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ABSTRACT 

The problem of identification and tracking of periodically varying systems is 

considered. Multipath fading channel imposes significant constraints and limitations 

on wireless communication applications. When the multipath is caused by a few 

strong reflectors, the channel behaves as a system with poly-periodically time-

varying response. The channel impulse response is then modeled by a linear 

combination of a finite set of complex exponentials whose frequencies are termed by 

Doppler frequencies. This model is well-motivated in radio cellular telephony and 

aeronautical radio communication.  

While the system coefficients start varying rapidly in time, the commonly used 

adaptive least mean squares (LMS) and weighted least squares (WLS) algorithms are 

unable to track the variations effectively.  The key point is to employ basis functions 

(BF) expansion algorithms, which are more specialized adaptive filters. 

Unfortunately, this type of estimators is numerically very demanding and has a 

limited mean square estimation error (MSE) performance.  

This thesis explores two existing adaptive equalization algorithms, namely, 

exponentially weighted basis function (EWBF), gradient basis function Gradient-BF, 

and contributes by proposing a new efficient BF estimator termed as recursive 

inverse basis function (RIBF) estimator. Furthermore, a frequency-adaptive version 

of RIBF estimator is derived. Computer simulations are carried out, using Matlab 

software package, to evaluate the proposed RIBF estimator performance. The new 

BF estimator outperforms the EWBF estimator by large computational complexity 
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savings. Moreover, RIBF is superior to the Gradient-BF and EWBF estimators since 

it shows further reduction in the mean square parameter estimation error. These 

advantages results in significant gains when applied in wireless communications to 

reduce BER, SNR and channel bandwidth requirements. 

Keywords: Basis function algorithms, systems identification, nonstationary 

processes, periodically varying systems, adaptive filters. 
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ÖZ 

Bu tezde periyodik olarak değişen sistemlerin tanınma ve takib edilme problemi 

üzerinde durulmuştur. Kablosuz iletişim uygulamalarında çok yollu sönümlü kanal 

problemi ciddi sınırlamalar getirir. Böyle durumlarda kanalın darbe tepkimesi, 

frekansları Doopler frekansı olan sınırlı sayıda karmaşık eksponansiyelin doğrusal 

bileşimi ile modellenebilir. 

Bu uygulamalarda kullanılan en az ortalama kareler ve ağıtlıklı en az kareler 

algoritmaları sistem parametrelerindeki hızlı değişimleri takip etmede yetersiz 

kalmaktadır. Temel işlev açılım algoritmaları bu durumlarda daha başarılı olmakla 

birlikte, gerektirdikleri sayısal işlemlerin çok olması ve kestirim hata başarımlarının 

sınırlı olması bu algoritmaların temel zorluklarıdır. 

Bu tez var olan bazı uyarlamalı eşitleme algoritmalarını araştırır. Bunlar 

ekponansiyel ağırlıklı temel işlev (EWBF) ve eğim temel işlev (Gradient-BF) 

algoritmaları ve bunların türevleridir. Ayrıca yeni olarak dönüşümşü tersleme temel 

işlev (RIBF) algoritması önerilmiş, ve frekans-uyarlamalı türevi elede edilmiştir. 

Yeni önerilen algoritmaların var olanlara göre, daha düşük hesaplama karmaşıklığı 

ve daha düşük kestirim hatası bakımından daha avantajlı oldukları benzetim yolu ile 

gösterilmiştir.  

Anahtar Kelimeler: Temel işlev algoritmaları, sistem tanıma, durağan olmayan 

süreçler, periyodik olarak değişen sistemler. 
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Chapter1 

INTRODUCTION 

1.1 Adaptive Equalization 

Digital transmission systems such as voice and video communications are superior to 

analog transmission in mainly due to its higher reliability in noisy environments. 

However, a majority of digital communication transmission is faced with a common 

phenomenon known as intersymbol interference (ISI). In this case, the received data 

(pulses), which correspond to different symbols, are not completely separated. They 

are smeared out and the separation depends on the transmission media which causes 

the ISI. The transmission media are mainly cable lines or cellular communication. 

Traditionally, either static or dynamic equalizers solve the problem of amplitude and 

phase dispersion that results in ISI of the received signals. Hence, it is clear that 

careful equalization is required whenever we need to employ a reliable digital 

transmission system. 

Commonly, the design of any communication system, that includes a transmitter and 

a receiver, is build on the assumption that the channel transfer function is completely 

known. However, in most communication systems, the channel transfer functions are 

not completely known in order to allow us to design filters to eliminate the channel 

effects. The time varying nature of the channel in cellular communication makes the 

transfer function change with time (non stationary environment). It is therefore 

difficult to incorporate static filters to deal with such cases. To solve these problems, 



adaptive equalizers are designed to work in such environment to decrease Bit Error 

Rate (BER). 

Simply saying, the main task of the equalizer is to cancel the effects of ISI and 

channel noise that is present in the channel. We may ignore the effects of the channel 

noise since the main challenge is to utilize the bandwidth as much as possible. In 

general, equalizers estimate the inverse of the channel impulse response and apply to 

the received signal as all filters do. Then combination of both channel and equalizer 

will give a flat frequency response and linear phase [1]. As shown in Figure (1.1). 

 

 

 

 

H

d

ch

im

ca

fo

th

|F(f)|

Channel response
f

*

f
Equalizer response

|H(f)|

=

f

|S(f)|

Overall response
Figure 1.1: Concept of Equalizer [13] 
2 

 

owever, the static equalizer shows superiority in terms of price and easiness to 

esign, but its noise performance is not very good. As mentioned earlier both the 

annel and system transfer function might not be known, and possibly, the channel 

pulse response will differ with time. At this point static equalizer may fail to 

ncel the channel effects and BER would increase consequently. Hence, the need 

r adaptive equalizer comes on scene. An adaptive equalizer is an equalizer filter 

at automatically adapts to time varying properties of communication channel [4]. 



1.2 Channel Equalization Modes  

 In high transmission rate demand, the intersymbol interference (ISI) problem 

obviously becomes serious problem that needs a special attention. Channel 

Equalization technique solves such a problem by designing an equalizer that have an 

impulse response, as the combination of the channel and equalizer is close to the 

original symbols. The channel or the transmitter impulse is mostly unknown or 

varying with time as said earlier. Therefore, the need for adaptive equalizer becomes 

necessary to track channel characteristics. 

Channel equalization system should complete two modes [4] in order to reconstruct 

desired signal from the distorted one x (n) as shown in figure (1.2) below: 
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 modes are as follows: 

raining Mode: this mode starts before the regular data transmission, in order 

o help in discovering adaptive filter coefficients which are considered as a 

hannel impulse response for the distorted version signal x (n) of the original 

ne u(n). The delayed version of the transmitted signal considered as the 
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desired response d (n) for the adaptive filter need to be compared with the 

current output y (n) to get minimized error e (n) difference between both of 

them. The idea here is that the adaptive filter proceed iteratively and adjusts 

its coefficient to be maintained closer as possible to the unique optimum set 

of tap coefficients. After the convergence of the error according to some 

criteria as will be discussed later y (n) should be close as much as possible to 

d (n), and this means that the adaptive filter coefficient can be used as a 

compensator for the distorted signal. 

• Decision-Direct Mode: this mode could be considered as steady state mode of 

the adaptive channel equalization system. After getting the suitable 

coefficients of the adaptive filter. The equalization process switches to 

Decision-direct mode in order start compensating the received signals in a 

proper way. Afterword, the system may be able to go back again to check if 

any change has happened on the channel 

 

1.3 Modeling of the Multipath Fading Channels 

Usually, to describe fading channels, the impulse response of the channels should be 

modeled by stochastic process approach. In this thesis, we used a deterministic 

approach which shows to be more suitable for our application. In this part we showed 

that the fading channels can be represented as a Moving Average (MA) model. 

Under some approximations, the land and aeronautical mobile radio channels both 

are shown to present poly-periodic time variations, and the frequency of the prior 

time variation is so called Doppler frequency. 
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The time-varying multipath channel is mainly characterized by the time spread 

introduced to the transmitted signal. Hence, the signal at the receiver input is the sum 

of the attenuated and delayed replica signals of the original transmitted signal. 

Herein, let’s consider the communication model depicted in Figure (1.3), represented 

in the equivalent baseband (low-pass) representation. This simplified model is 

proposed by Forney [18].   

Pulse shaping Emitting
 Filter

Time-Varying
Channel + Matched Filter

AWGN
( )tη

( )y t{ }( )x i

Input
sequence

( )s t ( )z t

 

Figure 1.3: Communication Model [18] 

 

The equivalent received baseband signal is [15]  

1

2 ( )
( ) ( ) ( ( ))

k

l l
l

j f tc lz t t e s t t
π τ

α τ
=

−
= −∑  

   (1. 1) 

Where k is the number of paths, ( )l tτ is the time-varying delay  presented in each l 

path, ( )l tα  is the time-varying attenuation presented in the m path as well, cf carrier 

frequency, and ( )s t  is the transmitted signal. 

The time-varying attenuation ( )l tα  changes significantly, only if the channel 

experiences large dynamic changes. Hence, for quite large time interval, the 

attenuation can be considered roughly as a constant. Furthermore, another 

approximation can be done by considering the time varying delay ( )l tτ as constant for 

quit large number of symbols, since the time variation during the symbol period is so 
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small and can be ignored, APPENDIX A, then we can approximate 

( ( )) ( )l ls t t s tτ τ− ≈ − .Whereas, the term 2 ( )c lf tπ τ is affected significantly even 

though mτ  changes very slightly, owing to the high carrier frequency cf . Thus the 

signal ( )z t  becomes 

2 ( )

1

( ) ( )c l

k
j f t

l l
l

z t e s tπ τα τ−

=

= −∑  
    (1. 2) 

When the mobile body has a constant velocity, the propagation delay can be 

approximated by a linear function of time ( 0( )c l l lf t f tτ λ +� ), APPENDIX A. The 

received signal is then 

2

1

( ) ( )l

k
j f t

l l
l

z t e s tπβ τ−

=

= −∑  
    (1. 3) 

where 02 lj
l le

πλβ α −=  

Then, the sampled version of the received signal can be shown to be 

2

1

( ) ( )l

k
j f n

m l
m

z n e s n pπβ −

=

= −∑
%

 
    (1. 4) 

where l l sf f T=% , l l sp Tτ � , lp  is an integer, and sT  is the sampling period (which is 

equal to the symbol period). Actually, the Eq. (1.4) justifies the choice of 

exponentially basis functions. After that, we can write the noiseless received signal 

as  

0

( ) ( ) ( )
q

i
i

z n a n s n i
=

= −∑  
    (1. 5) 



7 

 

where { }max , 1, ,lq p l k= = K  is the model order. If { }li p∉ , the respective 

parameters ib are zero. Eq. (1.5) represents the channel impulse response as an MA 

model with periodically time-varying parameters. 

 To generate an overall model for the system communication in Figure (1.3), let 

{ }( )x i  be the symbol sequence. The baseband emitted signal will be 

1( ) ( ) ( )s
i

s t x i g t iT
+∞

=−∞

= −∑  
    (1. 6) 

where sT  is the symbol period, 1g  is the overall impulse response of the cascaded 

connection between the shaping pulse and the emission filter. Now, substituting Eq. 

(1.6) into Eq. (1.1) yield 

2 ( )
1

1

( ) ( ) ( ) ( ( ))c l

k
j f t

l s l
l i

z t t e x i g t iT tπ τα τ
+∞

−

= =−∞

= − −∑ ∑  
   (1.7) 

The low-pass received signal then becomes, 

2 2( ) ( ) ( ) ( ) ( ) ( ) ( )y t z t g t t g t w t v tη= ∗ + ∗ +�     (1.8) 

where 1g  is the impulse response of the matched filter, and ’∗ ’stands for 

convolution) . Assuming that both of the impulse response 1g , 2g have finite duration, 

and after some derivation, for more information see reference [15], we can easily 

reached to the following a complete MA model of the given communication system 

in Figure (1.3) (discrete-time input/output relationship of the channel) 

0

( ) ( ) ( ) ( ),
q

i
i

y n a n s n i v n
=

= − +∑  
    (1. 9) 

with 
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2

1

( ) l

k
j f n

i il
l

a n a e π−

=

=∑
%

 
  (1. 10) 

where q is the memory length of the channel, ila  are complex constant 

coefficients, lf%  are the corresponding Doppler frequencies which given by [4]. 

l s

v
f T

c
=%  

  (1. 11) 

where v is the mobile body speed, c is the speed of the light. 

We conclude that the mobile radio channel can be modeled by a linear periodically 

time varying filter [4], as long as the time delays considered as linearly time varying. 

The nonstationary time-varying channel’s response is extended over exponential 

basis functions as in Eq. (1.9) and (1.10). Hence, to recognize the nonstationary case 

channel impulse response, then we have encountered the problem of estimating of 

the channel constant coefficients{ }ila , and their respective channel Doppler shift lf% . 

 

 

 

 

 

 

 

 



1.4 Adaptive Filters and Adaption Algorithms 

Adaptive filters play an important role in the adaptive channel equalization systems. 

The main structure of the adaptive filter is shown in the block diagram below: 
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input to the adaptive filters is the desired signal d (n) plus the noise 

etimes the input signal considered as the desired signal, multiplied 

ction(i.e. time variant system) is defined as follows : 

)()()( nvndnx +=    (1. 12) 

ter has a Finite Impulse Response (FIR) structure. In such structures, 

onse is equal to the filter coefficients, which are updated recursively 

 updating algorithm. The coefficient weight for a filter of order (p) is 

s: 

[ ]Tnnnn pwwww )(),1(),0( K=    (1. 13) 

on or the error function e(n), defined as the difference between the 

mated output signal y(n) is given as 

)()()( nyndne −=    (1. 14) 
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The estimated output is found by the variable FIR filter by the convolution between 

the input signal and filter impulse response; this operation could be expressed in 

vector notation as: 

)(*)( nxwny n=    (1. 15) 

where [ ]Tpnxnxnxnx )(,),1(),()( −−= K  is an input signal vector. 

