first feasible solution for this branch and bound, we will check the 

other solution. The lower bound must be less than the upper bound. Therefore only then 

we can continue from    to    and    to   .   

The way of feasible solution for    to    is  

                             . 

Then the feasible solution is 
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Step 10:  Another possible branch solution for    to    will be       and 

     . 

The way of feasible solution for    to    is  

                             . 

Then the feasible solution is 

                  

The way of feasible solution for    to    is  

                             . 

Then the feasible solution is 

                 

Answer:  All the nodes move around so we have four feasible solutions for this 

question. 

The best optimal solution is  
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which is the   . 

Note:  We will have the same solution for 

                   

It gives us the same value    because we have the symmetric matrix.  

 

Figure 2.1: The branch and bound diagram with optimal solution at node 14 
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Case 2:  Let us consider the asymmetric matrix, 

                

             

             

             

              

             

 

Step 1:  The lower bound of total distance is   

   ∑    (  )

 

   

              

and the tour has to travel at least   . Optimal solution will have to be more than or equal 

to the lower bound of      

Step 2:  We create (   )  (   )    branches and say           

               We do not have       becouse     is a subtour of length  . The 

same thing holds for all     which means    ,    ,    ,     and     are all sub-tours. 

Step 3:  Fixing    and   , by leaving out the first row and the second column to 

get additional minimum distance, we obtain 
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The minimum travelling is 

                                

Then the lower bound is  

              

Repeating the same calculation,    to    will be             ,    to    will 

be              and    to    will be               

Step 4:  We want to minimize the total distance travelling so we branch further 

from    because it has the minimum value of lower bound. Therefore, we have to create 

three more branches as                     
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Step 5:  We will find out the new lower bound. Now we will free    to    and    

to    then we calculate the minimum travelling value. Here    to    is a sub-tour so we 

will choose it as    

             

           

           

            

           

 

The minimum travelling is 

                               

Then the lower bound is  

              

Repeating the same calculation,    to    will be             ,    to    will 

be             . 
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Step 6:  Evaluate up to this point, find the minimum value and then draw new 

branches. In the solution    is the new lower bound so spread in branches from this 

node. We create two new branches here like              

Step 7:  Now we will go back to find out the new lower bound. For the first one 

we put       and      . 

          

         

          

         

 

The minimum travelling is 

                               

Then the lower bound is  

              

As the same calculation,    to    will be               
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Step 9:  We fix three terms and when we have only two more terms to go, we 

don’t look for the lower bound but the upper one. This upper bound becomes the 

feasible solution. Therefore the way of feasible solution for    to    is  

                             . 

Then there are two sub-tours in this solution so we have to move one link from one to 

other  

                              

Thus the feasible solution is 
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Figure 2.2: The branch and bound diagram with optimal solution at node 9 
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Chapter 3   

BRANCH AND BOUND ALGORITHM  

3.1 Introduction 

In this section, we talk about the basic principle of branch and bound algorithms. 

Since the first attempt to solve travelling salesman problems by an enumerative 

approach, apparently due to Eastman (1958), many such procedures have been proposed. 

In a sense the TSP has served as a testing ground for the development of solution 

methods for discrete optimization, in that many procedures and, devices were first 

developed for the TSP and then, after successful testing, extended to more general 

integer programs. The term “branch and bound” itself was coined by Little, Murty, 

Sweeney and Karel (1963) in conjunction with their TSP algorithm. [7] 

Enumerative
6
 (branch and bound, implicit enumeration) methods solve a discrete 

optimization problem by breaking up its feasible set into successively smaller subsets, 

                                                 

6
 Enumerative methods are investigating many cases only in an implicit way. This means that huge 

majority of the cases are dropped based on consequences obtained from the analysis of the particular 

numerical problem. 
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calculating bounds on the objective function value over each subset, and using them to 

discard certain subsets from further consideration. The bounds are obtained by replacing 

the problem over a given subset with an easier problem, such that the solution value of 

the latter bounds that of the former. The procedure ends when each subset has either 

produced a feasible solution, or was shown to contain no better solution than the one 

already in hand. The best solution found during the procedure is a global optimum. [7] 

