
Anti-Cycling Pivot Rules in Linear Optimization

Filiz Bilen

Submitted to the
Institute of Graduate Studies and Research

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
in

Applied Mathematics and Computer Science

Eastern Mediterranean University
February 2023

Gazimağusa, North Cyprus

Approval of the Institute of Graduate Studies and Research

Prof. Dr. Ali Hakan Ulusoy
Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of Doctor
of Philosophy in Applied Mathematics and Computer Science.

Prof. Dr. Nazim Mahmudov
Chair, Department of Mathematics

We certify that we have read this thesis and that in our opinion it is fully adequate
in scope and quality as a thesis for the degree of Doctor of Philosophy in Applied
Mathematics and Computer Science.

Prof. Dr. Tibor Illés
Co-Supervisor

Prof. Dr. Nazim Mahmudov
Supervisor

Examining Committee

1. Prof. Dr. Tibor Illés

2. Prof. Dr. Nazim Mahmudov

3. Prof. Dr. Hayri Sever

4. Prof. Dr. Mehmet Reşit Tolun

5. Prof. Dr. Sonuç Zorlu Oğurlu

6. Assoc. Prof. Dr. Arif Akkeleş

7. Asst. Prof. Dr. Mehmet Ali Tut

ABSTRACT

Pivot algorithms for solving linear optimization problems traverse the set of basic

solutions or bases of the inequality system describing the model, searching for a

feasible solution, or an optimal feasible solution if the model also contains a cost

function to be minimized or maximized. Feasibility preserving pivot algorithms for

solving linear optimization problems, often called simplex-type methods, preserve

primal feasibility while trying to achieve dual feasibility or vice versa. Monotonic

Build Up algorithm of Anstreicher and Terlaky is a simplex-type algorithm with

interesting properties. We develop a pivot algorithm with similar properties for

solving the feasibility problem of linear optimization in particular. To guarantee

finiteness of our Monotonic Build Up simplex algorithm we incorporate s-monotone

index selection rules into the general framework of the algorithm which are to be

utilized whenever there is competition among the basic variables to leave the basis

and among the nonbasic variables to enter the basis. We also use a specialized

recursive procedure for handling strongly degenerate bases. We prove finiteness of

the algorithm and analyze its computational complexity under some assumptions. As

opposed to simplex-type methods criss-cross pivot algorithm preserves neither primal

nor dual feasibility. We use criss-cross algorithm together with s-monotone index

selection rules to solve feasibility problem of oriented matroids and and also prove its

finiteness.

Keywords: pivot algorithms, finiteness, oriented matroids, feasibility

iii

ÖZ

Doğrusal optimizasyon problemlerini çözmek için pivot algoritmaları, modeli

açıklayan eşitsizlik sisteminin baz çözümleri veya bazları arasında gezinerek uygun

bir çözüm ararlar. Model aynı zamanda minimize veya maksimize edilmesi gereken

bir maliyet fonksiyonu içeriyorsa bu kez en uygun çözümü ararlar. Genellikle

simpleks tipinde yöntemler olarak adlandırılan doğrusal optimizasyon problemlerini

çözmek için fizibiliteyi koruyan pivot algoritmaları, dual fizibilite elde etmeye

çalışırken primal fizibiliteyi korur (primal simpleks) veya bunun tersi de geçerlidir

(dual simpleks). Anstreicher ve Terlaky’nin Monotonic Build Up (monoton inşa)

algoritması ilginç özelliklere sahip simpleks tipi bir algoritmadır. Özellikle doğrusal

optimizasyonun fizibilite problemini çözmek için benzer özelliklere sahip bir pivot

algoritması geliştirdik. Monoton inşa simpleks algoritmamızın sonluluğunu garanti

etmek için, temel değişkenler arasında bazdan ayrılmak ve temel olmayan değişkenler

arasında baza girmek için rekabet olduğunda kullanılacak olan s-monoton dizin seçim

kurallarını algoritmanın genel çerçevesine dahil ederek tanımladık. Ayrıca, güçlü bir

şekilde dejenere olmuş bazları işlemek için özel bir özyinelemeli prosedür geliştirdik.

Algoritmanın sonluluğunu kanıtladık ve hesaplama karmaşıklığını bazı varsayımlar

altında analiz ettik. Simpleks tipi yöntemlerin aksine, criss-cross pivot algoritması ne

primal ne de dual fizibiliteyi korur. Yönlendirilmiş matroidlerin fizibilite problemini

çözmek ve sonluluğunu kanıtlamak için s-monoton indeks seçim kuralları ile birlikte

criss-cross algoritmasını kullanıyoruz.

Anahtar Kelimeler: pivot algoritmaları, sonluluk, yönlendirilmiş matroidler, fizibilite

iv

To Cemile and Havva

v

ACKNOWLEDGMENTS

This has been a long journey and I have many people to thank. First and foremost, my

supervisor Prof. Dr. Tibor Illés, thank you for your continuous support and not giving

up on me even at the times when I’ve given up on myself. I am ever so grateful to have

met you and have had the chance to learn linear optimization from you.

To all the great teachers I was fortunate to cross paths with at Geçitkale Primary School

and 20 Temmuz and Northeast High Schools, and at Eastern Mediterranean University,

thank you. My dear teachers Daoud S. Daoud and Peter Kas, thank you.

I would like to express my appreciation to my supervisor Prof. Dr. Nazim Mahmudov

for his support during my studies.

My grandmother Cemile, my mother Havva, my father Hüseyin, my sister Yeliz and

my nieces Derin and Deniz; I am so grateful to have your support and love. My dear

Pervin and Mayra, thank you for your love, support, and all the sacrifice for trying to

keep quiet while I was working.

Last but not not least, I thank to my friends for their companionship, genuine support,

long talks during long walks and many creative motivational tactics.

During the last stages of writing my thesis I lost a very good friend. I would like to

dedicate this thesis in memory of Rıza Tuncel who will always be greatly missed.

vi

TABLE OF CONTENTS

ABSTRACT . iii

ÖZ . iv

DEDICATION . v

ACKNOWLEDGMENTS . vi

LIST OF FIGURES . ix

LIST OF ABBREVIATIONS . x

1 INTRODUCTION . 1

2 PRELIMINARIES . 5

2.1 Notation and Problems of Interest. 5

2.2 The Geometry of Linear Optimization . 8

2.3 Basic Feasible Solutions . 9

2.4 Pivoting . 11

2.5 Duality . 18

2.6 The Simplex Method. 20

2.7 Matroids and Oriented Matroids . 21

3 FEASIBILITY PROBLEM OF LINEAR OPTIMIZATION. 26

3.1 Monotonic Build Up Simplex Pivot Rule for LFP . 27

3.2 Complexity Analysis . 37

3.3 Handling Strong Degeneracy . 40

3.4 Anti-Cycling Index Selection Rules . 50

3.4.1 Finiteness Proof Based on s-monotone Rules. 53

3.5 Infeasibility Analysis for LFP . 53

3.5.1 Irreducible Infeasible Subsets . 57

3.5.2 An Elastic Model . 62

vii

4 ORIENTED MATROID FEASIBILITY PROBLEM .. 66

4.1 OM Feasibility Problem . 67

4.1.1 A Criss-Cross Type Algorithm and Its Finiteness . 69

4.1.2 A Constructive Proof of the Farkas Lemma. 72

5 FURTHER RESEARCH SUGGESTIONS . 73

REFERENCES . 76

viii

LIST OF FIGURES

Figure 2.1: Tableau representation of vectors indexed by J with respect to the

generating system JG. 12

Figure 2.2: The primal simplex algorithm . 21

Figure 3.1: Partition of a basis. 29

Figure 3.2: A weakly degenerate pivot tableau. 31

Figure 3.3: A strongly degenerate tableau with no xr increasing pivot, where r = 1. 31

Figure 3.4: The MBU type simplex algorithm . 33

Figure 3.5: Key tableaux of the algorithm.. 41

Figure 3.6: The dual subprocedure starts with the solution of a subproblem of the form

Dual⊕. 45

Figure 3.7: The PrimalSubMBU starts with the solution of a subproblem of form

Primal	. 46

Figure 3.8: A possible anti degeneracy procedure, DegProc. 47

Figure 3.9: A Primal-Dual-Primal sequence of subproblems. 48

Figure 3.10: An infeasible system . 55

Figure 3.11: The deletion filter . 59

Figure 3.12: The additive method . 61

Figure 4.1: The tableau corresponding to the base given in example 4.1. 69

Figure 4.2: Criss-cross algorithm with LIFO/LOFI Index Selection Rule 70

ix

LIST OF ABBREVIATIONS

BFS Basic Feaible Solution

FS Feasible Subsystem

IIS Irreducibly Infeasible Subsystem

LFP Linear Feasibility Problem

LIFO/LOFI Last In First Out/Last Out First In

LOP Linear Optimization Problem

MAX-FS Maximum Feasible Subsystem

MBU Monotonic Build Up

MOSV Most Often Selected Variable

OM Oriented Matroid

OMFP Oriented Matroid Feasibility Problem

SIV Smallest Indexed Variable

x

Chapter 1

INTRODUCTION

Linear optimization, which has its roots in the study of linear inequalities dating as far

back as 1826 to the work of Fourier, has been a prominent field of study right from its

inception in the mid nineteen forties. Its applicability to solve a wide range of

problems coming from many diverse fields has contributed to its status as one of the

mostly studied research subjects as well as one of the mostly utilized models to solve

real world problems. There are different types of methods for solving linear

optimization problems. The first practically useful method is the simplex method

developed by George Dantzig in 1947 [19, 20]. Simplex method belongs to the

general category of solution techniques called pivot methods. Many pivot methods

have been developed in the quest for finding more efficient solution algorithms for

solving the linear optimization problem. Some of these are variants of the simplex

method because they maintain primal (or dual) feasibility during the solution

procedure. Original simplex method and its variants seek for an optimal solution in

the set of feasible solutions (which is a convex polyhedron) by travelling the vertices

or extreme points of the feasible region. Other type of pivot methods called exterior

point methods walk through a path to the optimal vertex from the exterior of the

feasible region using infeasible bases. Criss-cross method combines the two

paradigms and searches for the optimal solution by visiting both feasible and

infeasible bases along the way. The total number of vertices of the feasible region can

be as large as
(n

m

)
where n is the number of variables (dimension of the solution

1

space) and m is the number of constraints. Since this number can be huge, the brute

force approach of enumerating all the vertices and solving the optimization problem

by searching for an optimal vertex is not only inefficient but not a viable option for

even moderately sized problems.

Linear optimization was shown to belong to the class of polynomially solvable

problems in 1979 when ellipsoid method was formulated for solving linear

optimization problems by Khachian [31]. The ellipsoid method, possessing good

theoretical properties, is not a practically efficient method so it is not useful in

practice.

The second main category of solution methods widely used in practice, the interior

point methods, find an approximation to optimum solution by following a path in the

interior of the feasible region. Interior point methods, first introduced in 1984 by

Karmarkar [30] are not only practically efficient but also have polynomial complexity.

Linear optimization deals with the problem of finding the optimum (or optimal) value

of a linear function subject to linear equality or inequality constraints.

Fundamental to solving a linear optimization problem is finding a feasible solution or

showing that none exists. The problem of finding a feasible solution precedes that of

finding an optimal solution simply because if there is no feasible solution, then there

is no optimal solution.

The linear feasibility problem (LFP) differs from LOP in that it has no objective

function to be minimized or maximized. We give formal definitons of both problems

2

in the next chapter.

Although linear optimization belongs to the class of polynomially solvable problems,

we do not yet know whether there is a variant of simplex algorithm which has

polynomial complexity. This open problem and the strong belief that there exists a

variant of the simplex algorithm which is strongly polynomial are the main

motivations for studying pivot-based algorithms.

In the context of oriented matroids it is possible to study the problem of solving a

system of linear inequalities as a purely combinatorial one, thereby clearing off the

problem from the difficulties which arise when its arithmetic properties are

considered. Providing an abstraction based only on sign structures, oriented matroids

give a geometric language for pivot algorithms. In fact, most combinatorial pivot

rules are originally developed in the context of oriented matroid programming [46].

When it comes to solving practical linear optimization problems arising from real life

applications, variants of the simplex method and interior-point methods dominate the

field. In this thesis we study monotonic build up simplex method and criss-cross

method with different index selection rules which lead to finite algorithms for solving

the linear feasibility and the oriented matroid feasibility problems.

Chapter 3 is devoted to linear feasibility problem. We explain a simplex type

algorithm in which the number of feasible variables is monotonically built up and we

give a complexity analysis for this algorithm. Furthermore, we show that the

algorithm is finite by utilizing a recursive procedure when a sequence of strongly

degenerate bases is encountered. Finiteness is also established using anti-cycling

3

rules which are categorized as s-monotone. In this chapter, we also give a general

overview of methods for analyzing infeasibility by finding irreducible infeasible

subsystems of a given infeasible problem.

In Chapter 4 the linear feasibility problem is viewed in an abstract setting using

oriented matroids. A constructive proof of the Farkas lemma is given using pivot

algorithms which solve the oriented matroid feasibility problem in a finite number of

steps. We use s-monotone pivot rules with criss-cross algorithm for solving oriented

matroid feasibility problem and prove that criss-cross with some specific s-monotone

rules does not cycle.

Chapter 5 suggests some possible further research problems related to the ones

studied.

4

Chapter 2

PRELIMINARIES

In this chapter we present the necessary mathematical foundations required to follow

the thesis. These include basic definitions and theorems from linear algebra (section

2.4), the most basic definitions necessary for a general geometric understanding of

linear inequality systems and pivot based methods (section 2.2) and a short

introduction to matroids and oriented matroids (section 2.7) which will be necessary

to follow chapter 4. The rest of the chapter is devoted to the relevant fundamental

concepts in linear optimization.

2.1 Notation and Problems of Interest

First we fix the notation that we use throughout the thesis and then state the main

problems of interest.

Vectors are denoted by lowercase boldface letters and sets and matrices with uppercase

letters. All vectors are assumed to be column vectors. We indicate that a vector is a

row vector by writing it as the transpose of another (column) vector if it is not clear

from the context. e j denotes the unit vector whose jth component is 1, and all other

components are zeroes, and e denotes the vector of all ones.

Index sets are denoted by upper case caligraphic letters. Given thatM is the row index

set and N the column index set of a matrix A, for I ⊆M and J ⊆N , AIJ denotes

the submatrix of A induced by those rows and columns of A whose indices belong to

I and J , respectively. A.J and AI . mean AMJ and AIN respectively. Likewise, for a

5

vector x indexed by N = {1, . . . ,n}, xJ denotes the subvector of x indexed by J for

any J ⊆N . For a matrix A ∈ Rmxn, Ai. denotes the row of A indexed by i, and A. j or

alternatively a j denote the column of A indexed by j.

The cardinality of a set X is denoted by |X |.