Afterwards, the variable filter updates the filter coefficient at every instant or 

iteration 

nnn www ∆+=+1    (1. 15) 

Where nw∆ is a correction updating factor for the filter coefficients and depends on 

how the adaptive algorithm is utilized from the input signal and the generated error.  

1.5 Motivation and Contributions of the Thesis  

Research work in this thesis makes several contributions to the area of adaptive 

equalization and communication fields. First, an efficient new BF estimator, termed 

as recursive inverse basis function (RIBF), is proposed. Next, a frequency-adaptive 

version of RIBF is developed by means of a simple gradient search strategy. The new 

BF estimator outperforms the EWBF estimator by providing considerable complexity 

savings. Moreover, RIBF is superior to the Gradient-BF and EWBF estimators since 

it shows further reduction in the mean square parameter estimation error without 

using any correction code. These advantages results in significant advantages when 

applied in wireless communications to reduce BER, SNR and channel bandwidth 

requirements. 
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1.6 Organization of the Thesis  

This thesis has six chapters, two core chapters: Chapters Four and Five, where the 

contributions and verifications are located. And it has four supporting chapters, 

Chapters One, Two, Three and Six, which presents principles, conduct surveys and 

draw conclusions. 

Chapter One sets out the problem statement and discusses the thesis contribution and 

motivations and gives a thesis outline. 

Chapter Two discusses the development and categorization of adaptive equalization 

techniques. Then it presents some of the important adaptive equalization structures, 

namely, Linear Transversal Equalizer (LTE), Decision Feedback Equalization 

(DFE), Maximum Likelihood Sequence Estimation (MLSE) Equalizer and 

Fractionally Spaced Equalizer (FSE). 

Chapter Three shows the principles and development of FIR adaptive algorithms and 

explore their main characteristics. Then, it contains a brief survey for the most 

important adaptive algorithms, such as Stochastic Gradient Family (LMS, NLMS, 

TDLMS and Newton-LMS), Least Squares (RLS) and the newly proposed RI 

algorithm. This chapter furnishes the reader with the necessary background theory 

and information on the adaptive algorithms theory. 

Chapter Four introduces the BF algorithms which are a special form of adaptive 

filters that fit the periodically time-varying systems. It then introduces the 

Exponentially Weighted Basis Function EWBF estimators in two forms; Running 

Basis (RB) and Fixed Basis (FB) algorithms. Furthermore, it shows the BF-gradient 

estimators in both running and fixed basis forms. Finally, it presents the new 



12 

 

Recursive Inverse Basis Function (RIBF) estimator, as well as, introducing its 

frequency-adaptive version. 

Chapter Five presents an example where the proposed algorithms are successfully 

applied in multipath fading channels. Accordingly, it shows the simulation results of 

the mentioned BF algorithms using MATLAB software package. Additionally, it 

presents the performance and the superiority of the proposed RIBF-estimator over 

the other competitive algorithms. It investigates the performance capability of the 

proposed frequency-adaptive version of the EWBF estimator. 

Eventually, Chapter Six draws conclusions and suggests improvements for the 

current work. 
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Chapter 2 

 ADAPTIVE EQUALIZATION TECHNIQUES 

The techniques of adaptive equalization have been developed during the last two 

decades to cope with the market demand for efficient, high speed and reliable 

communication devices. Hence, many equalization techniques have been proposed 

for combating ISI on band-limited time-fading channels. These techniques can be 

subdivided into two main types, linear and nonlinear equalization. The categorization 

referred to whether the output of equalizer is affected by the decision maker output 

or not as shown in Figure (2.1) [12]. If the decision maker output (digital 

stream ( )d t ) feeds back to control the equalizer, then the equalization is non linear, 

otherwise it is linear. Different filter structures have been used to implement each 

type that is available in the literature [13]. Among many we can mention Fractionally 

Spaced Equalizer, Blind Equalization, Linear Phase Equalizer, T-shaped Equalizer, 

Decision Feedback Equalization, Dual Mode Equalizer and Linear Transversal 

Equalizer. Associated with each structure there is a class of adaptive algorithms that 

may be used to adaptively adjust the parameters of the equalizer. Figure (2.2) [21] 

illustrates a general classification for equalization techniques according to the filter 

types, structures and algorithms employed. 
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2.1 Linear Equalization Techniques  

The linear equalizer may be implemented as a finite-duration impulse response (FIR) 

filter. The most widely used equalizer structure is the Linear Transversal Equalizer 

(LTE). 

 

Modulator Transmitter Radio Channel

Detector
Matched Filter IF Stage RF Receiver

Front End

∑

Equalizer Decision
Maker

∑

∑

+−

Original
Baseband
Message

Reconstructed
Message Data

Equivalent
Noise

( )e t

ˆ( )d t ( )d t

 

Figure 2.1: Block Diagram of a Simplified Communication System Using an 

Adaptive Equalizer at the Receiver [12] 

 

The LTE is made up of tapped delay lines which store samples from the input 

sequence as one per symbol period sT , and give a sum of the weighted input sequence 

with the filter weights, in an attempt to synthesize the converse of the channel 

effects. Some texts refer to such a structure as symbol-spaced linear equalizer [13], 

since the input and output rates are equal. 

As mentioned earlier, in order to achieve appropriate initialization for the filter 

coefficients, a short training sequence maybe transmitted within the start-up period. 
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The most common criteria used in the optimization of the filter coefficients is the 

Mean Square Error (MSE) between the desired output of the equalizer and its actual 

output. The most common algorithm proposed to minimize MSE value is the Least 

Mean Square (LMS) Algorithm (Widrow and Hoff, 1960), which is simple but 

suffers from slow converges rate. 

The low converge rate of the LMS algorithm is due to the presence of only one 

parameter, namely the step size parameter that controls the adaptation of the process. 
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RLS

Fast RLS
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Gradient RLS
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Figure 2.2: Classification of Equalizers [21] 

 

Another common criterion is the Least Squares method (LS). LS-method is used in a 

deterministic frame to minimize the sum of the exponentially weighted squares error 

recursively in the case of the LTE equalizer. This adaptive algorithm is referred to as 

Recursive Least Squares (RLS) algorithm. RLS algorithm is converges faster than 

LMS algorithm at the expense of high computational complexity. After that, many 
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other RLS- based algorithms appropriate for LTE equalizer have been designed to 

solve the RLS computational complexity. Among many we can count square-root 

RLS algorithm [23], fast RLS, and the algorithm which is appropriate to implement 

the RLS criterion as a lattice structure, which is called as RLS Lattice (RLSL) 

algorithm [29].  

Both, the transversal and lattice linear equalizers are all-zero filters. Hence, obtaining 

an Infinite-duration Impulse response (IIR) structure can be easily done by adding a 

filter section containing poles. However, the addition of poles may affect the 

equalizer in term of its stability; as a result, adaptive IIR equalizers are rarely used.  

 

2.2 Nonlinear Equalization Techniques 

Nonlinear equalizers are applied in communication channels where the channel 

distortion is too severe and it’s insufficient for the linear equalizer to handle this 

distortion. Linear equalizers do not perform well on the channels which have spectral 

nulls in their frequency response characteristics. As it attempts to fix the channel 

distortion problem, the linear equalizer places a large gain in the neighborhood of the 

spectral null. As a result, significant enhancement for the current noise at those 

frequencies will occur. 

In the last three decades, very efficient nonlinear equalizers have been proposed, in 

an attempt to compensate for linear equalizer drawbacks. One of them is the 

Decision Feedback Equalization (DFE). The second one is a sequence detection 

algorithm, which is based on the criterion of maximum likelihood sequence 

estimation (MLSE). DFE equalizer is implemented efficiently by the Viterbi 

Algorithm (VA). As an equalizer, MLSE was firstly proposed by (Forney, 1972). We 

briefly investigate the key characteristics of these methods. 
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2.2.1 Decision Feedback Equalization 

The action of the DFE equalizer is to feed back a weighted sum of past decisions to 

cancel the ISI that they cause in the present signaling interval [20]. In other words, 

the ISI distortion carried on the present input that was introduced by previous pulse 

is subtracted. The DFE can be implemented either by transversal or lattice form. The 

DFE transversal structure is composed of two filters, a feedforward filter and a 

feedback filter. The later is fed by the decision of the detector nonlinear outputs, 

which is the reason to classify the DFE as a nonlinear equalizer.   

The advantage of the DFE comes from the presence of the feedback filter, which is 

an additional component that works on the noiseless quantized level to remove ISI. 

Whereas, the nonlinearity of the DFE may leads to an instability problem, especially 

when an incorrect decision propagates to affect the feedback filter weights. 

 

2.2.2 Maximum Likelihood Sequence Estimation (MLSE) Equalizer 

MLSE is the same as LMS algorithm, is optimum in a sense that it minimizes the 

probability of symbol error. But LMS works only when the channel does not 

introduce any amplitude distortion to the signal, which is the familiar problem that 

requires attention in the mobile communication applications. MLSE deals with such 

a problem by choosing the data sequence with maximum probability as the output. 

MLSE acts by testing all the data sequence that comes from sampling the analog 

signal of the matched filter output. The MLSE requires knowledge of the channel 

characteristics; in addition to that, it requires the knowledge of the statistical 

distribution of the noise smearing the signal. Hence, in case of ISI that covers many 

symbols, the statistical computational complexity becomes impractical, therefore 
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MLSE may be considered as a benchmark for comparison purposes with other 

algorithm’s performance [21]. 

The MLSE Equalizer was first proposed as an equalizer by Forney in 1972, and it 

has recently been implemented successfully in mobile radio channels.   

 

2.3 Fractionally Spaced Equalizer (FSE) 

The optimum receiver for a digital communication channel smeared by Additive 

White Gaussian Noise (AWGN) that is well-known is composed of a matched filter 

which is sampled periodically at the symbol rate. Furthermore, if the smeared 

received signal is corrupted by ISI, then the sample needs to be treated by either 

linear or non linear equalizer. Hence, the matched filter prior to the equalizer, in the 

presence of channel distortion, must be matched with the channel distorted signal. 

Whereas, in practice the channel impulse response is mostly unknown, accordingly 

the optimum matched filter must be adaptively estimated. Another suboptimum 

solution, where is the matched filter is matched with the transmitted signal, may 

result in undesired degradation in the receiver performance [21]. In fact, The 

Fractionally Spaced Equalizer (FSE) incorporates the equalization and matched 

filtering functions into a single filter structure. 

The FSE works by receiving K input signal samples involved in producing one 

output signal sample and then updating the filter weights. Therefore, the input 

sample rate can be expressed as ( /K T ), and the output samples rate (1/T ) (also 

equals to the rate of updating the weights). Consequently, it is called fractional. The 

FSE has many advantages [24]. One of them is that it has the ability to not be 

affected by ISI (aliasing) problem and the sample rate is less than the symbol rate. 
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FSE’s is currently used almost in all commercially high speed modems over voice 

frequency channels. 
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Chapter 3 

ADAPTIVE FILTERING ALGORITHMS 

In this chapter, we show the development of adaptive algorithms and explore their 

main characteristics which show their superiority to others. Firstly, we investigate the 

classical adaptive linear filtering algorithm, which encompasses the steepest descent 

method and we show the main obstacles encountered when trying to put such filters 

in practical situations. We also briefly show the development of adaptive filter 

algorithms which have widespread applications. The family of the gradient stochastic 

algorithms are the following; Least Mean Square (LMS) algorithm (Widrow and 

Hoff, 1960), Normalized version of LMS algorithm (NLMS), Frequency-Domain 

least-mean-square (FDLMS), Transform Domain LMS (TDLMS), and Newton LMS. 

The most important characteristic of the LMS algorithm is its simplicity. We also 

consider the Recursive least-squares (RLS) algorithm which may be viewed as a 

special case of the Kalman filter [1]. The main characteristic of the RLS algorithm is 

faster convergence compared with LMS algorithms since it utilizes the data from the 

starting point, however, this significant performance leads to more complexity. 

Finally, we investigate the newly proposed Recursive inverse (RI) algorithm which 

has considerable reductions in complexity and better performance than the RLS 

algorithm [3]. 
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3.1 Steepest Descent Algorithm  

At this point it would be wholesome to introduce a well-known optimization 

technique, known as the steepest descent method. This method is recursive, in the 

sense that starting from the initial value for the tap-weight vector, it improves with 

increased number of iterations [1]. And at the end of this process the weights will 

converges to the Wiener solution, which is mainly what we are searching for.  

In Figure 3.1, we consider a transversal filter, with input vector samples drawn from 

a wide stationary stochastic source at time n 

[ ](n) ( ), ( 1), , ( 1) Tu n u n u n M= − − +u K  (3.1) 

the vector of tap weights, (n)w , is given by  

[ ]0 0 1(n)= ( ), ( ), ( ) T
Mw n w n w n−w K  (3.2) 

The difference between the estimated output )(
^

nd  and the desired response d(n), 

generates an estimation error e(n), given by 

ˆ( ) ( ) ( ) ( ) ( ) (n)He n d n d n d n n= − = −w u       (3.3) 

Actually, if both vector of inputs u(n) and the desired response d(n) are jointly 

stationary, then the mean square error (MSE) = [ ])()( * neneE  or cost function 

( )nJ at time n is a quadratic function of the weight taps given as  

2 H H H( ) (n) - (n) (n) (n)dn σ= + +w p p w w R wJ  (3.4) 

where 2
dσ  = desired response d(n) variance, 
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p  = cross correlation vector between input vector u(n) and the desired       

response d(n) 

R = auto correlation matrix of the input vector u(n) 
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Figure 3.1: Adaptive Transversal Filter Structure [1] 

 

It is clear from Eq.(3.4) that the cost function ( ( )nJ )changes with time since the tap 

weights w(n) are changing with time as well. This leads to changing estimated error 

(e(n)), and this change signifies the fact that the error process is a time-varying 

process (non stationary).  