For any problem  , we denote by  ( ) the value of (an optimal solution to)  . The 

essential ingredients of any branch and bound procedure for a discrete optimization 

problem   of the form    * ( )|   + are 

i. a relaxation of  , i.e. a problem   of the form    * ( )|   +, such that     

and for every      ,  ( )   ( ) implies  ( )   ( ). 

ii. a branching or separating rule, i.e. a rule for breaking up the feasible set    of the 

current subproblem    into subsets          , such that ⋃        
 
    

iii. a lower bounding procedure, i.e. a procedure for finding (or approximating from 

below)  (  ) for the relaxation    of each sub-problem   ; and  

iv. a sub-problem selection rule, i.e. a rule for choosing the next sub-problem to be 

processed. 

Additional ingredients, not always present but always useful when present, are 
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v. an upper bounding procedure, i.e. a heuristic
7
 for finding feasible solutions to  ; 

and  

vi. a testing procedure, i.e. a procedure for using the logical implications
8
 of the 

constraints and bounds to fix the values of some variables (reduction, variable 

fixing) or to discard an entire sub-problem (dominance tests
9
). 

[7] 

After the procedure of the branch and bound algorithm, we point out the formulation of 

integer programming with details in the following discussion. 

The integer programming formulation of the TSP that we will refer to when discussing 

the various solution methods is defined on a complete directed graph   (   ) on   

nodes, with node set   *     +, arc set   *(   )|         +, and nonnegative 

costs     associated with the arcs. The fact that   is complete involves no restriction, 

                                                 

7
 Heuristics are used to compute upper bounds. 

8
 Whenever we tighten variable bounds either by branching on them or by using reduced cost criteria, we 

try to tighten more bounds by searching for logical implications of the improved bounds. 

9
 The dominance test is known as another test for sub-problem. While the bounding test compares a lower 

bound of sub-problem with an incumbent value, the dominance test compares a sub-problem with an 

another sub-problem.  
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since arcs that one wishes to ignore can be assigned the cost      . In all cases 

             . The TSP can be formulated, following Dantzig, Fulkerson and 

Johnson (1954), as the problem 

   ∑ ∑              

subject to 

∑                         (   ) 

∑                         (   ) 

∑ ∑     | |                                

                        (   )    

where       if arc (   ) is in the solution,       otherwise. 

The sub-tour elimination inequalities (3.3) can also be written as  

∑ ∑      

        

                        

[7] 

 23.

 33.

 43.

 53.

 13.
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Let us discuss the branching rules which help to understand the idea of the branch and 

bound algorithms. 

3.2 Branching Rules 

During this section, we talk about branching rules and look at how can we apply it on 

the related example. 

Several branching rules have been used in conjunction with the    relaxation of the 

TSP. In assessing the advantages and disadvantages of these rules one should keep in 

mind that the ultimate goal is to solve the TSP by solving as few sub-problems as 

possible. Thus a “good” branching rule is one that (a) generates few successors of a node 

of the search tree, and (b) generates strongly constrained sub-problems, i.e. excludes 

many solutions from each sub-problem. Again, these criteria are usually conflicting and 

the merits of the various rules depend on the tradeoffs.  

We will discuss the various branching rules in terms of sets of arcs excluded (  ) from, 

and included (  ) into the solution of sub-problem  . In terms of the variables    , the 

interpretation of these sets is that subproblem   is defined by the conditions 

    {
  (   )    
  (   )    

 

In addition to (3.1), (3.2), (3.3), (3.4). [7] 
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3.2.1 Branching Rule 1: (Little, Murty, Sweeney and Karel [1963]) 

Given the current relaxed sub-problem     and its reduced costs   ̅           , 

where    and    are optimal dual variables, for every (   ) such that   ̅    define the 

penalty  

       {  ̅      * +}     ,  ̅      * +- 

and choose (   )    such that  

       {      ̅   }  

Then generates two successors of node  , nodes     and    , by defining  

        *(   )+          

and  

                *(   )+  

[7] 

Let us now consider a simple application that enables one to understand the case of 

Little’s Rule more clearly. 
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3.2.1.1 Example: Little’s Branch and Bound Algorithm 

Consider the assignment problem with matrix, 

                

              

               

              

             

             

 