A linear optimization problem (LOP) is about finding the minimum or maximum value

of a linear objective function subject to a set of linear equations and inequalities, called

the constraints of the problem. A linear feasibility problem (LFP) is also a search

problem in which there is no explicit objective function and the goal is to find any

point satisfying all the constraints which are also linear. The LFP model is simply a

specialized formulation of the LOP model.

To be precise, a linear optimization problem (LOP) has the (standard) form

minimize cT x (2.1)

subject to Ax = b, (2.2)

x≥ 0, (2.3)

and, a linear feasibility problem (LFP) has the (standard) form

Ax = b, (2.4)

x≥ 0, (2.5)

where A is an m×n real matrix, c,x ∈ Rn, and b ∈ Rm.

Ax = b is a compact way of representing the m equality constraints

n

∑
j=1

ai jx j = bi, i = 1, . . . ,m

6

in n variables x1,x2, . . . ,xn. In a general linear optimization problem, constraints can

be of≤ or≥ type, variables can be unbounded or they could each have its own bounds,

lower and/or upper. All the possible variations of a linear optimization problem can

be transformed into the standard form, therefore we base all our discussion on the

standard form problems. Furthermore, we can assume without loss of generality that

the constraint matrix A has full row rank m because the feasibility check of the linear

system and the removal of redundant equations can be done simultaneously with the

Gauss-Jordan elimination.

An algorithm which is designed to solve a linear optimization problem can be used to

solve a linear feasibility problem and vice versa. For example, given an optimization

problem we can solve it by solving successive feasibility problems by imposing

weaker constraints on the objective until feasibility is obtained. In this sense the two

problems are equivalent. Although we will be mainly focusing on algorithms

particularly designed for solving the linear feasibility problem, the most fundamental

parts of the theoretical background of linear optimization will be reviewed in this

chapter in order to have a more unified presentation. In the next section we give the

most relevant and insightful results regarding the geometry of linear optimization.

We also study the feasibility problem in an abstract combinatorial setting called

oriented matroids which is a certain system of sign vectors. Simply stated, the

oriented matroid feasibility problem (OMFP) is finding a feasible circuit or cocircuit

in an oriented matroid or its dual, respectively. For the necessary background, see

section 2.7 and for a finite algorithm for finding a feasible circuit or cocircuit, see

chapter 4.

7

2.2 The Geometry of Linear Optimization

Definition 2.1: Let a be a nonzero vector in Rn and let b be a scalar.

a) The set H = {x ∈ Rn : aT x = b} is called a hyperplane.

b) The set H≤ = {x ∈ Rn : aT x≤ b} is called a halfspace.

Definition 2.2: A polyhedron P is a set that can be described in the form

P = {x ∈ Rn : Ax≤ b}

where A is an m×n real matrix and b is a vector in Rm.

Hyperplanes and halfspaces are polyhedra determined by a single constraint.

The feasible set of any linear optimization problem can be described by inequality

constraints of the form Ax≤ b, and is therefore a polyhedron. In particular, a set of the

form F = {x ∈ Rn : Ax = b,x≥ 0} is also a polyhedron.

Given two points x,y ∈ Rn and 0≤ λ ≤ 1, any point of the form z = λx+(1−λ)y is

called a convex combination of x and y.

Definition 2.3: Let P be a polyhedron. A vector x ∈ P is an extreme point or vertex

of P if we cannot find two vectors y,z∈P, both different from x, and a scalar λ ∈ [0,1],

such that x = λy+(1−λ)z.

By this definition, an extreme point of a polyhedron is a point that cannot be expressed

as a convex combination of two other points of the polyhedron.

When the simplex method is used, the search for optimal solutions to linear

8

optimization problems is restricted to the set of vertices of the feasible region.

Although the number of basic feasible solutions (algebraic equivalent of vertices, see

section 2.3) of a linear optimization problem, therefore, the number of vertices of the

corresponding polyhedron is finite, this number can be very large, ruling out a brute

force approach for solving general linear optimization problems.

An inequality type constraint is called active whenever it is satisfied at equality. For

example, a constraint in the form Ai.x ≤ bi is active at the solution vector

x0 if Ai.x0 = bi.

Two vertices x̂ and ŷ of a polyhedron are called adjacent if the line segment joining x̂

and ŷ is an edge of the polyhedron. Two adjacent vertices of the polyhedral feasible

region differ in at least one active constraint.

2.3 Basic Feasible Solutions

In this section we give an algebraic characterization of vertices of the feasible region

of a linear optimization problem. Although a geometric understanding is necessary

and might be more intuitive, an algebraic description is certainly necessary for

computational purposes.

Consider the polyhedron P = {x ∈ Rn : Ax = b,x≥ 0}.

Let AB be an m×m nonsingular submatrix of the matrix A, that is, AB is a basis for

the column space of A. By using the decompositions A = [AB AN] and x = [xB xN],

we can rewrite the equation Ax = b in the form ABxB +ANxN = b. Then, the (general)

solution of the system of linear equations is

xN = u ∈ Rn−m and xB = A−1
B b−A−1

B AN u ∈ Rm.

9

The above general solution expresses the basic variables xB in terms of the nonbasic

variables xN . A particular solution with xN = 0 and xB = A−1
B b is called a basic

solution. If, furthermore, xB ≥ 0 then it is called a basic feasible solution (a BFS). In

the decomposition of x = [xB xN], xB are called the basic variables and xN the

nonbasic variables. Likewise, AB are the basic columns and AN are nonbasic columns

of A. Every different basis of A captures a unique basic solution in the way defined

above but the same basic solution could correspond to multiple bases. Speaking in

terms of vertices; a vertex of P lies at the intersection of at least n hyperplanes, that is,

at least n of the m+n equations and nonnegativity constraints defining P are active at

a vertex of P. If there exists exactly n active constraints at each vertex then the

problem is not degenerate. In other words, if every vertex of an n-polyhedron belongs

to exactly n edges then the associated linear optimization problem is non-degenerate.

Polyhedra corresponding to non-degenerate LOPs are called simple. The real problem

with degeneracy is the prospect of repeating the same sequence (this phenomenon is

called cycling) of bases infinitely many times when solving the problem with a pivot

based algorithm like the simplex method.

The following theorem states the condition for a LOP or LFP to have basic feasible

solutions.

Theorem 2.1: If the system of constraints Ax = b,x≥ 0 has a feasible solution, then

it also has a basic feasible solution.

The simplex method and its variants basically search for a solution in the set of all

BFSs. In the next section we explain pivoting operation with some examples and state

related theorems.

10

2.4 Pivoting

Pivoting is the basic operation used in the algorithms studied in this thesis. Pivoting,

as we are familiar with from elimination methods such as Gauss-Jordan elimination

for solving systems of linear equations, is an operation which transforms a given linear

system into an equivalent one which is ideally easier to solve so that the transformation

takes us closer to solving the system. In the case of linear feasibility problems and

linear optimization problems, a pivot operation will move us from one basic solution

to another, or in geometric terms, from one vertex to a neighboring one.

We define pivoting in a general way using generating tableaux as it was done in [34].

In the cited paper, Klafszky and Terlaky use pivoting as a tool to give constructive

proofs for some fundamental theorems of linear algebra.

Let {a1, . . . ,an} ⊂ Rm be a set of arbitrary real vectors indexed by J = {1, . . . ,n} and

let JG ⊂ J denote a spanning set (or a generating system) for this set of vectors. Any

vector a j, j ∈ J̄G = J \JG can be written as a linear combination of the vectors

indexed by JG as

a j = ∑
i∈JG

ti jai

We can record all the dependence data with respect to a given generating set into a

tableau T as shown in figure 2.1.

It is apparent that the pivot tableau describes how any vector ai for i ∈ J can be

expressed as a linear combination of the vectors in JG. If we restrict the tableau to

represent only vectors outside the generating system (J̄G = J \JG) in terms of the

vectors in the generating system we obtain the short pivot tableau. In the following we

11

a j (j ∈ J)
...

ai · · · ti j · · ·
(i ∈ JG)

...

Figure 2.1: Tableau representation of vectors indexed by J with respect to the
generating system JG.

provide a simple example.

Example 2.1: Consider the following set of vectors {a1, . . . ,a6} ⊂ R3: a1 =

(1,0,0),a2 = (0,1,0),a3 = (0,0,1),a4 = (5,2,−1),a5 = (4,0,1),a6 = (−2,1,3).

JG = {1,2,3,4} is a generating system for this set of vectors. A possible

representation of a5 and a6 with respect to JG are as follows:

a5 = (4,0,1) = 9(1,0,0)+2(0,1,0)− (5,2,−1) = 9a1 +2a2−a4 and

a6 = (−2,1,3) =−2(1,0,0)+1(0,1,0)+3(0,0,1) =−2a1 +a2 +3a3.

Note that neither of these representations is unique. The pivot tableau corresponding

to JG is obtained by collecting the coefficients of each vector’s representation in a

tabular form as described above.

a1 a2 a3 a4 a5 a6

a1 1 0 0 0 9 -2

a2 0 1 0 0 2 1

a3 0 0 1 0 0 3

a4 0 0 0 1 -1 0

If we exclude the first four columns from this tableau we get the short pivot tableau

corresponding to JG.

12

The main computational tools one uses when working with pivot tableaux are the

elementary row operations and pivot operation (which consists of a series of

elementary row operations). A pivot operation (or a pivot step) is specified by

selecting a pivot row r ∈ JG and a pivot column s ∈ J̄G, therefore, at the intersection

of these a pivot element trs, which should be nonzero. A pivot operation where row r

is chosen as the pivot row and column s is chosen as the pivot column updates the

pivot tableau as follows:

Pivot Operation If trs 6= 0 then ar,r ∈ JG can be exchanged with

as,s ∈ J̄G = J \JG in the following way:

(1) t
′
i j = ti j− tr jtis

trs
i 6= s, j 6= r, i ∈ JG′ , j ∈ J̄G′

(2) t
′
s j =

tr j
trs

j 6= r, j ∈ J̄G′

(3) t
′
ir =− tis

trs
i ∈ JG′ \{s}

(4) t
′
sr =

1
trs

whereJ ′G =JG\{r}∪{s} is the index set of the new generating system and the scalars

are t
′
i j in the expressions.

See the following example for an illustration of a pivot step.

Example 2.2: Let us take the pivot tableau of the previous example:

a1 a2 a3 a4 a5 a6

a1 1 0 0 0 9 -2

a2 0 1 0 0 2 1

a3 0 0 1 0 0 3

a4 0 0 0 1 -1 0

13

A pivot operation can be performed on any nonzero entry of this tableau. As an

illustration, let us consider the element on row 3 (pivot row) and column 6 (pivot

column) as the pivot element. The first row operation is to multiply row 3 by 1
3 . This

operation is performed to obtain a 1 in the pivot column and pivot row and gives us

the following modified tableau:

a1 a2 a3 a4 a5 a6

1 0 0 0 4 -2

0 1 0 0 0 1

0 0 1
3 0 1

3 1

0 0 0 1 0 0

The next two row operations are performed to transform the nonzero entries that belong

to the pivot column and not the pivot row to zero. The tableau after the pivot operation

becomes:

a1 a2 a3 a4 a5 a6

a1 1 0 2
3 0 9 0

a2 0 1 −1
3 0 2 0

a6 0 0 1
3 0 0 1

a4 0 0 0 1 -1 0

The pivot operation on (r,s) can be interpreted on the full pivot tableau as follows: the

pivot operation consists of a series of row operations to convert the pivot column into

a unit vector with entry 1 in the pivot row.

14

Definition 2.4: A set of vectors {a1,a2, . . . ,ak} ⊂ Rm is called linearly independent

if c1a1 + c2a2 + . . .+ ckak = 0 has the unique solution c1 = c2 = . . . = ck = 0, where

ci ∈ R for i = 1, . . . ,k.

Definition 2.5: The set of vectors {a1,a2, . . . ,ak} is called a basis of Rm if it is a

minimal generating system for Rm. (It can be shown that this is equivalent to k = m

and a1, . . . ,am are linearly independent)

The relation between generating and independent systems can easily be illustrated

using pivoting. This is the essence of the proof of the Steinitz’s theorem.

Theorem 2.2: (Steinitz) If JF ⊂ J is an independent and JG ⊂ J is a generating

system, then |JF | ≤ |JG|.

In the following we state the orthogonality theorem which is an important tool used in

finiteness proofs of pivot based algorithms. First, we give some necessary definitions.

Definition 2.6: The inner (or dot) product of two vectors a,b ∈ Rm is a real number

defined as

aT b =
m

∑
j=1

a jb j.

Definition 2.7: Two vectors a,b ∈ Rm are called orthogonal if aT b = 0.

Let us call a row of the full pivot tableau corresponding to i ∈ JB as t(i). That is,

15

t(i) =



tik, if k ∈ J̄B

1, if k = i

0, if k ∈ JB, k 6= i.

The vector t j corresponding to a nonbasic index j ∈ J̄B is an extension of a column of

the pivot tableau.

t j =



tk j, if k ∈ J̄B

−1, if k = j

0, if k ∈ J̄B, k 6= j.

Theorem 2.3: (Orthogonality Theorem) Let B
′

and B
′′

be two arbitrary bases of the

finite set of vectors {a j| j ∈ J } ⊂ Rm. Then

t(i)t j = 0 for i ∈ JB′ and j ∈ ¯JB′′

where JB′ and JB′′ are the index sets of B
′
and B

′′
, respectively.

Theorem 2.4: (Matrix Rank) Let A ∈ Rm×n be an arbitrary matrix, where columns

and rows of A are denoted by a j, j = 1, . . . ,n and a(i), i = 1, . . . ,m, respectively. Then

rank(a1, . . . ,an) = rank(a(1), . . . ,a(m)).

The two theorems that follow state early results related with the solvability of linear

systems.

Theorem 2.5: (Rouché-Capelli Lemma) Ax = b is solvable if and only if rank(A) =

rank([A,b]).

16

Theorem 2.6: (Rouché-Kronecker-Capelli) Let a matrix A ∈ Rm×n and b ∈ Rm be

given. Then, exactly one of the following alternatives holds:

a) Ax = b has a solution, or

b) yT A = 0, yT b = 1 has a solution.

Lemma 2.1: (Farkas) Let a matrix A ∈Rm×n and b ∈Rm be given. Then, exactly one

of the following alternatives holds:

a) the system Ax = b,x≥ 0 has a solution, or

b) the system yT A≤ 0,yT b = 1 has a solution.

Proof. (first part) Suppose on the contrary that both systems have a solution and let

the solution pair be (x,y). Then we have yT Ax = yT b = 1 which cannot hold since

yT A≤ 0 and x≥ 0.

To show that at least one of the alternative systems always has a solution, we define

an algorithm that terminates only if it solves one of the problems. Showing that this

algorithm is finite completes the proof.