We may visualize the dependence of the mean square error ( ( )nJ )on the tap weight 

vector (w(n) )elements, as a bowl-shaped surface with unique minimum [1].  

Adaptive filters search for that minimum point to achieve the optimum weight vector 

0w which is the optimum solution of the Wiener-Hopf equation, given as 
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0 =Rw p  (3.5) 

and the minimum point of the cost function  

2 H
min 0dσ= − p wJ  (3.6) 

Solving the Wiener-Hopf equation (3.5) is straightforward, even though, it has 

computational difficulties especially when the input data rate is high and the number 

of tap weights increase. However, the steepest descent method is an alternative 

approach to solving the Wiener-Hopf equation iteratively. It is one of the oldest 

optimization methods for searching a multidimensional performance surface. Let 

( ( ))n∇ J denote the gradient vector at time n, and (w(n) = a(n) + jb(n)) the complex 

weight vector. Then, the new update value of the weight vector at n + 1 is computed 

recursively as 

[ ]1
(n 1) (n) ( ( ))

2
nµ+ = + −∇w w J  

(3.7) 

and the gradient ))(( nJ∇  of the cost function is given by:  

0 0

1 1

1 1

( ) ( )
( ) ( )

( ) ( )
( ) ( )( ( )) 2 2 (n)

( ) ( )
( ) ( )M M

J n J n
j

a n b n

J n J n
j

a n b nn

J n J n
j

a n b n− −

∂ ∂ + ∂ ∂
 

∂ ∂ + ∂ ∂∇ = = − +
 
 
 ∂ ∂ +
∂ ∂  

p Rw
M

J  

 

 

 

(3.8) 

In the steepest-descent algorithm we assumed the autocorrelation R matrix and cross 

correlation p are known, so we can find the gradient of the cost function and then we 

could find the update values of the weight-taps using the following steepest descent 

algorithm recursive equation 
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[ ](n 1) (n) (n)µ+ = + −w w p Rw  (3.9) 

where the µ  parameter controls the size of correction applied to the weight vector 

every iteration, so we call it the step-size parameter or weighting constant. 

 

3.2 Stochastic Gradient algorithms 

3.2.1 Least Mean Square (LMS) algorithm 

Using the exact measurements of the gradient vector ( ( ))n∇ J  in Eq. (3.6) at each 

iteration, with suitable choice of the step size, the steepest descent algorithm would 

converge to 0w , which is the optimum solution of the Wiener-Hopf equation. 

Nevertheless, exact measurements of the gradient vector are not possible, since it 

needs prior knowledge of the correlation matrix R and crosscorrelation vector p . 

In reality, we are dealing with a stream of data sequences that are coming from the 

source, so filters such as the steepest descent may fail in this case. Algorithms like 

least mean square (LMS) come out to adapt such a sequence of data. A great feature 

of the LMS algorithm is that it does not require previous knowledge of the 

correlation parameters (R matrix and p vector) nor does it need matrix inversion. 

If we substitute the estimated values of autocorrelation matrix R and cross 

correlation vector p to the gradient vector values, which they depend on the 

instantaneous values of the tap input vector u(n) and the desired response d(n) as 

follows 

H( ) (n) ( )n n=R u u  (3.10) 

and 
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*ˆ ( ) (n) ( )n d n=p u  (3.11) 

then, instantaneous estimation of the gradient vector will be 

* Hˆ ˆ( ( )) 2 (n) ( ) 2 (n) ( ) ( )n d n n n∇ = − +u u u wJ  (3.12) 

Substituting the estimated value of the gradient cost vector ˆ ( ( ))n∇ J in Eq. (3.12) to 

the steepest descent recursive formula in Eq. (3.6), we obtain a new recursive 

algorithm for updating the weight vector: 

* Hˆ ˆ ˆ(n 1) (n) (n) ( ) ( ) (n)d n nµ  + = + − w w u u w  (3.13) 

(The hat sign over the symbols as used here is to distinguish the tap weights vector 

from the values obtained from steepest descent algorithm). Now, if we look carefully 

at the estimate tap weights in the preceding equation, we may rewrite it in terms of 

the filter output and estimation error as follows: 

*ˆ ˆ(n 1) (n) (n) ( )e nµ+ = +w w u  (3.14) 

where e(n) is the estimated  error 

( ) ( ) ( )e n d n y n= −  (3.15) 

and y(n) is the filter output 

ˆ( ) ( ) (n)Hy n n= w u  (3.16) 

Eqs. (3.14) to (3.16) describe the complex version of Least Mean Square (LMS) 

algorithm, which is considered as a member of stochastic gradient algorithms. The 

correction term ( *(n) ( )e nµ u in Eq.(3.14) added to the estimate value of tap weights 

ˆ ( )nw  to predict the new estimate of tap weight function can take any direction and 

changes randomly. The tap weight vector search starts from initial value ˆ (0) 0=w . 
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LMS algorithm can be represented in a single flow diagram, as a close loop feedback 

model as shown in Figure (3.8). The simplicity of the LMS algorithm is obvious, 

which needs 2M+1 complex multiplications and 2M complex additions, in each 

iteration for M tap weights in the adaptive transversal filter. 

∑)(u n µ (n)uH

I

Iz-1

)(w
^

n

)1(w
^

+n

)(* nd

+
-)(* ne

 

Figure 3.2: Single-Flow Graph Representation of LMS-Algorithm [1] 

 

Finally, it would be proper to mention that the LMS algorithm remains stable, when 

the step sizeµ  remains inside the following band [1]: 

tr[R]3
1

0 << µ  
 

(3.17) 

where: ∑
−

=

=
1

1

tr[R]
N

i
iir . 

For stationary input signals and sufficiently small µ  [6], the speed of convergence of 

the LMS algorithm is dependent on the eigenvalue spread, which is the ratio of the 

maximum to the minimum eigenvalues ( max min( ) ( )λ λR R ) of the input 

autocorrelation matrix R. It’s often referred to the mentioned ratio which measures 

the ill-conditioning of the matrix as the condition number. 



27 

 

3.2.2 Normalized Least Mean Square (NLMS) Algorithm 

The correction factor *(n) ( )e nµ u  in LMS algorithm is directly proportional to input 

data sample stream u(n).Hence, any large change in the input sequence affects the 

stability and the convergence of the tap weights vector to its optimum value. This 

large input value u(n) causes a gradient noise amplification problem [1]. 

Normalized LMS algorithm (NLMS)1 comes out to solve the problem of variation in 

the signal amplitude at the filter input by considering a time variant step size. In 

brief, we may implement NLMS algorithm as a natural modification of the 

conventional LMS algorithm, but instead of considering constant step sizeµ , we 

normalize the correction factor *(n) ( )e nµ u  to the square Euclidean norm of the 

input tap vector u(n). However, to examine this we may derive the NLMS algorithm 

as a solution to the minimal optimization problem (Goodwin and Sin, 1984) using 

the method of Lagrange multipliers. The problem states that for input vector u(n) and 

desired response d(n) find the weight vector w at n+1  in order to minimize the 

square Euclidean norm of the change of ˆ (n 1)+w to its original tap weights ˆ (n)w as 

follows 

ˆ ˆ ˆ(n 1) (n 1) (n)δ + = + −w w w     (3.18) 

Subject to the constraint 

ˆ (n+1) ( ) ( )H n d n=w u     (3.19) 

                                                 

1 This algorithm has been suggested independently by Nagumo and Nado (1967) and Albert and 

Gardner (1967) under different names. Its name “Normalized LMS algorithm” was invented by 

Bitmead and Anderson.   
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As mentioned earlier, to solve this optimization problem we use the Lagrange 

multipliers method. The square norm of the change in the weight vector can be 

expressed as follows 

[ ] [ ]

2

1
2

0

ˆ ˆ ˆ(n 1) (n 1) (n 1)

ˆ ˆ ˆ ˆ(n 1) (n) (n 1) (n)

ˆ ˆ(n 1) (n)

H

H

M

k k
k

δ δ δ

−

=

+ = + +

= + − + −

= + −∑

w w w

w w w w

w w

 

 

         

(3.20) 

Then, we define the weight vector ˆ (n)w , tap input u(n-k) and the desired response 

d(n)  for k=0, 1, . . .  ,M-1 in their respective real and imaginary parts: 

1 2

1 2

ˆ (n)= ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

k kn j n

n k n k j n k

d n d n jd n

+

− = − + −

= +

w a b

u u u  

 

   (3.21) 

Now, using the complex representations to modify the constraints of the optimization 

problem in Eq. (3.18) and (3.19), we have  

[ ] [ ]
1

2 2 2

0

ˆ (n 1) ( ( 1) ( ) ( 1) ( ) )
M

k k k k
k

a n a n b n b nδ
−

=

+ = + − + + −∑w  
 

(3.22) 

By the same way substituting in Eq. (3.20), and writing it as an equivalent pair of the 

real and imaginary part of the  real representation, (for more details see Haykin 

(1991)). Then we may also write the real valued-cost function J(n) for the constraints 

of the given optimization problem in one single relation as follows 
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(3.23) 

where both 1λ  and 2λ  are Lagrange multipliers. Now, by differentiating the cost 

function J(n) with respect to the tap weight parameters ( 1)ka n + & ( 1)kb n + ,and then 

setting the results equal to zero, we can find their optimum values, 

[ ]

[ ]

1 1 2 2

1 1 2 2

( )
0 2 ( 1) ( ) ( ) ( )

( 1)

( )
0 2 ( 1) ( ) ( ) ( )

( 1)

k k
k

k k
k

J n
a n a n u n k u n k

a n

J n
b n b n u n k u n k

b n

λ λ

λ λ

∂
= = + − − − − −

∂ +

∂
= = + − − − + −
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(3.24) 

Using the complex representation form of ˆ (n)w  and (n-k)u  in Eq.(3.21) to combine 

Eq.(3.24) into a single complex one, we have  

[ ] *ˆ ˆ2 ( 1) ( ) ( ), 0,1, , 1k kw n w n u n k k Mλ+ − = − = −K     (3.25) 

Where 1 2jλ λ λ= +  is the complex Lagrange multiplier. 

Now to solve for the unknown *λ , we multiply both sides of Eq.(3.25) by *( )u n k− , 

then sum up over all the possible integer values utilized from the vector 

representation of the sums, we have  

* * *
2

2 ˆ( ) ( ) ( )
( )

Hd n n n
n

λ  = − w u
u

 
 

(3.26) 

We may write the Lagrange multiplier in terms of error e(n): 
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* *
2

2
( )

( )
e n

n
λ =

u
 

 

(3.27) 

Finally, substituting the Lagrange multiplier *λ  value into Eq. (3.25), we obtained 

*
2

ˆ ˆ ˆ( 1) ( 1) ( )

1
( ) ( )

( )

k kw n w n w n

u n e n
u n

δ + = + −

=  

 

 

(3.28) 

Equivalently we may rewrite Eq. (3.28) in vector form as follows: 

*
2

1ˆ ˆ( 1) ( ) ( ) ( )
( )

n n n e n
n

+ = +w w u
u

 
 

   (3.29) 

In order to control the step change introduced over the tap weight vector, we may 

introduce a real positive scaling factor µ% , then we may express Eq. (3.29) in iterative 

form which is the Normalized Least Mean Square (NLMS) update equation for M-

by-1 tap weight vector:  

*
2ˆ ˆ( 1) ( ) ( ) ( )

( )
n n n e n

n

µ
+ = +w w u

u

%
 

 

(3.30) 

On this recursion formula we may show the following observations: 

1. The term “Normalized” comes when we normalize the vector product term 

*( ) ( )n e nu  with respect to the square Euclidean norm of the input vector u(n). 

2. The adaption step size µ% for NLMS algorithm is dimensionless, while the 

adaption step size µ  for LMS algorithm has an inverse power dimension. 

3. We may show that the NLMS algorithm is a new version of LMS algorithm, 

but with time variant adaption step size parameter ( )nµ is as follow: 
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2( )
( )

n
n

µµ =
u

%
 

 

(3.31) 

4. The NLMS algorithm converges in the mean square sense when the constant 

step size µ  satisfies the following requirement (Hsia, 1983): 

0 2µ< <%  (3.32) 

 

5. Despite NLMS algorithm comes to solve numerical problem, it may add a 

new numerical problem. Specifically, when the input vector becomes small, 

the division of the gradient part over square value of the input norm  becomes 

too large. To solve such a problem, we add a new constant to the input norm 

square. The recursion formula of the NLMS algorithm in Eq. (3.30) becomes: 

*
2ˆ ˆ( 1) ( ) ( ) ( )

( )
n n n e n

a n

µ
+ = +

+
w w u

u

%
 

 

(3.33) 

where 0a > , if 0a =  Eq. (3.33) comes back again to the original NLMS recursion 

equation Eq.(3.30).  

3.2.3 The Transform Domain LMS (TDLMS) Algorithm 

In this adaptive algorithm approach, one of the drawbacks of LMS algorithm which 

is the slow convergence property has been improved on. This section material was 

drawn from [5]. In general, as mentioned early for a stationary input sequence and 

proper selection of small adapting constant µ , the rate of convergence is dependent 

on the eigenvalues spread (ratio of the maximum to the minimum eigenvalues) of the 

input autocorrelation sequence R. if this ratio is large, then a slow convergence rate 

can be expected. An approach to accelerate the convergence rate is to somehow 

transform the input signal u(n) into another signal with the corresponding 
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autocorrelation matrix having a smaller eigenvalue spread [7],[8]. Varying the 

adaptive filtering process to some orthogonal transform domain guarantees the 

increase of the convergence rate. 

