Anti-Cycling Pivot Rules in Linear Optimization

Filiz Bilen

Submitted to the
Institute of Graduate Studies and Research
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
in
Applied Mathematics and Computer Science

Eastern Mediterranean University
February 2023
Gazimagusa, North Cyprus

Approval of the Institute of Graduate Studies and Research

Prof. Dr. Ali Hakan Ulusoy
Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of Doctor
of Philosophy in Applied Mathematics and Computer Science.

Prof. Dr. Nazim Mahmudov
Chair, Department of Mathematics

We certify that we have read this thesis and that in our opinion it is fully adequate
in scope and quality as a thesis for the degree of Doctor of Philosophy in Applied
Mathematics and Computer Science.

Prof. Dr. Tibor Illés Prof. Dr. Nazim Mahmudov
Co-Supervisor Supervisor

Examining Committee

1. Prof. Dr. Tibor Il1és

2. Prof. Dr. Nazim Mahmudov

3. Prof. Dr. Hayri Sever

4. Prof. Dr. Mehmet Resit Tolun

5. Prof. Dr. Sonu¢ Zorlu Ogurlu

6. Assoc. Prof. Dr. Arif Akkeles

7. Asst. Prof. Dr. Mehmet Ali Tut

ABSTRACT

Pivot algorithms for solving linear optimization problems traverse the set of basic
solutions or bases of the inequality system describing the model, searching for a
feasible solution, or an optimal feasible solution if the model also contains a cost
function to be minimized or maximized. Feasibility preserving pivot algorithms for
solving linear optimization problems, often called simplex-type methods, preserve
primal feasibility while trying to achieve dual feasibility or vice versa. Monotonic
Build Up algorithm of Anstreicher and Terlaky is a simplex-type algorithm with
interesting properties. We develop a pivot algorithm with similar properties for
solving the feasibility problem of linear optimization in particular. To guarantee
finiteness of our Monotonic Build Up simplex algorithm we incorporate s-monotone
index selection rules into the general framework of the algorithm which are to be
utilized whenever there is competition among the basic variables to leave the basis
and among the nonbasic variables to enter the basis. We also use a specialized
recursive procedure for handling strongly degenerate bases. We prove finiteness of
the algorithm and analyze its computational complexity under some assumptions. As
opposed to simplex-type methods criss-cross pivot algorithm preserves neither primal
nor dual feasibility. We use criss-cross algorithm together with s-monotone index
selection rules to solve feasibility problem of oriented matroids and and also prove its

finiteness.

Keywords: pivot algorithms, finiteness, oriented matroids, feasibility

il

0Y/

Dogrusal optimizasyon problemlerini ¢dozmek icin pivot algoritmalari, modeli
aciklayan esitsizlik sisteminin baz ¢oziimleri veya bazlar1 arasinda gezinerek uygun
bir ¢oziim ararlar. Model aym1 zamanda minimize veya maksimize edilmesi gereken
bir maliyet fonksiyonu iceriyorsa bu kez en uygun ¢oziimii ararlar. Genellikle
simpleks tipinde yontemler olarak adlandirilan dogrusal optimizasyon problemlerini
cozmek icin fizibiliteyi koruyan pivot algoritmalari, dual fizibilite elde etmeye
caligirken primal fizibiliteyi korur (primal simpleks) veya bunun tersi de gecerlidir
(dual simpleks). Anstreicher ve Terlaky’nin Monotonic Build Up (monoton insa)
algoritmast ilging 6zelliklere sahip simpleks tipi bir algoritmadir. Ozellikle dogrusal
optimizasyonun fizibilite problemini ¢6zmek icin benzer Ozelliklere sahip bir pivot
algoritmasi gelistirdik. Monoton insa simpleks algoritmamizin sonlulugunu garanti
etmek i¢in, temel degiskenler arasinda bazdan ayrilmak ve temel olmayan degiskenler
arasinda baza girmek icin rekabet oldugunda kullanilacak olan s-monoton dizin se¢im
kurallarin1 algoritmanin genel ¢ercevesine dahil ederek tanimladik. Ayrica, giiclii bir
sekilde dejenere olmus bazlari islemek i¢in 6zel bir 6zyinelemeli prosediir gelistirdik.
Algoritmanin sonlulugunu kanitladik ve hesaplama karmasikligini bazi1 varsayimlar
altinda analiz ettik. Simpleks tipi yontemlerin aksine, criss-cross pivot algoritmasi ne
primal ne de dual fizibiliteyi korur. Yonlendirilmis matroidlerin fizibilite problemini
cozmek ve sonlulugunu kanitlamak icin s-monoton indeks secim kurallar1 ile birlikte

criss-cross algoritmasini kullantyoruz.

Anahtar Kelimeler: pivot algoritmalari, sonluluk, yonlendirilmis matroidler, fizibilite

v

To Cemile and Havva

ACKNOWLEDGMENTS

This has been a long journey and I have many people to thank. First and foremost, my
supervisor Prof. Dr. Tibor Ill€s, thank you for your continuous support and not giving
up on me even at the times when I’ve given up on myself. I am ever so grateful to have

met you and have had the chance to learn linear optimization from you.

To all the great teachers I was fortunate to cross paths with at Gegitkale Primary School
and 20 Temmuz and Northeast High Schools, and at Eastern Mediterranean University,

thank you. My dear teachers Daoud S. Daoud and Peter Kas, thank you.

I would like to express my appreciation to my supervisor Prof. Dr. Nazim Mahmudov

for his support during my studies.

My grandmother Cemile, my mother Havva, my father Hiiseyin, my sister Yeliz and
my nieces Derin and Deniz; I am so grateful to have your support and love. My dear
Pervin and Mayra, thank you for your love, support, and all the sacrifice for trying to

keep quiet while I was working.

Last but not not least, I thank to my friends for their companionship, genuine support,

long talks during long walks and many creative motivational tactics.

During the last stages of writing my thesis I lost a very good friend. I would like to

dedicate this thesis in memory of Riza Tuncel who will always be greatly missed.

vi

TABLE OF CONTENTS

AB ST R ACT . il
O v
DEDICATION v
ACKNOWLEDGMENTS ... vi
LIST OF FIGURES ix
LIST OF ABBREVIATIONS X
I INTRODUCTION ...t 1
2 PRELIMINARIES ... e 5
2.1 Notation and Problems of Interest.................oooiiiiiiiiiiiiiiiiiiiii 5
2.2 The Geometry of Linear Optimization...........covveuuireiiiinieriiineeennnn.. 8
2.3 Basic Feasible SOIUtiONSoviiiiiiiii e 9
0] 513V 11
2.5 DUAIY et 18
2.6 The Simplex Method..........oo 20
2.7 Matroids and Oriented Matroidscoooiiiiiiiiiiiiiiiiiiiiiiiiaa 21

3 FEASIBILITY PROBLEM OF LINEAR OPTIMIZATION...........ccccovee... 26
3.1 Monotonic Build Up Simplex Pivot Rule for LFP 27
3.2 ComplexXity ANALYSIS....ouetiuiieeee ettt ettt 37
3.3 Handling Strong Degeneracyccoouuiiiiiiiiiiiiiiiiiiiiiinns 40
3.4 Anti-Cycling Index Selection Rules ..., 50
3.4.1 Finiteness Proof Based on s-monotone Rules............................ 53

3.5 Infeasibility Analysis for LEP 53
3.5.1 Irreducible Infeasible Subsets ..., 57

352 AnElastic Modelo 62

4 ORIENTED MATROID FEASIBILITY PROBLEMccccociiiiiiiiiiin 66

4.1 OM Feasibility Problemoiiiiiiiiiiiiiii i 67
4.1.1 A Criss-Cross Type Algorithm and Its Finiteness 69

4.1.2 A Constructive Proof of the Farkas Lemma.............................. 72

5 FURTHER RESEARCH SUGGESTIONSo 73
REFERENCES ... e 76

viii

LIST OF FIGURES

Figure 2.1: Tableau representation of vectors indexed by J with respect to the

ZENETANG SYSTEIML JGe + vt vvvtttttttttttttt ettt ettt ettt ettt ettt eeeeeeeeeeeeeeeeeens 12
Figure 2.2: The primal simplex algorithm i 21
Figure 3.1: Partition of @ basis.coeiiiiiiiiieet i i 29
Figure 3.2: A weakly degenerate pivot tableau. ... 31

Figure 3.3: A strongly degenerate tableau with no x, increasing pivot, where r = 1. 31
Figure 3.4: The MBU type simplex algorithm.....................oooiiit 33
Figure 3.5: Key tableaux of the algorithm.......................oiii, 41

Figure 3.6: The dual subprocedure starts with the solution of a subproblem of the form

Figure 3.7: The PrimalSubMBU starts with the solution of a subproblem of form

Primalc. ... o 46
Figure 3.8: A possible anti degeneracy procedure, DegProc. 47
Figure 3.9: A Primal-Dual-Primal sequence of subproblems. 48
Figure 3.10: An infeasible SyStem............uiiiiiiiiiiiiiiii i 55
Figure 3.11: The deletion filter ... 59
Figure 3.12: The additive method i 61
Figure 4.1: The tableau corresponding to the base given in example 4.1............ 69
Figure 4.2: Criss-cross algorithm with LIFO/LOFI Index Selection Rule 70

ix

BFS

FS

IIS

LFP

LIFO/LOFI

LOP

MAX-FS

MBU

MOSV

OM

OMFP

SIV

LIST OF ABBREVIATIONS

Basic Feaible Solution

Feasible Subsystem

Irreducibly Infeasible Subsystem
Linear Feasibility Problem

Last In First Out/Last Out First In
Linear Optimization Problem
Maximum Feasible Subsystem
Monotonic Build Up

Most Often Selected Variable
Oriented Matroid

Oriented Matroid Feasibility Problem

Smallest Indexed Variable

Chapter 1

INTRODUCTION

Linear optimization, which has its roots in the study of linear inequalities dating as far
back as 1826 to the work of Fourier, has been a prominent field of study right from its
inception in the mid nineteen forties. Its applicability to solve a wide range of
problems coming from many diverse fields has contributed to its status as one of the
mostly studied research subjects as well as one of the mostly utilized models to solve
real world problems. There are different types of methods for solving linear
optimization problems. The first practically useful method is the simplex method
developed by George Dantzig in 1947 [19, 20]. Simplex method belongs to the
general category of solution techniques called pivot methods. Many pivot methods
have been developed in the quest for finding more efficient solution algorithms for
solving the linear optimization problem. Some of these are variants of the simplex
method because they maintain primal (or dual) feasibility during the solution
procedure. Original simplex method and its variants seek for an optimal solution in
the set of feasible solutions (which is a convex polyhedron) by travelling the vertices
or extreme points of the feasible region. Other type of pivot methods called exterior
point methods walk through a path to the optimal vertex from the exterior of the
feasible region using infeasible bases. Criss-cross method combines the two
paradigms and searches for the optimal solution by visiting both feasible and
infeasible bases along the way. The total number of vertices of the feasible region can

be as large as (;’1) where n is the number of variables (dimension of the solution

space) and m is the number of constraints. Since this number can be huge, the brute
force approach of enumerating all the vertices and solving the optimization problem
by searching for an optimal vertex is not only inefficient but not a viable option for

even moderately sized problems.

Linear optimization was shown to belong to the class of polynomially solvable
problems in 1979 when ellipsoid method was formulated for solving linear
optimization problems by Khachian [31]. The ellipsoid method, possessing good
theoretical properties, is not a practically efficient method so it is not useful in

practice.

The second main category of solution methods widely used in practice, the interior
point methods, find an approximation to optimum solution by following a path in the
interior of the feasible region. Interior point methods, first introduced in 1984 by

Karmarkar [30] are not only practically efficient but also have polynomial complexity.

Linear optimization deals with the problem of finding the optimum (or optimal) value

of a linear function subject to linear equality or inequality constraints.

Fundamental to solving a linear optimization problem is finding a feasible solution or
showing that none exists. The problem of finding a feasible solution precedes that of
finding an optimal solution simply because if there is no feasible solution, then there

is no optimal solution.

The linear feasibility problem (LFP) differs from LOP in that it has no objective

function to be minimized or maximized. We give formal definitons of both problems

in the next chapter.

Although linear optimization belongs to the class of polynomially solvable problem:s,
we do not yet know whether there is a variant of simplex algorithm which has
polynomial complexity. This open problem and the strong belief that there exists a
variant of the simplex algorithm which is strongly polynomial are the main

motivations for studying pivot-based algorithms.

In the context of oriented matroids it is possible to study the problem of solving a
system of linear inequalities as a purely combinatorial one, thereby clearing off the
problem from the difficulties which arise when its arithmetic properties are
considered. Providing an abstraction based only on sign structures, oriented matroids
give a geometric language for pivot algorithms. In fact, most combinatorial pivot

rules are originally developed in the context of oriented matroid programming [46].

When it comes to solving practical linear optimization problems arising from real life
applications, variants of the simplex method and interior-point methods dominate the
field. In this thesis we study monotonic build up simplex method and criss-cross
method with different index selection rules which lead to finite algorithms for solving

the linear feasibility and the oriented matroid feasibility problems.

Chapter 3 is devoted to linear feasibility problem. We explain a simplex type
algorithm in which the number of feasible variables is monotonically built up and we
give a complexity analysis for this algorithm. Furthermore, we show that the
algorithm is finite by utilizing a recursive procedure when a sequence of strongly

degenerate bases is encountered. Finiteness is also established using anti-cycling

rules which are categorized as s-monotone. In this chapter, we also give a general
overview of methods for analyzing infeasibility by finding irreducible infeasible

subsystems of a given infeasible problem.

In Chapter 4 the linear feasibility problem is viewed in an abstract setting using
oriented matroids. A constructive proof of the Farkas lemma is given using pivot
algorithms which solve the oriented matroid feasibility problem in a finite number of
steps. We use s-monotone pivot rules with criss-cross algorithm for solving oriented
matroid feasibility problem and prove that criss-cross with some specific s-monotone

rules does not cycle.

Chapter 5 suggests some possible further research problems related to the ones

studied.