Theorem 2.7: (Farkas-Minty) Let the vectors a1,a2, . . . ,an,b ∈ Rm be given. Then

from the following two tableaux, where B′ and B′′ are two different bases of

{a1,a2, . . . ,an,b,e1,e2, . . . ,em}, exactly one can occur.

...

b Ī ′BJ̄ ′B

J ′B

I ′B 0
0

0

17

0 0· · ·

0IB′′

b

JB′′

J̄B′′ ĪB′′

2.5 Duality

To every linear optimization problem corresponds another linear optimization

problem called its dual. Duality captures the symmetry inherent in a linear

optimization problem and provides important insights about its solvability. Let us

consider a linear optimization problem in standard form and call it the primal problem

(P-LOP).

minimize cT x (2.6)

subject to Ax = b, (2.7)

x≥ 0 (2.8)

The solution vector x which should be nonnegative and should be transformed to b by

the matrix A (feasibility requirements), is expected to be a minimizer of cT x

(optimality requirement). The dual problem is written with the aim of finding the best

lower bound for the primal problem’s objective function value cT x, and is itself a

linear optimization problem. The dual problem for (2.6) - (2.8) can be constructed as

follows: Multiplying both sides of primal constraints Ax = b on the left by yT , we

have yT Ax = yT b. Since we would like to have a lower bound for cT x, imposing the

constraints yT A ≤ c and using the nonnegativity constraints x ≥ 0 of the primal

problem, we obtain yT Ax = yT b ≤ cT x. Finally, yT b is maximized to find as good a

lower bound for cT x as possible. The dual problem constructed in this way (D-LOP)

18

has the following precise form:

maximize yT b (2.9)

subject to yT A≤ c (2.10)

In general, the dual of a minimization problem is a maximization problem and vice

versa. m primal constraints (2.7) are each associated with one dual variable and each

of n dual constraints (2.10) with one primal variable.

There is a well developed body of theory around the concept of duality and the

symmetric structure of the primal-dual pairs of problems are well exploited in the

process of solving these problems, e.g., in developing pivot-based algorithms. Now

we present important duality results. The sets of primal feasible and dual feasible

solutions are,

P ={x |Ax = b, x≥ 0}

D={y | yT A≤ c},

and the sets of respective optimal solutions are,

P∗ ={x∗ ∈ P | cT x∗ ≤ cT x ∀ x ∈ P}

D∗={y∗ ∈ D | y∗T b≥ yT b ∀ y ∈ D},

Theorem 2.8: (Weak Duality Theorem) For every feasible solution x ∈ P and every

feasible solution y ∈ D the inequality cT x≥ bT y holds.

Proof of the weak duality theorem is direct by construction of the dual problem.

Theorem 2.9: (Strong Duality Theorem) For any primal-dual pair of linear

19

optimization problems at least one of the following holds:

1. P = /0,

2. D = /0,

3. if P 6= /0 and D 6= /0, then P∗ 6= /0 and D∗ 6= /0 and for any pair of optimal solutions

x∗ ∈ P∗ and y∗ ∈ D∗, cT x∗ = y∗T b.

The main theorem of linear optimization duality, relating a primal problem to its dual

can be seen as a statement about sign patterns of vectors in complementary subspaces

of Rn. This observation, first made by R. T. Rockafellar in the late sixties, led to the

introduction of certain systems of sign vectors, called oriented matroids. Indeed, when

oriented matroids came into being in the early seventies, one of the main issues was to

study the fundamental principles underlying duality in this abstract setting [3].

2.6 The Simplex Method

Starting from its introduction by Dantzig in 1947, the simplex method has always

been one of the main solution methods for linear optimization problems. From a

theoretical point of view the simplex method is not really promising because its worst

case computational complexity is shown to be exponential in the dimensions of the

problem. The reasons of practical effectiveness of the simplex method despite its

theoretical inefficiency has been studied as a research problem in its own right. The

fact that the set of problems on which the simplex method executes exponentially

many steps are not representative of the real-life problems usually encountered in

practice and that these pathological problems are rather manufactured for the sole

purpose of disproving polynomiality of a simplex pivot rule [see, e.g. Klee and Minty,

1972] provides a clue but does not prove anything about practical viability. For that,

extensive studies have been performed which show that the average case complexity

of the simplex method is a linear function of m [11]. These studies back up the

20

practical efficiency of the method.

With so many variants developed since its inception, "simplex method" is now used

as an umbrella term that covers pivoting methods which behave in simplex-like ways.

More precisely, a pivot method is called a simplex method if it preserves the (primal

or dual) feasibility of basic solutions. Here, we present the primal simplex method for

solving a primal linear optimization problem in standard form (P-LOP).

Primal simplex algorithm

Input data: Pivot tableau TB corresponding to a primal feasible basis AB
Begin
I− := {i ∈ IN | c̄i < 0};
While (I− 6= /0) do

Let q ∈ I− be arbitrary; (entering variable)
If (tq ≤ 0) then STOP: D = /0 (dual infeasibility)
Else

Let θ := min{ xi
tiq

: i ∈ IB and tiq > 0}; (ratio test)
Let p ∈ IB be arbitrary such that xp

tpq
= θ ; (leaving variable)

Pivoting: IB := IB∪{q}\{p};
Determine the new index set I− corresponding to the updated basis;

Optimal solution is found.
End

Figure 2.2: The primal simplex algorithm

The primal simplex method terminates with an optimal solution or a certificate of dual

infeasibility (primal unboundedness) if it does not cycle.

2.7 Matroids and Oriented Matroids

In this section we give some basic definitions and examples necessary to understand

the treatment of linear feasibility problem in oriented matroids in chapter 4. Some

21

familiarity with matroids is necessary in order to understand oriented matroids.

Therefore we give basic examples for both concepts.

Let E = {e1, ...,en} be a finite set and P(E) denote the power set of E. Furthermore,

let I ⊂ P(E).

Definition 2.8: The sets I ∈ I are called independent sets and M = (E,I) is a matroid

if the following axioms are satisfied:

1. /0 ∈ I .

2. If I1 ∈ I and I2 ⊂ I1, then I2 ∈ I .

3. If I1, I2 ∈ I and |I1|> |I2|, then there exists e ∈ I1\I2, such that I2∪{e} ∈ I .

The set E is called the ground set of the matroid M.

A subset of E that is not in I is called dependent when I is a collection of independent

sets. The family of dependent sets is denoted by D. We next introduce the concept of

a circuit.

Definition 2.9: Let M = (E,I) be a matroid. The set C ⊂ E is called a circuit, if

C /∈ I , but I ∈ I holds for all I (C. That is, a minimal (with respect to set inclusion)

dependent set in a matroid M is called a circuit of M.

Example 2.3: Let E = {1,2,3,4,5,6} and

I = {X ⊂E : |X | ≤ 4}\{{1,2,3,4},{1,2,5,6},{3,4,5,6}}. Thus the set of dependent

sets for this matroid is

D = {{1,2,3,4},{1,2,5,6},{3,4,5,6}} ∪ {X ⊆ E : |X | ≥ 5}. Then the circuits are

22

{1,2,3,4},{3,4,5,6}, and {1,2,5,6}.

Let us denote a set of circuits defined on E by C. The following is an alternative

definition of a matroid based on circuits.

Definition 2.10: The pair M =(E,C) is a matroid if the following axioms are satisfied:

1. For all C1,C2 ∈ C and C1 ⊂C2, C1 =C2 follows.

2. For all C1,C2 ∈ C and ei ∈ C1\C2, e j ∈ C1 ∩C2, there exists C3 ∈ C, such that

ei ∈C3 ⊂ (C1∪C2)\{e j}.

The independent sets of the matroid M = (E,C) are those sets I ⊂ E which do not

contain any circuits as subsets. A maximal (with respect to set inclusion) independent

set in M is called a basis of M. There is a third way to define a matroid using bases.

Definition 2.11: The pair M = (E,B) is called a matroid and the sets B ∈ B are called

bases of M if the following axioms are satisfied:

1. For all B1,B2 ∈ B the cardinality of B1 and that of B2 are equal.

2. For all B1,B2 ∈ B and ei ∈ B1 there exists e j ∈ B2 such that (B1\{ei})∪{e j} ∈ B.

Example 2.4: It is easy to check that

B = { {1,2,3,5}, {1,2,3,6}, {1,2,4,5},{1,2,4,6}, {1,3,4,5}, {1,3,4,6},

{1,3,5,6}, {1,4,5,6}, {2,3,4,5}, {2,3,4,6}, {2,3,5,6}, {2,4,5,6} }

is the set of bases of the matroid defined in the previous example.

It is known that all given definitions of a matroid are equivalent [48].

It is easy to prove that M∗ = (E,B∗) is a matroid, where

23

B∗ = {B∗ : B∗ = E\B for all B ∈ B}.

The matroid M∗ = (E,B∗) is called the dual of M = (E,B). The circuits of the dual

matroid are called cocircuits. The cardinality of any B ∈ B is called the rank of the

matroid.

A signed set in E is a pair X = (X+,X−), with X+ ⊆ E,X− ⊆ E, and X+∩X− = /0.

A pair X = (X+,X−) is called a signed set, if X+,X− ⊂ E and X+ ∩X− = /0. We

use the following notation X̄ = X+ ∪ X− and −X = ((−X)+,(−X)−) = (X−,X+).

So, (X+,X−) is a partition of X̄ into ts positive and negative elements. Furthermore,

Y = ±X means that either Y = X or Y = −X . If O = {X1, ...,Xp} denotes a family of

signed sets on E, then Ō = {X̄1, ..., X̄p} denotes the corresponding family of not signed

sets on E. Bland studied the simplex method in the context of oriented matroids in [8].

We now introduce the concept of oriented matroids based on this paper and also the

works by Folkman and Lawrence [23] and Bland and Las Vergnas [10]. Informally,

an oriented matroid is a matroid where in addition every basis is equipped with an

orientation.

Definition 2.12: Let O and O∗ be families of signed sets defined on E. The pairs

M = (E,O) and M∗ = (E,O∗) are called dual pairs of oriented matroids if the

following four conditions are satisfied:

1. Ō and Ō∗ are collections of circuits and cocircuits of a dual pair of matroids

M̄ = (E, Ō) and M̄∗ = (E, Ō∗).

2. X ∈ O⇒−X ∈ O and Y ∈ O∗⇒−Y ∈ O∗.

3. X1,X2 ∈ O and X̄1 = X̄2⇒ X1 =±X2, Y1,Y2 ∈ O∗ and Ȳ1 = Ȳ2⇒ Y1 =±Y2.

4. X ∈ O,Y ∈ O∗ and X̄ ∩ Ȳ 6= /0 imply

24

(X+∩Y+)∪ (X−∩Y−) 6= /0 and (X+∩Y−)∪ (X−∩Y+) 6= /0.

Condition 4 is called orthogonality condition.

Example 2.5: Let us introduce an oriented matroid M = (E,O) with the sets of signed

circuits and signed cocircuits as follows

O = {±(+,+,−,−,0,0),±(+,+,0,0,−,−),±(0,0,+,+,−,−)}

and

O∗ = {±(0,0,0,0,+,−),±(0,0,+,−,0,0),±(0,+,0,+,0,+),±(0,+,0,+,+,0),

± (0,+,+,0,0,+),±(0,+,+,0,+,0),±(+,0,0,+,0,+),±(+,0,0,+,+,0),

± (+,0,+,0,0,+),±(+,0,+,0,+,0),±(+,−,0,0,0,0)}.

The underlying matroid of M = (E,O) is the matroid of Examples 2.3 and 2.4. Here a

+(−) sign in ith position of a circuit X (cocircuit Y) indicates that

ei ∈ X+(ei ∈ X−) (ei ∈ Y+(ei ∈ Y−)).

For further reading on matroids and oriented matroids we suggest the books by Gordon

and McNulty [29] and Bjorner et. al. [7].

25

Chapter 3

FEASIBILITY PROBLEM OF LINEAR OPTIMIZATION

Feasibility problem of linear optimization or the linear feasibility problem is

concerned with finding any feasible solution given a set of linear inequalities. Linear

optimization and linear feasibility problems can be regarded as essentially the same

problems because they can be reduced to one another [13, 15, 37]. So, a feasibility

problem is not particularly easier than an optimization problem, and developing

efficient methods for solving linear feasibility problems is as essential as developing

methods for solving linear optimization problems. There are three main aims of this

chapter. Firstly, we present a monotone scheme pivot algorithm for solving the linear

feasibility problem (LFP) and prove its finiteness. The algorithm uses a similar ratio

rule to Monotonic Build Up pivot rule developed by Anstreicher and Terlaky [1] in

determining the variable that will enter the basis. Selecting pivot positions under the

guidance of this ratio rule guarantees the monotonic increase of the feasibility status

of the problem at each step. By monotonic increase of the feasibility status we mean

either an increase in the number of (primal) feasible variables or an increase in the

value of the driving variable with no change in the set of (primal) feasible variables.

Secondly, we analyze the presented algorithm and compute an upper bound for its

computational complexity under the assumption that the problem is either

nondegenerate or if degenerate bases occur during the solution process they are of the

weak degenerate type. In other words, we assume that the bases visited by the

algorithm are not strongly degenerate. Strong degeneracy, if it happens, calls for extra

26

measures be taken so that cycling will be prevented.

A method developed for solving the feasibility problem is expected, naturally, to

return a point of the feasibility set or report that the problem is infeasible if the

feasibility set turns out to be empty. If what we are trying to solve is a real-world

problem by modeling it as a linear feasibility problem, merely reporting an

infeasibility status is often not satisfactory because there remains a real problem to be

solved behind the model. This point brings us to the third goal of the current chapter,

which is investigating the cause of infeasibility.

The main results in this chapter are based on the published papers [5] and [6].

Linear feasibility problem in standard form is

Ax = b, x≥ 0, (3.1)

where A ∈ Rm×n and x,b, and 0 are vectors of conforming sizes. We denote the index

set of all variables by I .

3.1 Monotonic Build Up Simplex Pivot Rule for LFP

Anstreicher and Terlaky in [1] define a pivot based algorithm they call Monotonic

Build Up (MBU) Simplex algorithm and study its properties. MBU Simplex algorithm

solves a linear programming problem starting with a primal feasible basis and builds up

the feasibility of the dual variables monotonically while preserving primal feasibility.

The algorithm may visit basic solutions which are outside the feasible region, that

is, basic solutions which are neither primal nor dual feasible, but always returns to a

primal feasible basis with an increased number of dual feasible variables. In this way,

an optimal solution (if one exists), given by a basis which is both primal and dual

27

feasible, is achieved.

In this section we present a version of MBU to solve the linear feasibility problem

3.1 and analyze the resulting algorithm under a weak degeneracy assumption. The

proposed algorithm possesses similar properties with Anstreicher and Terlaky’s MBU

in the way that it has the number of primal feasible variables increasing monotonically

in the process due to a similar pivot selection rule.