A block diagram of the transform domain LMS adaptive filter is shown in Fig. (3.9), 

the input sequence vector u transformed into another vector sequence Tu  

,0 ,1 , 1
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(3.34) 

where Τ  is a unitary matrix of rank M  (i.e. *
MIΤΤ = ). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3: Block Diagram of the Transform Domain LMS-Adaptive 

Filter [5] 
32 
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Then , we multiplied the transferred input vector  ( )T nu  by the transferred domain 

weight vector w ( )T n to form the adaptive output sequence, given below 

ˆ ( ) ( ) ( )T
T Tn n n=d u w   

(3.35) 

where  ,0 ,1 , 1( ) ( ), ( ), , ( )
T

T T T T Mn w n w n w n− =  w K  is the transform domain of the 

weight vector . 

Now, the weight update vector equation becomes: 

1ˆ( 1) ( ) 2 ( ) ( )T T Tn n e n nµ −+ = +w w D u  (3.36) 

where, 

( ) ( ) ( ) ( )T
T Te n d n n n= −w u  (3.37) 

D̂ is the estimate of the diagonal matrix D, which its (i,i) elements correspond to the 

power estimate 2
uˆ ( )
T
nσ  of the input sequence ( )T nu as follows: 

The estimated diagonal matrix D̂  can be achieved recursively by  

2ˆ ˆ( ) ( 1) (1 )diag( ( ))Tn n nβ β= − + −D D u  (3.39) 

where  β  is positive constant close to 1, 
,0 ,1 , 1

2 2 2ˆ ˆ ˆ ˆ( ) diag ( ), ( ), , ( )
T T T Mu u un n n nσ σ σ

−
 =  D K . 

The inverse of matrix D is valid as long as the input sequence autocorrelation matrix 

R is positive definite. By applying matrix D we get the normalized tap input vector 

2
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   (3.38) 
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(not to confuse with NLMS algorithm), as it is obvious from the weights equation 

(3.36), as follows: 

1/2
, ( ) ( )T normalized Tn n−=u D u  (3.40) 

This normalization can convert TR  to a normalized matrix ,T normalizedR  where its 

eigenvalue spread will be much smaller than that of R. Thereby, by choosing a 

proper orthogonal transform, the convergence behavior of LMS algorithm in the 

transform domain is expected to have an improved convergence performance over 

the corresponding time domain algorithm. 

Moreover, if the orthogonal transform ΤΤΤΤ  is chosen to render TR  completely 

diagonal, then the eigenvalue spread becomes unity. Adaptive filters implemented in 

such a situation, have been shown to have the best convergence performance. The 

corresponding ΤΤΤΤ  transform which reduced the time domain M-vector adaption 

problem to the M-scalar in the transform domain is the famous as Karhunen-Loeve 

Transform (KLT). In most real application KLT is difficult to apply, since it is 

dependent on R itself. 

The most popular orthogonal transform are Discrete Cosine Transform (DCT) and 

Discrete Fourier Transform (DFT), as shown in the APPENDEX C. Choosing DFT 

as a transform domain in this case, implies to a recognized name which is called 

Frequency Domain Least Mean Square Algorithm (FDLMS), (Shankar and Peterson, 

1981). Both recursively whitened the input sequence u(n) , then the transformed 

input signal ( )T nu  with reduced dynamic spectrum range is introduced for 

adaptation process.     
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Finally, TDLMS algorithm which implemented by Equations (3.36) and (3.37), has a 

wide range application especially in signals which have large spectral dynamic range 

such as speech signals. Furthermore, it may also have a good demand when the input 

signals are obtained by sampling continuous signal after it passes a low-pass (anti-

aliasing) filter. If the sampling frequency is twice as greater than the filter’s cut off 

frequency, and if the filter has small stopband amplitude, then the dynamic range 

spectrum of the input sequence will be wide, despite whether the dynamic range 

spectrum of the continuous input signal is narrow. So applying the time delay filters 

in such application may lead to lack in the convergence rate, whereas the orthogonal 

filters show superior over the time delay filters in terms of convergence performance.  

3.2.4 Newton-LMS Algorithm 

This section material was drawn from [5]. Newton’s method as the steepest method 

is an iterative method used in the literature as an approach for searching for the 

critical points in solving optimization problem. Using the steepest descent algorithm 

Eq. (3.9) and Wiener Hopf Eq.(3.5), the estimated weight vector can be written as 

[ ]
[ ]

0

0

(n 1) (n) R (n) R

(n) (n)

µ

µ

+ = − −

= − −

w w w w

w R w w
 

(3.41) 

From LMS algorithms which uses the steepest descent method, we can conclude that 

all of the LMS algorithms suffers from low convergence speed when the 

autocorrelation matrix has wide of eigenvalue spread. This problem might be clear in 

Eq.(3.41) due to the existence of autocorrelation matrix of the input signal R which 

makes the steepest descent algorithm suffers always from slow convergence 

problem.  
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Newton’s method solves the problem of slow convergence. Instead of µ  in Eq. (3.7) 

we substituted matrix of adaptive constant -1µR , to give the Newton’s update 

equation as shown below 

[ ]-11
(n 1) (n) ( ( ))

2
nµ+ = + −∇w w R J  

 

(3.42) 

This replacement in the Newton’s equation guarantees an improvement in the speed 

of the convergence. This is because the inverse of the autocorrelation matrix -1R , 

affects the gradient vector direction in terms of rotation to search for the minimum 

point on the searching surface. 

To find out the Newton-LMS algorithm, considering the same process as what has 

been done in LMS algorithm, that is, replacing the stochastic gradient vector by its 

instantaneous estimate vector
^

( ( ))n∇ J  and processed. Then Eq. (3.32) becomes  

-1(n 1) (n) ( ) (n)e nµ+ = +w w R u     (3.43) 

Since equation (3.43) assumes that the matrix -1R needs to be a known matrix, it may 

be called an ideal Newton-LMS algorithm. In practice, which assumes the validation 

of -1R  is not possible, makes the use Newton-LMS is insufficient. Therefore, using 

the iterative method to estimate -1R , as we will show later, makes Newton-LMS 

more applicable. 

It can be shown that TDLMS and Newton-LMS algorithms have two different 

representations for the same algorithm by choosing Karhunen Loeve transform 

(KLT) at the filter input signal. Then, for a proper transform, TDLMS efficiently 

represented Newton-LMS algorithm. More details can be found in [4]. 
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3.3 Recursive Least Squares (RLS) Algorithm 

This section material was drawn from [5]. Filter design problem to find out the 

optimum parameters which are correspond to give the desired output response for a 

given input sequence have two formulations; one of these formulation is the 

statistical design approach, which has been discussed so far. And the other one is the 

deterministic structure in the filter-solving problem. Wiener filter and the LMS with 

its derivatives are considered to belong to the statistical framework since the 

minimizing of the least mean square (statistical quantity) parameter’s criteria is 

considered in their designs. In this section, solving the optimization problem using 

the deterministic point of view is being presented using the method of least squares. 

Same as the standard LMS algorithm has wide derivatives with wide range of 

applications according to their figure of merit, the algorithms of least squares method 

also has. Using the least squares method and matrix inversion Lemma relation, the 

Recursive Least Squares (RLS) algorithm is presented to find out the desired 

response recursively. This algorithm has shown faster convergence rate than LMS 

with increased the computational complexity. This is because it exploits the data 

input sequence from the time of initialization until the time the weighted vector is 

updated.   

As the LMS algorithm derivation criteria minimize the error in mean square sense, 

RLS minimizes the error in least square sense. In least squares method the adaptive 

filter taps calculated by minimizing the cost function giving by 

2

1

( ) ( , ) ( )
n

i

n n i e iξ β
=

=∑  
   

 (3.44) 
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Where this cost function ( )nξ assumes that all the past input sequence and the desired 

response output should be available to minimize the error at the present output. The 

error e(i) is the difference between the estimated desired output and  the desired 

output given by 

( ) ( ) ( )

( ) ( ) ( )H

e i d i y i

d i n i

= −

= −w u
 

 

(3.45) 

 where d(i) is the desire response at time i, u(i) is the tap input vector at time i  

[ ]( ) ( ), ( 1), , ( 1) Ti u i u i u i M= − − +u K     (3.46) 

and w(n) is the tap weight vector at time n giving by 

[ ]0 0 1(n)= ( ), ( ), ( ) T
Mw n w n w n−w K     (3.47) 

Note that the tap weights are constant in the time observation interval 1 i n≤ ≤  for 

which the error cost function ( )nξ  is defined. 

( , )n iβ  is the weighting factor which has the property of 0 ( , ) 1n iβ< ≤  . The special 

weighting factor that has been used is the exponential weighting factor or forgetting 

factor 

( , ) n in iβ λ −=     (3.48) 

where λ  is a positive constant close to, but less than one. Forgetting factor clearly 

works by putting more weight for the present and near present samples and forget the 

distant past samples. Putting 1λ = gives the ordinary method of least squares (LS) 

which has an infinite memory by considering all the samples from the starting point 

of the simulation. Whereas, in case of 1λ < , trying to emphasize the weight of the 

most present samples, which becomes a most criterion in case of nonstationary input. 
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Roughly speaking, the memory approximately equal to 1(1 )λ −− . Then the 

exponentially weighted least squares cost function is minimized as follows 

2

1

( ) ( )
n

n i

i

n e iξ λ −

=

=∑  
     

(3.49) 

At minimum cost error function ( )nξξξξ , the optimum tap weight vector ŵ( )n  in matrix 

form is giving by the following normal equation: 

ˆ(n) ( ) ( )n n=Φ w z  (3.50) 

The M-by-M autocorrelation matrix Φ(n) for the filter input u(n) is defined by 

1

(n) ( ) ( )
n

n i H

i

i iλ −

=

=∑Φ u u  
   (3.51) 

Also the M-by-1 cross-correlation vector z(n) between the filter input u(n) and the 

desired response d(n) is given by 

*

1

(n) ( ) ( )
n

n i

i

i d iλ −

=

=∑z u  
   (3.52) 

Expanding the correlation matrix (n)Φ  as follows: 

1
1

1

(n) ( ) ( ) ( ) ( )
n

n i H H

i

i i n nλ λ
−

− −

=

 
= + 

 
∑Φ u u u u  

    

   (3.53) 

Comparing the first term in the left hand side of Eq. (3.53) with Eq.(3.51), it can be 

deduced that this term represents the correlation matrix (n)Φ  of the input samples at 

time n-1. Hence, the following recursion equation for correlation matrix is 

introduced: 

(n) ( 1) ( ) ( )Hn n nλ= − +Φ Φ u u     (3.54) 
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The second term ( ) ( )Hi iu u in Eq. (3.54) represents the correction applied to the old 

value of the correlation matrix ( 1)n −Φ  during the updating process. 

This also can be done for the cross-correlation vector in Eq. (3.52) to get the 

following recursive update equation for cross-correlation between the tap input 

vector and desired response 

*(n) ( 1) ( ) ( )n n d nλ= − +z z u     (3.55) 

To attain the least square estimate of the tap weight vector ŵ( )n  in Eq. (3. 49), it’s 

clear that the inverse of the correlation matrix 1(n)−Φ  should be available. In 

practice, we try to avoid the inversion at all, because it is considered time consuming 

where trying to find the least square estimate ˆ ( )nw  recursively. Achieving both of 

these requirements are possible by using a linear algebra, i.e. by using matrix 

inversion lemma, see APPENDIX B. 

Applying matrix inversion lemma for Eq. (3.54) and taking into account that the 

initial condition has been chosen to ensure that the correlation matrix (n)Φ  is 

positive definite (nonsingular matrix). Considering the parameters in matrix 

inversion lemma as follows 

-1

( 1)

( )

( )

1,

H

n

n

n

λ= −
=

=

= −

A Φ

B u

C u

D

 

    

 

   (3.56) 

Substituting these parameters definitions in the matrix inversion lemma 

(APPENDEX B), gives the following recursive equation for the inverse 

autocorrelation matrix 
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2 1 1
1 1

1 1

( 1) ( ) ( ) ( 1)
(n) ( 1)

1 ( ) ( 1) ( )

H

H

n n n n
n

n n n
λλ

λ

− − −
− −

− −

− −
= − −

+ −
Φ u u Φ

Φ Φ
u Φ u

 
   

   (3.57) 

For convenient representation assume that 

1(n)= (n)−P Φ     (3.58) 

and 

1

1

( 1) ( )
(n)=

1 ( ) ( 1) ( )H

n n
n n n

λ
λ

−

−

−
+ −

P u
k

u P u
 

   

   (3.59) 

Then, the inverse correlation matrix in terms of these definitions can be written as 

follows  

1 1(n) ( 1) ( ) ( ) ( 1)Hn n n nλ λ− −= − − −P P k u P     (3.60) 

where P(n) is an M-by-M inverse of the autocorrelation input matrix (n)Φ , and k(n) 

is M-by-1 vector which is called gain factor. Rearranging the gain factor in a 

different way as follows 

1 1(n) ( 1) (n) ( ) ( 1) ( )Hn n n nλ λ− − = − − − k P k u P u     (3.61) 

Considering Eq. (3.61) and comparing it with Eq. (3.60), the term inside the bracket 

at left hand side of Eq. (3.61) equal to P (n). Hence Eq. (3.61) can be written in terms 

of the input and autocorrelation inverse as given 

1

(n) ( ) ( )

(n) ( )

n n

n−

=

=

k P u

Φ u
 

    

   (3.62) 

From the previous formula, it can be seen that the gain factor definition, which is 

equal to the transformation version from the tap input vector done by the correlation 

inverse. 
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To find the least square update equation for the tap weight vector, substitute the 

value of recursive formula of the cross correlation matrix z(n) in Eq. (3.50) 

1

*

1 1 *

*

ŵ( ) ( ) ( )= ( ) ( )

( ) ( 1) ( ) ( ) ( )

( 1) ( 1) ( ) ( ) ( 1) ( 1)+ ( ) ( ) ( )

ˆ ˆ( 1) ( ) ( ) ( 1) ( ) ( ) ( )

H

H

n n n n n

n n n n d n

n n n n n n n n d n

n n n n n n d n

λ

−

− −

=

= − +

= − − − − −

= − − − +

Φ z P z

P z P u

Φ z k u Φ z P u

w k u w P u

 

   

   

   (3.63) 

    

 

Note that in Eq. (3.63), P (n) u (n) equals to the gain factor k(n). After substituting 

and arranging equation (3.63), the least squares estimate of the tap weight vector 

becomes 

*ˆ ˆ( ) ( 1) ( ) ( )n n n nε= − +w w k     (3.64) 

where, ( )nε is the prior estimation error given by 

*ˆ( ) ( ) ( ) ( 1)

ˆ( ) ( 1) ( )

T

H

n d n n n

d n n n

ε = − −

= − −

u w

w u
 

   (3.65) 

Where, the scalar product ŵ ( 1)u( )H n n−  is the desired response of the filter at the 

previous tap weight vector found at (n-1). From the tap weight vector adjustment 

equation and from the prior estimation error equation, the RLS algorithm can easily 

be represented in block diagram shown in Figure (3.10). 