Chapter 2

PRELIMINARIES

In this chapter we present the necessary mathematical foundations required to follow
the thesis. These include basic definitions and theorems from linear algebra (section
2.4), the most basic definitions necessary for a general geometric understanding of
linear inequality systems and pivot based methods (section 2.2) and a short
introduction to matroids and oriented matroids (section 2.7) which will be necessary
to follow chapter 4. The rest of the chapter is devoted to the relevant fundamental

concepts in linear optimization.

2.1 Notation and Problems of Interest
First we fix the notation that we use throughout the thesis and then state the main

problems of interest.

Vectors are denoted by lowercase boldface letters and sets and matrices with uppercase
letters. All vectors are assumed to be column vectors. We indicate that a vector is a
row vector by writing it as the transpose of another (column) vector if it is not clear
from the context. e; denotes the unit vector whose jth component is 1, and all other

components are zeroes, and e denotes the vector of all ones.

Index sets are denoted by upper case caligraphic letters. Given that M is the row index
set and NV the column index set of a matrix A, for Z C M and J C N, A1 7 denotes
the submatrix of A induced by those rows and columns of A whose indices belong to

7 and J, respectively. A, 7 and A7 mean Ay, 7 and A7 respectively. Likewise, for a
5

vector x indexed by N = {1,...,n}, x7 denotes the subvector of x indexed by 7 for
any J C N. For a matrix A € R™"_ A; denotes the row of A indexed by i, and A jor

alternatively a; denote the column of A indexed by j.

The cardinality of a set X is denoted by |X|.

A linear optimization problem (LOP) is about finding the minimum or maximum value
of a linear objective function subject to a set of linear equations and inequalities, called
the constraints of the problem. A linear feasibility problem (LFP) is also a search
problem in which there is no explicit objective function and the goal is to find any
point satisfying all the constraints which are also linear. The LFP model is simply a

specialized formulation of the LOP model.

To be precise, a linear optimization problem (LOP) has the (standard) form

minimize ¢!x 2.1)
subjectto Ax=b, (2.2)
x>0, (2.3)

and, a linear feasibility problem (LFP) has the (standard) form

Ax = b, (2.4)

x>0, (2.5)

where A is an m X n real matrix, ¢,x € R"”, and b € R™.

Ax = b is a compact way of representing the m equality constraints

n
Zaijxj:bi, izl,...,m
J=1

in n variables x,x2,...,x,. In a general linear optimization problem, constraints can
be of < or > type, variables can be unbounded or they could each have its own bounds,
lower and/or upper. All the possible variations of a linear optimization problem can
be transformed into the standard form, therefore we base all our discussion on the
standard form problems. Furthermore, we can assume without loss of generality that
the constraint matrix A has full row rank m because the feasibility check of the linear
system and the removal of redundant equations can be done simultaneously with the

Gauss-Jordan elimination.

An algorithm which is designed to solve a linear optimization problem can be used to
solve a linear feasibility problem and vice versa. For example, given an optimization
problem we can solve it by solving successive feasibility problems by imposing
weaker constraints on the objective until feasibility is obtained. In this sense the two
problems are equivalent. Although we will be mainly focusing on algorithms
particularly designed for solving the linear feasibility problem, the most fundamental
parts of the theoretical background of linear optimization will be reviewed in this
chapter in order to have a more unified presentation. In the next section we give the

most relevant and insightful results regarding the geometry of linear optimization.

We also study the feasibility problem in an abstract combinatorial setting called
oriented matroids which is a certain system of sign vectors. Simply stated, the
oriented matroid feasibility problem (OMFP) is finding a feasible circuit or cocircuit
in an oriented matroid or its dual, respectively. For the necessary background, see
section 2.7 and for a finite algorithm for finding a feasible circuit or cocircuit, see

chapter 4.

2.2 The Geometry of Linear Optimization
Definition 2.1: Let a be a nonzero vector in R” and let b be a scalar.
a) The set H = {x € R" : al x = b} is called a hyperplane.

b) The set H< = {x € R" : a’ x < b} is called a halfspace.

Definition 2.2: A polyhedron P is a set that can be described in the form
P={xecR":Ax <b}

where A is an m X n real matrix and b is a vector in R™.

Hyperplanes and halfspaces are polyhedra determined by a single constraint.

The feasible set of any linear optimization problem can be described by inequality
constraints of the form Ax < b, and is therefore a polyhedron. In particular, a set of the

form F = {x € R" : Ax =b,x > 0} is also a polyhedron.

Given two points X,y € R” and 0 < A < 1, any point of the formz = Ax+ (1 — A1)y is

called a convex combination of x and y.

Definition 2.3: Let P be a polyhedron. A vector x € P is an extreme point or vertex
of P if we cannot find two vectors y,z € P, both different from x, and a scalar A € [0, 1],

such thatx = Ay + (1 — A1)z

By this definition, an extreme point of a polyhedron is a point that cannot be expressed

as a convex combination of two other points of the polyhedron.

When the simplex method is used, the search for optimal solutions to linear

optimization problems is restricted to the set of vertices of the feasible region.
Although the number of basic feasible solutions (algebraic equivalent of vertices, see
section 2.3) of a linear optimization problem, therefore, the number of vertices of the
corresponding polyhedron is finite, this number can be very large, ruling out a brute

force approach for solving general linear optimization problems.

An inequality type constraint is called active whenever it is satisfied at equality. For
example, a constraint in the form A;x < b; is active at the solution vector

X0 ifA,',X() = bl‘.

Two vertices X and y of a polyhedron are called adjacent if the line segment joining X
and ¥ is an edge of the polyhedron. Two adjacent vertices of the polyhedral feasible

region differ in at least one active constraint.

2.3 Basic Feasible Solutions

In this section we give an algebraic characterization of vertices of the feasible region
of a linear optimization problem. Although a geometric understanding is necessary
and might be more intuitive, an algebraic description is certainly necessary for

computational purposes.

Consider the polyhedron P = {x € R" : Ax = b,x > 0}.

Let Ap be an m X m nonsingular submatrix of the matrix A, that is, Ap is a basis for
the column space of A. By using the decompositions A = [Ap Ay| and X = [Xp Xy],
we can rewrite the equation Ax = b in the form Apxp +AxXy = b. Then, the (general)

solution of the system of linear equations is

xy=ucR"™ and xp :Al;l b—AE'ANu e R™.

9

The above general solution expresses the basic variables Xp in terms of the nonbasic
variables Xy. A particular solution with xy = 0 and xp = Aglb is called a basic
solution. If, furthermore, xp > 0 then it is called a basic feasible solution (a BFS). In
the decomposition of x = [xp Xy|, Xp are called the basic variables and xy the
nonbasic variables. Likewise, Ap are the basic columns and Ay are nonbasic columns
of A. Every different basis of A captures a unique basic solution in the way defined
above but the same basic solution could correspond to multiple bases. Speaking in
terms of vertices; a vertex of P lies at the intersection of at least n hyperplanes, that is,
at least n of the m + n equations and nonnegativity constraints defining P are active at
a vertex of P. If there exists exactly n active constraints at each vertex then the
problem is not degenerate. In other words, if every vertex of an n-polyhedron belongs
to exactly n edges then the associated linear optimization problem is non-degenerate.
Polyhedra corresponding to non-degenerate LOPs are called simple. The real problem
with degeneracy is the prospect of repeating the same sequence (this phenomenon is
called cycling) of bases infinitely many times when solving the problem with a pivot

based algorithm like the simplex method.

The following theorem states the condition for a LOP or LFP to have basic feasible

solutions.

Theorem 2.1: If the system of constraints AX = b,x > 0 has a feasible solution, then

it also has a basic feasible solution.

The simplex method and its variants basically search for a solution in the set of all
BFSs. In the next section we explain pivoting operation with some examples and state

related theorems.

10

2.4 Pivoting

Pivoting is the basic operation used in the algorithms studied in this thesis. Pivoting,
as we are familiar with from elimination methods such as Gauss-Jordan elimination
for solving systems of linear equations, is an operation which transforms a given linear
system into an equivalent one which is ideally easier to solve so that the transformation
takes us closer to solving the system. In the case of linear feasibility problems and
linear optimization problems, a pivot operation will move us from one basic solution

to another, or in geometric terms, from one vertex to a neighboring one.

We define pivoting in a general way using generating tableaux as it was done in [34].
In the cited paper, Klafszky and Terlaky use pivoting as a tool to give constructive

proofs for some fundamental theorems of linear algebra.

Let {aj,...,a,} C R be a set of arbitrary real vectors indexed by J = {1,...,n} and
let J¢ C J denote a spanning set (or a generating system) for this set of vectors. Any
vector a;,j € Jg = J \ Jg can be written as a linear combination of the vectors
indexed by Jg as
aj;= Z fija
i€cJs
We can record all the dependence data with respect to a given generating set into a

tableau T as shown in figure 2.1.

It is apparent that the pivot tableau describes how any vector a; for i € J can be
expressed as a linear combination of the vectors in Jg. If we restrict the tableau to
represent only vectors outside the generating system (Jg = J \ Jg) in terms of the

vectors in the generating system we obtain the short pivot tableau. In the following we

11

(ie Js)

Figure 2.1: Tableau representation of vectors indexed by ./ with respect to the
generating system Jg.

provide a simple example.

Example 2.1: Consider the following set of vectors {aj,...,as} C R* a; =
(1,0,0),a, = (0,1,0),a3 = (0,0,1),a4 = (5,2,—1),a5 = (4,0,1),a5 = (—2,1,3).
Jo = {1,2,3,4} is a generating system for this set of vectors. A possible
representation of a5 and ag with respect to 7 are as follows:

as = (4,0,1)=9(1,0,0)+2(0,1,0) — (5,2,—1) =9a, +2a, — a4 and
ag=(—2,1,3) = —-2(1,0,0) +1(0,1,0) +3(0,0,1) = —2a; +a, + 3a3.

Note that neither of these representations is unique. The pivot tableau corresponding
to Jg is obtained by collecting the coefficients of each vector’s representation in a

tabular form as described above.

a; A a3 a4 a5 4Qgq

aa/l 0 0O O 9 -2
a0 1 0 0 2 1

a3 /0 0 1 O O 3

If we exclude the first four columns from this tableau we get the short pivot tableau

corresponding to 7.

12

The main computational tools one uses when working with pivot tableaux are the
elementary row operations and pivot operation (which consists of a series of
elementary row operations). A pivot operation (or a pivot step) is specified by
selecting a pivot row r € J and a pivot column s € Jg, therefore, at the intersection
of these a pivot element 7,5, which should be nonzero. A pivot operation where row r
is chosen as the pivot row and column s is chosen as the pivot column updates the
pivot tableau as follows:
Pivot Operation If 7, # 0 then a,,r € J; can be exchanged with
a,,s € Jg = J \ Jg in the following way:

(1) ty=tj—" i#tsj#ricTy,jeTy

@) 1=y j#Fricdy

() f=-8 ieJy\{s)

where jé = Jc \ {r}U{s} is the index set of the new generating system and the scalars

I, .
are 1;; in the expressions.

See the following example for an illustration of a pivot step.

Example 2.2: Let us take the pivot tableau of the previous example:

a; A a3 a4 a5 4Qgq

aa/l 0 0O O 9 -2
a0 1 0 0 2 1

a3 /0 0 1 O O 3

13

A pivot operation can be performed on any nonzero entry of this tableau. As an
illustration, let us consider the element on row 3 (pivot row) and column 6 (pivot
column) as the pivot element. The first row operation is to multiply row 3 by % This
operation is performed to obtain a 1 in the pivot column and pivot row and gives us

the following modified tableau:

a; aAy a3 a4 a5 Qg

The next two row operations are performed to transform the nonzero entries that belong
to the pivot column and not the pivot row to zero. The tableau after the pivot operation

becomes:

a a a3 a4 a5 Qg

ar |l 0 %2 0 9 0
a0 I -4 0 2 0
ag [0 0 I 0 0 1
a, [0 0 0 1 -1 0

The pivot operation on (r,s) can be interpreted on the full pivot tableau as follows: the
pivot operation consists of a series of row operations to convert the pivot column into

a unit vector with entry 1 in the pivot row.

14

Definition 2.4: A set of vectors {aj,a,...,a;} C R™ is called linearly independent
if cja; 4+ crax + ... + crar = 0 has the unique solution ¢; = ¢y = ... = ¢ = 0, where

cie Rfori=1,... k.

Definition 2.5: The set of vectors {aj,a,...,a;} is called a basis of R” if it is a
minimal generating system for R™. (It can be shown that this is equivalent to k = m

and ay,...,a,, are linearly independent)

The relation between generating and independent systems can easily be illustrated

using pivoting. This is the essence of the proof of the Steinitz’s theorem.

Theorem 2.2: (Steinitz) If Jr C J is an independent and Jg C J is a generating

system, then | Jr| < |Jg|-

In the following we state the orthogonality theorem which is an important tool used in

finiteness proofs of pivot based algorithms. First, we give some necessary definitions.

Definition 2.6: The inner (or dot) product of two vectors a,b € R is a real number

defined as

m
aTb = Z a jb e
j=1
Definition 2.7: Two vectors a,b € R™ are called orthogonal if a’b = 0.

Let us call a row of the full pivot tableau corresponding to i € Jp as t(). That is,

15

(

t, ifke Jp
=1, ifk=i

0, ifkeJp, k#i.

\

The vector t; corresponding to a nonbasic index j € Jp is an extension of a column of

the pivot tableau.

¢

tj, ifkeJs
ti=9-1, ifk=j

0, ifkeJp, k#].

\

Theorem 2.3: (Orthogonality Theorem) Let B and B’ be two arbitrary bases of the

finite set of vectors {a;|j € J} C R". Then
t(i)tj =0 foric jB/ and j € j;}u

where 7, fy and 7, ' are the index sets of B’ and BN, respectively.

Theorem 2.4: (Matrix Rank) Let A € R™*" be an arbitrary matrix, where columns
and rows of A are denoted by a;, j=1,...,n and a(i),i =1,...,m, respectively. Then

rank(ay,...,a,) =rank(a(l) ... al").

The two theorems that follow state early results related with the solvability of linear

systems.