For a given basis B, the set of basic variables IB can be partitioned based on their

values as follows:

IB = I+B ∪I0
B∪I−B ,

where

I+B = {i ∈ IB : x̄i > 0} , I0
B = {i ∈ IB : x̄i = 0} and I−B = {i ∈ IB : x̄i < 0} .

A specific variable xi is feasible if i ∈ I⊕B where I⊕B = I+B ∪I0
B. From the set of basic

feasible variables corresponding to a given basis, let us call the ones which are equal

to zero as degenerate basic variables.

A sample basic tableau according to the above partition is shown in Figure 3.1, where

each symbol (−,0,+) represents either a right hand side value of the appropriate sign

or zero, or, a possible pivot position of the appropriate sign.

In most pivot algorithms, pivots are made only on positive elements in primal feasible

rows (like the simplex algorithm), and only on negative elements in primal infeasible

rows (like the dual simplex algorithm), or the two strategies are combined (like the

28

IN b

i −
−
.
.
.
−

}
I−B

j
0
.
.
.
0

}
I0

B

k +
+

.

.

.
+

}
I+B

Figure 3.1: Partition of a basis.

criss-cross method). To conceptualize this, Fukuda and Terlaky [27, 28] have defined

admissible pivot operations. Our algorithm carries out more general pivot operations

and for this reason we will define generalized admissible pivots. A pivot on a positive

value in the row of a strictly feasible (positive) variable can be viewed as the primal

feasibility equivalent of the dual side admissible pivots. While handling degeneracy,

our algorithm makes pivots on both negative and positive values in degenerate rows and

hence the following definition of generalized admissible pivots contains those cases as

well.

Definition 3.1: For a given basis B and pivot tableau T , a pivot element ti j is called a

generalized admissible pivot if

1. i ∈ I−B and ti j < 0, or

2. i ∈ I⊕B and ti j > 0, or

3. i ∈ I0
B and ti j 6= 0.

Before formulating our algorithm which uses generalized admissible pivots, we need

to refine the concept of degeneracy. For s ∈ IN let us introduce the set

Ks =
{

i ∈ I0
B : tis > 0

}
.

29

The set Ks isolates those degenerate basic variables whose tableau entries for some

specific column s are positive.

Definition 3.2: A basis B is called degenerate if the corresponding basic solution

x̄IB = B−1b has at least one zero component, and it is called non-degenerate

otherwise.

The degeneracy concept defined above is often referred as primal degeneracy and

analogously primal non-degeneracy. The phenomenon of degeneracy is a local

property depending on the actual basis. A basis is degenerate if and only if the right

hand side vector is the linear combination of less number of columns of the basis

matrix than its dimension. We distinguish between two kinds of degeneracies.

Definition 3.3: A degenerate basis B is called weakly degenerate with respect to index

s ∈ IN if Ks = /0, and strongly degenerate with respect to index s if Ks 6= /0.

Let us assume that for a given basis B, we have chosen the index s as a column of a

generalized admissible pivot in a non-degenerate row. Observe that such a pivot does

not make any feasible variable infeasible if and only if Ks = /0, i.e., if and only if the

basis B is weakly degenerate with respect to index s. Such a weakly degenerate tableau

is shown in Figure 3.2.

Definition 3.4: Let a basis B and an index r ∈ I−B be given. We call a pivot operation

on ti j an xr increasing pivot if

1. the pivot made on ti j is a generalized admissible pivot,

2. I⊕B ⊆ I⊕B′ , and

30

s
−
.
.
.
−

}
I−B

	
.
.
.
	

0
.
.
.
0

}
I0

B

+

.

.

.
+

}
I+B

Figure 3.2: A weakly degenerate pivot tableau.

3. x̂r > x̄r holds,

where B′ = B∪{ j}−{i} denotes the new basis, and x̂ denotes the new basic solution.

Our aim is to formulate an algorithm based on xr increasing pivots. To the best of our

knowledge, the only such pivot algorithm for feasibility (or general linear

programming) problems known from the literature is the dual version of the algorithm

of Anstreicher and Terlaky [1] (which starts from a dual feasible basic solution).

Unfortunately, there are basic tableaux where no xr increasing pivot exists, as shown

by the example of Figure 3.3. This problem has a feasible solution of x1 = x2 = 0,x3 =

x4 = 1, but has no increasing pivot for the only infeasible row.

x3 x4
x1 −1 0 −1
x2 1 −1 0

Figure 3.3: A strongly degenerate tableau with no xr increasing pivot, where r = 1.

This pathological example shows that one may expect that there is no such algorithm

that performs only xr increasing pivots since the only possible non-degenerate pivot

would make the variable x2 infeasible.

31

Our algorithm follows an intuitive path in order to achieve monotonicity. Starting with

a given or constructed basic solution, the algorithm first chooses an infeasible variable

xr and designates it as the driving variable. The aim of the subsequent iterations is

to reduce the infeasibility of the driving variable by means of pivot operations we

aptly call xr increasing pivots, and to eventually change the status of xr from infeasible

to feasible. We will show that this can always be done if the pivot tableau is non-

degenerate or weakly degenerate with respect to the pivot column. The algorithm then

selects another infeasible variable as the driving variable and applies a sequence of

pivot operations until its status becomes feasible. The procedure continues until there

is no more infeasible variable or the problem is detected to be infeasible.

The pseudocode of our algorithm is given in Figure 3.4. Note that the algorithm

outputs a feasible solution or a message that no feasible solution exists, that is, the

corresponding polyhedron is empty. The index set J used in the algorithm represents

the set of basic variables. Therefore, J contains the m row indices - by associating

the basic variable appearing in each constraint to the corresponding row (there is

precisely one basic variable in every constraint)- or, in other words, indices of the m

basic variables.

In case of strongly degenerate tableaux, the algorithm uses a recursive anti-degeneracy

method we call DegProc. Naturally, degeneracy could be handled by using classical

approaches known from the literature (like minimal index rule, lexicographic ordering,

etc.). Our anti-degeneracy method is different from those known in the literature and

will ensure finiteness too. Handling strong degeneracy using DegProc is explained in

Section 3.3.

32

MBU type simplex algorithm for feasibility problems

Input data: A ∈ Rm×n,b ∈ Rm, basis B;
Begin

T := B−1A, b̄ := B−1b, I−B := {i ∈ J | b̄i < 0}
While (I−B 6= /0) do

Let r ∈ I−B be arbitrary (driving variable), rDone := f alse
While (rDone = f alse) do
J −r := { j ∈ IN | tr j < 0}
If (J −r = /0) then

no feasible solution exists, Return
Endif
Let s ∈ J −r be arbitrary, Ks := {i ∈ I0

B | tis > 0}
If (Ks 6= /0) then
(T, l) = DegProc(T,I0

B,r)
If (l ∈ IN) then

s := l
else

no feasible solution exists, Return
Endif

Endif
θ1 := b̄r

trs
, θ2 := min

{
b̄k
tks
| k ∈ I⊕B , tks > 0

}
If (θ1 ≤ θ2) then

pivot on trs, rDone := true
else

q := argmin
{

b̄k
tks
| k ∈ I+B , tks > 0

}
, pivot on tqs

Endif
Endwhile
I−B := {i | b̄i < 0}

Endwhile
Return: x̄ is a feasible solution

End

Figure 3.4: The MBU type simplex algorithm

In order to find an xr increasing pivot, a ratio test is performed in the selected column.

The result of this test determines whether the driving variable can be made feasible in

one pivot step or more than one xr increasing pivot steps will be necessary.

Two ratios which take part in the test are defined by

33

θ1 :=
b̄r

trs
, and θ2 := min

{
b̄k

tks
| k ∈ I⊕B , tks > 0

}
.

From their definition, it is easy to see that θ1 > 0 and θ2 ≥ 0. Furthermore, if the basis

is non-degenerate or weakly degenerate, then θ2 > 0 holds. We use the convention that

the minimum taken over the empty set is infinity. The aim of the inner cycle of the

algorithm is to make the driving variable feasible.

We prove that if the given basis B is non-degenerate or weakly degenerate, then the

algorithm makes only xr increasing pivots. First we investigate the case when the

driving variable leaves the basis.

Proposition 3.1: For a given basis B, let r ∈ I−B and q ∈ I⊕B , tqs > 0. Suppose that

b̄q

tqs
= θ2 ≥ θ1 =

b̄r

trs
> 0,

where b̄r < 0, trs < 0, b̄q ≥ 0 and tqs > 0. In this case a pivot is carried out on trs. Let

us denote the new basis by B′, then

I⊕B ∪{s} ⊆ I⊕B′

holds, thus

∣∣I⊕B′∣∣> ∣∣I⊕B ∣∣ .
Note that θ2 > 0 also implies q ∈ I+B .

Proof. When trs is the pivot position, the variable xr leaves the basis, while variable

xs enters it. Let us denote the new basic solution (thus the new right hand side of the

pivot tableau) by b′. We distinguish between the following cases.

a) For the index s the right hand side becomes b′s =
b̄r
trs

= θ1 > 0, making the driving

34

variable x′r = 0 feasible.

b) For i∈ I+B , i 6= s we have that b′i = b̄i− tisb̄r
trs

. If tis≤ 0 then by using b̄i≥ 0, b̄r < 0

and trs < 0 we have b′i > 0, because we add a nonnegative number to an already

positive b̄i. Otherwise if tis > 0 then by b′i = tis
(

b̄i
tis
− b̄r

trs

)
using the condition

b̄i
tis
≥ θ2 ≥ θ1 =

b̄r
trs

> 0 we get that b′i ≥ 0.

c) For i ∈ I0
B we have b̄i = 0, so b′i =− tisb̄r

trs
, and by θ2 > 0 either I0

B = /0 or tis ≤ 0,

thus b′i =− tisb̄r
trs
≥ 0.

As we have seen, no feasible basic variable turns infeasible, while the infeasible driving

variable xr leaves the basis, thus becoming feasible, and the entering variable xs enters

at a feasible level, as well. It follows that
∣∣I⊕B′∣∣> ∣∣I⊕B ∣∣.

In the next proposition we investigate the case when a pivot is made outside the row

of the driving variable. If the basis is non-degenerate or weakly degenerate for the

entering nonbasic variable, the pivot made by the algorithm is still xr increasing.

Proposition 3.2: In a given iteration of the algorithm, for the actual basis B let

r ∈ I−B and q ∈ I⊕B , tqs > 0. Suppose that

0≤ b̄q

tqs
= θ2 < θ1 =

b̄r

trs
,

where b̄r < 0, trs < 0, b̄q ≥ 0 and tqs > 0. In this case a pivot is carried out on tqs. Let

us denote the new basis by B′. Then I⊕B \{q} ⊆ I⊕B′\{s} and 0 > b′r ≥ b̄r. Furthermore,

if θ2 > 0, then 0 > b′r > b̄r holds.

Proof. Using the notations introduced in the proof of Proposition 3.1, one can see

that due to the ratio test, for any index i ∈ I⊕B we have i ∈ I⊕B′ if i 6= q, as proved in

Proposition 3.1.

35

Furthermore, b′s =
b̄q
tqs
≥ 0, so s ∈ I⊕B′ thus

I⊕B \{q} ⊆ I⊕B′\{s}

proving that the already feasible variables remain feasible. For the index of the

leading variable b′r = b̄r − trsb̄q
tqs

, where − trsb̄q
tqs
≥ 0, using that trs < 0, tqs > 0 and

b̄q ≥ 0. By the condition θ2 < θ1 we have 0≥ trsb̄q
tqs

> b̄r thus

0 > b′r = b̄r−
trsb̄q

tqs
≥ b̄r.

If the basis is non-degenerate, or weakly degenerate, then θ2 > 0 holds by definition,

so b̄q
tqs

> 0, thus −trs
b̄q
tqs

> 0, and

0 > b′r = b̄r− trs
b̄q

tqs
> b̄r,

completing the proof.

Geometrically, Proposition 3.2 tells us that the new solution is closer to the

nonnegativity constraint of the driving variable.

Summarizing Propositions 3.1 and 3.2 we obtain the following result.

Corollary 3.1: If the MBU type simplex algorithm performs only non-degenerate or

weakly degenerate pivots, then the algorithm makes only xr increasing pivots, and thus

it is finite.

Proof. The number of different bases is finite; therefore, it suffices to prove that the

algorithm is not cycling, or in other words, that a basis may not occur twice. Since

we assumed that the algorithm does not visit strongly degenerate bases, it follows

from Propositions 3.1 and 3.2 that at each iteration, the algorithm makes xr increasing

pivots. In each step a new variable becomes feasible, or the value of the driving variable

36

increases, thus the same basis may not return.

Propositions 3.1 and 3.2 present important results for our MBU type simplex

algorithm. Anstreicher and Terlaky in their paper [1] have proved similar results for

their primal algorithm for linear programming problems.

In the next section we give a lower bound on the increment of the value of the driving

variable, and consequently we provide an upper bound on the iteration number of the

algorithm. Most classical and primal MBU simplex algorithms can be analyzed in a

similar way to what is presented in the next section.

3.2 Complexity Analysis

In this section we first assume that our algorithm visits only non-degenerate or weakly

degenerate tableaux. Degeneracy is handled in Section 3.3.

By the definition of the pivot tableau and the basic solution, for the sth column of the

tableau we have ts = B−1as and b̄ = B−1b; thus the vectors ts and b̄ can be considered

as the unique solutions of the linear equations Bu = as and Bv = b. For any index

i ∈ IB, Cramer’s rule yields

tis =
det(Bis)

det(B)
and b̄i =

det(Bi)

det(B)
,

where matrix Bis ∈ Rm×m is the modification of the regular basic matrix B such that

its ith column is replaced by vector as, and similarly matrix Bi is obtained from B by

replacing its ith column by vector b. For an xr increasing pivot that does not make the

driving variable feasible, we have

b′r = b̄r−
trsb̄q

tqs
=

det(Br)

det(B)
−

det(Brs)
det(B)

det(Bq)
det(B)

det(Bqs)
det(B)

=
det(Br)

det(B)
− det(Brs)det(Bq)

det(Bqs)det(B)
,

where

37

−det(Brs)

det(Bqs)

det(Bq)

det(B)
> 0

holds by the fact that the basis is not strongly degenerate, as seen in Proposition 3.2.