Step 1:  At first, we calculate the row minima as  
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Then subtracting 7 from Row 1, 5 from Row 2, 8 from Row 3, 5 from Row 4, and 6 

from Row 5, we get  

                

             

             

             

   4         

             

 

                Row 

Min 
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Step 2:  We calculate the column minima as  

                  

              

              

              

   4          

              

Column 

Min 
            

 

Then, subtracting 0 from Column 1, 0 from Column 2, 1 from Column 3, 0 from 

Column 4, and 0 from Column 5, we get  
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*                

             

             

             

   4         

             

 

Step 3:  We will get the lower bound as  

    ∑        ∑                    

We look at matrix (*) and as in the assignment problem; we set a group of assignable 

zeros for each row. We begin this process by fixing assignable zeros in Row 1. 

 Step 4:  We proceed to get the new matrix by choosing the zeros, to calculate the 

row penalties and the column penalties. To get this number we are going to add the row 

minimum and the column minimum of the chosen zeros.  
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     3 0
(0+2) 

2 0
(0+1) 

   5   4 0
(1+0) 

1 

   0
(0+1) 

2   0
(0+0) 

1 

   4 0
(1+0) 

2   1 

   1 0
(0+0) 

2 0
(0+0)   

 

                

     3 0
(2) 

2 0
(1) 

   5   4 0
(1) 

1 

   0
(1) 

2   0
(0) 

1 

   4 0
(1) 

2   1 

   1 0
(0) 

2 0
(0)   

 

Row penalty belongs to the zero with the highest sum for the row and the column 

minimum. If the next highest element happens to be a zero, then the penalty is zero, 

otherwise there is a positive penalty.  
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Step 5:  We look at a zero which has the highest penalty and in this example it 

turns out to be    . After picking this zero, we start our assignment problem. We insert 

the maximum total penalty of  . We choose this and desire to branch on this particular 

variable. Therefore we branch on the variable     and create two nodes. These are 

      and      . Since the       solution has already been computed we do not 

make an assignment here. For       we will have an increase cost of  , so that the 

lower bound for this becomes     plus  , which is    .      

Step 6:  In the next case, we have to allocate    , so we will leave row of    and 

column of    and create a     matrix as 

             

           

           

           

           

 

If we have allocated     to   we should also not have     in the solution, otherwise this 

will create a sub-tour, so we will not have     in the solution.  
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Step 7:  In this reduced matrix, we now have to check whether every row and 

every column has an assignable zero. We realize that all rows and some columns have 

the zeros, but the columns for    and    do not have zeros. If we subtract the column 

minimum, from these particular columns, the matrix will change as follows.   

             

           

           

           

           

 

We subtract   from Column     and   from Column   , so effectively we subtract  . 

Therefore, the lower bound increases from    to   . 

Step 8:  Now again we will find the row penalty and the column penalty from the 

last reduced matrix. We get 
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       0
(0) 

0
(0) 

       0
(0) 

0
(0) 

     0
(0) 

  0
(0) 

   0
(3) 

0
(0) 

0
(0) 

  

 

Here maximum penalty is  , so this is the next candidate for branch. Thus     is the next 

candidate to branch.  Again we create two branches here; one of them is       and the 

other one is      .  

Step 9:  As the same condition For       solution, lower bound will be   .  For 

      condition we leave row of    and column of    and then we create a     

matrix as 
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We should not have     because of sub-tour (        ). Now after this, every row 

and every column has zeros so we don’t need to subtract the row minimum or the 

column minimum. Therefore the lower bound is        . 

Step 10:  Now again computing the penalties, we get 

          

     0
(0) 

0
(0) 

     0
(2)   

   0
(2)   0

(0) 

 

Thus we can choose either     or    , because each of them has the same maximum 

penalty. Therefore let us choose     to begin branch. 

Step 11:  There are two branches. The first one is      , which has a lower 

bound        . For the second one, we leave row of    and column of   , to get 

the     matrix  
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There is a sub-tour for    , so we replace the   by   (           ). After this 

every row and every column has assignable zero. Therefore the lower bound does not 

increase. Thus the lower bound stays as   . 

The feasible solution to the TSP is   

                       

Thus the optimal solution is  

                



40 

 

 

Figure 3.1: The branch and bound diagram with optimal solution at node 6 

Another important rule is known as Eastman’s Rule. We use the below inequality for 

solving results on the example. Before we proceed with an example, we give some basic 

inequality. 