Theorem 2.5: (Rouché-Capelli Lemma) Ax = b is solvable if and only if rank(A) =

rank([A,b]).

16

Theorem 2.6: (Rouché-Kronecker-Capelli) Let a matrix A € R™*" and b € R™ be
given. Then, exactly one of the following alternatives holds:

a) Ax = b has a solution, or

b)y’A =0, y'b = 1 has a solution.

Lemma 2.1: (Farkas) Let a matrix A € R”*" and b € R™ be given. Then, exactly one
of the following alternatives holds:

a) the system Ax = b,x > 0 has a solution, or

b) the system y’ A < 0,y b = 1 has a solution.

Proof. (first part) Suppose on the contrary that both systems have a solution and let
the solution pair be (x,y). Then we have y’ Ax = y”b = 1 which cannot hold since
yTASOandXZ(). O
To show that at least one of the alternative systems always has a solution, we define
an algorithm that terminates only if it solves one of the problems. Showing that this

algorithm is finite completes the proof.

Theorem 2.7: (Farkas-Minty) Let the vectors aj,as,...,a,,b € R” be given. Then

from the following two tableaux, where B’ and B” are two different bases of

{aj,az,...,a,,b,e;,ey,...,e;,}, exactly one can occur.
7 7/
T b Ty
Tg
0
Ty 0
0

17

j !/ fBH

j B!

1, B 0

2.5 Duality

To every linear optimization problem corresponds another linear optimization
problem called its dual. Duality captures the symmetry inherent in a linear
optimization problem and provides important insights about its solvability. Let us

consider a linear optimization problem in standard form and call it the primal problem

(P-LOP).
minimize ¢’ x (2.6)
subjectto Ax=b, 2.7)
x>0 (2.8)

The solution vector x which should be nonnegative and should be transformed to b by
the matrix A (feasibility requirements), is expected to be a minimizer of ¢’x
(optimality requirement). The dual problem is written with the aim of finding the best

Tx and is itself a

lower bound for the primal problem’s objective function value ¢
linear optimization problem. The dual problem for (2.6) - (2.8) can be constructed as
follows: Multiplying both sides of primal constraints Ax = b on the left by y’, we
have y’ Ax = y’b. Since we would like to have a lower bound for ¢’ x, imposing the
constraints y’A < ¢ and using the nonnegativity constraints x > 0 of the primal

problem, we obtain y’ Ax = y’b < ¢’x. Finally, y”b is maximized to find as good a

lower bound for ¢’ x as possible. The dual problem constructed in this way (D-LOP)

18

has the following precise form:
maximize y’b (2.9)
subjectto y'A<c (2.10)

In general, the dual of a minimization problem is a maximization problem and vice
versa. m primal constraints (2.7) are each associated with one dual variable and each

of n dual constraints (2.10) with one primal variable.

There is a well developed body of theory around the concept of duality and the
symmetric structure of the primal-dual pairs of problems are well exploited in the
process of solving these problems, e.g., in developing pivot-based algorithms. Now
we present important duality results. The sets of primal feasible and dual feasible

solutions are,

P={x|Ax=Db, x>0}

T
D={y|y A<c},
and the sets of respective optimal solutions are,

P ={x* €P|cTX* <el'x Vx e P}

D'={y*eD|y""b>y"b VyeD},

Theorem 2.8: (Weak Duality Theorem) For every feasible solution x € P and every

feasible solution y € D the inequality ¢/ x > b’y holds.

Proof of the weak duality theorem is direct by construction of the dual problem.

Theorem 2.9: (Strong Duality Theorem) For any primal-dual pair of linear

19

optimization problems at least one of the following holds:

1. P=0,
2. D=0,
3. if P# 0 and D # 0, then P* # () and D* # () and for any pair of optimal solutions

x* € P* and y* € D*, ¢'x* = y*Th.

The main theorem of linear optimization duality, relating a primal problem to its dual
can be seen as a statement about sign patterns of vectors in complementary subspaces
of R”. This observation, first made by R. T. Rockafellar in the late sixties, led to the
introduction of certain systems of sign vectors, called oriented matroids. Indeed, when
oriented matroids came into being in the early seventies, one of the main issues was to

study the fundamental principles underlying duality in this abstract setting [3].

2.6 The Simplex Method

Starting from its introduction by Dantzig in 1947, the simplex method has always
been one of the main solution methods for linear optimization problems. From a
theoretical point of view the simplex method is not really promising because its worst
case computational complexity is shown to be exponential in the dimensions of the
problem. The reasons of practical effectiveness of the simplex method despite its
theoretical inefficiency has been studied as a research problem in its own right. The
fact that the set of problems on which the simplex method executes exponentially
many steps are not representative of the real-life problems usually encountered in
practice and that these pathological problems are rather manufactured for the sole
purpose of disproving polynomiality of a simplex pivot rule [see, e.g. Klee and Minty,
1972] provides a clue but does not prove anything about practical viability. For that,
extensive studies have been performed which show that the average case complexity

of the simplex method is a linear function of m [11]. These studies back up the

20

practical efficiency of the method.

With so many variants developed since its inception, "simplex method" is now used
as an umbrella term that covers pivoting methods which behave in simplex-like ways.
More precisely, a pivot method is called a simplex method if it preserves the (primal
or dual) feasibility of basic solutions. Here, we present the primal simplex method for

solving a primal linear optimization problem in standard form (P-LOP).

Primal simplex algorithm

Input data: Pivot tableau 7p corresponding to a primal feasible basis Ap
Begin
I :={ieIy|é¢ <0}
While (Z_ # 0) do
Let g € Z_ be arbitrary; (entering variable)
If (t, <0) then STOP: D = 0 (dual infeasibility)
Else
Let 6 := min{% :ieZp and t;; > 0}; (ratio test)
Let p € Zp be arbitrary such that ;—’; = 0; (leaving variable)
Pivoting: Zp :=ZpU{q}\{p};
Determine the new index set Z_ corresponding to the updated basis;
Optimal solution is found.
End

Figure 2.2: The primal simplex algorithm

The primal simplex method terminates with an optimal solution or a certificate of dual

infeasibility (primal unboundedness) if it does not cycle.

2.7 Matroids and Oriented Matroids

In this section we give some basic definitions and examples necessary to understand

the treatment of linear feasibility problem in oriented matroids in chapter 4. Some

21

familiarity with matroids is necessary in order to understand oriented matroids.

Therefore we give basic examples for both concepts.

Let E = {ey,...,e,} be a finite set and P(E) denote the power set of E. Furthermore,

letZ C P(E).

Definition 2.8: The sets I € 7 are called independent sets and M = (E,Z) is a matroid
if the following axioms are satisfied:

1.0eXl.

2.If€Zand L, C I, thenl, € 1.

3.1f 1,1, € 7 and |I}| > |I»], then there exists e € I} \ I, such that , U {e} € 7.

The set E is called the ground set of the matroid M.

A subset of E that is not in Z is called dependent when Z is a collection of independent
sets. The family of dependent sets is denoted by D. We next introduce the concept of

a circuit.

Definition 2.9: Let M = (E,7Z) be a matroid. The set C C E is called a circuit, if
C ¢ Z,but I € 7 holds for all I C C. That is, a minimal (with respect to set inclusion)

dependent set in a matroid M is called a circuit of M.

Example 2.3: Let £ = {1,2,3,4,5,6} and
IT={XCE:|X|<4}\{{1,2,3,4},{1,2,5,6},{3,4,5,6}}. Thus the set of dependent
sets for this matroid is

D = {{1,2,3,4},{1,2,5,6},{3,4,5,6} } U{X C E : |X| > 5}. Then the circuits are

22

{1,2,3,4},{3,4,5,6}, and {1,2,5,6}.

Let us denote a set of circuits defined on E by C. The following is an alternative

definition of a matroid based on circuits.

Definition 2.10: The pair M = (E,C) is a matroid if the following axioms are satisfied:
1. For all Cy,C; € C and C; C G5, C = C;, follows.
2. For all C1,C;, € C and ¢; € C1\Ca, ej € C; NGy, there exists C3 € C, such that

e; € C3 C (CIUC)\{e;}.

The independent sets of the matroid M = (E,C) are those sets / C E which do not
contain any circuits as subsets. A maximal (with respect to set inclusion) independent

set in M is called a basis of M. There is a third way to define a matroid using bases.

Definition 2.11: The pair M = (E, B) is called a matroid and the sets B € 3 are called
bases of M if the following axioms are satisfied:
1. For all By, B, € B the cardinality of B; and that of B, are equal.

2. For all By,B; € B and ¢; € By there exists e; € B, such that (By\{e;})U{e;} € B.

Example 2.4: It is easy to check that
B={ {1235},{123,6},{1,2,45},{1,2,4,6}, {1,3,4,5}, {1,3,4,6},

{1,3,5,6}, {1,4,5,6}, {2,3,4,5}, {2,3,4,6}, {2,3,5,6}, {2,4,5,6} }
is the set of bases of the matroid defined in the previous example.

It is known that all given definitions of a matroid are equivalent [48].

It is easy to prove that M* = (E,B*) is a matroid, where

23

B*={B*:B*=E\B forall B¢ B}.

The matroid M* = (E, B*) is called the dual of M = (E,B). The circuits of the dual
matroid are called cocircuits. The cardinality of any B € B is called the rank of the

matroid.

A signed setin E is apair X = (X7, X7), with XT CE,. X~ CE,and X" NX~ =0.
A pair X = (XT,X7) is called a signed set, if X*, X~ CE and XTNX~ =0. We
use the following notation X = XTUX ™ and —X = ((-X)*,(—-X)7) = (X, XT).
So, (X*,X ™) is a partition of X into ts positive and negative elements. Furthermore,
Y = £X means that either Y =X or Y = —X. If O = {Xj, ..., X,,} denotes a family of
signed sets on E, then O = {Xj, ..., X, } denotes the corresponding family of not signed
sets on E. Bland studied the simplex method in the context of oriented matroids in [8].
We now introduce the concept of oriented matroids based on this paper and also the
works by Folkman and Lawrence [23] and Bland and Las Vergnas [10]. Informally,
an oriented matroid is a matroid where in addition every basis is equipped with an

orientation.

Definition 2.12: Let O and O* be families of signed sets defined on E. The pairs
M = (E,O) and M* = (E,O") are called dual pairs of oriented matroids if the
following four conditions are satisfied:

1. O and O* are collections of circuits and cocircuits of a dual pair of matroids

M = (E,O0) and M* = (E,O).

2.X€0O=—-XecOandY € 0" = —Y € O*".

3., € 0and X1 =X = X1 =+X5, 1,)b €0 andV; =Y, = Y| = £0.

4.X €0,Y € 0*and X NY # 0 imply

24

XTNYHUuX NY)#0and (XTNY)UX NYT) #0.

Condition 4 is called orthogonality condition.

Example 2.5: Let us introduce an oriented matroid M = (E, O) with the sets of signed

circuits and signed cocircuits as follows
O ={£(+,+,—,—,0,0), £(+,+,0,0,—,—), £(0,0, +,+,—,—)}
and
o0* ={+(0,0,0,0,+,—), +£(0,0,+,—,0,0), +(0,4,0,+,0,+), £(0,+,0,+,+,0),
+(0,+,+,0,0,+), £(0,+,+,0,+,0), £(+,0,0,+,0,+), £(+,0,0,+,+,0),

:i: (+7O7+70707 +)7 :i:(+?07+707+70)7 :i:(+7 _70?0707 0) }'

The underlying matroid of M = (E, O) is the matroid of Examples 2.3 and 2.4. Here a

+(—) sign in ith position of a circuit X (cocircuit Y) indicates that

e €X+(€i €EX) (ei € Y+(€l' €Y)).

For further reading on matroids and oriented matroids we suggest the books by Gordon

and McNulty [29] and Bjorner et. al. [7].

25

Chapter 3

FEASIBILITY PROBLEM OF LINEAR OPTIMIZATION

Feasibility problem of linear optimization or the linear feasibility problem is
concerned with finding any feasible solution given a set of linear inequalities. Linear
optimization and linear feasibility problems can be regarded as essentially the same
problems because they can be reduced to one another [13, 15, 37]. So, a feasibility
problem is not particularly easier than an optimization problem, and developing
efficient methods for solving linear feasibility problems is as essential as developing
methods for solving linear optimization problems. There are three main aims of this
chapter. Firstly, we present a monotone scheme pivot algorithm for solving the linear
feasibility problem (LFP) and prove its finiteness. The algorithm uses a similar ratio
rule to Monotonic Build Up pivot rule developed by Anstreicher and Terlaky [1] in
determining the variable that will enter the basis. Selecting pivot positions under the
guidance of this ratio rule guarantees the monotonic increase of the feasibility status
of the problem at each step. By monotonic increase of the feasibility status we mean
either an increase in the number of (primal) feasible variables or an increase in the

value of the driving variable with no change in the set of (primal) feasible variables.

Secondly, we analyze the presented algorithm and compute an upper bound for its
computational complexity under the assumption that the problem is either
nondegenerate or if degenerate bases occur during the solution process they are of the
weak degenerate type. In other words, we assume that the bases visited by the

algorithm are not strongly degenerate. Strong degeneracy, if it happens, calls for extra

26

measures be taken so that cycling will be prevented.

A method developed for solving the feasibility problem is expected, naturally, to
return a point of the feasibility set or report that the problem is infeasible if the
feasibility set turns out to be empty. If what we are trying to solve is a real-world
problem by modeling it as a linear feasibility problem, merely reporting an
infeasibility status is often not satisfactory because there remains a real problem to be
solved behind the model. This point brings us to the third goal of the current chapter,

which is investigating the cause of infeasibility.

The main results in this chapter are based on the published papers [5] and [6].

Linear feasibility problem in standard form is
Ax=b, x>0, 3.1

where A € R™*" and x, b, and 0 are vectors of conforming sizes. We denote the index

set of all variables by Z.