RLS algorithm comprise of Eq. (3.59) which represent the gain factor, Eq. (3.65) that 

gives the prior estimate of error, Eq. (3.64) that also forms the estimation of the tap 

weight vector and Eq. (3.60) which is the inverse estimate of the correlation function. 

RLS algorithm is summarized in table (3.1). The initialization of RLS algorithm 

should be chosen in a way to avoid the singularity of the correlation matrix. The tap 

weight vector is also preferably initialized with the null vector.  
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Finally, the RLS algorithm represents a solution for minimizing the cost function of 

the optimization problem (Sayed and Kailath, 1994) given by: 

Transversal Filter

Adaptive RLS algorithm ∑

+

−

ŵ ( 1)u( )H n n−

ŵ( 1)n−

u( )n
Input Vector

( )nε

Output

Desired Response

( )d n

ˆ( )d n

Error

 

Figure 3.4: Block Diagram Representation of RLS-Adaptive Filter [1] 

 

2 2

( )
1

min ( ) ( )
n

n n i

n
i

n e iδλ λ −

=

 
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 
∑

w
w  

    

(3.66) 

where e(i) is error in the following equation 

( ) ( ) ( ) ( )He i d i n i= −w u     (3.67) 

It is important to mention that the RLS algorithm suffers from computational 

complexity; it grows in proportion with the square value of the filter length, which 

makes things to get worse in implementation and speed point of view. 
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Table 3.1: Summary of RLS-Algorithm 

Initialization: 1(0) I
ˆ (0)=0

δ −=P

w
  

δ : is small positive constant. 

I : M-by-M identity matrix 

Iteration: 1

1

( 1) ( )
(n)=

1 ( ) ( 1) ( )H

n n
n n n

λ
λ

−

−

−
+ −

P u
k

u P u
 

 ˆ( ) ( ) ( 1) ( )Hn d n n nε = − −w u  

 *ˆ ˆ( ) ( 1) ( ) ( )n n n nε= − +w w k  

 1 1(n) ( 1) ( ) ( ) ( 1)Hn n n nλ λ− −= − − −P P k u P  

 

This serious drawback of the RLS algorithm has been challenging for the last two 

decades. To solve the problem, researchers have created many algorithms, which are 

proportional with the filter length, and are commonly referred to as the fast RLS 

algorithms. These invented algorithms utilize of the prediction and filtering concepts 

in an elegant way to present the efficient of computational complexity.RLS lattice 

(RLSL) algorithm [29], which is one of the most numerically robust implementation 

of fast RLS algorithms. Also, Fast Transversal RLS (FTRLS) which is known as fast 

transversal filter (FTF) [22], is an alternative implementation which has solved the 

problem of complexity efficiently.  
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3.4 Recursive Inverse (RI) algorithm 

This section material was drawn from [1].Recursive inverse (RI) is one of the newly 

proposed algorithms, which has shown superior performance over others in some 

charactersistics, such as computational complexity and speed of convergence. In 

addition, it has solved the problem of correlation inverse by excluding it from the 

updating equation. 

To derive the update equation of RI algorithm, we start from the Wiener-Hopf 

equation. The equation is written again for convenience  

1( ) ( ) (n)n n−=w R p  (3.68) 

where R(n),p(n) are the autocorrelation matrix  of the input vector u(n) and the 

cross-correlation vector between the input ( )nu and the desired response ( )d n , 

respectively. Note that, as the filter coefficients vector is updated, the solution of Eq. 

(3.68) is required in each iteration. Furthermore, there is a need for the 

autocorrelation matrix to be nonsingular at each iteration [1]. 

Considering the estimation of the correlation parameters iteratively, the equations 

(3.54) and (3.55) that estimate the correlations matrix and vector, are written again 

for real evaluation cases, with new symbol notations 

(n) ( 1) ( ) ( )Tn n nλ= − +R R u u    (3.69) 

(n) ( 1) ( ) ( )n n d nλ= − +p p u    (3.70) 

where λ  is the forgetting factor, usually close and smaller than one. 

Solving the Wiener-Hopf equation (3.68) iteratively at each time step n, gives the 

filter update equation (3.9), which converges to the optimum Wiener solution and it 

is given by (the equation written again for convenience) 
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[ ]1( ) I ( ) ( ) (n)k kn n nµ µ+ = − +w R w p  (3.71) 

for 0,1, 2,k = K . 

And, if µ  satisfies the convergence condition in [1] 

max

2
Λ ( ( ))n

µ <
R

 
(3.72) 

where  maxΛ ( ( ))nR  is the maximum eigenvalue of correlation matrix R(n). Referring 

to correlation update equation (3.69) and taking the expectation of R(n): 

(n) ( 1) uunλ= − +R R R  (3.73) 

where { }= ( ) ( )T
uu E n nR u u , { }(n)=E ( )nR R . Solving the difference equation (3.73) 

yields 

1
(n)

1

n

uu

λ
λ

−
=

−
R R  

(3.74) 

Considering the maximum value, when n→∞  

1
( )

1 uuλ
∞ =

−
R R  

(3.75) 

Eq. (3.74) stated that the eigenvalues in the estimated correlation matrix R(n)  

increase exponentially as (1 nλ− ), with a maximum limit 1(1 )λ −−  times that of the 

original correlation matrix. Since the step-size µ  is restricted to satisfy Eq. (3.72) as 

a maximum limit might be possible to approach in order to converge for optimum 

Wiener solution, then we get 

max
max

2(1 )
Λ ( )uu

λµ µ−
< =

R
 

(3.76) 
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This equation shows that the step-size µ takes values which are much smaller than 

that required in Eq. (3.72). Now, it would be more convenient to replace the step size 

with a variable one so that 

max max

2 1 2(1 )
( )

Λ ( (n)) (1 ) Λ (R )n
uu

n
λµ

λ
   −

< =   −  R
 

(3.77) 

It is clear in the equation (3.77) that the second part at right hand side, is equal to the 

maximum allowable limit for the step size if Ruu  is used. Hence, Eq. (3.77) becomes 

max 0( )
1 1n nn
µ µ

µ
λ λ

< =
− −

 
(3.78) 

where  0µ < maxµ . 

It’s clear in the steepest descent update equation (3.74), that there is a high iterative 

complexity cost. Consequently, replacing the step-size constant with the variable one 

makes only one iteration at each time step to be adequate [3]. Hence, the final update 

equation of the RI algorithm becomes 

[ ]( ) I ( ) ( ) ( 1) ( ) (n)n n n n nµ µ= − − +w R w p  (3.79) 

The RI algorithm has many superior advantages over the others; it does not need 

update in the inverse of the matrix as the other does, which some time leads to face 

numerical stability problems. Furthermore, it has considerable reduction in the 

computational complexity than the others such as standard RLS algorithm. 
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Table 3.2: Summary of RI-Algorithm 

Initialization: (0) 0

(0) 0
ˆ (0)=0

=

=

P

R
w

  

0µ : is small positive constant. 

λ  Smaller and less than one. 

Iteration:  

 

[ ]

0

(n) ( 1) ( ) ( )

(n) ( 1) ( ) ( )

( )
1

( ) ( ) ( ) ( 1) ( ) (n)

T

n

n n n

n n d n

n

n n n n n

λ
λ
µµ
λ
µ µ

= − +

= − +

=
−

= − − +

R R u u

p p u

w I R w p

 

 

3.5 Applications of Adaptive Filtering 

The capability of adaptive filters to track variation in unknown environment, and to 

follow the changing in the statistics of the input signal, gives the adaptive filters a 

wide range of application in control and signal processing. Indeed, adaptive filters 

have been successfully applied to communications devices, sensor, radar and 

biomedical engineering. Despite this variety in the applications, all filters have the 

same structure, the input vector and the desired response in finding out the estimate 

error, which is responsible for adjustment in the taps of the filter. However, these 

varieties of applications are owing to the manner of how we extract and use the 

desired response. Subsequently, we may distinguish four basic classes of adaptive 

filtering application [13], as shown in the following table. 
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Table 3.3: Four Basic Classes of adaptive Filtering and their Applications 

Class of 

adaptive 

filtering 

 

Application 

 

Description 

Identification System 

identification, 

 

 

Layered earth 

modeling 

Given an unknown dynamical system, the 

purpose system identification is to design an 

adaptive filter that provides an approximate 

to the system. 

In exploration seismology, a layered 

modeled of the earth is developed to unravel 

of the complexities of the earth’s surface. 

Inverse 

Modeling 

Equalization Given a channel of unknown impulse 

response, the purpose of an adaptive 

equalizer is to operate on the channel output 

such that the cascade connection of the 

channel followed by the equalizer provides 

an ideal transmission medium. 

Prediction  Predictive 

coding, 

 

 

 

 

 

The adaptive prediction is used to develop a 

model of a signal of interest (e.g., a speech 

signal); rather than encode the signal 

directly, in predictive coding the prediction 

error is encoded for transmission or storage. 

Typically, the prediction error has a smaller 

variance than the original signal, Hence, the 
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Spectrum 

analysis  

bases for improved coding.  

In this application, predictive modeling is 

used to estimate the power spectrum of a 

signal of interest. 

Interference 

Cancelation 

Noise 

Cancellation, 

 

 

 

 

 

 

Beamforming 

The purpose of the adaptive noise canceller 

is to subtract noise from a received signal in 

adaptively controlled manner so as to 

improve the signal-to-noise ratio. Echo 

cancellation, experience on telephone 

circuits, is a special form of noise 

cancellation. Noise cancellation is also used 

electrocardiography. 

A beamforming is spatial filter consist of an 

array of antenna elements with adjustable 

weights (coefficient). The twin purposes of 

an adaptive beamformer are to adaptively 

control the weights so as to cancel 

interfering signal. 
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Chapter 4 

ALGORITHMS FOR IDENTIFICATION OF 

PERIODICALLY VARYING SYSTEMS       

Adaptive filters have many classes, owing to verities of applications to which they 

are applied. Adaptive equalization is one of the most famous applications that have a 

special situation against others, especially in considering nonstationary environment, 

i.e. radio channels which have time varying property. Still it is possible to apply 

adaptive filters in nonstationary environments under certain assumptions, which they 

will be clear later. 

In this Chapter we set up BF algorithms which are a special form of adaptive filters 

that fit the periodically time-varying systems. After that, we introduce the 

Exponentially Weighted Basis Function EWBF estimators in two forms; Running 

Basis (RB) and Fixed Basis (FB) algorithms. Furthermore, we show the BF-gradient 

estimators in both running and fixed basis forms. Finally, we propose the new 

Recursive Inverse Basis Function (RIBF) estimator, as well as, introduce its 

frequency-adaptive version. 

Finally, most of this chapter materials and terminologies have been referred to the 

paper that was proposed by Niedzwiecki and Klaput in 2003 [2]. Our contribution is 

the proposing of the new RIBF and its Frequency-adaptive version extended from the 

existing algorithm that was proposed by Ahmad, Kukrer and Hocanin [3]. 
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4.1 Operation of Adaptive Filters in Nonstationary Environment  

In this situation it might be important to ask these questions: how can we apply 

adaptive filters in general for time-variant systems instead of time-invariant one?  

And how will its performance be in this situation? 

Anyway, when we apply an adaptive filter to a nonstationary environment, the tap 

weight coefficients assume time varying form which means the values change at 

different iteration. Hence, the adaptive filter will have an extra duty to continuously 

keep seeking for the optimum value (minimum error) on the time varying error 

surface. 

Let 0 ( )nw  be the optimum time-varying vector coefficients of the transversal filter 

that works in the nonsationary situation, where n is the number of iteration. Also, let 

ˆ ( )nw be the estimated vector coefficients. Hence, the adaptive algorithms tries on 

their own approach get the optimum situation; this makes the estimated tap 

weights ˆ ( )nw  to get as close to the time varying optimum tap weight vector 0 ( )nw as 

possible, as follows 

[ ]( ) [ ]( )
0

0

1 2

ˆ( ) ( ) ( )

ˆ ˆ ˆ( ) ( ) ( ) ( )

( ) ( )

n n n

n E n E n n

n n

−

= − + −

= +

w w

w w w w

ε =ε =ε =ε =

ε εε εε εε ε

 

 

   (4.1) 

where the expectation indicates the ensemble average. 