Let

∆A := min

−det(Brs)det(Bq)

det(Bqs)det(B)
:

B is a regular submatrix of A, and

det(Brs)
det(B) < 0, det(Bq)

det(B) > 0, det(Bqs)
det(B) > 0


be the minimal increase of the driving variable’s value. Assuming that in all pivot

transformations of the tableau θ2 > 0 holds, we have that ∆A > 0 is a finite number

and

b′r = b̄r−
trsb̄q

tqs
=

det(Br)

det(B)
− det(Brs)det(Bq)

det(Bqs)det(B)
≥ det(Br)

det(B)
+∆A

thus an xr increasing pivot either makes the leading variable feasible, or increases its

value by at least ∆A. We now bound the maximum absolute value that an infeasible

variable can take during the algorithm. Let

∆max := max

−det(Br)

det(B)
:

sgn(det(Br)) =−sgn(det(B)),

B ∈ Rm×m is a regular submatrix of A


be the maximal possible RHS value determined by the help of Cramer’s rule. If there

is any basis for which there is a negative right hand side value, then the number ∆max

is positive and finite. Let K ∈ Z be such that K =
⌈

∆max
∆A

⌉
, thus K ∈ N.

We are now ready to bound the number of pivots necessary to make the driving variable

feasible.

Proposition 3.3: Assume that the algorithm visits only non-degenerate or weakly

degenerate pivot tableaux. Let r ∈ I−B be the index of the driving variable. There can

be at most K pivot operations before the driving variable becomes feasible.

Proof. By the definition, the value of the driving variable cannot be smaller than

38

−∆max. The value of the driving variable increases by at least ∆A in every iteration;

thus, there cannot be more than K iterations before the next xr increasing pivot makes

the driving variable feasible.

We are now ready to prove the bound on the complexity of the algorithm.

Theorem 3.1: Consider the feasibility problem (3.1). Assume that the MBU type

pivot algorithm visits only non-degenerate or weakly degenerate pivot tableaux in

solving (3.1). Then the algorithm is finite, and there can be at most mK pivots.

Proof. By Proposition 3.3, there can be at most K pivot operations before the

algorithm reaches feasibility in the row of the driving variable or proves infeasibility.

The number of driving variables during the algorithm is bounded by the number of

rows, because by Propositions 3.1 and 3.2 the number of infeasible variables

decreases monotonically; thus, the algorithm may not cycle, and there can be at most

mK pivots before solving the problem, or proving that it is infeasible.

We have proved under the non-degeneracy assumption that the algorithm is finite, and

we can bound the required number of pivot operations. This upper bound is generally

not tight.

By Corollary 3.1, none of the bases can be visited twice by our MBU type algorithm.

Therefore, the number of pivot iterations is at most

min
{

mK,

(
n
m

)}
.

Furthermore, if we assume that A ∈ Zm×n and b ∈ Zm, then it is easy to show that the

following inequality

39

K =

⌈
∆max

∆A

⌉
=

⌈
det(Br)

det(B)
det(B′qs)det(B′)
det(B′rs)det(B′q)

⌉
≤ |det(B∗)|3

holds, where B∗ ∈ Zm×m is such a submatrix of the matrix [Ab] which has, in absolute

value, maximal determinant. Denoting by L = L(A,b), the classical bit length

description of the matrix A and vector b, and applying the well known Hadamard

inequality, we can derive that

K =

⌈
∆max

∆A

⌉
≤ |det(B∗)|3 ≤ 23L.

This shows once more that we do not know a good (polynomial size) bound for the

constant K for an arbitrary feasibility problem. However, the proof of the existence of

such a constant K is new. Although the ratio of ∆max to ∆A can be very large in general,

the constructed bound is an incentive to search for bounds for classes of problems for

which this ratio is small.

3.3 Handling Strong Degeneracy

In this section, we discuss the DegProc, the procedure handling degeneracy in our

MBU type algorithm presented in Figure 3.4.

Algorithmically, degeneracy is often handled by perturbation or index selection rules

(lexicographic, minimal index). This is also possible for MBU type simplex algorithm,

but we follow a different approach to handle problems caused by degeneracy.

The key issue of the analysis presented in the previous section was that the tableaux

visited by the algorithm were all non-degenerate or weakly degenerate. The procedure

for handling degeneracy selects pivot positions based on the row of the driving variable

and the degenerate submatrix (consisting of all degenerate rows). These pivots do

not change the current basic solution, but transform the basic tableau in such a way

40

that it either becomes primal infeasible, or there will be at least one column that has

negative entry in the row of the driving variable, and is weakly degenerate. During

the solution process of the primal (dual) degenerate subproblem, we only make pivots

in the degenerate rows. Furthermore, for solving the subproblems we use the dual

(primal) version of our MBU type simplex algorithm. This way, the solution process

of the subproblems carries the same already shown basic properties over the iterations

as the MBU type simplex algorithm.

Primal Dual⊕ Primal	
Ax = b yT A = cT Ax = b

x ≥ 0 y ≥ 0 x ≤ 0

strongly 0 0

degenerate +
... + − +

...
0 0

− − − 0 . . . 0 − +

⊕ 	
feasible ⊕ 	

...
...

⊕ ⊕ ⊕ . . . ⊕ 	
↙↗ ↗↘↙↖

	
infeasible ⊕ . . . ⊕ − ... ⊕ . . . ⊕ +

	
−

↙↗ ↗↘↙↖
weakly 	 0 	 0

degenerate
...

... ⊕ . . . ⊕ +
...

...
	 0 	 0
− − 0 . . . 0 − − +

Figure 3.5: Key tableaux of the algorithm.

The anti-degeneracy method described in the sequel uses a recursive structure. We use

the tableaux illustrated in Figure 3.5. Suppose that a strongly degenerate tableau of the

41

primal problem is obtained. In this case, the algorithm defines a so called dual side

subproblem Dual⊕. The tableau of this subproblem consists of all the degenerate rows

without the primal right hand side and the row of the driving variable, as dual right

hand side. Constructed this way, the dual side subproblem Dual⊕ has the following

form:

yT A = cT , y≥ 0

where the size of y is |I0
B|. Obviously, the size of the subproblem is smaller than the

size of the original primal problem. Now suppose that the dual subproblem is solved. If

the dual subproblem is feasible, its structure is the same as the structure of an infeasible

tableau of the original primal problem corresponding to the degenerate rows and the

driving variable; while if the dual subproblem is infeasible, its structure is the same as

the structure of a weakly degenerate tableau of the original primal problem, restricted

again to the degenerate rows and the row of the driving variable.

A similar interrelated connection may be observed between problems Dual⊕ and

Primal	, as illustrated in Figure 3.5. The problem Primal	 is an analogous version of

the original problem, where all the variables are required to be non-positive, instead

of being non-negative. The accurate definition for the analogous algorithm will be

given in Figure 3.6, while the connections used by the recursions will be illustrated in

Figure 3.9.

We will use the dual version of our MBU type simplex algorithm to solve the dual

subproblems as the two algorithms have symmetric descriptions. Any pivot method

could as well be used to solve the subproblems.

We prove that while solving the degenerate subproblem, the actual basic solution of

42

the algorithm does not change.

Proposition 3.4: Let a degenerate pivot tableau T ∈ Rm×n be given, and denote the

index set of degenerate rows by D = I0
B. Then any pivot made on the elements of

submatrix TDI does not change the current basic solution.

Proof. Let the chosen generalized admissible pivot element be ti j ∈ TDI . We show

that the right-hand side of the tableau does not change after the pivot, namely b′i =

bi
ti j
= 0 = bi and b′k = bk + tk j

bi
ti j
= bk +0 = bk, where k 6= i.

Because of the nature of the procedure handling degeneracy, we formulate it as a

recursive method. The pseudo-codes of the subprocedures are summarized in Figures

3.6. and 3.7. The subprocedures make pivots on the whole tableaux, but consider only

the subtableau defined by the index sets F and G. The column indexed by b, and row

indexed by c play the roles of primal and dual right-hand sides respectively, of the

subproblems taken into consideration.

Because the primal subproblems called by DegProc are instances of type Primal	

where the right hand side values are required to be non-positive, in what follows we

call a primal variable feasible if its sign is adequate for the corresponding feasibility

problem or zero, and otherwise infeasible. For the sake of clarity, in the discussion of

the subproblems, we talk only of values instead of variables, when referring to the

right hand side values; because only for the original problem do variables actually

correspond to right hand side values.

The analysis of the procedure for solving the dual subproblems is completely

analogous to the primal version. Using Figure 3.5, the concepts of dual side weak and

43

strong degeneracy, as well as the concept of the xr increasing pivot can be defined

analogously as in Propositions 3.2, 3.3 and 3.4.

Proposition 3.5: For the PrimalSubMBU and DualSubMBU procedures, if the

corresponding tableau is non-degenerate or weakly degenerate, then the pivot steps

carried out are increasing pivots for the column indexed by b or for the row indexed

by c, respectively.

Proof. The first part of the proposition follows immediately from Proposition 3.1,

while the part corresponding to the dual subprocedure can be proved similarly.

We stated the main idea behind the recursive algorithm; now, we formalize it for both

subprocedures.

We show that the primal and dual subalgorithms have similar properties as the primal

algorithm working on non-degenerate problems.

Proposition 3.6: Suppose that the algorithm is started from problem P0, then because

of repeated strongly degenerate tableaux, the following recursive calling sequence

occurs: P1 := DualSubMBU(T1,k1,F1,G1),

P2 := PrimalSubMBU(T2,k2,F2,G2),

. . . ,

Pl := PrimalSubMBU(Tl,kl,Fl,Gl) (or Pl := DualSubMBU(Tl,kl,Fl,Gl)). Then the

pivots carried out while solving subproblem Pl do not change any right hand side of

problems Pi, where (i = 1, . . . , l−1) and ki /∈ Fl ∪Gl .

Proof. The recursive steps involve only degenerate rows and columns, thus by

Proposition 3.4 our statement holds.

44

Procedure DualSubMBU

Input: (T,c,F ,G).
Output: (T modified pivot tableau, l status flag).
Begin
J −B := { j ∈ G : tc j < 0}
While (J −B 6= /0) do

Let r ∈ J −B be arbitrary (driving variable), rDone := f alse.
While (rDone = f alse) do
I+r := {i ∈ F | tir > 0}
If (I+r = /0) then

The calling pivot tableau is weakly degenerate, Return(T,r).
Endif
Let s ∈ I+r , Ks = {k ∈ G | tck = 0, tsk < 0} .
If (Ks 6= /0) then (when subtableau TFG is strongly degenerate)

(T,s) := PrimalSubMBU(T,r,F ,{ j ∈ G | tc j = 0}).
If (s =−1) then

The calling tableau is weakly degenerate, Return(T,r).
Endif

Endif
θ1 := tcr

tsr
, θ2 := max

{
tck
tsr
| k ∈ G, tck > 0, tsk < 0

}
If (θ1 ≤ θ2) then

pivot on tsr, rDone := true.
else

q := argmax
{

tck
tsr
| k ∈ G, tck > 0, tsk < 0

}
.

pivot on tsq.
Endif

Endwhile
Endwhile
The calling tableau is infeasible, Return(T,−1).

End

Figure 3.6: The dual subprocedure starts with the solution of a subproblem of the
form Dual⊕.

45

Procedure PrimalSubMBU

Input: (T,b,F ,G).
Output: (T modified pivot tableau, l status flag).
Begin
I+B := {i ∈ F : tib > 0}
While (I+B 6= /0) do

Let r ∈ I+B be arbitrary (driving variable), rDone := f alse.
While (rDone = f alse) do
J −r := { j ∈ G | tr j < 0}
If (J −r = /0) then

The calling tableau is weakly degenerate, Return(T,r).
Endif
Let s ∈ J −r , Ks := {k ∈ F : tkb = 0, tks > 0} .
If (Ks 6= /0) then (when subtableau TFG is strongly degenerate)
(T,s) := DualSubMBU(T,r,{i ∈ F | tib = 0},G).
If (s =−1) then

The calling tableau is weakly degenerate, Return(T,r).
Endif

Endif
θ1 := |trb|

trs
, θ2 := min

{
|tkb|
tks
| k ∈ F , tkb < 0, tks > 0

}
.

If (θ1 ≤ θ2) then
pivot on trs, rDone := true

else
q := argmin

{
|tkb|
tks
| k ∈ F , tkb < 0, tks > 0

}
.

pivot on tqs.
Endif

Endwhile
Endwhile
The calling tableau is infeasible, Return(T,−1).

End

Figure 3.7: The PrimalSubMBU starts with the solution of a subproblem of form
Primal	.

46

The procedure starting the recursion and handling degeneracy can easily be formalized

as shown in Figure 3.8.

Procedure DegProc

Input: (T,I0
B,r).

Output: (T modified pivot tableau, l status flag).
Begin

(T, l):=(PrimalSubMBU(T,I0
B,{1, . . . ,n},n+1)).

Return(T, l).
End

Figure 3.8: A possible anti degeneracy procedure, DegProc.

The relationship of the different subproblems is shown in Figure 3.9. The figure

shows a possible primal-dual-primal calling sequence. Phrases PrimalSubMBU and

DualSubMBU refer to the type of the subproblem. The structure of the basic tableaux

corresponding to strongly degenerate bases has already been presented in Figure 3.5.

We now prove the finiteness of the MBU algorithm without any non-degeneracy

assumption.

Theorem 3.2: The MBU type simplex algorithm is finite for any feasibility problem.

Proof. While the algorithm visits only non-degenerate or weakly degenerate

problems, the algorithm carries out xr increasing pivots according to Proposition 3.5;

thus, the same basis may not return. Then the algorithm may not cycle. If the

corresponding pivot tableau is strongly degenerate for a choice of a nonbasic variable,

the algorithm calls the PrimalSubMBU or DualSubMBU subprocedures for strictly

smaller problems, thus the depth of recursion is at most 2m≤ n+m.

47

+

⊕⊕ ⊕ ⊕

⊕⊕

⊕
⊕

⊕
⊕

⊕⊕ ⊕ ⊕

. . .

.

. . .

. . .

��������

��������

��������

�	�	�	�
�	

�	�	�	�
�	

�	�	�	�
�	

− − −

− − − −

−

⊖

⊖

⊖

⊖

���
���

���

���
���

���

���

0

0

0

0

0 0

0

0
0 0

0

0

�	
�
��	

�	
�
��	

�	
�
��	

��	
�
��	

��	
�
��	

��	
�
��	

�	
��� �	�	�	�
�	

�	
��� �	�	�	�
�	

������ �����	�

������
��

������
��

���������
��

Figure 3.9: A Primal-Dual-Primal sequence of subproblems.

48

Consider the case when the recursively called DualSubMBU solves the subproblem.

When it stops with an infeasible subtableau, then the corresponding calling

(sub)problem became weakly degenerate to the proper nonbasic variable; thus, the

procedure continues with an increasing pivot. When the DualSubMBU stops with a

feasible subtableau, then the primal (sub)problem above became infeasible. This

means the infeasibility of the original problem when the calling procedure was the

DegProc procedure. Otherwise, the calling dual subproblem (one level above) has

been transformed into a weakly degenerate form, thus it continues with an increasing

pivot.

Similar connections hold when the PrimalSubMBU solves the corresponding

subproblem.