3.2.2 Branching Rule 2: (Eastman [1958], Shapiro [1966]) 

Let    be the optimal solution to the current relaxed sub-problem    , and let    

*(     )   (     )+ be the arc set of a minimum cardinality sub-tour of    involving the 

node set    *       +. Constraint (3.3) for   implies the inequality  
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∑    | |

(   )   

    

which in turn implies the disjunction 

                                 

Generate   successors of node  , defined by  

        *(       )+                 

with          

Now    is clearly infeasible for all              , and the choice of a shortest sub-

tour for branching keeps the number of successor nodes small. However, the disjunction 

(3.6) does not define a partition of the feasible set of    , and thus different successors 

of     may have common solutions. [7] 

Let us now apply the above inequality in the following example. 

3.2.1.2 Example: Eastman’s Branch and Bound Algorithm 

 Consider the assignment problem with the matrix below, 

 

 63.
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Step 1:  First let us solve the given assignment problem by using the Hungarian 

Algorithm
10

. We calculate the row minima as  

 

 

 

                                                 

10
 The Hungarian Algorithm is an algorithm for solving a matching problem or more generally an 

assignment linear programming problem. 



43 

 

                Row 

Min 

                

                 

                

               

               

 

Then, subtracting 7 from Row 1, 5 from Row 2, 8 from Row 3, 5 from Row 4, and 6 

from Row 5, we get,  

                

             

             

             

   4         
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Step 2:  We calculate the column minima as  

4                

             

             

             

   4         

             

Column 

Min 
          

 

Then, subtracting 0 from Column 1, 0 from Column 2, 1 from Column 3, 0 from 

Column 4, and 0 from Column 5, we get,  
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   4         

             

 

Step 3:  We start to make assignments. Since we already have two assignable 

zeros in the first row, we don’t make any other assignment here. In the second row there 

is only one assignable zero so after fixing it, the other zeros in Column 4 disappears. In 

this way, only one assignable zero remains in Row3. In the next Row, again we have 

only one assignable zero. Therefore we cross out the zero in column 2. Hence we cannot 

make any assignment in Row 4. 

Then we look at the columns’, first two columns already have assignments but the third 

column doesn’t. Therefore, we can make an assignment in the third column and in this 

way the other zero in Row 1 goes. Now we cannot make any more assignments here. 
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Step 4:  We go to the ticking process. The first tick goes to the non assignee Row 

5. Then we tick the columns containing the non-assignable zeros. Next, we tick the rows 

containing the assignable zeros of the particular columns. Therefore we choose Row 4 

and Row 2. If there are other zeros in these rows, we will tick them too. However, we 

don’t have this condition in our example.  
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Step 5:  Now, we cover the non-ticked rows and the tick columns. These are rows 

1, 3 and columns 2 and 4. This means covering all the zeros of the matrix with the 

minimum number of horizontal or vertical lines. 
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Step 6:  Now find the minimum numbers of the rows not covered with lines. Let 

  be the minimum of these picked numbers. Now, subtract   from the non-picked 

entries, and add it to the picked ones. 

                

     3+    2+   0 

   5-    4-    1-  

     2+    0+   1+   

   4-    2-    1-   

   1-  0 2-  0   
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where       (           )   . 

Step 7:  Now for this reduced matrix, we start making the allocation again. This 

means that we turn back to Step 3 to get a new matrix. 

                

             

             

             

             

             

 

We get into a situation where we randomly choose our assignable zero. Therefore, we 

start with     which is an arbitrary allocation. Then in the same way, finally, we get the 

five allocations as  
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Thus the assignment solution is 

                       

The corresponding value  

                

Step 8:  We need to study this assignment solution carefully and verify whether it 

is feasible to TSP. If the solution is feasible to the TSP, then it is optimal, but we should 

check the answer carefully. We have a sub-tour which is   

          and                
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Therefore, there are two sub-tours in this solution and these two sub-tours are shown 

below; 

 

Figure 3.2: Sub-tour diagram of branch and bound 

This      becomes the lower bound to the optimum value of the TSP.  