It is easy from equation (4.1) to identify two kinds of error; the first one stands for 

the difference between the estimated tap coefficients and ensemble average of the tap 

coefficients [ ]ˆ ( )E nw . This is due to the adaptive algorithm error minimizing criteria 

(i.e. for LMS case, it’s due to the errors in the estimate used for gradient vector [1]). 
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This difference is called the weight vector noise 1( )nεεεε . The second one is weight 

vector lag difference 2 ( )nεεεε ; which stands for any difference between the ensemble 

average [ ]ˆ ( )E nw  and the optimum coefficients 0 ( )nw (it’s the target value) which is 

due to lag in the adaptive process. In a stationary process, it is assumed that the 

ensemble average [ ]ˆ ( )E nw  is equal to the optimum value 0 ( )nw . Therefore, the 

weight vector lag difference disappears, against the nonstationary processes which 

usually consider the weight vector lag difference. 

 

4.2 Exponential Basis Function Estimators 

In this thesis, we considered the problem of tracking and identification of the 

periodically varying system which is summed up by equations (1.9) and (1.10) given 

by, the following equation written again for convenience in vector form  

( ) ( ) ( ) ( )Ty t t t tυ= +ϕ θϕ θϕ θϕ θ  (4.2) 

where 1, 2,t = K  denotes the normalized discrete time, ( )tυ  is an additive white 

noise, y(t) is the system output. ( )tϕϕϕϕ is the regression vector consisting of the past 

input samples, given by 

[ ]( ) ( ), ( 1), , ( 1
T

t u t u t u t n= − − +Kϕϕϕϕ  (4.3) 

and ( )tθθθθ  is the vector of periodically time varying system coefficients given by 

[ ]1 2( ) ( ), ( ), , ( )
T

nt t t tθ θ θ= Kθθθθ  (4.5) 

where  n is the number of system coefficients . The ith system coefficient is given as  

a linear combination of basis exponentials as follows 
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1

( ) l

k
jw t

i il
l

t a eθ
=

=∑  
(4.6) 

k stands for number of different signal paths (fading path  or number of basis 

function). 

As mentioned earlier, adaptive filters could be employed efficiently for periodically 

time varying system under certain conditions. We will consider that the frequencies 

1 2, , , kw w wK  are given or estimated a prior, the parameters or system weighting 

coefficients  ila  which are unknown constants and independent of time, or slowly 

(possibly) time-varying quantities, so the main time-dependent terms are the basis 

function, and lastly, the input sequence is considered as a wide-sense stationary WSS 

ergodic process with known positive definite covariance matrix given by 

0 ( ) ( ) 0TE t t = > ΦΦΦΦ ϕ ϕϕ ϕϕ ϕϕ ϕ  (4.7) 

As also mentioned earlier that, under certain conditions one of the applications that 

admit such formulation is adaptive equalization of rapidly fading communication 

channels [2]. As we know that in modern wireless communication systems, the main 

distortion which the transmitted signal experiences during transmission is caused 

mostly by the multipath effect; the transmitted signal reaches most probably a 

moving receiver (with constant speed) with different time delays, and when this 

effect is dominant through different reflectors, all of this implies an unknown 

periodic channel impulse response which can be modeled by Eq. (4.2). Then y(t) in 

this particular case stands for the sampled baseband signal received by the mobile 

radio system, u(t) for time sequence 1, 2,t = K  is the transmitted symbols 

sequence(which includes the traning sequence) k is the number of signal paths, and 

finally, 1 2, , , kw w wK  are the corresponding Doppler shifts. 
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Actually, in case the system parameters change very rapidly, the conventional 

estimators such as Weighted Least Squares WLS and LMS become unsatisfactory. 

Hence, it would be more advantageous to use a special form of estimators such as the 

Basis Function (BF) algorithms, which focus on the parameter estimation aspect, 

such as Eq. (4.6). BF estimators suffer from computational complexity which is very 

demanding. 

The basis function set consist of the basis exponentials { }1 2( ), ( ), , ( ),k tf s f s f s s T∈K , 

where [ ]1,2, ,tT t= K  is the expanding time analysis window. Each basis element is 

given by 

( ) , 1, ,ljw s
lf s e l k= = K  (4.8) 

It is instructive to mention that, the basis function are linearly independent in the 

time frame tT , if all the frequency components differ, i.e., i lw w≠  for i l≠ .  

The running basis (RB) function algorithm corresponds to the following forward-

time description of coefficient changes2 

1

( ) ( ), , 1, ,
k

i il l t
l

s a f s s T i nθ
=

= ∈ =∑ K  
(4.9) 

or in vector form by making use of the kronecker product, APPENIX D, 

( )( ) ( ) ( )

( ) ( )

T
ns s s

s s

= ⊗

=

I

D

θθθθ �

�

�
 

(4.10) 

where ( )sθθθθ  is the vector of periodically time varying system coefficients given by 

Eq. (4.5), ( ) ( )T
ns s= ⊗D I � , nI is n-by-n identity matrix, ( )s�  is n-by-k matrix of 

                                                 

2The description is stacked  to the terminology introduced in [16] 
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unknown coefficients, which we may represent here as a vector of dimension nk-by-

1, given by 

[ ]11 12 1 1 2, , , , , , , ,
T

k n n nka a a a a aK K K��  (4.11) 

( )s� , vector of basis functions given by   

[ ]1 2( ) ( ), ( ), , ( )
T

ks f s f s f sK� �  (4.12) 

Even though the vector of coefficients �  in Eq. (4.11) is written as a constant, its 

components ila  are often slowly time varying. Actually, adaptive filter techniques 

are usually used in such applications, because of their ability to track slow variations 

in the parameters. However, using the kronecker product, we may facilitate the 

analysis further more. Hence, we can write the generalized form of the regression 

vector by  

(s) ( ) ( ), ( 1) ( ), , ( 1) ( )

( ) ( )

TT T Tu s s u s s u s n s

s s

 = − − + 
= ⊗

f f f

f

K

ϕϕϕϕ

ψ
 

(4.13) 

We need to estimate, we may rewrite the system equation (4.2) in terms of shorthand 

notation as follows 

( ) (s) ( ),T
ty s s s Tυ= + ∈ααααψ  (4.14) 

Clearly, if this modeling assumption is satisfied, which assumes that the coefficients 

vector is constant, then the unknown parameters might be considered as time-

invariant elements. Therefore, Eq. (4.14) becomes a linear equation with respect to 

the unknown vectorαααα .     

Herewith, we may demonstrate that the problem of identification of a linear time-

varying system of order n is switched to a problem of coefficient estimation of a 

linear time-invariant system of order nk. 
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4.3 Exponentially Weighted Basis Function (EWBF) Estimators 

In this section, we focus on the most frequently used method of localization, which is 

the famous exponential forgetting technique, in order to apply to unknown parameter 

(αααα ) estimation. As mentioned before, that the optimization least squares (LS) 

method in such cases suffers from an obvious drawback; as the time instant which 

we need to estimate the parameter at is increased, the estimator becomes less robust 

in the sense of its capability to match any parameter variations. In addition to that, it 

has an infinite memory that considers all the input samples from the starting point. 

However, the method of weighted least squares counters such drawbacks, by its 

ability to track small variations and it has finite memory, as pointed out earlier. 

Using the exponentially weighted least squares method, we can get the following 

estimate ofαααα : 

( )

21

0

1*

ˆ( ) arg min ( ) ( )

( ) ( )

t
i T

i

t y t i t i

t t

λ
−

=

−

+ +

= − − −

=

∑

R s

ψ
αααα

α αα αα αα α
 

 

   (4.15) 

where  

1

0

( ) ( ) ( ) ( 1) ( ) ( )
t

i H H

i

t t i t i t t tλ λ
−

+ +
=

= − − = − +∑R Rψ ψ ψ ψ
 

 

   (4.16) 

1
* *

0

( ) ( ) ( ) ( 1) ( ) ( )
t

i

i

t y t i t i t y t tλ λ
−

+ +
=

= − − = − +∑s sψ ψ  
 

   (4.17) 

(the + ve sign is used here to indicate forward-time model), ( )t+R is the nk-by-nk 

input correlation matrix ( )tψ , and ( )t+s is the (nk-by-1) crosscorrelation matrix 

between the desired response ( )y t  and the input vector ( )tψ . 
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4.3.1 Running Basis Algorithm (RB-EWBF) 

To introduce the running basis version (RB) of exponentially weighted basis function 

(EWBF). We applied the well known matrix inversion lemma, APENDIX B, to Eq. 

(4.16), considering that the initial value is chosen properly to ensure that the 

correlation matrix ( )t+R  is positive definite. The parameters in the matrix inversion 

lemma are chosen as follows 

A ( )

B= ( )

C ( )

D 1

H

t

t

t

λ +=

=

= −

R

ψ

ψ
 

    

 

   (4.18) 

Substituting these parameters in the matrix inversion lemma, and for more 

convenience we substituted ( )t+P to be equal to the inverse of the correlation matrix 

( 1( ) ( )t t−
+ += RP ), we then obtained the following recursive equation for the inverse 

autocorrelation matrix ( )t+P  

1 ( ) ( ) ( 1)
( ) ( 1) ( 1)

( ) ( 1) ( )

H

H

t t t
t t t

t t t
λ

λ
− +

+ + +
+

 −
= − − − + − 

ψ ψ P
P P P

ψ P ψ
 

  (4.19) 

Considering the gain factor ( )t+K to be  

( 1) ( )
( )

( ) ( 1) ( )H

t t
t

t t tλ
+

+
+

−
=

+ −
P ψ

K
ψ P ψ

 
(4.20) 

then, Eq. (4.19) becomes 

1( ) ( 1) ( ) ( ) ( 1)Ht t t t tλ−
+ + + + = − − − P P K ψ P  (4.21) 

By considering Eq. (4.20) and representing it in a different form, it gives the 

definition of the gain factor, as follows 
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1 1( ) ( 1) ( ) ( ) ( 1) ( )Ht t t t t tλ λ− −
+ + + + = − − − K P K ψ P ψ  (4.22) 

It’s clear from Eq. (4.22) that the term inside the bracket equals the inverse of the 

correlation matrix ( )t+P in Eq. (21). Hence, the gain factor can be explained in terms 

of the inverse correlation matrix and the general form of the regression vector ( )tψ , 

as follows: 

( ) ( ) ( )t t t+ +=K P ψ  (4.23) 

To get the RB-EWBF estimator for the coefficient vector ˆ( )tαααα , we substituted the 

recursive form of the crosscorrelation vector ( )t+P given in Eq. (4.17) in the main 

equation (4.15), then we obtain 

* * *

*1 * *

* * *

* *

*

ˆ( ) ( ) ( 1) ( ) ( ) ( )

( 1) ( ) ( ) ( 1) ( 1) ( ) ( ) ( )

ˆ ˆ( 1) ( ) ( ) ( 1) ( ) ( ) ( )

ˆ ˆ( 1) ( ) ( ) ( 1) ( ) ( )

ˆ( 1) ( ) ( )

H

T

T

t t t t y t t

t t t t t t y t t

t t t t y t t t

t t t t y t t

t t t

λ

λ λ

ε

+ + +

−
+ + + + +

+ +

+ +

+

= − +

 = − − − − + 

= − − − +

= − − − +

= − +

s

s

P P ψ

P K ψ P P ψ

K ψ P ψ

K ψ K

K

αααα

α αα αα αα α

α αα αα αα α

αααα

 

 

 

 

   (4.24) 

 where, ( )tε is the a priori estimation error given by 

ˆ( ) ( ) ( ) ( 1)Tt y t t tε = − −ψ αααα  (4.25) 

Since we present here the running basis version of the exponentially weighted basis 

function, we may write the basis function vector ( )t� in terms of ( 1)t −� , as follows 

( ) ( 1)t t= −A� �  (4.26) 

where, { }1 2diag , , , kjwjw jwe e eA K= . 
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 In the RLS-type recursive algorithms, to avoid inversion of the correlation 

matrix ( )t+R at the beginning of the estimation, we choose the following initial 

condition: 

ˆ(0) 0,

(0) nkη+

=

= IP

αααα
 

 

where 1η δ −=  is a large positive constant number, which is a standard initialization 

for all RLS-type  algorithms [1]. 

The complete RB-EWBF estimator is summed up in the following Table (4.1). 