Because the depth of recursion is bounded, and the returning sub-procedures provide

the possibility of an increasing pivot for the calling procedure, no basis may occur

twice. The number of different bases is finite, thus the algorithm is finite.

Observe that both the algorithm and its recursive subalgorithms make increasing

pivots to the corresponding (sub)problem and use recursion. Thus, it is possible to

generalize the complexity bound of the non-degenerate and weakly degenerate case;

however, because of the recursion, the implied bound greatly depends on the number

of degenerate subproblem calls.

Although the analysis presented in Section 3.2 can be carried out for the first phase of

the simplex algorithm, the presented anti cycling recursion procedure cannot be

naturally applied to the simplex algorithm. The main reason for this is, when a

49

subproblem is feasible, we make use of the infeasibility of the driving variable to

reach the conclusion that the calling problem is infeasible.

As already stated, it would be possible to solve the degenerate subproblems with an

arbitrary pivot method, similarly to the case of the Hungarian method for linear

programming [33], in which the criss-cross method was used [44].

In practice, the efficiency of the algorithm could be increased by exploring the freedom

on the choice of the variable to enter the basis. This freedom may help, especially for

numerically challenging problems.

3.4 Anti-Cycling Index Selection Rules

The prospect of cycling when using a pivot algorithm for solving an LFP or an LOP

led researchers to study various methods to overcome this problem. Since cycling is

possible only in the case of degeneracy and degeneracy is highly related with the data

in the problem, perturbation of the data is a common practice to guarantee that cycling

will not occur.

Bland discovered a surprisingly simple pivot strategy that never leads to cycling while

studying linear systems in oriented matroid setting and anti-cycling rules have been of

considerable interest since then. Bland’s smallest indexed variable (SIV) rule, Zhang’s

last in first out / last out first in (LIFO/LOFI) and most often selected variable (MOSV)

rules are shown to be anti-cycling rules when used with the simplex, MBU simplex and

criss-cross methods. The common properties of these rules that serve their anti-cycling

aspect are isolated and then captured in the concept of s-monotonicity.

Let i j denote the index of the variable that enters (goes in) the basis and o j denote the

50

index of the variable that leaves (goes out) of the basis at iteration j (the pivot

position is (o j, i j)). A pair consisting of the indices of a basic and a nonbasic variable

can be a possible pivot position if the corresponding basic tableau entry is nonzero.

The sequence of possible pivot positions is defined as follows:

S = ((o j, i j) : o j ∈ B j−1, i j ∈ N j−1, to j,i j 6= 0, j = 1,2, . . .)

A possible pivot sequence is a sequence showing all possible candidate pairs of

entering/leaving variables regardless of any pivot selection rule. We can assume

without loss of generality that a possible pivot sequence is infinite. This assumption

may feel counterintuitive since what we aim is finite pivot rules, but a possible pivot

sequence just stresses the possibility of an infinite sequence of pivot operations. The

assumption can indeed be made w.l.o.g. since for any pivot operation transforming a

tableau T to T
′
, there is an inverse operation which transforms T

′
to T and we can

always find a pivot position in any pivot tableau T . However, the number of bases for

a given LFP is finite, therefore an infinite possible pivot sequence implies that some

of the bases should appear infinitely many times. We denote the set of indices which

appear in S infinitely many times by I∗.

An index selection rule is called s-monotone if the index of an entering or leaving

variable at each iteration is selected according to a dynamic index priority vector s∈Nn
0

(created and updated according to the rule) which possesses the following properties:

1. s has an initial value of s0 (according to which the indices o1 and i1 will be

selected) and is updated after every pivot operation. That is, s1 is defined after

pivot operation in iteration 1 and is used to determine o2 and i2. In general, index

priority vector s j−1 is used to determine o j and i j and s is updated to s j after the

pivot operation at position (o j, i j) takes place.

51

2. s j > s j−1.

3. For any iteration j, there exists an iteration r≥ j in which the index u∈ I∗∩Br−1

(u appears in S infinitely many times and is basic at iteration r) with minimal

value in sr−1 is unique and there exists an iteration t where u will appear in S for

the first time again and u will have the lowest priority among the indices in I∗

according to s from iteration r to t.

An index selection rule can be regarded as having the effect of reorganizing variables

by assigning them priorities and this reorganization is recorded in the vector s. In short,

the s vector for an index selection rule R records the way variables are reorganized

according to R.

Here are the definitions of index priority vectors for three s-monotone index selection

rules.

SIV: s0 = (n,n−1, . . . ,1), s j = s j−1 +1

LIFO/LOFI: s0 = 0, s j(k) =


k, if k ∈ {o j−1, i j−1}

s j−1(k), otherwise.

MOSV: s0 = 0, s j(k) =


s j−1(k)+1, if k ∈ {o j−1, i j−1}

s j−1(k), otherwise.

The proofs that SIV, LIFO/LOFI and MOSV are s-monotone rules can be found in [17,

18] and will not be repeated here. For each of the above rules, a symmetric counterpart

can be defined naturally. The largest indexed variable rule for SIV, the first-in-first-out

52

rule for LIFO/LOFI and the least-often-selected-variable rule for MOSV. By a slight

change in the definition of index priority vectors from their counterparts, each of these

can also be shown to be s-monotone rules.

3.4.1 Finiteness Proof Based on s-monotone Rules

When using the MBU simplex algorithm for solving a feasibility problem, if θ2 = 0,

then a degenerate pivot is encountered. From among the candidates choosing the one

with the largest s-vector value (in the case of SIV that means the variable with the

minimal index is selected, in the case of MOSV, the variable which has moved the

most number of times up to current iteration is selected) guarantees that the method

will not cycle. The proof [17, 18, 38] uses the properties given in the definition of s-

monotone index selection rule, therefore to show that an index selection rule has the

anti-cycling property it is sufficient to show that it is s-monotone.

s-monotone rules can be incorporated into the frames provided by other pivot based

methods to produce finite algorithms for LFP as well as LOP. For example, Adrienn

Csizmadia recently studied criss-cross algorithm with s-monotone index selection rules

for solving linear optimization problems [16].

3.5 Infeasibility Analysis for LFP

In a general optimization problem the goal is to find the maximum (or minimum) of a

function over a set of constraints imposed on the variables of the problem. It is clear

that in order to start seeking for an optimum solution, the system must be feasible in

the first place, that is, the set of constraints must have a nonempty intersection. For the

case of linear optimization this means that the polyhedron defined by the set of linear

inequalities must be nonempty.

What happens then when a solver applied to an optimization problem returns that the

53

model is infeasible? Clearly, there is no solution to the problem as it is presented, but

what does that mean about the real-world problem which still needs to be solved? For

the real-world problem behind the model, this is an indication that something went

wrong during the modeling stage (ill modeling). Possible reasons for infeasibility

could be an erroneous data entry, a mis-specification in the direction of inequality

constraints, or perhaps a conflict of interests. It is important to know which kind of

problem occurred in order to help the model repairing process.

Therefore, when a solver terminates with a certificate of infeasibility, the model needs

to be reconsidered in order to detect the cause of infeasibility and fix the model in the

best way possible.

Example 3.1: (A small infeasible problem) A trivial example of an infeasible model

would be one consisting of two obviously conflicting inequalities, such as,

a1x1 +a2x2 ≤ b

a1x1 +a2x2 ≥ b+1

Let us look at a small but less obvious infeasible system. Consider the following

system of inequalities:

3x1− x2 ≤ 0

x1−3x2 ≥ 0

x1 + x2 ≥ 4

A sketch of this system reveals that the three halfspaces have empty intersection, in

other words, the system is infeasible.

We can also verify computationally that the linear system given above is infeasible by

54

0 1 2 3 4 5

0

1

2

3

4

5

Figure 3.10: An infeasible system

applying any algorithm which is directly applicable to solve the general linear

feasibility problem, like, for example, the MBU algorithm explained in Section 3.1 or

the version of criss-cross algorithm for solving linear feasibility problems [44].

Furthermore, the verification can be done using any pivot algorithm for solving

general linear optimization problems, such as the simplex or MBU simplex methods;

but in that case we need to introduce a phase 1 objective function which minimizes

the sum of the violations of each constraint at any point. A nonzero objective function

value for the phase 1 objective function then indicates the infeasibility of the system.

Let us illustrate the application of our MBU type algorithm (Figure 3.4) on the above

problem. Note that for the sake of simplicity the algorithm is applied without calling

the anti-degeneracy procedure DegProc even when a strongly degenerate tableau is

encountered. The ties for selecting entering/leaving variables will be broken by using

the smallest indexed variable rule. Multiplying the ≥ type constraints by −1 on both

55

sides and then adding slack variables to all three constraints produces the following

initial tableau:

s1 s2 s3 x1 x2 b

s1 1 0 0 3 −1 0

s2 0 1 0 −1 3 0

s3 0 0 1 −1 −1 −4

The only candidate for the driving variable is s3. Note that this tableau is strongly

degenerate. After the first ratio test the algorithm proceeds with the pivot operation

on (1,4), that is, x1 enters and s1 leaves the basis. This pivot operation results in the

following tableau:

s1 s2 s3 x1 x2 b

x1 0.3333 0 0 1 −0.3333 0

s2 0.3333 1 0 0 2.6667 0

s3 0.3333 0 1 0 −1.3333 −4

The second pivot position is (2,5) (x2 enters and s2 leaves the basis) and following the

corresponding pivot operation we get the tableau:

s1 s2 s3 x1 x2 b

x1 0.375 0.125 0 1 0 0

x2 0.125 0.375 0 0 1 0

s3 0.5 0.5 1 0 0 −4

This is the final tableau as the last row gives a certificate that the given linear system is

infeasible.

56

Nowadays with the size and complexity of real-life linear optimization problems it is

not uncommon to detect infeasibility. And when that happens the model must be

analyzed and repaired. Before the infeasible model can be repaired an analysis of

infeasibility and an explanation of the cause of infeasibility are needed. Because of

the scale and complexity of models, automated assistance is used in diagnosing

infeasibility. A common analysis technique which is utilized by most commercial

packages is to find a useful isolation such as an irreducible infeasible subset (IIS) or a

maximal feasible subsystem (MAX FS). An IIS is a subset of the original set of

constraints which is itself infeasible, but all its proper subsets are feasible. A MAX

FS, on the other hand, is the subsystem obtained when the least number of constraints

are removed from the infeasible system in order to render it feasible. It is widely

accepted that finding IISs (ideally small ones) and hence repairing a model based on

the information obtained from such subsets is the best approach and it is in full use

practically as well. Most commercial linear optimization packages, such as CPLEX

and XPRESS-MP base their infeasibility analysis on IIS detection algorithms.

3.5.1 Irreducible Infeasible Subsets

An irreducible infeasible subset (IIS) is a set of constraints which is itself infeasible

but every proper subset of which is feasible which means that all of the constraints in

an IIS contribute to infeasibility. There could be more than one IIS in the model and

it is possible that a single error presents itself in different IISs. Therefore in order to

render the model feasible we must remove or modify at least one of the constraints in

each IIS. An infeasible model is repaired in a cyclic fashion as follows:

1. Isolate an IIS

2. Repair the infeasibility in the IIS

3. Check whether the entire model is feasible yet; if not go to Step 1.

57

Steps 1 and 3 of the above procedure are fully automatized and we rely on computers

for their outcomes. However, the second step requires human understanding of the

model and therefore must be performed by an expert. Step 1 as well may require human

intervention in case there are multiple IISs within the same infeasible model. In that

case selection of which IIS to repair by a skilled analyzer could prove useful. Research

results and experience with IISs show that the desired size of the IIS set to be found

is as small as possible, because the lesser the number of constraints, the easier it is to

repair infeasibility. However, when more than one IIS exists, it is usually not practical

to find the minimum IIS due to the computational burden involved. Summarizing, we

can say that an IIS is, ideally, a small set of conflicting constraints on which we can

concentrate the analysis in order to diagnose and repair infeasibility.

The following result is important as it gives an upper bound on the number of

inequalities that can be identified as an IIS [15].

Theorem 3.3: If there are n variables in an infeasible linear system, then the maximum

cardinality of any IIS is n+1.

We now discuss some algorithms for identifying IISs of infeasible linear systems. The

deletion filter and the additive method are general methods and they could be applied

in analyzing infeasible nonlinear optimization problems or mixed integer problems as

well as linear systems. However, the elastic filter is currently applicable to only linear

systems due to computational limitations.

Given an infeasible set of constraints the deletion filter starts with the whole set and

passes through each constraint once. So there are m main steps in the algorithm. In

58

Deletion filter

Input data: an infeasible set C of linear constraints
Output: set of constraints constituting a single IIS
Begin

For (c ∈C) do
Temporarily drop c from C. C′ =C \{c}
Test the feasibility of C′
If (C′ is infeasible) then

C =C′
Endif

Endfor
Return: C is a set constituting a single IIS

End

Figure 3.11: The deletion filter

each cycle it takes a constraint out of the set and tests the feasibility of the remaining

constraints. If the remaining constraints are feasible this means the removed constraint

affects the feasibility status and therefore is put back. On the other hand, if removing

a particular constraint does not change the feasibility status, i.e., the system is still

infeasible, then it is removed permanently. The deletion filter, after it passes through

all the constraints once, returns a single IIS. In case there are more than one IISs within

the infeasible system, which one is returned by the deletion filter depends on the order

of the constraints tested.

Let us illustrate the algorithm on an example.

Example 3.2: Given that C = {C1,C2,C3,C4,C5,C6,C7,C8} is an infeasible set of

constraints, assume that there are two (overlapping) IISs in C, {C3,C4,C6} and

{C4,C5,C7,C8}. Let’s run the algorithm on C: In the first iteration we drop C1

temporarily and the remaining set of constraints {C2,C3,C4,C5,C6,C7,C8} is still

infeasible. Therefore we drop C1 permanently. C = {C2,C3,C4,C5,C6,C7,C8}. In the

59

second iteration, dropping C2 gives us {C3,C4,C5,C6,C7,C8} which is infeasible.

Drop C2 permanently. C = {C3,C4,C5,C6,C7,C8}. Third iteration: drop C3 and test

the feasibility status of {C4,C5,C6,C7,C8}. This set is infeasible (since it contains an

IIS), therefore drop C3 permanently. C = {C4,C5,C6,C7,C8}. Fourth iteration: now

dropping C4 from C gives {C5,C6,C7,C8} whose feasibility status is "feasible".

Therefore C4 is returned back to C keeping it intact at the end of fourth iteration. In

the fifth iteration we drop C5 and obtain {C4,C6,C7,C8} which is feasible. Returning

C5 back gives C = {C4,C5,C6,C7,C8}. Sixth iteration: drop C6 from C and test the

feasibility status of {C4,C5,C7,C8}. This set is infeasible, therefore we drop C6

permanently and update C: C = {C4,C5,C7,C8}. In the next iteration dropping C7

gives the feasible set {C4,C5,C8} therefore we return C7 back to C.