3.1 Monotonic Build Up Simplex Pivot Rule for LFP

Anstreicher and Terlaky in [1] define a pivot based algorithm they call Monotonic
Build Up (MBU) Simplex algorithm and study its properties. MBU Simplex algorithm
solves a linear programming problem starting with a primal feasible basis and builds up
the feasibility of the dual variables monotonically while preserving primal feasibility.
The algorithm may visit basic solutions which are outside the feasible region, that
is, basic solutions which are neither primal nor dual feasible, but always returns to a
primal feasible basis with an increased number of dual feasible variables. In this way,

an optimal solution (if one exists), given by a basis which is both primal and dual

27

feasible, is achieved.

In this section we present a version of MBU to solve the linear feasibility problem
3.1 and analyze the resulting algorithm under a weak degeneracy assumption. The
proposed algorithm possesses similar properties with Anstreicher and Terlaky’s MBU
in the way that it has the number of primal feasible variables increasing monotonically

in the process due to a similar pivot selection rule.

For a given basis B, the set of basic variables Zp can be partitioned based on their

values as follows:
Ip =T UTYu Iy,
where

Ty ={icTp:% >0}, Ip={icIp: % =0} and Iy = {i € Tp: % < 0}.

A specific variable x; is feasible if i € Z; where Z; = Z,; UZ}. From the set of basic
feasible variables corresponding to a given basis, let us call the ones which are equal

to zero as degenerate basic variables.

A sample basic tableau according to the above partition is shown in Figure 3.1, where
each symbol (—,0,+) represents either a right hand side value of the appropriate sign

or zero, or, a possible pivot position of the appropriate sign.

In most pivot algorithms, pivots are made only on positive elements in primal feasible
rows (like the simplex algorithm), and only on negative elements in primal infeasible

rows (like the dual simplex algorithm), or the two strategies are combined (like the

28

i - z }IB
j : }Ig
k + : }I}

Figure 3.1: Partition of a basis.

criss-cross method). To conceptualize this, Fukuda and Terlaky [27, 28] have defined
admissible pivot operations. Our algorithm carries out more general pivot operations
and for this reason we will define generalized admissible pivots. A pivot on a positive
value in the row of a strictly feasible (positive) variable can be viewed as the primal
feasibility equivalent of the dual side admissible pivots. While handling degeneracy,
our algorithm makes pivots on both negative and positive values in degenerate rows and
hence the following definition of generalized admissible pivots contains those cases as

well.

Definition 3.1: For a given basis B and pivot tableau 7', a pivot element #;; is called a

generalized admissible pivot if

1. iEIg andt,-j<0,0r
2. iEZg9 and 7;; > 0, or

3. iGIg andt,-j#O.

Before formulating our algorithm which uses generalized admissible pivots, we need

to refine the concept of degeneracy. For s € Zy let us introduce the set

Ky={ieIp:t;>0}.

29

The set Ky isolates those degenerate basic variables whose tableau entries for some

specific column s are positive.

Definition 3.2: A basis B is called degenerate if the corresponding basic solution
X7, = B~ 'b has at least one zero component, and it is called non-degenerate

otherwise.

The degeneracy concept defined above is often referred as primal degeneracy and
analogously primal non-degeneracy. The phenomenon of degeneracy is a local
property depending on the actual basis. A basis is degenerate if and only if the right
hand side vector is the linear combination of less number of columns of the basis

matrix than its dimension. We distinguish between two kinds of degeneracies.

Definition 3.3: A degenerate basis B is called weakly degenerate with respect to index

s € Iy if Ky = 0, and strongly degenerate with respect to index s if Ky # 0.

Let us assume that for a given basis B, we have chosen the index s as a column of a
generalized admissible pivot in a non-degenerate row. Observe that such a pivot does
not make any feasible variable infeasible if and only if 'y = 0, i.e., if and only if the
basis B is weakly degenerate with respect to index s. Such a weakly degenerate tableau

is shown in Figure 3.2.

Definition 3.4: Let a basis B and an index r € Z; be given. We call a pivot operation
on t;; an x, increasing pivot if
1. the pivot made on ¢;; is a generalized admissible pivot,

2. Iy C I, and

30

Figure 3.2: A weakly degenerate pivot tableau.

3. X, > X, holds,

where B' = BU {j} — {i} denotes the new basis, and % denotes the new basic solution.

Our aim is to formulate an algorithm based on x, increasing pivots. To the best of our
knowledge, the only such pivot algorithm for feasibility (or general linear
programming) problems known from the literature is the dual version of the algorithm

of Anstreicher and Terlaky [1] (which starts from a dual feasible basic solution).

Unfortunately, there are basic tableaux where no x, increasing pivot exists, as shown
by the example of Figure 3.3. This problem has a feasible solution of x; =x; =0,x3 =

x4 = 1, but has no increasing pivot for the only infeasible row.

xp | —1 0] —1
X2 1 -1 0

Figure 3.3: A strongly degenerate tableau with no x, increasing pivot, where r = 1.

This pathological example shows that one may expect that there is no such algorithm
that performs only x, increasing pivots since the only possible non-degenerate pivot

would make the variable x, infeasible.

31

Our algorithm follows an intuitive path in order to achieve monotonicity. Starting with
a given or constructed basic solution, the algorithm first chooses an infeasible variable
x, and designates it as the driving variable. The aim of the subsequent iterations is
to reduce the infeasibility of the driving variable by means of pivot operations we
aptly call x, increasing pivots, and to eventually change the status of x, from infeasible
to feasible. We will show that this can always be done if the pivot tableau is non-
degenerate or weakly degenerate with respect to the pivot column. The algorithm then
selects another infeasible variable as the driving variable and applies a sequence of
pivot operations until its status becomes feasible. The procedure continues until there

is no more infeasible variable or the problem is detected to be infeasible.

The pseudocode of our algorithm is given in Figure 3.4. Note that the algorithm
outputs a feasible solution or a message that no feasible solution exists, that is, the
corresponding polyhedron is empty. The index set 7 used in the algorithm represents
the set of basic variables. Therefore, [/ contains the m row indices - by associating
the basic variable appearing in each constraint to the corresponding row (there is
precisely one basic variable in every constraint)- or, in other words, indices of the m

basic variables.

In case of strongly degenerate tableaux, the algorithm uses a recursive anti-degeneracy
method we call DegProc. Naturally, degeneracy could be handled by using classical
approaches known from the literature (like minimal index rule, lexicographic ordering,
etc.). Our anti-degeneracy method is different from those known in the literature and
will ensure finiteness too. Handling strong degeneracy using DegProc is explained in

Section 3.3.

32

MBU type simplex algorithm for feasibility problems

Input data: A € R™*" b € R, basis B;
Begin
T:=B'Ab:=B"'p, I, :={ieJ|b <0}
While (Z,; # 0) do
Let r € Z; be arbitrary (driving variable), rDone := false
While (rDone = false) do
J={jeIn|tj<0}
If (J~ =0) then
no feasible solution exists, Return
Endif
Lets € J,~ be arbitrary, K, :={i € Z) | ti; > 0}
If (K5 # 0) then
(T,1) = DegProc(T,ZY,r)
If (I € Zy) then
s:=1
else
no feasible solution exists, Return
Endif
Endif
6= 6y i=min {2 | ke T 1, > 0}
If (6; < 6,) then
pivot on t,5, rDone :=true
else
q:= argmin{i—’; |k €Ly trs > ()} ., pivot on #,
Endif
Endwhile
1y :={i| b; < 0}
Endwhile
Return: X is a feasible solution
End

Figure 3.4: The MBU type simplex algorithm

In order to find an x, increasing pivot, a ratio test is performed in the selected column.

The result of this test determines whether the driving variable can be made feasible in

one pivot step or more than one x, increasing pivot steps will be necessary.

Two ratios which take part in the test are defined by

33

b b
0 := t_r’ and 0, ::min{t—k |k € Iy trs >0}.

rs ks

From their definition, it is easy to see that 8; > 0 and 6, > 0. Furthermore, if the basis
is non-degenerate or weakly degenerate, then 6, > 0 holds. We use the convention that
the minimum taken over the empty set is infinity. The aim of the inner cycle of the

algorithm is to make the driving variable feasible.

We prove that if the given basis B is non-degenerate or weakly degenerate, then the
algorithm makes only x, increasing pivots. First we investigate the case when the

driving variable leaves the basis.

Proposition 3.1: For a given basis B, let r € Z and g € Z, t,5 > 0. Suppose that

b b,
q:62291:>07
Igs Irs

where b, < 0, t,s < 0, 13,] > 0 and 745 > 0. In this case a pivot is carried out on 7,5. Let

us denote the new basis by B’, then
Tyu{s} C Iy
holds, thus
[Zs| > |25

Note that 6, > 0 also implies g € Z .

Proof. When t,, is the pivot position, the variable x, leaves the basis, while variable
X, enters it. Let us denote the new basic solution (thus the new right hand side of the

pivot tableau) by b’. We distinguish between the following cases.

a) For the index s the right hand side becomes b}, = ;7; = 01 > 0, making the driving

34

variable x,. = 0 feasible.
b) Fori €y, i# s we have that b = b; — s If 1;; < 0 then by using b; > 0, b, < 0

and #,;, < 0 we have b; > 0, because we add a nonnegative number to an already

b,

positive b;. Otherwise if #;; > 0 then by bl = ti <f—’ -1

) using the condition

92291:%>0wegetthatb§20.

~

1§

c) Forie Ig we have b; = 0, so b; = —%, and by 6, > 0 either Z9=0ort <0,

thus b} = —lisbr >,

lrs

As we have seen, no feasible basic variable turns infeasible, while the infeasible driving
variable x, leaves the basis, thus becoming feasible, and the entering variable x; enters

at a feasible level, as well. It follows that ‘Zg‘ > |I§9|. L]

In the next proposition we investigate the case when a pivot is made outside the row
of the driving variable. If the basis is non-degenerate or weakly degenerate for the

entering nonbasic variable, the pivot made by the algorithm is still x, increasing.

Proposition 3.2: In a given iteration of the algorithm, for the actual basis B let

r€ Iy and q € I, t4s > 0. Suppose that

b b
0<2=6<6 =",

Tys rs

where b, < 0, 1,4 < 0, l_)q > 0 and 745 > 0. In this case a pivot is carried out on 74. Let
us denote the new basis by B". Then Z\{q} C Z\{s} and 0 > b/ > b,. Furthermore,

if 6, > 0, then 0 > b’. > b, holds.

Proof. Using the notations introduced in the proof of Proposition 3.1, one can see
that due to the ratio test, for any index i € Z we have i € Iﬁ if i # g, as proved in

Proposition 3.1.

35

Furthermore, b}, = f—" >(0,s0s € Iﬁ thus
qs

Ty'\{a} € Ty\{s}

proving that the already feasible variables remain feasible. For the index of the

trsbg

leading variable b). = b, — , where —t";ﬂ > 0, using that 7, <0, 75 > 0 and
qs

Iygs

by > 0. By the condition 8, < 6; we have 0 > % > b, thus

trqu

0> b, =b,— > b,.

fys
If the basis is non-degenerate, or weakly degenerate, then 6, > 0 holds by definition,

b b
SO l—q > 0, thus —trst—q > (0, and
qs qs

. b, -
0>b;.:br_trs_q>br7
tqs

completing the proof. [

Geometrically, Proposition 3.2 tells us that the new solution is closer to the

nonnegativity constraint of the driving variable.
Summarizing Propositions 3.1 and 3.2 we obtain the following result.

Corollary 3.1: If the MBU type simplex algorithm performs only non-degenerate or
weakly degenerate pivots, then the algorithm makes only x, increasing pivots, and thus
it is finite.

Proof. The number of different bases is finite; therefore, it suffices to prove that the
algorithm is not cycling, or in other words, that a basis may not occur twice. Since
we assumed that the algorithm does not visit strongly degenerate bases, it follows
from Propositions 3.1 and 3.2 that at each iteration, the algorithm makes x, increasing

pivots. In each step a new variable becomes feasible, or the value of the driving variable

36

increases, thus the same basis may not return. O]

Propositions 3.1 and 3.2 present important results for our MBU type simplex
algorithm. Anstreicher and Terlaky in their paper [1] have proved similar results for

their primal algorithm for linear programming problems.

In the next section we give a lower bound on the increment of the value of the driving
variable, and consequently we provide an upper bound on the iteration number of the
algorithm. Most classical and primal MBU simplex algorithms can be analyzed in a

similar way to what is presented in the next section.

3.2 Complexity Analysis
In this section we first assume that our algorithm visits only non-degenerate or weakly

degenerate tableaux. Degeneracy is handled in Section 3.3.

By the definition of the pivot tableau and the basic solution, for the s column of the
tableau we have t; = B~ 'a, and b = B~ !b; thus the vectors t; and b can be considered
as the unique solutions of the linear equations Bu = a; and Bv = b. For any index
i € Ip, Cramer’s rule yields

- det(B,-s) 7 det(B,-)
® " det(B)

where matrix B;; € R™*™ is the modification of the regular basic matrix B such that
its i"* column is replaced by vector ay, and similarly matrix B; is obtained from B by
replacing its i column by vector b. For an x, increasing pivot that does not make the

driving variable feasible, we have

- det(By,) det(By)

b — trsbg _ det(Br) deB) ded) _ det(By) det(By)det(By)
Tty det(B) dgt(qu) det(B) det(By)det(B)’
et(B)
where

37

det(B,s) det(B,)
~ det(B;) det(B)

holds by the fact that the basis is not strongly degenerate, as seen in Proposition 3.2.

Let

det(Bys) det(B,) B is a regular submatrix of A, and

B det(qu)det(B)) det(Bys)
det(B)

Ay :=min

det(B,)
? det(B)

det(Byy)
> det(B)

<0 >0 >0

be the minimal increase of the driving variable’s value. Assuming that in all pivot
transformations of the tableau 6, > 0 holds, we have that A4 > 0 is a finite number

and

tsbg det(B,) det(Bys)det(By)
tys det(B) det(Byy)det(B)

det(B,)

b.=b, —
e det(B)

> +Ax

thus an x, increasing pivot either makes the leading variable feasible, or increases its
value by at least Ay. We now bound the maximum absolute value that an infeasible

variable can take during the algorithm. Let

det(B,) sen(det(B,)) = —sgn(det(B)).