Table 4.1: Summary of RB-EWBF Estimator 

Initialization: (0)
ˆ(0) 0

nkη+ =

=

IP

αααα
  

η : is a large positive constant. 

nkI : nk-by- nk identity matrix 

Iteration: 

*

ˆ ˆ( )= ( ) ( )

ˆ ˆ( ) ( 1) ( ) ( )

ˆ( ) ( ) ( ) ( 1)

( )= ( ) ( )

( ) ( -1)

( 1) ( )
( )

( ) ( 1) ( )

1
( ) ( 1) ( ) ( ) ( 1)

T

H

H

t t t

t t t t

t y t t t

t t t

t t

t t
t

t t t

t t t t t

ε

ε

λ

λ

+

+
+

+

+ + + +

= − +

= − −

⊗

=

−
=

+ −

 = − − − 

D

f

f Af

K

ψ

ψ

P ψ
K

ψ P ψ

P P K ψ P

θθθθ

α αα αα αα α

αααα
ϕϕϕϕ

�
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4.3.2 Fixed Basis Algorithm (FB EWBF) 

This is another equivalent form that represents the EWBF, which has slight reduction 

in the computational complexity over the running basis approach. It can be derived 

from the RB-EWBF by using the linear time-varying transform (rotating frame) 

given by 

( 1)

( 1) ( 1)

ˆ ˆ( ) ( )

( ) ( )

( ) ( )

t
n

t t
n n

t
n

t t

t t

t t

+

− + +
− +

−
− +

=

=

=

β

P P

K K

ααααΑΑΑΑ

Α ΑΑ ΑΑ ΑΑ Α

ΑΑΑΑ

 

    

   (4.27) 

where 

n n= ⊗IΑ ΑΑ ΑΑ ΑΑ Α   

From Eq. (4.10), substitute for the value of  ˆ ( )tαααα  given in Eq. (4.27), we obtain  

0
ˆ ˆ( ) ( )t t= D βθθθθ  (4.28) 

where  

( )( )
( )

( 1)

( 1)

( 1)

ˆ( ) ( )

( )

( )

(1)

t
n

T t
n n

Tt
n

H
n

t t

t

t

− +

− +

− +

=

= ⊗ ⊗

= ⊗

= ⊗

D

I f I

I f

I f

θθθθ ΑΑΑΑ

ΑΑΑΑ

ΑΑΑΑ  

 

 

   (4.29) 

The last two results in Eq. (4.29) follow from the Kronecker products identity, given 

in APPENDIX D, and from the fact that  

*( ) ( ) ( )s t t s s t− = − = −f f fΑΑΑΑ  (4.30) 

Following the time-varying transform in Eq. (4.27), we try to find the vector of 

coefficients ˆ( )tβ  by substituting the value of ˆ( )tαααα  from Eq. (4.24). This yields   
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( 1)

( 1) *

*

ˆ ˆ( ) ( )

ˆ( 1) ( ) ( )

ˆ( 1) ( ) ( )

t
n

t
n

n

t t

t t t

t t t

ε

ε

+

+
+

−

=

 = − + 

 = − + 

β

K

β K

αααα

αααα

ΑΑΑΑ

ΑΑΑΑ

ΑΑΑΑ

 

(4.31) 

Consider rewriting the prior estimation error ( )tε given in Eq. (4.25) in terms of the 

coefficient vector. Direct substitution gives  

ˆ( ) ( ) (t) ( 1)Tt y t tε = − −βζζζζ  (4.32) 

where (t)ζζζζ is the generalized regression vector given by 

( )( )

[ ]

( ) ψ( ) ( ) ( )

( ) (0) ( ) 1, ,1

t t
n n

T

t t t t

t t

ϕ

ϕ ϕ

− −= = ⊗ ⊗

= ⊗ = ⊗

I f

f K

ζζζζ Α ΑΑ ΑΑ ΑΑ Α
 

(4.33) 

The last result in Eq. (4.33) follows from the Kronecker products identity, and from 

the fact given in Eq. (4.30). Now, by considering Eq. (4.20) and the value of (t)ζζζζ  in 

Eq. (4.33) we can write the gain factor ( )t−K  as 

( ) ( )

( 1) (t)
(t) ( 1) (t)

t
n

H

t t

t
tλ

−
− +

−

+

=

−
=

+ −

K K

P
P

ζζζζ
ζ ζζ ζζ ζζ ζ

ΑΑΑΑ
 

      

(4.34) 

The time-varying transform of the inverse autocorrelation ( )t−P , by direct 

substitution of the value of ( )t+P given in Eq. (4.21), can be represented by 

( 1) ( 1)

*

( ) ( )

1
( 1) ( ) (t) ( 1)

t t
n n

H
n n

t t

t t t
λ

− + +
− +

− − −

=

 = − − − 

P P

P K Pζζζζ

Α ΑΑ ΑΑ ΑΑ Α

Α ΑΑ ΑΑ ΑΑ Α
 

    

   (4.35) 

It’s clear in the FB-EWBF algorithm that; the evaluation process of the generalized 

regression vector (t)ζζζζ  in Eq. (4.33) does not involve any arithmetic operation; 

hence, there is no need to update the basis vector ( )tf . Furthermore, the matrix nΑΑΑΑ  is 

diagonal; all of these properties show that, there is reduction in the computational 
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cost over the RB-EWBF estimator (as we will show later) when the time-invariant 

coordinates are changed with the time-varying coordinates. The FB-EWBF is 

summarized in table (4.2).  

It is interesting to note that the reparameterized (FB-EWBF) algorithm given in table 

(4.2) is referred to the following backward time-description of parameter changes: 

*

1

( 1) ( ), , 1, ,
k

i il l t
l

t s b f s s T i nθ
=

− + = ∈ =∑ K  
(4.36) 

where 

( 1) , , 1, , 1, ,lj t
il ilb e a i n l kω += = =K K   

The backward time-description in Eq. (4.36) and the forward time-description given 

in Eq. (4.9) are both equal as have been shown in [16]. Nevertheless, RB and FB-

EWBF are both strictly input-output equivalent [26], i.e. they give identical 

parameter estimates )(ˆ tθ  for identical data set ( ( ), ( ), 1, ,u s y s s t= K ) and 

appropriately chosen initial conditions. 
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Table 4.2: Summary of FB-EWBF Estimator 

Initialization: (0)
ˆ(0) 0

nkη− =

=

IP

β
  

η : is a large positive constant. 

nkI : nk-by- nk identity matrix 

Iteration: 
0

*

*

ˆ ˆ(t)= ( )

ˆ ˆ( ) ( 1) ( ) ( )

ˆ( ) ( ) (t) ( 1)

( 1) (t)
( )

(t) ( 1) (t)

1
( ) ( 1) ( ) (t) ( 1)

n

T

H

H
n n

t

t t t t

t y t t

t
t

t

t t t t

ε

ε

λ

λ

−

−
−

+

− − − −

 = − + 

= − −
−

=
+ −

 = − − − 

Dθ β

β β K

β

P
K

P

P P K P

ζζζζ
ζζζζ

ζ ζζ ζζ ζζ ζ

ζζζζ

ΑΑΑΑ

Α ΑΑ ΑΑ ΑΑ Α

 

 

4.4 Gradient Estimators 

These algorithms are extended from the standard LMS algorithm, which are used in 

the time-invariant case. It is well known that RLS type algorithms such as EWBF, 

converge fast, whereas they are very demanding regarding computational 

complexity. However, in contrast, the stochastic gradient algorithm does not have 

any, as we show later. Therefore, using the LMS method, we can estimate the 

parameter vector ˆ( )tαααα , by minimizing the following error power problem: 

{ }2
ˆ( ) arg min ( ) ( )Tt E y t t= −

αααα
α αα αα αα αψ     (4.37) 

4.4.1 Running Basis-Gradient Algorithm 

The low complexity and simple stochastic gradient algorithm can be obtained easily 

by replacing the inverse correlation matrix +P in RB-EWBF estimator, that need (nk-
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by-nk) matrix updating at each iteration, with the scalar step size 0µ > [4]. Then the 

gain factor in Eq. (4.23) becomes 

( ) ( )t tµ+ =K ψ  (4.38) 

The basis function obtained is termed as a running-basis (RB) gradient algorithm, 

and is summarized in Table (4.3). 

Table 4.3: Summary of RB-Gradient Estimator 

Initialization: ˆ(0) 0=αααα   

µ : small number 

Iteration: 
*

ˆ ˆ( )= ( ) ( )

ˆ ˆ( ) ( 1) ( ) ( )

( )= ( ) ( )

( ) ( -1)

ˆ( ) ( ) ( ) ( 1)T

t t t

t t t t

t t t

t t

t y t t t

µ ε

ε

= − +

⊗

=

= − −

D

f

f Af

θθθθ

α αα αα αα α
ϕϕϕϕ

αααα

�

ψ

ψ

ψ

 

 

4.4.2 Fixed Basis-Gradient Algorithm 

The equivalent extension of the  RB-gradient to Fixed Basis (FB) algorithm easily 

can easily be obtained, by using the linear time-varying transform as have been done 

in the FB-EWBF, by using different system of coordinates, or by replacing −P matrix 

by the step size 0µ > . Then the generated estimator is called as fixed basis-gradient 

estimator, and is summarized in Table (4.4)      
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Table 4.4: Summary of FB-Gradient Estimator 

Initialization: ˆ(0) 0=αααα   

µ : small number 

Iteration: 
0

*

ˆ ˆ(t)= ( )

ˆ ˆ( ) ( 1) ( ) ( )

ˆ( ) ( ) (t) ( 1)

n

T

t

t t t t

t y t t

µ ε

ε

 = − + 

= − −

D

ζζζζ

ζζζζ

θ β

β β

β

ΑΑΑΑ  

 

We show later that, the FB-gradient estimator shown in table (4.4), is superior to the 

running basis version in terms of computational complexity.  

 

4.5 Recursive Inverse Basis Function (RIBF) Estimators 

The newly proposed Recursive Inverse (RI) algorithm has been applied successfully 

in many signal processing areas like image processing [25], ALE [3], and channel 

equalization [17]. In this section we propose the Recursive Inverse Basis Function 

(RIBF) estimator and its adaptive-frequency version. Its application on fading 

channel equalization problem is discussed in chapter 5 to show the superiority of the 

proposed algorithm over the others.   

4.5.1 Running Basis (RB-RIBF) Algorithm  

Using the Wiener-Hopf equation (3.68) and rewriting it in terms of system 

coefficients ( α̂ααα ) estimation, we have 

1ˆ( ) ( ) (t)t t−= R sαααα  (4.39) 

Solving the Wiener-Hopf Equation iteratively by considering the estimation of the 

correlation parameters iteratively in complex form and following the same derivation 

procedure introduced for RI-algorithm in section (3.4), then, we can easily achieve 

the RB-RIBF estimator as shown in table (4.5). 
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4.5.2 Doppler Frequency Estimation  

The proposed equalization algorithms would not be inclusive without a method for 

estimating and tracking the slight changes of the Doppler frequencies, i.e. although 

the BF estimators are robust to small local changes in frequencies around the known 

specified values, they fail to identify the system properly in the presence of a 

frequency drift [2]. 

Table  4.5: Summary of RB-RIBF Estimator 

Initialization: (0) 0
ˆ(0) 0

0

+ =

=

=

s

R(0)

αααα   

Iteration: 

[ ]

0

*

ˆ ˆ( )= ( ) ( )

( )
1

ˆ ˆ( ) ( ) ( ) ( 1) ( ) (t)

( )= ( ) ( )

( ) ( -1)

(t) (t 1) ( ) ( )

(t) (t 1) y( ) ( )

t
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H

t t t

t

t t t t t

t t t

t t

t t

t t

µµ
λ
µ µ

λ

λ

+ +

+ +

+ +

=
−

= − − +

⊗

=

= − +

= − +

D

I R s

f

f Af

R R

s s

ψ

ψ ψ

ψ

θθθθ

ϕϕϕϕ

�

� �

 

 

Therefore, we adopt a simple gradient search strategy, which is proposed in [4], to 

derive the frequency-adaptive version of the RIBF algorithm. 

Let the gradient be 

21
( , ) ( , )

2
J t tω ε ω=  

(4.40) 

where [ ]1, , T
kω ω= Kωωωω are the instantaneous frequencies to be tracked. 

The simple gradient algorithm which minimizes (4.40) can be stated in the form 

ˆ ˆ ˆ( 1) ( ) ( ( ))t t J tµ+ = − ∇ω ω ωω ω ωω ω ωω ω ω  (4.41) 
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where ˆ( ( ))J t∇ ωωωω  denotes the derivative of ( , )J t ω  with respect to the frequencies ωωωω , 

evaluated at the instant ˆ ( )tωωωω , and 0µ > is a small adaption constant. 

In the case of frequency estimation we did a little modification in the form of 

presenting the general regression vector and the estimated parameters by arranging 

them according to their respective different frequency components ( 1, , kω ωK ). The 

original periodically time-varying coefficients are, 

1

( ) l

k
j t

i il
l

t a e ωθ
=

=∑  
 

Representing [ ]1 , , T
l l nla aK� �  the vector of system coefficients corresponds to a 

particular frequency lω . Similarly, let ( )= ( ) lj t
l t t e ωϕϕϕϕψ  be the generalized regression 

vector that corresponds to the lth frequency component. Accordingly, the error will 

be given as 

1

ˆ ˆˆ ˆ( ) ( ) ( ) ( 1) ( ) ( ) ( 1)
k

T T
l l

l

t y t t t y t t tε
=

= − − = − −∑ α αα αα αα αψ ψ  
 

where 1ˆ ˆ ˆ( ) ( ), , ( )
TT T

lt t t =  Kψ ψ ψ , and 1ˆ ˆ ˆ( 1) ( ), , ( )
TT T

lt t t − =  Kα α αα α αα α αα α α . 

Therefore, 

{ }
{ }

*

* *

( , )ˆ( ( )) |
( )

ˆRe ( ) ( ) ( 1)

ˆ ˆIm ( ) ( 1)

l

l

l
l

j H
l

T
l l

J t
J t

t

j t e t t

t t

ω

ω

ω

ε

ε

−

∂
∇ =

∂

= −

= −

ωωωωωωωω

ϕ αϕ αϕ αϕ α

ααααψ

 

 

where ˆˆ ˆ ˆˆ ( )= ( ) ( ), ( ) ( 1)lj t
l l l lt f t t f t e f tω= −ψ ϕϕϕϕ . 

The number and the values of system frequencies have to be initialized properly in 

order to avoid divergence of the frequency adaptive BF-estimators. In the channel 

identification, the known (training) part can be employed for this purpose. The 
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angular frequencies of the periodically-varying systems can be initialized based on 

the analysis method of the higher order input/output signal statistics (these methods 

are further described in [4],[15]) or using the methods of sliding window least 

squares estimates of system coefficients, proposed in [28]. Table (4.6) summarizes 

the frequency-adaptive version of the RIBF algorithm. 

Table 4.6: Summary of the Frequency-Adaptive RIBF Estimator. 

Initialization: 

0 0 0

(0) 0
ˆ(0) 0

0

ˆ , ,
T

l kω ω

+

+

=

=

=

 =  

s

R (0)

K

αααα

ωωωω

  

0µ : is small positive constant. 

λ  Less but much close to one. 

Iteration: 

{ }
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4.6 Computational Complexity 

The computational complexity is an important measure, especially in real time 

applications. In the implementation of a real time system, hardware limitations may 

influence system performance. Therefore, computational complexity is one of the 

important characteristics that we refer to in the adaptive algorithm comparison. 