C = {C4,C5,C7,C8}. In the last iteration we remove C8 temporarily and get

C = {C4,C5,C7} which is feasible. We return C8 back and the algorithm terminates

with the IIS C = {C4,C5,C7,C8}.

As it is seen from this example, from the two IISs in C the one whose first member is

tested last is returned by the deletion filter. If the order in which the constraints are

tested is changed then the deletion filter might isolate the other IIS. As an illustration,

let us reorder the constraints in C as follows: C = {C8,C7,C6,C5,C4,C3,C2,C1}.

Applying the deletion filter on C now isolates the IIS {C3,C4,C6}.

Theorem 3.4: Deletion filter isolates the IIS whose first constraint is tested last.

Next we describe the additive method originally introduced by Tamiz et. al. [43] by

using methods from LP goal programming. In their algorithm they use "deviational

variables" similar to elastic variables (see Elastic Filter) and an elastic objective

60

function. In the following we give a simpler version of the algorithm due to

Chinneck [13] without elastic variables and elastic objective function.

Additive method

Input data: an infeasible set of linear constraints C
Output: An IIS, I
Begin

T := /0, I := /0, i = 1
While (i≤ |C|) do

T = T ∪ ci
If (T is infeasible) then

I = I∪ ci
T = I
i = 1
If (I is infeasible) then

Return I
Endif

Else
i = i+1

Endif
Endwhile

End

Figure 3.12: The additive method

Note that in the algorithm’s description, C is the ordered set of constraints in the

infeasible model, T is the current test set of constraints and I is the set of IIS members

identified so far. Similarly to the deletion filter, additive method returns a single IIS

upon termination. The IIS it isolates depends on the order of the constraints tested in

case there are more than one IISs in the problem.

Theorem 3.5: Additive method isolates the IIS whose last constraint is tested first.

Both the deletion filter and the additive method have the major drawback of having to

check the feasibility status of a linear system many times over.

61

3.5.2 An Elastic Model

Useful information about an infeasible model can be obtained if the constraints can

be violated in a graceful manner. For example, in the simplex method a basic feasible

solution is required to start the procedure. If the initial basic solution is not feasible a

phase 1 procedure is used in which nonnegative artificial variables ai are added to all

equality and ≥ type constraints, which allows those constraints to be violated so that

an initial basic "feasible" solution can be established. This initial solution is feasible

in the space consisting of the original and the artificial variables, but it is not feasible

in the space consisting of just the original variables. In order to find a basic feasible

solution for the original problem (if there exists one), a phase 1 objective is to minimize

the sum of the artificial variables, that is, minimize V = ∑ai. If V reaches a minimum

value of zero, then all of the artificial variables are zeroes, hence a feasible solution has

been found for the original model, and the simplex method can now proceed to find the

solution of the original problem. If the minimum value of V is not zero, then at least

one of the artificial variables cannot be forced to zero, so the corresponding constraint

remains violated in the original variable space, and the LOP as a whole is determined

to be infeasible.

In this way, the linear equality and ≥ constraints are able to stretch, or violate their

original bounds and the value of the associated artificial variable corresponds directly

to the size of the adjustment of the right hand side needed to provide a feasible solution

in the original variable space.

The elastic model used by Chinneck [13] extends this idea to allow all forms of

constraints to adjust in all directions, as originally described by Brown and

Graves [12]. A fully elastic program adds a nonnegative elastic variable (or variables)

62

si (or s′i and s′′i) to every constraint. This allows a solver to find a "feasible" solution

for the original infeasible problem. The rules for adding elastic variables are as

follows:

Nonelastic Constraint Elastic Version

∑ j ai jx j ≥ bi ∑ j ai jx j + si ≥ bi

∑ j ai jx j ≤ bi ∑ j ai jx j− si ≤ bi

∑ j ai jx j = bi ∑ j ai jx j + s′i− s′′i = bi

An elastic constraint stretches to violate its original bounds when one of its elastic

variables takes on a positive value. Stretching is resisted by the elastic objective

function (minimize ∑i si) which replaces the original objective function.

This is the essence of the classical elastic model description; elastic variables are added

to all constraints, and equality constraints are elasticized in both directions. Note that

integer restrictions cannot be elasticized, so elastic filtering can be applied only to

LPs, NLPs, and the linear part of MIPs. In this sense it is slightly less general than the

deletion filter and the additive method.

The elastic filter of Chinneck and Dravnieks [14] makes use of the elastic model

described above. At the beginning all constraints are elasticized, but since the original

model is infeasible, at least one constraint must stretch to achieve a feasible solution

for the elastic program. The elastic variables are removed from any constraints that

stretch, this enforces the constraint in the next round. The cycle repeats until enough

elastic variables have been removed that the partly-elastic model becomes infeasible.

At this point the de-elasticized constraints constitute a small infeasible set that is not

necessarily an IIS, but that has some very desirable properties.

63

In the case that the MBU algorithm terminates with a certificate of infeasibility for

a LFP, we propose a specialized elastic model which can be built and solved with a

modified MBU algorithm to obtain an IIS for the infeasible problem. Although we

have yet to complete the definition of this procedure and prove its correctness, we give

an explanation of the proposed elastic model in the following.

Suppose that we solve the following feasibility problem and obtain a certificate that it

is infeasible. The system could contain inequality and/or equality constraints.

(1) Ax(≤,≥,=)b

(2) x≥ 0

In (1) we fix b to be nonnegative without loss of generality for if there is a constraint i

where bi < 0, we can multiply both sides of that inequality or equation with -1.

With b≥ 0, the inequalities of the form ∑ j ai jx j ≤ bi are feasible at the origin but the

inequalities of the form ∑ j ai jx j = bi and ∑ j ai jx j ≥ bi are not feasible at the origin

(except when bi = 0).

We can "relax" the problem by introducing slack variables for ≤ constraints and

elasticity variables for ≥ and = constraints as follows:

∑
j

ai jx j + si = bi, si : slack variable

∑
j

ai jx j +ui = bi, ∑
j

ai jx j + vi = bi, ui,vi : elasticity variables

In the new model including slack and elasticity variables, all variables are nonnegative,

64

i.e., x,s,u,v ≥ 0. Furthermore, we impose a new constraint eT u+ eT v = 0 to resist

stretching of elasticized constraints.

At this stage we have an "almost feasible" solution for our elastic model (except for

the last constraint) which is:

x = 0, si = bi, ui = bi, vi = bi

We introduce an elastic variable for this last constraint:

eT u+ eT v+λ = 0, λ ≥ 0

Now the starting tableau for the elastic problem has the following structure:

s ⊕

u ⊕

v ⊕

λ −

The only infeasible variable in the starting tableau is λ . Therefore, all the effort can

be concentrated on finding λ -increasing pivots trying to push λ to 0 (feasible status,

which it will never have) as much as possible. The use of MBU simplex algorithm to

solve this special elastic model to obtain useful information (such as an IIS) about the

original infeasible model is one of the open problems we think can be solved

successfully.

65

Chapter 4

ORIENTED MATROID FEASIBILITY PROBLEM

In this chapter we consider the linear feasibility problem and its solution by finite

pivot rules in an abstract setting by using oriented matroids. Rockafellar was the first

to observe that the strong duality theorem of linear optimization can be seen as a

statement about sign patterns of vectors in complementary subspaces of IRn [41].

Following this idea, many aspects of linear optimization, including the simplex and

criss-cross methods with finite pivot rules were described in the context of oriented

matroids.

As Björner et. al. [7] point out, "Oriented matroid framework can add to the

understanding of the combinatorics and the geometry of the simplex method for linear

programming. In fact, the oriented matroid approach gives a geometric language for

pivot algorithms, interpreting linear programs as oriented matroid search problems."

We first describe the oriented matroid feasibility problem (OMFP) and then present a

finite criss-cross algorithm with LIFO/LOFI index selection rule that solves the

problem. The other s-monotone index selection rules described in section 3.4 can also

be used within the criss-cross pivot method’s framework in order to solve the OMFP.

We close this chapter with two proofs. The first one is the finiteness proof of the

presented algorithm and the second one is a constructive proof of the Farkas lemma

for oriented matroids.

66

The results in this chapter are mainly based on the paper [4].

4.1 OM Feasibility Problem

From the perspective of linear feasibility problems, an oriented matroid can be seen

as a certain system of signed vectors that captures important properties of a system of

linear inequalities. Basic background material on matroids and oriented matroids are

given in section 2.7.

Let E = {e1, ...,en} be a finite set and e1 ∈ E be a fixed element. Also, let M = (E,O)

and M∗ = (E,O∗) be dual pairs of oriented matroids. First we need to introduce the

concept of feasible circuits and cocircuits of oriented matroids.

Definition 4.1: The oriented circuit X = (X+,X−) ∈ O is called feasible, if e1 ∈ X+

and X−= /0. Similarly, the oriented cocircuit Y =(Y+,Y−)∈O∗ is called dual feasible,

if e1 ∈ Y+ and Y− = /0

Just like in the case of solving an LFP, we need a proof or a certificate of solvability

of an OMFP. Next, we state an alternative theorem related to the feasibility problem

of oriented matroids. This theorem is a generalization of the Farkas lemma for

oriented matroids. A proof of the theorem is based on the finiteness of a criss-cross

type algorithm. The details of the algorithm, its finiteness and the application to the

feasibility problem of oriented matroids will be discussed in section 4.1.1.

Theorem 4.1: Let M = (E,O) and M∗ = (E,O∗) be a dual pair of oriented matroids.

Then exactly one of the following statements hold

(a) there is a feasible circuit in M = (E,O),

(b) there is a feasible cocircuit in M∗ = (E,O∗).

67

Klafszky and Terlaky [34] proved a variant of the Farkas lemma using Terlaky’s

criss-cross method [44, 45]. Theorem 4.1 is a generalization of that variant of the

Farkas lemma. Theorem 4.1 was first proved by Bland [8], while the first

constructive, algorithmic proof is due to Klafszky and Terlaky [32]. For underlying

the connection between Theorem 4.1 and the variant of the Farkas lemma presented in

Klafszky and Terlaky [34], we introduce the concept of tableau for oriented matroids

as it is done in Bland [8], Terlaky [45] and Klafszky and Terlaky [32].

Let B be the set of all bases of the matroid M̄ underlying the oriented matroid M and r

denote the rank of M̄. Then for any B = {eb1, . . . ,ebr} ∈ B there is for each i = 1, . . . ,r

a unique cocircuit Di ∈ Ō∗ of the underlying matroid M̄ having Di∩B = {ebi}.

Let Ybi be the oriented cocircuit associated with the basic element ebi, i = 1, . . .r, in the

way that ebi ∈ Y+
bi

and Ȳbi ∩B = {ebi}. The set {Yb1 , . . . ,Ybr} is called the fundamental

set of oriented cocircuits with respect to the base B. Then the matrix having its bith

row equal to the signed incidence vector of Ybi is denoted by T (B) and called the

tableau corresponding to the base B. That is, the entry ti j of T (B) is the sign of e j in

Yi ∈ {Yb1 , . . . ,Ybr}. One important property of T (B) is that for ek /∈ B, the ek column of

T (B) corresponds to the oriented circuit X = (X+,X−) having X+ = {ebi : tik = +1}

and X− = {ebi : tik =−1}∪{ek}.

Example 4.1: Continuing with the previous example, consider the base

B = {1,2,4,6}. Then the following set of oriented cocircuits

{(+,0,+,0,+,0),(0,+,+,0,+,0),(0,0,−,+,0,0),(0,0,0,0,−,+)}

is the set of fundamental cocircuits corresponding to the base B. The tableau

corresponding to B is

68

+ 0 + 0 + 0
0 + + 0 + 0
0 0 - 0 0 0
0 0 - + 0 0
0 0 0 0 - 0
0 0 0 0 - +

Figure 4.1: The tableau corresponding to the base given in example 4.1

4.1.1 A Criss-Cross Type Algorithm and Its Finiteness

Now we present a finite algorithm, which is a variant of criss-cross algorithm [44, 45]

using Zhang’s LIFO/LOFI rule [49, 50] for solving the feasibility problem of oriented

matroids. This algorithm produces either a feasible circuit X ∈ O or a dual feasible

cocircuit Y ∈ O∗.

The vector ur : E→ N0 takes place in the algorithm. Its definition is

ur(i) =


r, if the ith element moves in the rth iteration

ur−1(i), otherwise.

Initially, u0 = (0, . . . ,0).

Note that the vector u is defined in exactly the same way as the vector s for the anti-

cycling LIFO/LOFI index selection rule of chapter 3.

Our algorithm differs from that of Klafzky and Terlaky [32] in the way that there is no

fixed ordering at the beginning of the algorithm between the indices of the elements but

an ordering depending on the pivot selection rule is built up until the last element was

moved for the first time. This ordering will guarantee the finiteness of this modified

criss-cross algorithm.

69

criss-cross algorithm for OMFP

Input data: A base B0 and the corresponding tableau T (B0),
Ĩ = {1,2, . . . ,n} as the index set of elements in E, r = 0.

Step 0: Let B := Br.
If e1 6∈ B then go to Step 1,
else go to Step 2.

Step 1: If ti1 ∈ {−1,0} for all ei ∈ B then
(−X1) is a primal feasible circuit, Return;

else let J = {i ∈ Ĩ : ti1 =+1 for ei ∈ B}, aJ := max
i∈J

ur(i) and

Ĵ = { j ∈ J : ur−1(i) = aJ for all i ∈ J}
Choose an arbitrary index k ∈ Ĵ
Make a pivot operation (e1 enters and ek leaves the base)
Let ur(k) := r, r := r+1 and continue with Step 0.

Step 2: If t1 j ∈ {0,+1} for all e j 6∈ B then
Y1 is a dual feasible cocircuit, Return;

else let K := { j ∈ Ĩ : t1 j =−1 for e j 6∈ B}, aK := max
i∈K

ur(i) and

K̂ := {i ∈ K : ur−1(i) = aK for all i ∈ K}
Choose an arbitrary index k ∈ K̂
Make a pivot operation (ek enters and e1 leaves the base)
Let ur(k) := r, r := r+1 and continue with Step 0.

Figure 4.2: Criss-cross algorithm with LIFO/LOFI Index Selection Rule

In this section we will prove that criss-cross with LIFO/LOFI index selection rule is

finite which implies that theorem 4.1 holds. The finiteness proof of the algorithm

follows the main steps of Klafszky and Terlaky’s proof [32].

Lemma 4.1: Criss-cross algorithm with LIFO/LOFI index selection rule for solving

OMFP is finite.

Proof. Let us suppose the contrary that the algorithm is not finite. The fact that the

number of different bases is finite implies that the algorithm cycles, that is, starting

from a base B, the algorithm produces the same base again after a certain number of

steps.

70

Let Ec = {ei : ei changes its place with e1 through the cycle}.