Step 9:  There are two sub-tours here and in order to get that tour, we have to 

move one link of figure A along with one link of figure B. these broken links are later 

replaced by ones that go from A to B and B to A. We go back to the last reduced matrix 

and create a sub-tour to sub-tour matrix which is 

   (*
                   
                     

+)  *
  
  

+  

Step 10:  We can start a Branch-and-Bound Algorithm with the L.B    of TSP 

increased by zero units. There are two sub-tours which are         and         

   . Therefore we have to eliminate these subtours. We take the smaller sub-tour 

       , of length  , and then create two branches here. 
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The values       or   imply the existence or nonexistence of the line     in the 

solution.  

Step 11:  When       , we will go back to the matrix 1?, replace the entry there 

by   and solve the assignment problem again. We get a final matrix like the one (matrix 

11?) so whatever we have here will be a lower bound and we will check if it is a feasible 

solution of the TSP. Thus if we get an increase in the L.B. from    to   , we can’t get a 

feasible solution. We still get two sub-tours as             and        . The 

optimal solution to the assignment problem has objective function value of    which is a 

lower bound and it has two subtours.     

Step 12:  When we solve the other case, we put      . Since we force       to 

be  , we remove the first row and third column and solve the resulting     problem. 

Then add this   to the new L.B. and get the new optimal solution. In this case we also 

get the lower bound of   , but we still get sub-tours             and        . 

One can easily observe that these two solutions are actually the same with respect to the 

TSP, because             is same as            . Both of the results are still 

a feasible solution to the TSP and have two sub-tours. Therefore, we have to eliminate 

the sub-tours again. 

Step 13:  We can separate two branches here as       and      . Before we 

solve this particular assignment problem, we need to study the existing ones. We have to 

force       and       which means   will replace     and     in matrix 1. Then 

the lower bound becomes   , but we still have a solution 
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which is a feasible solution to the TSP. Therefore this    is an upper bound. We have a 

feasible solution with the value   . We are no longer interested in the solutions with the 

value    or above. 

Step 14:  We will go back and evaluate the       branch which means we can 

remove the second row and the forth column, solve the remaining    , and add   to 

the solution. Therefore this gives us a lower bound of    and we get the solution    

                       

Therefore the lower bound becomes   , which is the final feasible solution to the TSP. 

Thus the optimal solution is  
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Figure 3.3: The branch and bound diagram with optimal solution at node 4  
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Chapter 4  

GENETIC ALGORITHMS 

4.1 Introduction  

We start this section with the following explanation and then we mention the genetic 

operator.  

Genetic Algorithms are essentially evolutionary optimization techniques where we try to 

mimic to process of evolution. Evolution is taken as an optimizing process. GA is used 

as evolutionary mechanism to create a solution for the random choosing. The basic logic 

of this method is provided for the extinction of the bad solution and good solution is 

achieved gradually over year. In GA, the chromosomes represent possible solutions for 

the problem. Population is a set which consists of chromosomes. Sufficiency rate is 

determining the value of solution and is calculated with using sufficiency function. New 

population can be obtained by genetic operator like evaluation, crossover and mutation. 

4.1.1 Coding of Chromosomes 

Coding of chromosome is the first step of problem solving with genetic algorithm. 

Coding may differ from according to the type of the problem. The most useful methods 

are binary coding and permutation coding. In binary coding every (each) chromosomes 

is represented by a series of characters (involving)   and  . In permutation encoding, 
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each chromosomes is represented by a series. Permutation coding is used very often in 

TSP.  

4.1.2 Selection 

Individuals must be selected from the group to create a new population by crossover and 

mutation. By theory, good individuals should continue their life and create a new 

individual. Therefore, the probability of selection is important for the fitness value of the 

individual. The best known selection methods are Roulette-wheel selection, Tournament 

selection, and Rank selection. 

4.1.2.1 Roulette-Wheel Selection 

Firstly the fitness value is collected for each individual in the group and the probability 

of selection comes from the collection of fitnesses. However, if there are big differences 

between the fitnesses, it will continue to give the same solution. 

4.1.2.2 Tournament Selection  

k individuals are chosen randomly from the population and the ones with the best 

fitnesses are picked. In here k might change according to the size of the population. 