B € R™™ is a regular submatrix of A

be the maximal possible RHS value determined by the help of Cramer’s rule. If there
is any basis for which there is a negative right hand side value, then the number A«

is positive and finite. Let K € Z be such that K = [AAL:"-‘ , thus K € N.

We are now ready to bound the number of pivots necessary to make the driving variable

feasible.

Proposition 3.3: Assume that the algorithm visits only non-degenerate or weakly
degenerate pivot tableaux. Let r € Z be the index of the driving variable. There can

be at most K pivot operations before the driving variable becomes feasible.

Proof. By the definition, the value of the driving variable cannot be smaller than

38

—Amax. The value of the driving variable increases by at least A4 in every iteration;
thus, there cannot be more than K iterations before the next x, increasing pivot makes

the driving variable feasible. [
We are now ready to prove the bound on the complexity of the algorithm.

Theorem 3.1: Consider the feasibility problem (3.1). Assume that the MBU type
pivot algorithm visits only non-degenerate or weakly degenerate pivot tableaux in

solving (3.1). Then the algorithm is finite, and there can be at most mK pivots.

Proof. By Proposition 3.3, there can be at most K pivot operations before the
algorithm reaches feasibility in the row of the driving variable or proves infeasibility.
The number of driving variables during the algorithm is bounded by the number of
rows, because by Propositions 3.1 and 3.2 the number of infeasible variables
decreases monotonically; thus, the algorithm may not cycle, and there can be at most

mK pivots before solving the problem, or proving that it is infeasible. [

We have proved under the non-degeneracy assumption that the algorithm is finite, and
we can bound the required number of pivot operations. This upper bound is generally

not tight.

By Corollary 3.1, none of the bases can be visited twice by our MBU type algorithm.

Therefore, the number of pivot iterations is at most

o)}

Furthermore, if we assume that A € Z"*" and b € Z™, then it is easy to show that the

following inequality

39

< |det(B*)?

o [Bma] _ [det(B,) det(By,) det(8")
B { Ag W | det(B) det(B,,)det(B))

holds, where B* € Z™*™ is such a submatrix of the matrix [Ab] which has, in absolute
value, maximal determinant. Denoting by L = L(A,b), the classical bit length
description of the matrix A and vector b, and applying the well known Hadamard

inequality, we can derive that

A
K= [ma"w < |det(B*)|? < 23L.
AV

This shows once more that we do not know a good (polynomial size) bound for the
constant K for an arbitrary feasibility problem. However, the proof of the existence of
such a constant K is new. Although the ratio of Ay to A4 can be very large in general,
the constructed bound is an incentive to search for bounds for classes of problems for

which this ratio is small.

3.3 Handling Strong Degeneracy
In this section, we discuss the DegProc, the procedure handling degeneracy in our

MBU type algorithm presented in Figure 3.4.

Algorithmically, degeneracy is often handled by perturbation or index selection rules
(Iexicographic, minimal index). This is also possible for MBU type simplex algorithm,

but we follow a different approach to handle problems caused by degeneracy.

The key issue of the analysis presented in the previous section was that the tableaux
visited by the algorithm were all non-degenerate or weakly degenerate. The procedure
for handling degeneracy selects pivot positions based on the row of the driving variable
and the degenerate submatrix (consisting of all degenerate rows). These pivots do

not change the current basic solution, but transform the basic tableau in such a way

40

that it either becomes primal infeasible, or there will be at least one column that has
negative entry in the row of the driving variable, and is weakly degenerate. During
the solution process of the primal (dual) degenerate subproblem, we only make pivots
in the degenerate rows. Furthermore, for solving the subproblems we use the dual
(primal) version of our MBU type simplex algorithm. This way, the solution process
of the subproblems carries the same already shown basic properties over the iterations

as the MBU type simplex algorithm.

Primal Dualg, Primal
Ax = b yTA = ¢ Ax = b
x > 0 y > 0 x < 0
strongly 0 0
degenerate + 5 -~ - - :
0 0
— — - 0 0 — +
S S/
feasible <) o
S o @ S S}
4 X
S
infeasible | & ... @ | — 5 ® ... @+
S
4 X
weakly o 0 o 0
degenerate : : & ... & + : :
S 0 o 0
— — o ... 0 - — +

Figure 3.5: Key tableaux of the algorithm.

The anti-degeneracy method described in the sequel uses a recursive structure. We use

the tableaux illustrated in Figure 3.5. Suppose that a strongly degenerate tableau of the

41

primal problem is obtained. In this case, the algorithm defines a so called dual side
subproblem Dualg. The tableau of this subproblem consists of all the degenerate rows
without the primal right hand side and the row of the driving variable, as dual right
hand side. Constructed this way, the dual side subproblem Dualg, has the following
form:
yiA=cT, y>0

where the size of y is |Z3|. Obviously, the size of the subproblem is smaller than the
size of the original primal problem. Now suppose that the dual subproblem is solved. If
the dual subproblem is feasible, its structure is the same as the structure of an infeasible
tableau of the original primal problem corresponding to the degenerate rows and the
driving variable; while if the dual subproblem is infeasible, its structure is the same as
the structure of a weakly degenerate tableau of the original primal problem, restricted

again to the degenerate rows and the row of the driving variable.

A similar interrelated connection may be observed between problems Dualg and
Primalg, as illustrated in Figure 3.5. The problem Primalg is an analogous version of
the original problem, where all the variables are required to be non-positive, instead
of being non-negative. The accurate definition for the analogous algorithm will be
given in Figure 3.6, while the connections used by the recursions will be illustrated in

Figure 3.9.

We will use the dual version of our MBU type simplex algorithm to solve the dual
subproblems as the two algorithms have symmetric descriptions. Any pivot method

could as well be used to solve the subproblems.

We prove that while solving the degenerate subproblem, the actual basic solution of

42

the algorithm does not change.

Proposition 3.4: Let a degenerate pivot tableau 7' € R™*" be given, and denote the
index set of degenerate rows by D = IBQ. Then any pivot made on the elements of

submatrix Tp7 does not change the current basic solution.

Proof. Let the chosen generalized admissible pivot element be #;; € Tpz. We show
that the right-hand side of the tableau does not change after the pivot, namely b} =
it =0=b;and b = b+t = b +0 = by, where k # i. 0
Because of the nature of the procedure handling degeneracy, we formulate it as a
recursive method. The pseudo-codes of the subprocedures are summarized in Figures
3.6. and 3.7. The subprocedures make pivots on the whole tableaux, but consider only
the subtableau defined by the index sets F and G. The column indexed by b, and row
indexed by ¢ play the roles of primal and dual right-hand sides respectively, of the

subproblems taken into consideration.

Because the primal subproblems called by DegProc are instances of type Primalg
where the right hand side values are required to be non-positive, in what follows we
call a primal variable feasible if its sign is adequate for the corresponding feasibility
problem or zero, and otherwise infeasible. For the sake of clarity, in the discussion of
the subproblems, we talk only of values instead of variables, when referring to the
right hand side values; because only for the original problem do variables actually

correspond to right hand side values.

The analysis of the procedure for solving the dual subproblems is completely

analogous to the primal version. Using Figure 3.5, the concepts of dual side weak and

43

strong degeneracy, as well as the concept of the x, increasing pivot can be defined

analogously as in Propositions 3.2, 3.3 and 3.4.

Proposition 3.5: For the PrimalSubMBU and DualSubMBU procedures, if the
corresponding tableau is non-degenerate or weakly degenerate, then the pivot steps
carried out are increasing pivots for the column indexed by b or for the row indexed
by ¢, respectively.

Proof. The first part of the proposition follows immediately from Proposition 3.1,

while the part corresponding to the dual subprocedure can be proved similarly. [

We stated the main idea behind the recursive algorithm; now, we formalize it for both

subprocedures.

We show that the primal and dual subalgorithms have similar properties as the primal

algorithm working on non-degenerate problems.

Proposition 3.6: Suppose that the algorithm is started from problem Py, then because
of repeated strongly degenerate tableaux, the following recursive calling sequence
occurs: Py := DualSubMBU (Ty, k1, F1,G1),

P; := PrimalSubMBU (15, ky, F2,G>),

P, := PrimalSubMBU (T}, k;, F;,G;) (or P, := DualSubMBU (T;,k;, F1,G;)). Then the
pivots carried out while solving subproblem P; do not change any right hand side of
problems P, where (i=1,...,/—1) and k; ¢ F;UG,.

Proof. The recursive steps involve only degenerate rows and columns, thus by

Proposition 3.4 our statement holds. 0

44

Procedure DualSubMBU

Input: (7,c, F.,G).
Output: (7 modified pivot tableau, [status flag).
Begin
Jg ={jeG:t;<0}
While (75 # 0) do
Let r € Jg be arbitrary (driving variable), rDone := false.
While (rDone = false) do
It ={ie F|t >0}
If (Z,- =0) then
The calling pivot tableau is weakly degenerate, Return(7', r).
Endif
Letse ZH, Ky=1{k€ G |ty = 0,15 < 0}.
If (ICs # 0) then (when subtableau 7'rg is strongly degenerate)
(T,s) := PrimalSubMBU(T,r, F,{j € G | 1.; = 0}).
If (s= —1) then
The calling tableau is weakly degenerate, Return(7, r).
Endif
Endif

6=, 6= max{%’r‘ k€ G tg > 0,tq < 0}
If (6; < 6,) then
pivot on tg,, rDone := true.

else
q:= argmax{%’; | k€ Gty >0, < O}.
pivot on 7.
Endif
Endwhile
Endwhile

The calling tableau is infeasible, Return(7’, —1).
End

Figure 3.6: The dual subprocedure starts with the solution of a subproblem of the
form Dualg,.

45

Procedure PrimalSubMBU

Input: (7,b,F.,G).
Output: (7 modified pivot tableau, [status flag).
Begin
.’Z:;— ::{iEfilib>0}
While (Z; # 0) do
Letre I; be arbitrary (driving variable), rDone := false.
While (rDone = false) do
T =1{j€G|u; <0}
If (J, =0) then
The calling tableau is weakly degenerate, Return(7, r).
Endif
Letse J,, Ks:={ke F 1y, = 0,145 > 0}.
If (ICs # 0) then (when subtableau T'r¢ is strongly degenerate)
(T,s) := DualSubMBU(T,r,{i € F | t;, = 0},G).
If (s=—1) then
The calling tableau is weakly degenerate, Return(7, r).
Endif

Endif
0, = ‘Z—i", 92::min{|%f||k€.7:,tkb<0,tks>0}.
If (6; < 6,) then
pivot on t,g, rDone := true
else

q:= argmin{% | k€ F iy <0,tys > O}.
pivot on 7.

Endif
Endwhile
Endwhile
The calling tableau is infeasible, Return(7', —1).
End
Figure 3.7: The PrimalSubMBU starts with the solution of a subproblem of form

Primals.

46

The procedure starting the recursion and handling degeneracy can easily be formalized

as shown in Figure 3.8.

Procedure DegProc

Input: (7,Z9,r).
Output: (7 modified pivot tableau, [status flag).
Begin
(T,1):=(PrimalSubMBU(T, Z3, {1,...,n},n+ 1)).
Return(7,1).
End

Figure 3.8: A possible anti degeneracy procedure, DegProc.

The relationship of the different subproblems is shown in Figure 3.9. The figure
shows a possible primal-dual-primal calling sequence. Phrases PrimalSubMBU and
DualSubMBU refer to the type of the subproblem. The structure of the basic tableaux

corresponding to strongly degenerate bases has already been presented in Figure 3.5.

We now prove the finiteness of the MBU algorithm without any non-degeneracy

assumption.

Theorem 3.2: The MBU type simplex algorithm is finite for any feasibility problem.
Proof. While the algorithm visits only non-degenerate or weakly degenerate
problems, the algorithm carries out x, increasing pivots according to Proposition 3.5;
thus, the same basis may not return. Then the algorithm may not cycle. If the
corresponding pivot tableau is strongly degenerate for a choice of a nonbasic variable,
the algorithm calls the PrimalSubMBU or DualSubMBU subprocedures for strictly
smaller problems, thus the depth of recursion is at most 2m < n+m.

47

weakly degenerate

feasible

Primal problem

l

infeasible
strongly
degenerate
S
D
: e @ e @ -
S
D

weakly degenerate

(DualSubMBU)

infeasible feasible
i |
strongly
= 0 | degenerate 0
o 0 0
_ _ o D 52 —
. PrimalSubMBU
feasible [T) infeasible
v strongly |
degenerate
o 0 0
: ;) |+ :
S) 0 0
0 0|— — 0 0]— —

Figure 3.9: A Primal-Dual-Primal sequence of subproblems.

DualSubMBU

48

Consider the case when the recursively called DualSubMBU solves the subproblem.
When it stops with an infeasible subtableau, then the corresponding calling
(sub)problem became weakly degenerate to the proper nonbasic variable; thus, the
procedure continues with an increasing pivot. When the DualSubMBU stops with a
feasible subtableau, then the primal (sub)problem above became infeasible. This
means the infeasibility of the original problem when the calling procedure was the
DegProc procedure. Otherwise, the calling dual subproblem (one level above) has
been transformed into a weakly degenerate form, thus it continues with an increasing

pivot.

Similar connections hold when the PrimalSubMBU solves the corresponding

subproblem.

Because the depth of recursion is bounded, and the returning sub-procedures provide
the possibility of an increasing pivot for the calling procedure, no basis may occur

twice. The number of different bases is finite, thus the algorithm is finite. O]

Observe that both the algorithm and its recursive subalgorithms make increasing
pivots to the corresponding (sub)problem and use recursion. Thus, it is possible to
generalize the complexity bound of the non-degenerate and weakly degenerate case;
however, because of the recursion, the implied bound greatly depends on the number

of degenerate subproblem calls.

Although the analysis presented in Section 3.2 can be carried out for the first phase of
the simplex algorithm, the presented anti cycling recursion procedure cannot be

naturally applied to the simplex algorithm. The main reason for this is, when a

49

subproblem is feasible, we make use of the infeasibility of the driving variable to

reach the conclusion that the calling problem is infeasible.