Table (4.7) illustrates a comparison of the computational complexity for all the 

estimators that have been described. The computational complexity stands for the 

number of complex multiply/add operations per sampling time. In the evaluation we 

considered the fact that some of the involved matrices are Hermitian (i.e. +P , −P  and 

+R ), hence, only their upper ( lower) triangular parts have to be updated.  

The proposed RIBF-algorithms have a clear computational advantage over the 

EWBF-estimators (in both versions RB and FB), it reduces the complexity by 

)1( −knkn multiply/add operations. In addition to the reduction in the computational 

complexity, it also has the capability to converge to smaller error values in terms of 

mean square error (MSE) as we show in the simulation chapter. Interestingly, despite 

this significant reduction in the proposed RIBF estimator, more reduction may be 

achieved, if we use an approximation for the autocorrelation matrix to be as a 

Toeplitz matrix.  

There is no doubt that the Gradient estimator has the minimum computational 

complexity over all the others due to its simplicity, as is clear in Table (4.7). 

However, the price paid for reduced complexity of gradient algorithms is their initial 

slow convergence. 
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Table 4.7: Comparison of Computational Complexity of Different BF-Algorithms 

Algorithm Complexity 

RB-EWBF  kknkn ++ 6)(2 2  

FB-EWBF knkn 6)(2 2 +  

RB-Gradient 14 ++ kkn  

FB-Gradient 13 ++ kkn  

RB-RIBF kknkn ++ 7)( 2  
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Chapter 5 

COMPUTER SIMULATIONS                            

In this section we set up an example where the proposed algorithms are applied in 

multipath fading channels. Accordingly, we simulated the mentioned algorithms 

using MATLAB software package. We present, as well, the performance and the 

superiority of the proposed RIBF-estimator over others. And we investigated the 

performance capability of the proposed frequency-adaptive version of the EWBF 

estimator. 

5.1 The Test Case 

The test case, which was adopted from [2] and [4], involve a periodically time-

varying channel as stated in equations (4.2) and (4.6). There are two channel taps 

(coefficients, n=2). Usually, the channel coefficient’s number is a small number that 

depends on the transmission-channel’s memory. Each channel-tap is equal to the 

linear combination of three basis functions (number of dispersive paths, k=3), given 

by: 

( )

( )

2

3

1

2
2

2
3

( ) 1, First (direct) path.

( ) , Second (reflector) path.

( ) , Third (reflector) path.

j T

j T

f t

f t e

f t e

π

π

=

=

=

 

where 2 120T = and 3 200T =  sample periods. These numbers are chosen to be close to 

the real values meant for the carrier frequency 900cf =  MHz, a bit rate around 20 

kbit/s, and a vehicle moving at 100 km/h.  



73 

 

Considering the simple adaptive equalization scheme that is shown in Figure (5.1), 

the input is assumed to be the 4-QAM (generated as ( ) 1u t j= ± ±  with 

variance 2 2uσ = ). After that, the input is filtered through the time-varying channel 

with coefficients (� ). The received signal ( )tθθθθ is corrupted with AWGN 

( 2 0.4373vσ = ) noise. Consequently, the receiving end signal has an average SNR 

that is equal to 15 dB. 

4-QAM
Generator

Time-Varying
Channel

AWGN

Adaptive
Equalizer∑ ∑

+
−

( )y t

( )v t

( )tϕϕϕϕ ( )tθθθθ

( )tε

 

Figure 5.1: Simple Adaptive Equalization Scheme 

The original 4-QAM signal constellation is shown in Figure (5.2.a), whereas, Figure  

(5.2.b) illustrates the effect of channel response over the transmitted signal. 
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Figure 5.2: a. 4-QAM Installation Diagram, b. The Received Signal Before 

Equalization. 
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5.2 Matlab Simulation 

In this section, we provide the performance of the proposed RB-RIBF, RB-EWBF 

and RB-Gradient estimators in terms of the mean square parameter estimation errors. 

In all the simulations results were obtained through Monte Carlo trials (the error 

averaged over 200 simulation runs). Figure (5.3) shows the MSE performance for 

RIBF estimator for different forgetting constantsλ , with constant step 

size 000018.00 =µ . Since the forgetting factor controls the memory of the estimator 

(it is an important characteristic that show the number of the past samples used to 

track the parameters effectively). Therefore, there is a trade-off between tracking 

speed and the memory size.  
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Figure 5.3: Mean Square Error Performance of the RIBF Estimator for Different 

Forgetting Factor and Constant Adapting Factor 000018.00 =µ . 
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Clearly, Figure (5.3) shows that effect of the estimation memory on the tracking 

speed behavior, as the estimation memory increase the RIBF estimator behaves to 

converge faster. In addition to that, the steady-state MSE occupies a lower value. 

Furthermore, the variable step size has a different effect on the RIBF. Increasing the 

maximum value of the variable step size 0µ , helps the estimator to converge faster,  

even though the MSE level goes up to a slightly higher value. This behavior is so 

obvious in Figure (5.4) which illustrates the performance of RIBF estimator for 

different adaptation step sizes 0µ  at a constant forgetting factor 99.0=λ . 

At 5
0 2.0 10µ −= × , the MSE steady state value is 69 dB at time 1050t = .  
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Figure 5.4: Mean Square Error Performance of the RIBF Estimator for Different 

Adapting Factor and Constant Forgetting Factor 99.0=λ . 
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Whereas, at 5
0 3.0 10µ −= × the MSE goes up to a higher level (50 dB) and it converge 

faster at time 650t = . It is clear that, as the adaptation constant increases, the 

estimator converges faster and become less accurate.  
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Figure 5.5: Comparison of Mean Square Parameter Estimation Error for Three 

Estimation Algorithms; Gradient-BF, EWBF and RIBF. 

 

Figure (5.5) sets up the development of the mean square parameter estimation error 

(ensemble average over 200 realizations) that is obtained for the RB-EWBF 

algorithm as given in table (4.1), the Gradient-BF algorithm in table (4.3), and the 

proposed RIBF estimator summarized in table (4.5). All of the results in Figure (5.4) 

are taken for fixed forgetting factor ( 99.0=λ ) that corresponds to an estimation 

memory equals to approximately (58) samples. Besides, the step size (adaptation 

constant) for the gradient algorithm was set to 00572.0=µ ; such a value has 
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misadjustment equivalent in the steady state to the other BF’s missadjustment (which 

is the ratio of the algorithm MSE to the theoretical MSE), i.e., all the filters 

approximately have the same memory. 

For the sack of comparison, Figure (5.5) demonstrate clearly the advantages of the 

RIBF estimator in terms of accuracy (by reaching MSE values for different step sizes 

( 0µ )).The RIBF estimator superior to the EWBF estimator by about 8 db 

(at 0 0.00002µ = ) and the Gradient-BF estimator by 12 dB. Even though, when the 

estimators coverage to the steady state MSE value at same time 200t = , the RIBF 

algorithm still have a slightly reduction in the MSE (about 1.3 dB) over EWBF and 

1.55 dB over the Gradient-BF estimator.  

The significant reduction in MSE value that has shown in Figure (5.5) combined 

with low computational complexity cost that illustrated in Table (4.7), promises with 

low BER without using any error correction code. 
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Figure 5.6: Adaptive Frequency-RIBF Estimator Response, True Frequencies (dotted 

lines) and Their Estimates (solid lines). 

 

In all the previous simulations, the Doppler frequencies are assumed to be constant 

and known or estimate. Nevertheless, in the next simulation we introduce a 

frequency variation with different scales to different paths, and we investigate the 

adaptive-frequency RIBF estimator performance. 

Figure (5.6) illustrates the tracking frequency capabilities of the developed RIBF 

estimator described in Table (4.6). The simulation settings were exactly the same as 

in the test case (that were ran over 200 realizations), except that the adaptation 

constant of gradient search algorithm’s set to be ( 0.00035µ = ) and the other 

parameters of RIBF are set as ( 99.0=λ , 6
0 23 10µ −= × ). The frequency drift starts 

after the estimator has reached its steady-state (that is at t =800). 
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It is clear, that the estimator has a good capability of tracking the frequency 

variations. It results with small oscillations in the paths that have slight drift, in 

contrast with the paths which has a significant drift (i.e. the direct path which has 

frequency drift 0.02). 

Besides, Figure (5.7) shows the MSE performance of the adaptive frequency-RIBF 

estimator. It’s clear that when the frequencies drift starts (nonstationary process) the 

MSE exhibit to jump and settle down a new MSE. 
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Figure 5.7: Mean Square Error Performance of the Adaptive Frequency-RIBF 

Estimator. 
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Chapter 6 

CONCLUSIONS AND FUTURE WORK 

 

6.1 Conclusions 

The problem of identification and tracking of periodically varying systems has been 

considered. The classical basis function algorithms which were used to estimate and 

track the time-varying coefficients in such systems have a good tracking 

performance, yet they computationally are demanding. We have used the recursive 

inverse algorithm, which has been applied successfully in many digital signal 

processing problems, to propose a new recursive algorithm termed as the recursive 

inverse basis function estimator (RIBF). The proposed algorithm outperformed the 

classical basis function schemes in terms of complexity reduction and had better 

tracking performance, it superior to the EWBF by reducing the computational 

complexity by )1( −knkn  multiply/add operations and it shows further reduction by 8 

dB in the mean square parameter estimation error, whereas the other estimators can’t 

reaches that level. Furthermore, an adaptive-frequency version of the recursive 

inverse exponential basis function algorithm was derived by employing a simple 

gradient search strategy. The tracking properties of the introduced algorithms were 

investigated by means of computer simulations.   
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6.2 Future Work 

Digital Signal Processing (DSP) field has vast applications in many disciplines 

especially in communication area. In this thesis we explored a fundamental problem 

in mobile communication which is multipath fading channels. And we proposed a 

new adaptive estimator, which can handle part of the dispersive channel regarding to 

estimation of the channel coefficient (due to amplitude dispersion), assuming that the 

Doppler frequencies (phase dispersion) are given or estimated. As a future work, we 

are going to explore the problem of identification of periodically varying channels in 

more details. Then, we will try to enroll the RI adaptive algorithm for the more 

general case, which can be summed up as estimation and tracking of complex-valued 

quasi-periodically varying systems which are discussed in [26], [27]. The quasi-

periodically time-varying is governed by the following two equations: 

( ) ( ) ( ) ( )Ty t t t tυ= +ϕ θϕ θϕ θϕ θ   

and 

1

1

( ) ( ) , 1, , .
t

ls

k
j w t

i il
l

t a t e i nθ =

=

∑= =∑ K  
 

In this case it is clear that the amplitude and frequencies are time varying. There for, 

the system parameters are changing over time in a periodic-like but not exactly in a 

periodic manner.  
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Appendix A: Simple Propagation Scenario 

Mobile Antenna
v
r

d

h

 

Figure A.1: Simple Propagation Scenario 

 

Depending on a simple propagation delay scenario considered on Figure (A.1), we 

will study the variation of ( )l tτ . Figure (A.1) shows a mobile body with constant 

velocityv , and an infinite obstacle. 

The propagation delay on the reflected path is 

2 2( 2)
( ) 2r

d h
d

c
τ

+
=  

(A.1) 

where c is the light speed, d is the mobile-receiving antenna distance, and h is the 

antenna-obstacle distance. 

The derivative of ( )l tτ  with respect to d is giving by 

2

1

1 4 ( )
r

d c h d

τ∂
=

∂ +
 

(A.2) 

The maxima of ( )r tτ  happens when d goes infinity, so the most important slope for 

( )r tτ is given from Eq. (A.1) as ( )r t d cτ ≈ .  

Now, with 0d d vt= − , where 0d  is the distance at t=0, by dividing over c we have 
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0( )r

d v
t t

c c
τ = −  

(A.3) 

From the former equation we see that ( )r tτ  is a linearly time-variant parameter. 

With the current mobile speeds ( 300v ≈  km/h) the slope of ( )r tτ  is about 73 10−× . 

For mobile communication with bit rate 20 kbps, with QAM modulation, the 

variation of ( )r tτ  during the symbol period is about 475 10−× ns, which is very small. 

So, for a large number of symbols, ( )r tτ  can be considering constant. 
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Appendix B: Matrix Inversion Lemma 

 

The matrix inversion Lemma is giving by 

 

( ) ( )1 11 1 1 1 1A BD C A A B D CA B CA
− −− − − − −− = + −      (B.1) 
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Appendix C: Discrete Cosine Transform 

 

We explore herein the Discrete Cosine Transform DCT as an example of the 

orthogonal transform. The DCT of a data sequence { }( ), ( 1), , ( 1)x n x n x n N− − +K is 

defined as [5], 

1

,
0

( ) ( ), 0,1, 1
N

DCT k kl
l

x n c x n l k N
−

=

= − = −∑ K  
    (C.1) 

where  

1
, 0 and 0,1, 1,

( )
2 (2 1)

cos , , 0,1, 1
2

kl

k l N
N

c n
l k

k l N
N N

π

 = = −= 
+ = −



K

K

 

    (C.2) 

are the DCT coefficients. Eq. (C.1) can be written as a linear system as follows 

( ) ( )DCT DCTn n=x T x      (C.3) 

where DCTT is the N N× DCT matrix. 

 

 

 

 

 

 

 

 

 



92 

 

Appendix D: Kronecker Product 

The Kronecker product of [ ]im jn⊗ ×X Y  of two matrices [ ]i j×X and [ ]m n×Y  is 

defined as 

11 1

1

j

i ij

x x

x x

 
 ⊗  
 
 

L

� M O M

L

Y Y

X Y
Y Y

 

    (D.1) 

And the Kronecker product identity given by  

( )( )⊗ ⊗ ⊗X Y P Q = XP YQ      (D.2) 
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