4.1.2.3 Rank Selection 

Chromosome which has bad fitness is given a value of 1, and the value increases to   or 

  as the fitnesses of the chromosome improves. The aim of in this selection is give a 

chance to enable the use of bad fitness chromosomes in other places. Only disadvantage 

is that this process may take a long time.  
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4.1.3 Evolution 

The quit valuable role of genetic algorithm is the evolution function. We always use the 

fittnest function to choose a good chromosome. Besides, if we have a large number of 

initial populations, this method helps us to choose the best chromosome for the next 

cross over step. [8] 

4.1.4 Cross over 

After the completion the evaluation process, the chromosomes chosen are recombined as 

a new chromosome to determine the parent for the next generation. Briefly, the most 

effective step for the procedure is called cross over. [8] 

4.1.5 Mutation 

The operation of mutation permit new individual to be created. It starts by selecting an 

individual from the population based on its fitness. A point along the string is randomly 

selected and the character at that point is changed at random, the alternate individual is 

then copied in to the next generation of the population. 

After cross over, mutation is performed. During this process, a chromosome in the new 

generation is randomly chosen to mutate and switch that point. There are different kinds 

of mutation operators exist. For a binary chromosomes representation, we always use the 

bit flip method which alters a particular point on the chromosomes to its opposite. [8] 

4.2 Matrix Representation 

These studies are related to the symmetric and asymmetric cases in the binary matrix. 
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In this work, the tours are represented by binary matrix. In figure,                

represents binary bits and the   s in the set represent an edge from    to    where 

          

 

Figure 4.1: The binary matrix for the symmetric case 
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Figure 4.2: The matrix for the symmetric case 

For symmetric case, the LUTM shows the distance between cities   and  , if         in 

Figure1.a. As in Figure2.b below, if          the given matrix for TSP is asymmetric.  

For the symmetric case, the LUTM shows the flow from left to right. It works as  

                   then the backward motion starts from the lower parts of the 

RUTM to move up like              In that case the closed path is       
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Figure 4.3: The binary matrix for asymmetric case 

 

Figure 4.4: The matrix for asymmetric case 
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There are two valid conditions for the TSP tour to be symmetric. 

1. The number of    must be equal to number of   s in the matrix. 

2. Each    must have only 2 edges running from one to other.    

Also there are two asymmetric situations; 

1. The sum of    must be equal to number of edges in both matrices. 

2. Each    must have only 2 edges running from one to other. 

4.2.1 Cross over Operation 

The binary OR operation is useful for the Crossover operation. In here we have two 

parent matrices as input argument and one single parent matrix as output argument. 

When we apply the OR operation are outputs apart from the 0 and 0 case give 1. 

4.2.2 Mutation Operation 

If the final answer does not satisfy our symmetric or asymmetric cases, it must be 

restored until the number of edges between any pair of vertices is 2. Otherwise, we 

either delete the largest edge or adding an appropriate edge by greedy algorithm to reach 

the required number.  We can apply greedy algorithm to construct optimal solution step 

by step. The main idea of the greedy algorithm is to construct the missing parts of the 

optimal solution and extend it by identifying the next part. 

Considering two tours  
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then cross over and mutation of these two tours will be as in steps. [8]. 

Step 1:  Apply OR operation for LUTM and RUTM separately in    and   . 

                       

                     

                   

                 

               

 

                       

                     

                   

                 

               

Step 2:  All 0 and 1 case give 1, then we get 
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Step 3:  Delete the largest edge or adding an appropriate edge. 

                       

                     

                   

                 

               

 

4.3 Steps of Algorithms  

The procedure of getting solution for GA is:  

1. [Start] Randomly complete the graph which is including N initial population. 

2. [Sufficiency] Calculate the fitness for each possibility, using selection 

mechanism.  

3. [New population] Create new population which is repeated in the steps below. 
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a. [Selection] Choose two populations which have highest fitnesses.  

b. [Crossover]  Create new population by applying crossover operation. 

c. [Mutation] Mutate the population according to any possibility.  

d. [Addition] Add the new one in the new population. 

4. [Changing] Change the old population for the new population. 

5. [Test] Find the best solution in new population if it exists, or return back to step 

2. 