As already stated, it would be possible to solve the degenerate subproblems with an
arbitrary pivot method, similarly to the case of the Hungarian method for linear

programming [33], in which the criss-cross method was used [44].

In practice, the efficiency of the algorithm could be increased by exploring the freedom
on the choice of the variable to enter the basis. This freedom may help, especially for

numerically challenging problems.

3.4 Anti-Cycling Index Selection Rules

The prospect of cycling when using a pivot algorithm for solving an LFP or an LOP
led researchers to study various methods to overcome this problem. Since cycling is
possible only in the case of degeneracy and degeneracy is highly related with the data
in the problem, perturbation of the data is a common practice to guarantee that cycling

will not occur.

Bland discovered a surprisingly simple pivot strategy that never leads to cycling while
studying linear systems in oriented matroid setting and anti-cycling rules have been of
considerable interest since then. Bland’s smallest indexed variable (SIV) rule, Zhang’s
last in first out / last out first in (LIFO/LOFI) and most often selected variable (MOSV)
rules are shown to be anti-cycling rules when used with the simplex, MBU simplex and
criss-cross methods. The common properties of these rules that serve their anti-cycling

aspect are isolated and then captured in the concept of s-monotonicity.

Let i; denote the index of the variable that enters (goes in) the basis and o; denote the

50

index of the variable that leaves (goes out) of the basis at iteration j (the pivot
position is (0;,7;)). A pair consisting of the indices of a basic and a nonbasic variable
can be a possible pivot position if the corresponding basic tableau entry is nonzero.

The sequence of possible pivot positions is defined as follows:
S= ((0]71]) 0j € Bj*bij ENj*hl‘Oj,ij 7& 07] = 1727")

A possible pivot sequence is a sequence showing all possible candidate pairs of
entering/leaving variables regardless of any pivot selection rule. We can assume
without loss of generality that a possible pivot sequence is infinite. This assumption
may feel counterintuitive since what we aim is finite pivot rules, but a possible pivot
sequence just stresses the possibility of an infinite sequence of pivot operations. The
assumption can indeed be made w.l.o.g. since for any pivot operation transforming a
tableau T to T/, there is an inverse operation which transforms T' to T and we can
always find a pivot position in any pivot tableau 7. However, the number of bases for
a given LFP is finite, therefore an infinite possible pivot sequence implies that some
of the bases should appear infinitely many times. We denote the set of indices which

appear in S infinitely many times by I*.

An index selection rule is called s-monotone if the index of an entering or leaving
variable at each iteration is selected according to a dynamic index priority vector s € Nj

(created and updated according to the rule) which possesses the following properties:

1. s has an initial value of sy (according to which the indices o0 and iy will be
selected) and is updated after every pivot operation. That is, s; is defined after
pivot operation in iteration 1 and is used to determine 0; and i,. In general, index
priority vector s;_1 is used to determine o; and i; and s is updated to s; after the

pivot operation at position (0;,7;) takes place.

51

2.8 ji>Sj-1.

3. For any iteration j, there exists an iteration r > j in which the index u € I* N B, _|
(u appears in § infinitely many times and is basic at iteration r) with minimal
value in s,_1 is unique and there exists an iteration ¢ where u will appear in S for
the first time again and u will have the lowest priority among the indices in I*

according to s from iteration r to ¢.

An index selection rule can be regarded as having the effect of reorganizing variables
by assigning them priorities and this reorganization is recorded in the vector s. In short,
the s vector for an index selection rule R records the way variables are reorganized

according to R.

Here are the definitions of index priority vectors for three s-monotone index selection

rules.

SIV: so=(n,n—1,...,1), sj=s;_1+1

k, ifke{oj1,ij 1}
LIFO/LOFL: sy =0, s;(k)=

sj—1(k), otherwise.

Sj_l(k)—l— 1, ifke {Oj_l,ij_l}

sj—1(k), otherwise.

The proofs that SIV, LIFO/LOFI and MOSYV are s-monotone rules can be found in [17,
18] and will not be repeated here. For each of the above rules, a symmetric counterpart

can be defined naturally. The largest indexed variable rule for SIV, the first-in-first-out

52

rule for LIFO/LOFI and the least-often-selected-variable rule for MOSV. By a slight
change in the definition of index priority vectors from their counterparts, each of these

can also be shown to be s-monotone rules.

3.4.1 Finiteness Proof Based on s-monotone Rules

When using the MBU simplex algorithm for solving a feasibility problem, if 6, = 0,
then a degenerate pivot is encountered. From among the candidates choosing the one
with the largest s-vector value (in the case of SIV that means the variable with the
minimal index is selected, in the case of MOSYV, the variable which has moved the
most number of times up to current iteration is selected) guarantees that the method
will not cycle. The proof [17, 18, 38] uses the properties given in the definition of s-
monotone index selection rule, therefore to show that an index selection rule has the

anti-cycling property it is sufficient to show that it is s-monotone.

s-monotone rules can be incorporated into the frames provided by other pivot based
methods to produce finite algorithms for LFP as well as LOP. For example, Adrienn
Csizmadia recently studied criss-cross algorithm with s-monotone index selection rules

for solving linear optimization problems [16].

3.5 Infeasibility Analysis for LFP

In a general optimization problem the goal is to find the maximum (or minimum) of a
function over a set of constraints imposed on the variables of the problem. It is clear
that in order to start seeking for an optimum solution, the system must be feasible in
the first place, that is, the set of constraints must have a nonempty intersection. For the
case of linear optimization this means that the polyhedron defined by the set of linear

inequalities must be nonempty.

What happens then when a solver applied to an optimization problem returns that the

53

model is infeasible? Clearly, there is no solution to the problem as it is presented, but
what does that mean about the real-world problem which still needs to be solved? For
the real-world problem behind the model, this is an indication that something went
wrong during the modeling stage (ill modeling). Possible reasons for infeasibility
could be an erroneous data entry, a mis-specification in the direction of inequality
constraints, or perhaps a conflict of interests. It is important to know which kind of

problem occurred in order to help the model repairing process.

Therefore, when a solver terminates with a certificate of infeasibility, the model needs
to be reconsidered in order to detect the cause of infeasibility and fix the model in the

best way possible.

Example 3.1: (A small infeasible problem) A trivial example of an infeasible model

would be one consisting of two obviously conflicting inequalities, such as,

a1x1+axx; <b

aix; t+axxr > b+1

Let us look at a small but less obvious infeasible system. Consider the following

system of inequalities:
3x1 —x2 <0
x1—3x >0
X1+x >4

A sketch of this system reveals that the three halfspaces have empty intersection, in

other words, the system is infeasible.

We can also verify computationally that the linear system given above is infeasible by

54

0 1 2 3 4 5
Figure 3.10: An infeasible system

applying any algorithm which is directly applicable to solve the general linear
feasibility problem, like, for example, the MBU algorithm explained in Section 3.1 or
the version of criss-cross algorithm for solving linear feasibility problems [44].
Furthermore, the verification can be done using any pivot algorithm for solving
general linear optimization problems, such as the simplex or MBU simplex methods;
but in that case we need to introduce a phase 1 objective function which minimizes
the sum of the violations of each constraint at any point. A nonzero objective function

value for the phase 1 objective function then indicates the infeasibility of the system.

Let us illustrate the application of our MBU type algorithm (Figure 3.4) on the above
problem. Note that for the sake of simplicity the algorithm is applied without calling
the anti-degeneracy procedure DegProc even when a strongly degenerate tableau is
encountered. The ties for selecting entering/leaving variables will be broken by using

the smallest indexed variable rule. Multiplying the > type constraints by —1 on both

55

sides and then adding slack variables to all three constraints produces the following
initial tableau:

51 s> 83 X1 X2 b

51 1 0O 0 3 -1 0

52 0 1 0 -1 3 0

53 0 0 I -1 -1 —4

The only candidate for the driving variable is s3. Note that this tableau is strongly
degenerate. After the first ratio test the algorithm proceeds with the pivot operation

on (1,4), that is, x; enters and s leaves the basis. This pivot operation results in the

following tableau:

S $> 8$3 X| X2 b

x1 103333 0 0 1 -0.3333 0

52103333 1 0 O 2.6667 0

s3 103333 0 1 O —1.3333| —4

The second pivot position is (2,5) (x; enters and s; leaves the basis) and following the

corresponding pivot operation we get the tableau:

S1 59 s3 X1 X2 b

x1 0375 0125 0 1 O 0

x 0125 0375 0 0 1 0

s3] 0.5 05 1 0 0| -4

This is the final tableau as the last row gives a certificate that the given linear system is

infeasible.

56

Nowadays with the size and complexity of real-life linear optimization problems it is
not uncommon to detect infeasibility. And when that happens the model must be
analyzed and repaired. Before the infeasible model can be repaired an analysis of
infeasibility and an explanation of the cause of infeasibility are needed. Because of
the scale and complexity of models, automated assistance is used in diagnosing
infeasibility. A common analysis technique which is utilized by most commercial
packages is to find a useful isolation such as an irreducible infeasible subset (IIS) or a
maximal feasible subsystem (MAX FS). An IIS is a subset of the original set of
constraints which is itself infeasible, but all its proper subsets are feasible. A MAX
FS, on the other hand, is the subsystem obtained when the least number of constraints
are removed from the infeasible system in order to render it feasible. It is widely
accepted that finding IISs (ideally small ones) and hence repairing a model based on
the information obtained from such subsets is the best approach and it is in full use
practically as well. Most commercial linear optimization packages, such as CPLEX

and XPRESS-MP base their infeasibility analysis on IIS detection algorithms.

3.5.1 Irreducible Infeasible Subsets

An irreducible infeasible subset (ILS) is a set of constraints which is itself infeasible
but every proper subset of which is feasible which means that all of the constraints in
an IIS contribute to infeasibility. There could be more than one IIS in the model and
it is possible that a single error presents itself in different IISs. Therefore in order to
render the model feasible we must remove or modify at least one of the constraints in

each IIS. An infeasible model is repaired in a cyclic fashion as follows:

1. Isolate an IIS
2. Repair the infeasibility in the IIS

3. Check whether the entire model is feasible yet; if not go to Step 1.

57

Steps 1 and 3 of the above procedure are fully automatized and we rely on computers
for their outcomes. However, the second step requires human understanding of the
model and therefore must be performed by an expert. Step 1 as well may require human
intervention in case there are multiple IISs within the same infeasible model. In that
case selection of which IIS to repair by a skilled analyzer could prove useful. Research
results and experience with IISs show that the desired size of the IIS set to be found
is as small as possible, because the lesser the number of constraints, the easier it is to
repair infeasibility. However, when more than one IIS exists, it is usually not practical
to find the minimum IIS due to the computational burden involved. Summarizing, we
can say that an IIS is, ideally, a small set of conflicting constraints on which we can

concentrate the analysis in order to diagnose and repair infeasibility.

The following result is important as it gives an upper bound on the number of

inequalities that can be identified as an IIS [15].

Theorem 3.3: If there are n variables in an infeasible linear system, then the maximum

cardinality of any IIS is n+ 1.

We now discuss some algorithms for identifying IISs of infeasible linear systems. The
deletion filter and the additive method are general methods and they could be applied
in analyzing infeasible nonlinear optimization problems or mixed integer problems as
well as linear systems. However, the elastic filter is currently applicable to only linear

systems due to computational limitations.

Given an infeasible set of constraints the deletion filter starts with the whole set and

passes through each constraint once. So there are m main steps in the algorithm. In

58

Deletion filter

Input data: an infeasible set C of linear constraints
Output: set of constraints constituting a single IIS

Begin
For (c € C) do
Temporarily drop ¢ from C. C' = C\ {c}

Test the feasibility of C’
If (C’is infeasible) then
c==C
Endif
Endfor
Return: C is a set constituting a single IIS
End

Figure 3.11: The deletion filter

each cycle it takes a constraint out of the set and tests the feasibility of the remaining
constraints. If the remaining constraints are feasible this means the removed constraint
affects the feasibility status and therefore is put back. On the other hand, if removing
a particular constraint does not change the feasibility status, i.e., the system is still
infeasible, then it is removed permanently. The deletion filter, after it passes through
all the constraints once, returns a single IIS. In case there are more than one IISs within
the infeasible system, which one is returned by the deletion filter depends on the order

of the constraints tested.

Let us illustrate the algorithm on an example.

Example 3.2: Given that C = {C,(;,C3,C4,C5,C6,C7,Cg} is an infeasible set of
constraints, assume that there are two (overlapping) IISs in C, {C3,C4,C¢} and
{C4,Cs5,C7,Cg}. Let’s run the algorithm on C: In the first iteration we drop C;
temporarily and the remaining set of constraints {C,,C3,Cy,Cs,Cq,C7,Cs} is still

infeasible. Therefore we drop C| permanently. C = {C,,C3,C4,Cs,Cs,C7,Cs}. In the

59

second iteration, dropping C, gives us {C3,C4,Cs,Cs,C7,Cs} which is infeasible.
Drop C, permanently. C = {C3,C4,Cs,Cg,C7,Cs}. Third iteration: drop Cs and test
the feasibility status of {Cy4,Cs,Cs,C7,Cs}. This set is infeasible (since it contains an
I1S), therefore drop C3 permanently. C = {C4,Cs,Cs,C7,Cs}. Fourth iteration: now
dropping C4 from C gives {Cs,Cs,C7,Cg} whose feasibility status is "feasible".
Therefore Cy is returned back to C keeping it intact at the end of fourth iteration. In
the fifth iteration we drop Cs and obtain {Cy4,Cs,C7,Cs} which is feasible. Returning
Cs back gives C = {C4,C5,C,C7,Cg}. Sixth iteration: drop Cg from C and test the
feasibility status of {C4,Cs,C7,Cg}. This set is infeasible, therefore we drop Cg
permanently and update C: C = {C4,Cs5,C7,Cg}. In the next iteration dropping C;
gives the feasible set {C4,Cs,Cg} therefore we return C; back to C.
C = {C4,Cs5,C7,Cs}. In the last iteration we remove Cg temporarily and get
C = {C4,Cs,C7} which is feasible. We return Cg back and the algorithm terminates

with the IIS C = {Cj,Cs,C5,Cs}.