Let us consider the sequence of pivot tableaus generated by the algorithm and let us

denote by T (B′) the base which satisfies the criteria; (a) there is a variable eq ∈ Ec

which changes its basic status for the first time (i.e. ur(q) = 0 at base B′) and (b) after

this pivot tableau all the variables in Ec have changed their basic status at least once.

Here we need to make the following observation; after the base B′ each member of

Ec∩B would have different ur(i) values at each forthcoming iteration. This is due to

the fact that in each iteration an ek element and the e1 element has changed their basic

status.

We can suppose without loss of generality that eq enters B′.

Let B′′ be the base corresponding to the iteration in which eq is chosen for the first

time to leave the base thus q ∈ {i ∈ Ĩ : ei ∈ B′′ and ti1 = +1} and according to the

pivot rule ur(q) > ur(i) at the iteration corresponding to base B′′. This means that

X+
1 ⊂ {eq} ∪ (B′′ ∪B′). The oriented cocircuit Y1 as row e1 of B′ and the oriented

circuit X1 as column e1 of B′′ have the following properties

1′. e1 ∈ Y+
1 ,eq ∈ Y−1 1′′. e1 ∈ X−1 , eq ∈ X+

1

2′. Y−1 ⊂ {eq}∪ [(E−B′)−Ec] 2′′. X−1 ⊂ B′′−{eq}∪{e1}

3′. Y+
1 ⊂ (E−B′)−{eq}∪{e1} 3′′.X+

1 ⊂ {eq}∪ (B′′∩B′)

Properties 1′ and 1′′ imply that X1∩Y1 6= /0.

Let us consider 2′ and 2′′. We have eq ∈ Y−1 and eq /∈ X−1 . Let us consider an element

ei 6= eq. If ei ∈Y−1 , i.e., ei ∈ [(E−B′)−Ec], this means ei is nonbasic at B′ and it never

71

changes its basic status, therefore ei cannot belong to B′′−{eq}∪{e1}, i.e., ei /∈ X−1 .

Thus properties 2′ and 2′′ imply that X−1 ∩Y−1 = /0.

Now consider the properties 3′ and 3′′. We have eq /∈Y+
1 and eq ∈ X+

1 . Let us consider

an element ei 6= eq. If ei ∈ X+
1 , i.e., ei ∈ B′′∩B′. Therefore ei /∈ E−B′. Thus properties

3′ and 3′′ imply that X+
1 ∩Y+

1 = /0; which contradict orthogonality.

4.1.2 A Constructive Proof of the Farkas Lemma

Now we can prove the Farkas lemma.

Proof of the Theorem 4.1: The orthogonality of oriented circuits and cocircuits imply

that both (a) and (b) cannot occur simultaneously. The algorithm stops either in Step

1 with a feasible circuit or in Step 2 with a feasible cocircuit. Since the algorithm is

finite, the proof is complete.

Replacing the LIFO pivot rule with the most-often-selected-variable (MOSV) pivot

rule or any s-monotone pivot rule the algorithm 4.2 remains finite.

72

Chapter 5

FURTHER RESEARCH SUGGESTIONS

In section 3.2 we derive an upper bound for the number of iterations MBU makes for

solving and LFP. Further investigations are needed to find such problem classes where

the new upper bound can easily be determined; that is, the values of ∆A and ∆max are

easily computable. A naturally arising problem class would be one for which the

matrix A is totally unimodular. Most of the problems coming from combinatorial

optimization are highly degenerate; thus, the complexity estimate would only bound

the number of non-degenerate and weakly degenerate pivot steps. If A is totally

unimodular and b ∈ Zm, we get K ≤ ‖b‖1. This means that in this specific case K

depends pseudo-polynomially on the (binary) input size. It would also be interesting

to find proper perturbations for given problem classes to handle strong degeneracy.

Perturbation techniques known from the literature (like the ε-perturbation technique)

do not present themselves as efficient choices because they, usually drastically, affect

the values of ∆A and ∆max as well.

In section 3.4 we explain the concept of s-monotonicity and we give three index

selection rules which are s-monotone. A possible research direction from here on is to

develop other s-monotone rules and study their practical as well as theoretical

characteristics. Another possibility is to investigate hybrid methods and their behavior

on special problem classes such as the network flow problem.

73

In section 3.1 we state MBU simplex algorithm for solving LFPs. For solving LOPs a

primal-dual version of MBU can be defined so that the algorithm could start from a

primal feasible or a dual feasible basis. Also, inspired by the fact that MBU visits

both primal and dual infeasible bases (even though this is temporary and one of the

two feasibilities is eventually restored), we think that a generalized MBU simplex

algorithm which starts from a neither primal nor dual feasible basis (just like the

criss-cross method) can be developed.

The linear feasibility problem has some interesting applications stemming from diverse

fields. These by themselves constitute of important research topics some of which we

would like to mention. For example, the search for a linear classifier consistent with all

available examples is a problem of finding a feasible solution to a linear optimization

problem.

As mentioned in section 3.5.2, we think a special elastic model can be built for

infeasible LFPs and MBU simplex algorithm developed for solving feasibility

problems can be utilized in a way to isolate IISs or in the worst case gather useful

information about the original infeasible model.

Writing programs to test for any computational aspect of oriented matroids seem to be

difficult in a procedural language such as Python. A functional language like Haskell

would be more suited for testing the algorithms for oriented matroids. We think such

an endeavour might be beneficial in order to gain more insight and be able to test

quickly for some heuristics in search for more anti-cycling pivot rules.

Given an infeasible linear system, is the corresponding oriented matroid necessarily

74

infeasible? Can we generate feasible oriented matroids starting from an infeasible

one by using a generation approach that incrementally extends oriented matroids by

adding single elements? Solving this more abstract problem could also prove useful in

analyzing infeasibility of linear systems.

75

REFERENCES

[1] Anstreicher, K. M., & Terlaky, T. (1994). A monotonic build-up simplex

algorithm for linear programming. Operations Research, 42(3), 556–561.

[2] Avis, D., & Chvátal, V. (1978). Notes on Bland’s pivoting rule. Mathematical

Programming Study, 8, 24–34.

[3] Bachem, A., & Kern, W. (1992). Linear Programming Duality, Springer-Verlag.

[4] Balogh, L., Bilen, F., & Illés, T. (2002). A simple proof of the generalized Farkas

lemma for oriented matroids. Pure Mathematics and Applications, 13, 423–431.

[5] Bilen, F., Csizmadia, Z., & Illés, T. (2007). Anstreicher-Terlaky type monotonic

simplex algorithms for linear feasibility problems. Optimisation Methods and

Software, 22(4), 679–695.

[6] Bilen, F., Csizmadia, Z., & Illés, T. (2007). A new analysis for monotonic

type simplex algorithms for feasibility problems (in Hungarian). Alkalmazott

Matematikai Lapok, 24, 163–185.

[7] Björner, A., Las Vergnas, M., Sturmfels, B., White, N., & Ziegler, G. (1999).

Oriented Matroids, Second Edition, Cambridge University Press.

[8] Bland, R. G. (1977). A combinatorial abstraction of linear programming. Journal

of Combinatorial Theory (B), 23, 33–57.

76

[9] Bland, R. G. (1977). New finite pivoting rules for the simplex method.

Mathematics of Operations Research, 2, 103–107.

[10] Bland, R. G., & las Vergnas, M. (1978). Orientability of matroids. Journal of

Combinatorial Theory (B), 24, 94–123.

[11] Borgwardt, K.H. (1987). The simplex method: A probabilistic analysis. In the

series: Algorithms and Combinatorics, Vol. 1, Springer, Berlin.

[12] Brown, G., & Graves, G. (1975). Elastic programming: A new approach to large-

scale mixed integer optimization. ORSA/TIMS Conference, Las Vegas.

[13] Chinneck, J. W. (2008). Feasibility and Infeasibility in Optimization. Springer.

[14] Chinneck, J. W., & Dravnieks, E. W. (1991). Locating minimal infeasible

constraint sets in linear programs. ORSA Journal on Computing, 3, 157–168.

[15] Chvátal, V. (1983). Linear Programming. W. H. Freeman and Company, New

York.

[16] Csizmadia, A. (2022). Finiteness of the criss-cross algorithm for the linear

programming problem with s-monotone index selection rules. Pure Mathematics

and Applications, 30(2), 58–70.

[17] Csizmadia, Z. (2007). New pivot based methods in linear optimization, and an

application in the petroleum industry. Ph.D Thesis, Eötvös Loránd University.

77

[18] Csizmadia, Z., Illés, T., & Nagy, A. (2012). The s-monotone index selection rules

for pivot algorithms of linear programming. European Journal of Operations

Research, 221(3), 491–500.

[19] Dantzig, G. B. (1948). Programming in a linear structure. Comptroller, United

States Air Force, Washington DC.

[20] Dantzig, G. B. (1963). Linear Programming and Extensions. Princeton

University Press, Princeton, New Jersey.

[21] Farkas, Gy. (1894). A Fourier-féle mechanikai elv alkalmazásai (The applications

of the mechanical principle of Fourier). Mathematikai és Természettudományi

Értesitö, 12, 457–472.

[22] Farkas, Gy. (1896). A Fourier-féle mechanikai elv alkalmazásainak algebrai

alapjáról (On the algebraic background of the applications of the mechanical

principle of Fourier). Mathematikai és Fizikai Lapok, 5, 49–54.

[23] Folkman, J., & Lawrence, J. (1978). Oriented matroids. Journal of Combinatorial

Theory (B), 25, 199–236.

[24] Illés, T. (1999). Linear programming. Lecture Notes, Eastern Mediterranean

University, Department of Mathematics, Famagusta.

[25] Illés, T., & Molnar-Szipai, R. (2014). On strongly polynomial variants of the

MBU simplex algorithm for a maximum flow problem with non-zero lower

78

bounds. Optimization, 63(1), 39–47.

[26] Jensen, D. L. (1985). Coloring and duality: Combinatorial augmentation

methods. Ph.D Thesis, Cornell University.

[27] Fukuda, K., & Terlaky, T. (1997). Criss-cross methods: A fresh view on pivot

algorithms. Mathematical Programming, 79, 369–395.

[28] Fukuda, K., & Terlaky, T. (1999). On the existence of a short admissible pivot

sequence for feasibility and linear optimization problems. Pure Mathematics with

Applications, 10, 431–447.

[29] Gordon, G., & McNulty, J. (2012). Matroids: A Geometric Introduction.

Cambridge University Press.

[30] Karmarkar, N. (1984). A new polynomial-time algorithm for linear programming.

Combinatorica, 4, 373–395.

[31] Khachiyan, L. G. (1979). A polynomial algorithm in linear programming (in

Russian). Dokl. Akad. Nauk SSSR, 244(5), 1093–1096.

[32] Klafszky, E., & Terlaky, T. (1987). Remarks on the feasibility problem of oriented

matroids. Ann. Univ. Sci. Budapestiensis de Rolando Eötvös Nominatae, Sectio

Computatorica, 7, 155–157.

79

[33] Klafszky, E., & Terlaky, T. (1989). Variants of the Hungarian method for solving

linear programming problems. Optimization, 20(1), 79–91.

[34] Klafszky, E., & Terlaky, T. (1991). The role of pivoting in proving some

fundamental theorems of linear algebra. Linear Algebra and its Applications,

151, 97–118.

[35] Klee, V., & Minty, G. J. (1972). How good is the simplex algorithm?. In

Inequalities, Academic Press, New York.

[36] Maros, I. (2003). Computational Techniques of the Simplex Method. Kluwer

Academic Publishers, Boston.

[37] Murty, K. G. (1983). Linear Programming. John Wiley & Sons, New York.

[38] Nagy, A. (2014). On the theory and applications of flexible anti-cycling index

selection rules for linear optimization problems. Ph.D Thesis, Eötvös Loránd

University.

[39] NETLIB Internet Repository of Linear Programming and Linear Feasibility

Problems. https://netlib.org/lp/data/

[40] Prékopa, A. (1980). On the development of optimization. American

Mathematical Monthly, 87, 527–542.

80

[41] Rockafellar, R. T. (1969). The elementary vectors of a subspace of Rn. In

Combinatorial Mathematics and its Applications, Proceedings of the Chapel Hill

Conference (1967), eds. R. G. Bore and T. A. Dowling, University of North

Carolina Press, 104–127.

[42] Smale, S. (1998). Mathematical problems for the next century. The Mathematical

Intelligencer, 20, 7–15.

[43] Tamiz, M., Mardle, S. J., & Jones, D. F. (1996). Detecting IIS in infeasible

linear programmes using techniques from goal programming. Computers and

Operations Research, 23, 113–119.

[44] Terlaky, T. (1985). A convergent criss-cross method. Optimization, 16, 683–690.

[45] Terlaky, T. (1987). A finite criss-cross method for oriented matroids. Journal of

Combinatorial Theory (B), 42, 319–327.

[46] Terlaky, T., & Zhang, S. (1993). Pivot rules for linear programming: A survey on

recent theoretical developments. Annals of Operations Research, 46, 203–233.

[47] Todd, M. J. (1986). Polynomial expected behavior of a pivoting algorithm

for linear complementarity and linear programming problems. Mathematical

Programming, 35, 173–192.

[48] Tutte, W. T. (1965). Lectures on matroids. Journal of Research of the National

Bureau of Standards Section B Mathematics and Mathematical Physics, 69, 1.

81

[49] Zhang, S. (1991). On anti-cycling pivoting rules for the simplex method.

Operations Research Letters, 10, 189–192.

[50] Zhang, S. (1999). New variants of finite criss-cross pivot algorithms for linear

programming. European Journal of Operational Research, 116(3), 607–614.

82

	ABSTRACT
	ÖZ
	DEDICATION
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	1 INTRODUCTION
	2 PRELIMINARIES
	2.1 Notation and Problems of Interest
	2.2 The Geometry of Linear Optimization
	2.3 Basic Feasible Solutions
	2.4 Pivoting
	2.5 Duality
	2.6 The Simplex Method
	2.7 Matroids and Oriented Matroids

	3 FEASIBILITY PROBLEM OF LINEAR OPTIMIZATION
	3.1 Monotonic Build Up Simplex Pivot Rule for LFP
	3.2 Complexity Analysis
	3.3 Handling Strong Degeneracy
	3.4 Anti-Cycling Index Selection Rules
	3.4.1 Finiteness Proof Based on s-monotone Rules

	3.5 Infeasibility Analysis for LFP
	3.5.1 Irreducible Infeasible Subsets
	3.5.2 An Elastic Model

	4 ORIENTED MATROID FEASIBILITY PROBLEM
	4.1 OM Feasibility Problem
	4.1.1 A Criss-Cross Type Algorithm and Its Finiteness
	4.1.2 A Constructive Proof of the Farkas Lemma

	5 FURTHER RESEARCH SUGGESTIONS
	REFERENCES