 

Figure 4.5: Genetic Algorithm process diagram  

4.4 Example 

The following two examples will help us to understand the result that is concerned with 

the solution of genetic algorithm. 
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4.4.1 The Numerical Example for ATSP in Genetic Algorithm 

Consider the weighted matrix, 

                

             

             

             

              

             

 

The value of the assignment of the above problem is 

∑    ( (  ))

 

   

               

Initial population: 
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The fitness functions are  

 (  )  
  

  
      

 (  )  
  

  
      

 (  )  
  

  
      

 (  )  
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 (  )  
  

  
      

 (  )  
  

  
     

 (  )  
  

  
      

 (  )  
  

  
      

 (  )  
  

  
      

According to fitness criteria we are selecting the values which is close to 1 are          

and     
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Figure 4.6: Solution set for a given example 

The resultant tour will be,  

                                

[8]. 

4.4.2 The Numerical Example for STSP in Genetic Algorithm 

Consider the weighted matrix, 
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The value of the assignment of the above problem is 

∑    ( (  ))

 

   

               

Initial population: 
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The fitness functions are  

 (  )  
  

  
       

 (  )  
  

  
       

 (  )  
  

  
       

 (  )  
  

  
       

 (  )  
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 (  )  
  

  
       

 (  )  
  

  
       

 (  )  
  

  
       

 (  )  
  

  
       

 

According to fitness criteria we are selecting the values which is close to 1 are          

and     

The resultant tour will be,  
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Chapter 5  

CONCLUSION 

In this thesis we investigate solution methods of TSP. We concentrated on Genetic 

algorithm branch and bound algorithm.  

The nodes and CPU Time results for Genetic Algorithm are shown in Table 1.  

Table 1: The nodes and CPU Time results for Genetic Algorithm 

 CPU Time  CPU Time CPU Time CPU Time CPU Time AVG.CPU 

Time 

N=5 12,85 7,13 7,36 6,18 9,23 8,552 

N=10 8,06 15,4 9,91 12,66 5,96 10,398 

N=50 4,81 11,43 14,15 15,38 6,35 10,424 

N=60 5,68 19,3 14,8 12,06 18,26 14,02 

N=100 24,1 17,31 17,96 23,18 49,03 26,316 
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Figure 5.1: The graph of given data for Genetic Algorithm  

In Table 1 given above, we provide the computer outputs of the solution of TSP via 

Genetic Algorithm. We obtain the average speed per second (CPU Time) of the program 

over the nodes. As we can see in the table above, the CPU Time speed increases in 

proportion with the number of nodes.  

As we investigate the same problem by Branch and Bound Algorithm, we see that it 

takes longer time for the latter to produce the same output.   

Genetic algorithms appear to find good solutions for the traveling salesman problem, 

however it depends very much on the way the problem is encoded and on which 

crossover and mutation methods are used. It seems that the methods that use heuristic 

information or encoding the edges of the tour (such as the matrix representation and 

crossover) perform the best and give good indications for future work in this area. 
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Generally genetic algorithms have proved useful for solving the traveling salesman 

problem. As yet, genetic algorithms have not found a better solution to the traveling 

salesman problem than the one already known, but many of the known best solutions 

have also been found by some genetic algorithm method. 

The main problem with the genetic algorithms devised for the traveling salesman 

problem is that it is difficult to maintain structure from the parent chromosomes and still 

end up with a legal tour in the child chromosomes. Maybe a better crossover or mutation 

routine that retains structure from the parent chromosomes would give a better solution 

than the one already found for some traveling salesman problems. 

Branch and bound is a well known, all-purpose optimization strategy. It requires a 

search tree evaluation function and provide an upper bound cost as a reference for the 

pruning. It is an effective technique for solving constraint optimization problems 

(COP's). However, its search space expands very rapidly as the domain sizes of the 

problem variables grow. Branch-and-bound may also be a base of various heuristics. For 

example, one may wish to stop branching when the gap between the upper and lower 

bounds becomes smaller than a certain threshold. This is used when the solution is 

"good enough for practical purposes" and can greatly reduce the computations required. 

This type of solution is particularly applicable when the cost function used is noisy or is 

the result of statistical estimates and so is not known precisely but rather only known to 

lie within a range of values with a specific probability. 
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