As it is seen from this example, from the two IISs in C the one whose first member is
tested last is returned by the deletion filter. If the order in which the constraints are
tested is changed then the deletion filter might isolate the other IIS. As an illustration,
let us reorder the constraints in C as follows: C = {Cg,C7,C4,Cs,C4,C3,C2,C }.

Applying the deletion filter on C now isolates the IIS {C3,C4,C}.

Theorem 3.4: Deletion filter isolates the IIS whose first constraint is tested last.

Next we describe the additive method originally introduced by Tamiz et. al. [43] by
using methods from LP goal programming. In their algorithm they use "deviational

variables" similar to elastic variables (see Elastic Filter) and an elastic objective

60

function. In the following we give a simpler version of the algorithm due to

Chinneck [13] without elastic variables and elastic objective function.

Additive method

Input data: an infeasible set of linear constraints C
Output: AnIIS, /
Begin
T:=0,1:=0,i=1
While (i < |C]) do
T=TUc
If (T is infeasible) then
I=1Uc;
T=1
i=1
If (I is infeasible) then
Return /
Endif
Else
i=i+1
Endif
Endwhile
End

Figure 3.12: The additive method

Note that in the algorithm’s description, C is the ordered set of constraints in the
infeasible model, T is the current test set of constraints and / is the set of IIS members
identified so far. Similarly to the deletion filter, additive method returns a single 1IS
upon termination. The IIS it isolates depends on the order of the constraints tested in

case there are more than one IISs in the problem.

Theorem 3.5: Additive method isolates the IIS whose last constraint is tested first.

Both the deletion filter and the additive method have the major drawback of having to

check the feasibility status of a linear system many times over.

61

3.5.2 An Elastic Model

Useful information about an infeasible model can be obtained if the constraints can
be violated in a graceful manner. For example, in the simplex method a basic feasible
solution is required to start the procedure. If the initial basic solution is not feasible a
phase 1 procedure is used in which nonnegative artificial variables a; are added to all
equality and > type constraints, which allows those constraints to be violated so that
an initial basic "feasible" solution can be established. This initial solution is feasible
in the space consisting of the original and the artificial variables, but it is not feasible
in the space consisting of just the original variables. In order to find a basic feasible
solution for the original problem (if there exists one), a phase 1 objective is to minimize
the sum of the artificial variables, that is, minimize V =} q;. If V reaches a minimum
value of zero, then all of the artificial variables are zeroes, hence a feasible solution has
been found for the original model, and the simplex method can now proceed to find the
solution of the original problem. If the minimum value of V is not zero, then at least
one of the artificial variables cannot be forced to zero, so the corresponding constraint
remains violated in the original variable space, and the LOP as a whole is determined

to be infeasible.

In this way, the linear equality and > constraints are able to stretch, or violate their
original bounds and the value of the associated artificial variable corresponds directly
to the size of the adjustment of the right hand side needed to provide a feasible solution

in the original variable space.

The elastic model used by Chinneck [13] extends this idea to allow all forms of
constraints to adjust in all directions, as originally described by Brown and

Graves [12]. A fully elastic program adds a nonnegative elastic variable (or variables)

62

s; (or sg and s:-’) to every constraint. This allows a solver to find a "feasible" solution

for the original infeasible problem. The rules for adding elastic variables are as

follows:

Nonelastic Constraint Elastic Version
Yjaijxj > b; Yjaijx;j+si > b;
Yjaijxj < b Yjaijxj—si < b;
):ja,-jxj:b,- Zja,-jxj-i—s;—s;’:bi

An elastic constraint stretches to violate its original bounds when one of its elastic
variables takes on a positive value. Stretching is resisted by the elastic objective

function (minimize) ;s;) which replaces the original objective function.

This is the essence of the classical elastic model description; elastic variables are added
to all constraints, and equality constraints are elasticized in both directions. Note that
integer restrictions cannot be elasticized, so elastic filtering can be applied only to
LPs, NLPs, and the linear part of MIPs. In this sense it is slightly less general than the

deletion filter and the additive method.

The elastic filter of Chinneck and Dravnieks [14] makes use of the elastic model
described above. At the beginning all constraints are elasticized, but since the original
model is infeasible, at least one constraint must stretch to achieve a feasible solution
for the elastic program. The elastic variables are removed from any constraints that
stretch, this enforces the constraint in the next round. The cycle repeats until enough
elastic variables have been removed that the partly-elastic model becomes infeasible.
At this point the de-elasticized constraints constitute a small infeasible set that is not

necessarily an IIS, but that has some very desirable properties.

63

In the case that the MBU algorithm terminates with a certificate of infeasibility for
a LFP, we propose a specialized elastic model which can be built and solved with a
modified MBU algorithm to obtain an IIS for the infeasible problem. Although we
have yet to complete the definition of this procedure and prove its correctness, we give

an explanation of the proposed elastic model in the following.

Suppose that we solve the following feasibility problem and obtain a certificate that it

is infeasible. The system could contain inequality and/or equality constraints.

(D) Ax(<,>,=)b

2) x>0

In (1) we fix b to be nonnegative without loss of generality for if there is a constraint i

where b; < 0, we can multiply both sides of that inequality or equation with -1.

With b > 0, the inequalities of the form Y jaijxj < b; are feasible at the origin but the
inequalities of the form) ;a;jx; = b; and }_;a;;x; > b; are not feasible at the origin

(except when b; = 0).

We can "relax" the problem by introducing slack variables for < constraints and

elasticity variables for > and = constraints as follows:
Y aijxj+si=b;, s;:slack variable
J

Zaijxj +u; = b, Za,-jxj +v; =b;, u;,v;:elasticity variables
J J

In the new model including slack and elasticity variables, all variables are nonnegative,

64

1.e., X,s,u,v > 0. Furthermore, we impose a new constraint e’u+e’v =0 to resist

stretching of elasticized constraints.

At this stage we have an "almost feasible" solution for our elastic model (except for

the last constraint) which is:

x=0, si=bi, ui=bi, vi=b;

We introduce an elastic variable for this last constraint:

efutelv+1=0, 1>0

Now the starting tableau for the elastic problem has the following structure:

s)
u S
1% S
A _

The only infeasible variable in the starting tableau is A. Therefore, all the effort can
be concentrated on finding A-increasing pivots trying to push A to O (feasible status,
which it will never have) as much as possible. The use of MBU simplex algorithm to
solve this special elastic model to obtain useful information (such as an IIS) about the
original infeasible model is one of the open problems we think can be solved

successfully.

65

Chapter 4

ORIENTED MATROID FEASIBILITY PROBLEM

In this chapter we consider the linear feasibility problem and its solution by finite
pivot rules in an abstract setting by using oriented matroids. Rockafellar was the first
to observe that the strong duality theorem of linear optimization can be seen as a
statement about sign patterns of vectors in complementary subspaces of R" [41].
Following this idea, many aspects of linear optimization, including the simplex and
criss-cross methods with finite pivot rules were described in the context of oriented

matroids.

As Bjorner et. al. [7] point out, "Oriented matroid framework can add to the
understanding of the combinatorics and the geometry of the simplex method for linear
programming. In fact, the oriented matroid approach gives a geometric language for

pivot algorithms, interpreting linear programs as oriented matroid search problems."

We first describe the oriented matroid feasibility problem (OMFP) and then present a
finite criss-cross algorithm with LIFO/LOFI index selection rule that solves the
problem. The other s-monotone index selection rules described in section 3.4 can also
be used within the criss-cross pivot method’s framework in order to solve the OMFP.
We close this chapter with two proofs. The first one is the finiteness proof of the
presented algorithm and the second one is a constructive proof of the Farkas lemma

for oriented matroids.

66

The results in this chapter are mainly based on the paper [4].

4.1 OM Feasibility Problem

From the perspective of linear feasibility problems, an oriented matroid can be seen
as a certain system of signed vectors that captures important properties of a system of
linear inequalities. Basic background material on matroids and oriented matroids are

given in section 2.7.

Let E = {ey,...,e, } be a finite set and ¢; € E be a fixed element. Also, let M = (E,O)
and M* = (E,O") be dual pairs of oriented matroids. First we need to introduce the

concept of feasible circuits and cocircuits of oriented matroids.

Definition 4.1: The oriented circuit X = (X,X) € O is called feasible, if e; € X"
and X~ = 0. Similarly, the oriented cocircuit Y = (Y*,Y) € O* is called dual feasible,

ife;ecY andY =0

Just like in the case of solving an LFP, we need a proof or a certificate of solvability
of an OMFP. Next, we state an alternative theorem related to the feasibility problem
of oriented matroids. This theorem is a generalization of the Farkas lemma for
oriented matroids. A proof of the theorem is based on the finiteness of a criss-cross
type algorithm. The details of the algorithm, its finiteness and the application to the

feasibility problem of oriented matroids will be discussed in section 4.1.1.

Theorem 4.1: Let M = (E,0) and M* = (E,O") be a dual pair of oriented matroids.
Then exactly one of the following statements hold
(a) there is a feasible circuitin M = (E, O),

(b) there is a feasible cocircuit in M* = (E,0").

67

Klafszky and Terlaky [34] proved a variant of the Farkas lemma using Terlaky’s
criss-cross method [44, 45]. Theorem 4.1 is a generalization of that variant of the
Farkas lemma. Theorem 4.1 was first proved by Bland [8], while the first
constructive, algorithmic proof is due to Klafszky and Terlaky [32]. For underlying
the connection between Theorem 4.1 and the variant of the Farkas lemma presented in
Klafszky and Terlaky [34], we introduce the concept of tableau for oriented matroids

as it is done in Bland [8], Terlaky [45] and Klafszky and Terlaky [32].

Let B be the set of all bases of the matroid M underlying the oriented matroid M and r
denote the rank of M. Then for any B = {ep,,...,ep} € Bthereisforeachi=1,...,r

a unique cocircuit D; € O* of the underlying matroid M having D; B = {e}, }.

LetY), be the oriented cocircuit associated with the basic element ¢, ,i = 1,...r, in the
way that e, € Ybf and ¥, N\B = {ep, }. The set {¥},,...,Y, } is called the fundamental
set of oriented cocircuits with respect to the base B. Then the matrix having its b;th
row equal to the signed incidence vector of Y, is denoted by 7'(B) and called the
tableau corresponding to the base B. That is, the entry #;; of T'(B) is the sign of e; in
Y; € {Yp,,...,Yp, }. One important property of 7'(B) is that for e; ¢ B, the ¢; column of
T (B) corresponds to the oriented circuit X = (X*,X ™) having X+ = {ep, : 1. = +1}

and X~ ={ep, 1t = —1}U{er}.

Example 4.1: Continuing with the previous example, consider the base

B ={1,2,4,6}. Then the following set of oriented cocircuits
{(+707+707+70)7 (07+7+707+70)7 (0707_7+7070)7 <07070707_7+)}

is the set of fundamental cocircuits corresponding to the base B. The tableau

corresponding to B is

68

+[0|+|0|+|0
O|+[+|0]+1]0
0/0|-10]0]0
0O/|0|-|+]0]0
0/0|0|O0]-1]0
0O[0|0|O0] -]+

Figure 4.1: The tableau corresponding to the base given in example 4.1

4.1.1 A Criss-Cross Type Algorithm and Its Finiteness

Now we present a finite algorithm, which is a variant of criss-cross algorithm [44,45]
using Zhang’s LIFO/LOFI rule [49, 50] for solving the feasibility problem of oriented
matroids. This algorithm produces either a feasible circuit X € O or a dual feasible

cocircuit Y € O*.

The vector u, : E — N takes place in the algorithm. Its definition is

T, if the i/ element moves in the 7" iteration
u,(i) =
u,_1(i), otherwise.

Initially, ug = (0,...,0).

Note that the vector u is defined in exactly the same way as the vector s for the anti-

cycling LIFO/LOFI index selection rule of chapter 3.

Our algorithm differs from that of Klafzky and Terlaky [32] in the way that there is no
fixed ordering at the beginning of the algorithm between the indices of the elements but
an ordering depending on the pivot selection rule is built up until the last element was
moved for the first time. This ordering will guarantee the finiteness of this modified

criss-cross algorithm.

69

criss-cross algorithm for OMFP

Input data: A base By and the corresponding tableau 7' (By),
[=1{1,2,...,n} as the index set of elements in E, r = 0.

Step 0: LetB:=B,.

If e; ¢ B then go to Step 1,

else go to Step 2.
Step 1: Ifs; € {—1,0} for all ¢; € B then

(—X1) is a primal feasible circuit, Return;
elseletJ={icl:t;=+1fore;c B}, aj:= nileajx u,(i) and

J={jeJ:u_1(i)=a;forallicJ}
Choose an arbitrary index k € J
Make a pivot operation (e enters and e leaves the base)
Letu,(k) :=r, r:=r+ 1 and continue with Step 0.
Step 2: Ift; € {0,+1} forall e; ¢ B then
Y; is a dual feasible cocircuit, Return;
elseletK:={jel:t;;=—1fore; ¢ B}, ax := max u,(i) and
K:={icK:u, (i) = ag foralli € K}
Choose an arbitrary index k € K

Make a pivot operation (e enters and e leaves the base)
Let u,(k) := r, r:=r+ 1 and continue with Step 0.

Figure 4.2: Criss-cross algorithm with LIFO/LOFI Index Selection Rule

In this section we will prove that criss-cross with LIFO/LOFI index selection rule is
finite which implies that theorem 4.1 holds. The finiteness proof of the algorithm

follows the main steps of Klafszky and Terlaky’s proof [32].

Lemma 4.1: Criss-cross algorithm with LIFO/LOFI index selection rule for solving
OMEFP is finite.

Proof. Let us suppose the contrary that the algorithm is not finite. The fact that the
number of different bases is finite implies that the algorithm cycles, that is, starting
from a base B, the algorithm produces the same base again after a certain number of

steps.

70

Let E¢ = {e; : ¢; changes its place with e; through the cycle}.

Let us consider the sequence of pivot tableaus generated by the algorithm and let us
denote by T'(B’) the base which satisfies the criteria; (a) there is a variable e, € E¢
which changes its basic status for the first time (i.e. u,(q) = 0 at base B') and (b) after
this pivot tableau all the variables in E¢ have changed their basic status at least once.
Here we need to make the following observation; after the base B’ each member of
E°N B would have different u,(i) values at each forthcoming iteration. This is due to
the fact that in each iteration an e; element and the e; element has changed their basic

status.

We can suppose without loss of generality that e, enters B’

Let B” be the base corresponding to the iteration in which e, is chosen for the first
time to leave the base thus ¢ € {i € [: e¢; € B and #;; = +1} and according to the
pivot rule u,(g) > u,(i) at the iteration corresponding to base B”. This means that
X;" C {e;} U(B"UB'). The oriented cocircuit ¥; as row e; of B’ and the oriented
circuit X; as column e; of B” have the following properties

V.e1 €Y eg€Y] 1" e1 €X;,e,€X,

2. Y C{e4}U[(E—B')—E“] 2". X7 CB"—{e;} U{er}

3. Y C(E—B)—{e,}U{er} 3" X" C{e,}U(B"NB)

Properties 1’ and 1” imply that X; NY; # 0.

Let us consider 2’ and 2”. We have ¢, € ¥, and ¢, ¢ X| . Let us consider an element

eiF# e, Ife; €Y ,ie., e € [(E—B')—E‘], this means ¢; is nonbasic at B’ and it never

71

changes its basic status, therefore ¢; cannot belong to B” — {e,} U{e1}, ie., e; ¢ X[.

Thus properties 2’ and 2” imply that X;” NY;” = 0.

Now consider the properties 3’ and 3”. We have ¢, ¢ ¥;" and e, € X;". Let us consider
an element e; # e,. If e; € X, i.e., ¢; € B"NB'. Therefore e; ¢ E — B'. Thus properties

3" and 3" imply that X;" NY;" = 0; which contradict orthogonality. O

4.1.2 A Constructive Proof of the Farkas Lemma

Now we can prove the Farkas lemma.

Proof of the Theorem 4.1: The orthogonality of oriented circuits and cocircuits imply
that both (a) and (b) cannot occur simultaneously. The algorithm stops either in Step
1 with a feasible circuit or in Step 2 with a feasible cocircuit. Since the algorithm is

finite, the proof is complete. [

Replacing the LIFO pivot rule with the most-often-selected-variable (MOSV) pivot

rule or any s-monotone pivot rule the algorithm 4.2 remains finite.

72

Chapter 5

FURTHER RESEARCH SUGGESTIONS

In section 3.2 we derive an upper bound for the number of iterations MBU makes for
solving and LFP. Further investigations are needed to find such problem classes where
the new upper bound can easily be determined; that is, the values of A4 and Ap,x are
easily computable. A naturally arising problem class would be one for which the
matrix A is totally unimodular. Most of the problems coming from combinatorial
optimization are highly degenerate; thus, the complexity estimate would only bound
the number of non-degenerate and weakly degenerate pivot steps. If A is totally
unimodular and b € Z", we get K < ||b||;. This means that in this specific case K
depends pseudo-polynomially on the (binary) input size. It would also be interesting
to find proper perturbations for given problem classes to handle strong degeneracy.
Perturbation techniques known from the literature (like the €-perturbation technique)
do not present themselves as efficient choices because they, usually drastically, affect

the values of A4 and Ap.x as well.

In section 3.4 we explain the concept of s-monotonicity and we give three index
selection rules which are s-monotone. A possible research direction from here on is to
develop other s-monotone rules and study their practical as well as theoretical
characteristics. Another possibility is to investigate hybrid methods and their behavior

on special problem classes such as the network flow problem.

73

In section 3.1 we state MBU simplex algorithm for solving LFPs. For solving LOPs a
primal-dual version of MBU can be defined so that the algorithm could start from a
primal feasible or a dual feasible basis. Also, inspired by the fact that MBU visits
both primal and dual infeasible bases (even though this is temporary and one of the
two feasibilities is eventually restored), we think that a generalized MBU simplex
algorithm which starts from a neither primal nor dual feasible basis (just like the

criss-cross method) can be developed.

The linear feasibility problem has some interesting applications stemming from diverse
fields. These by themselves constitute of important research topics some of which we
would like to mention. For example, the search for a linear classifier consistent with all
available examples is a problem of finding a feasible solution to a linear optimization

problem.

As mentioned in section 3.5.2, we think a special elastic model can be built for
infeasible LFPs and MBU simplex algorithm developed for solving feasibility
problems can be utilized in a way to isolate IISs or in the worst case gather useful

information about the original infeasible model.

Writing programs to test for any computational aspect of oriented matroids seem to be
difficult in a procedural language such as Python. A functional language like Haskell
would be more suited for testing the algorithms for oriented matroids. We think such
an endeavour might be beneficial in order to gain more insight and be able to test

quickly for some heuristics in search for more anti-cycling pivot rules.

Given an infeasible linear system, is the corresponding oriented matroid necessarily

74

infeasible? Can we generate feasible oriented matroids starting from an infeasible
one by using a generation approach that incrementally extends oriented matroids by
adding single elements? Solving this more abstract problem could also prove useful in

analyzing infeasibility of linear systems.

75

[1]

(3]

[5]

[6]

[7]

REFERENCES

Anstreicher, K. M., & Terlaky, T. (1994). A monotonic build-up simplex

algorithm for linear programming. Operations Research, 42(3), 556-561.

Avis, D., & Chvatal, V. (1978). Notes on Bland’s pivoting rule. Mathematical

Programming Study, 8, 24-34.

Bachem, A., & Kern, W. (1992). Linear Programming Duality, Springer-Verlag.

Balogh, L., Bilen, F., & IlIés, T. (2002). A simple proof of the generalized Farkas

lemma for oriented matroids. Pure Mathematics and Applications, 13, 423—431.

Bilen, F., Csizmadia, Z., & Illés, T. (2007). Anstreicher-Terlaky type monotonic
simplex algorithms for linear feasibility problems. Optimisation Methods and

Software, 22(4), 679—695.

Bilen, F., Csizmadia, Z., & Illés, T. (2007). A new analysis for monotonic
type simplex algorithms for feasibility problems (in Hungarian). Alkalmazott

Matematikai Lapok, 24, 163—185.

Bjorner, A., Las Vergnas, M., Sturmfels, B., White, N., & Ziegler, G. (1999).

Oriented Matroids, Second Edition, Cambridge University Press.

Bland, R. G. (1977). A combinatorial abstraction of linear programming. Journal

of Combinatorial Theory (B), 23, 33-57.
76

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Bland, R. G. (1977). New finite pivoting rules for the simplex method.

Mathematics of Operations Research, 2, 103—-107.

Bland, R. G., & las Vergnas, M. (1978). Orientability of matroids. Journal of

Combinatorial Theory (B), 24, 94-123.

Borgwardt, K.H. (1987). The simplex method: A probabilistic analysis. In the

series: Algorithms and Combinatorics, Vol. 1, Springer, Berlin.

Brown, G., & Graves, G. (1975). Elastic programming: A new approach to large-

scale mixed integer optimization. ORSA/TIMS Conference, Las Vegas.

Chinneck, J. W. (2008). Feasibility and Infeasibility in Optimization. Springer.

Chinneck, J. W., & Dravnieks, E. W. (1991). Locating minimal infeasible

constraint sets in linear programs. ORSA Journal on Computing, 3, 157-168.

Chvatal, V. (1983). Linear Programming. W. H. Freeman and Company, New
York.
Csizmadia, A. (2022). Finiteness of the criss-cross algorithm for the linear

programming problem with s-monotone index selection rules. Pure Mathematics

and Applications, 30(2), 58-70.

Csizmadia, Z. (2007). New pivot based methods in linear optimization, and an

application in the petroleum industry. Ph.D Thesis, E6tvos Lorand University.

77

[18]

[19]

[20]

[21]

[24]

[25]

Csizmadia, Z., [llés, T., & Nagy, A. (2012). The s-monotone index selection rules
for pivot algorithms of linear programming. European Journal of Operations

Research, 221(3), 491-500.

Dantzig, G. B. (1948). Programming in a linear structure. Comptroller, United

States Air Force, Washington DC.

Dantzig, G. B. (1963). Linear Programming and Extensions. Princeton

University Press, Princeton, New Jersey.

Farkas, Gy. (1894). A Fourier-féle mechanikai elv alkalmazdsai (The applications
of the mechanical principle of Fourier). Mathematikai és Természettudomdnyi

Ertesito, 12, 457-472.

Farkas, Gy. (1896). A Fourier-féle mechanikai elv alkalmazdsainak algebrai
alapjardél (On the algebraic background of the applications of the mechanical

principle of Fourier). Mathematikai és Fizikai Lapok, 5, 49-54.

Folkman, J., & Lawrence, J. (1978). Oriented matroids. Journal of Combinatorial

Theory (B), 25, 199-236.

Iés, T. (1999). Linear programming. Lecture Notes, Eastern Mediterranean

University, Department of Mathematics, Famagusta.

Illés, T., & Molnar-Szipai, R. (2014). On strongly polynomial variants of the

MBU simplex algorithm for a maximum flow problem with non-zero lower

78

[26]

[27]

[28]

[29]

[30]

[31]

[32]

bounds. Optimization, 63(1), 39-47.

Jensen, D. L. (1985). Coloring and duality: Combinatorial augmentation

methods. Ph.D Thesis, Cornell University.

Fukuda, K., & Terlaky, T. (1997). Criss-cross methods: A fresh view on pivot

algorithms. Mathematical Programming, 79, 369-395.

Fukuda, K., & Terlaky, T. (1999). On the existence of a short admissible pivot
sequence for feasibility and linear optimization problems. Pure Mathematics with

Applications, 10, 431-447.

Gordon, G., & McNulty, J. (2012). Matroids: A Geometric Introduction.

Cambridge University Press.

Karmarkar, N. (1984). A new polynomial-time algorithm for linear programming.

Combinatorica, 4, 373-395.

Khachiyan, L. G. (1979). A polynomial algorithm in linear programming (in

Russian). Dokl. Akad. Nauk SSSR, 244(5), 1093—-1096.

Klafszky, E., & Terlaky, T. (1987). Remarks on the feasibility problem of oriented
matroids. Ann. Univ. Sci. Budapestiensis de Rolando Eotvos Nominatae, Sectio

Computatorica, 7, 155-157.

79

[33] Klafszky, E., & Terlaky, T. (1989). Variants of the Hungarian method for solving

linear programming problems. Optimization, 20(1), 79-91.

[34] Klafszky, E., & Terlaky, T. (1991). The role of pivoting in proving some

fundamental theorems of linear algebra. Linear Algebra and its Applications,

151,97-118.

[35] Klee, V., & Minty, G. J. (1972). How good is the simplex algorithm?. In

Inequalities, Academic Press, New York.

[36] Maros, 1. (2003). Computational Techniques of the Simplex Method. Kluwer

Academic Publishers, Boston.

[37] Murty, K. G. (1983). Linear Programming. John Wiley & Sons, New York.

[38] Nagy, A. (2014). On the theory and applications of flexible anti-cycling index
selection rules for linear optimization problems. Ph.D Thesis, Eotvos Lordnd

University.

[39] NETLIB Internet Repository of Linear Programming and Linear Feasibility

Problems. https://netlib.org/lp/data/

[40] Prékopa, A. (1980). On the development of optimization. American

Mathematical Monthly, 87, 527-542.

80

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

Rockafellar, R. T. (1969). The elementary vectors of a subspace of R". In
Combinatorial Mathematics and its Applications, Proceedings of the Chapel Hill
Conference (1967), eds. R. G. Bore and T. A. Dowling, University of North

Carolina Press, 104—127.

Smale, S. (1998). Mathematical problems for the next century. The Mathematical

Intelligencer, 20, 7-15.

Tamiz, M., Mardle, S. J., & Jones, D. F. (1996). Detecting IIS in infeasible
linear programmes using techniques from goal programming. Computers and

Operations Research, 23, 113-119.

Terlaky, T. (1985). A convergent criss-cross method. Optimization, 16, 683—690.

Terlaky, T. (1987). A finite criss-cross method for oriented matroids. Journal of

Combinatorial Theory (B), 42, 319-327.

Terlaky, T., & Zhang, S. (1993). Pivot rules for linear programming: A survey on

recent theoretical developments. Annals of Operations Research, 46, 203-233.

Todd, M. J. (1986). Polynomial expected behavior of a pivoting algorithm
for linear complementarity and linear programming problems. Mathematical

Programming, 35, 173—-192.

Tutte, W. T. (1965). Lectures on matroids. Journal of Research of the National

Bureau of Standards Section B Mathematics and Mathematical Physics, 69, 1.

81

[49] Zhang, S. (1991). On anti-cycling pivoting rules for the simplex method.

Operations Research Letters, 10, 189—-192.

[50] Zhang, S. (1999). New variants of finite criss-cross pivot algorithms for linear

programming. European Journal of Operational Research, 116(3), 607-614.

82

	ABSTRACT
	ÖZ
	DEDICATION
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	1 INTRODUCTION
	2 PRELIMINARIES
	2.1 Notation and Problems of Interest
	2.2 The Geometry of Linear Optimization
	2.3 Basic Feasible Solutions
	2.4 Pivoting
	2.5 Duality
	2.6 The Simplex Method
	2.7 Matroids and Oriented Matroids

	3 FEASIBILITY PROBLEM OF LINEAR OPTIMIZATION
	3.1 Monotonic Build Up Simplex Pivot Rule for LFP
	3.2 Complexity Analysis
	3.3 Handling Strong Degeneracy
	3.4 Anti-Cycling Index Selection Rules
	3.4.1 Finiteness Proof Based on s-monotone Rules

	3.5 Infeasibility Analysis for LFP
	3.5.1 Irreducible Infeasible Subsets
	3.5.2 An Elastic Model

	4 ORIENTED MATROID FEASIBILITY PROBLEM
	4.1 OM Feasibility Problem
	4.1.1 A Criss-Cross Type Algorithm and Its Finiteness
	4.1.2 A Constructive Proof of the Farkas Lemma

	5 FURTHER RESEARCH SUGGESTIONS
	REFERENCES

