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ABSTRACT

In Chapter 2 of this thesis, in the first part, we deal with asymptotic behavior of non-

oscillatory solutions to higher order nonlinear neutral differential equations of the form

(x (t) + p (t) x (t− τ))(n) + f (t, x (t) , x (ρ (t)) , x′ (t) , x′ (σ (t))) = 0,

for n ≥ 2. We formulate sufficient conditions for all non-oscillatory solutions to behave

like polynomial functions at infinity. For the higher order differential equation

(x (t) + p (t) x (t− τ))(n) + f (t, x (t) , x (ρ (t))) = 0,

we provide necessary and sufficient conditions that guarantee existence of non-oscillatory

solutions with polynomial-like behavior at infinity.

In Chapter 3, we look into oscillation problem of second order nonlinear neutral differen-

tial equations

(
r (t)ψ (x (t)) (x (t) + p (t) x (τ (t)))′

)′
+ q (t) f (x (t) , x (σ (t))) = 0

and

(
r (t) (x (t) + p (t) x (τ (t)))′

)′
+ q (t) f (x (t) , x (σ (t))) = 0.

Keywords: asymptotic behavior, oscillation, positive solutions, neutral equations
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ÖZ

Bu tezin ilk kısmında şekli, n ≥ 2 için,

(x (t) + p (t) x (t− τ))(n) + f (t, x (t) , x (ρ (t)) , x′ (t) , x′ (σ (t))) = 0

olan lineer olmayan yüksek dereceli nötr diferansiyel denklemlerin salınımlı olmayan

çözümlerinin asimptotik davranışları incelendi. Buna ek olarak şekli

(x (t) + p (t) x (t− τ))(n) + f (t, x (t) , x (ρ (t))) = 0

olan diferansiyel denklemin çözümlerinin sonsuzda polinom gibi davranmalarını garanti

edecek gerek ve yeter koşullar elde edilmiştir.

İkinci kısımda ise şekilleri

(
r (t)ψ (x (t)) (x (t) + p (t) x (τ (t)))′

)′
+ q (t) f (x (t) , x (σ (t))) = 0

ve

(
r (t) (x (t) + p (t) x (τ (t)))′

)′
+ q (t) f (x (t) , x (σ (t))) = 0

olan diferansiyel denklemlerin salınım problemine bakılmıştır.

Anathar Kelimeler: asimtotik davranış, salınım, pozitif çözümler, nötr denklemler
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Chapter 1

INTRODUCTION

In many applications, one assumes the system under consideration is governed by a prin-

ciple of causality; that is, the future state of the system is independent of the past states and

is determined solely by the present. If it is also assumed that the system is governed by an

equation involving the state and rate of change of the state, then, generally, one is consid-

ering either ordinary or partial differential equations. However, under closer examination,

it becomes apparent that the principle of causality is often only a first approximation to

the true situation and that a more realistic model would include some of the past states

of the system. Also, in some problems it is meaningless not to have dependence on the

past. This has been known for some time but the theory for such systems has only been

developed recently.

Delay differential equations arise in many areas of mathematical modeling, for ex-

ample, population dynamics (taking into account the gestation times), infectious diseases

(accounting for the incubation periods), physiological and pharmaceutical kinetics (mod-

eling, for instance, the body’s reaction to CO2 in circulating blood) and chemical kinetics

such as mixing reactants, the navigational control of ships and aircraft with, respectively,

large and short lags and more general control problems. There are many of books that

address applications of delay differential equations, see, for example, Driver [19], Gopal-

samy [28], Halanay [36], Kolmanovskii and Myshkis [47], Kolmanovskii and Nosov [48]
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and Kuang [51].

In what follows, we mention only a few possible applications. It is well known that

there are many problems appearing in biological models which are related with delay

differential equations, see, for instance, [33] and [68]. In 1948, Hutchinson [43] suggested

to use the following delay logistic equation for describing the dynamics of a single species

x′ (t) = ax (t)

(
1− x (t− τ)

K

)
,

where the delay τ includes various factors influencing the increase of species such as

hatching period, pregnancy period and the time of renewal of food. Based on biological

considerations, ecologists predict that there are solutions with small positive initial values

which will steadily approach the environmental capacity x (t) = K when a > 0 and

τ � 1. On the other hand, for a larger τ, the solution may exceed the capacity and

start oscillating around x (t) = K. It is known that if aτ > e−1, then every solution

is oscillatory. This result provides many tools for ecologists to determine limits for the

delay τ which causes oscillatory phenomenon. In respect to industry, the oscillation of

the contacts of electromagnetic switches is described by the following second order delay

differential equation

x′′ (t) + ax′ (t) + bx (t) + cx (t− τ) = 0.

In 1951, Goodwin [27] constructed a business cycle model with nonlinear acceleration

principle of investment and showed that model gives rise to cyclic oscillations when its

stationary state is locally unstable. Goodwin’s basic model is summarized as the following

nonlinear differential equation

εx′ (t)− ϕ (x′ (t)) + (1− α) x (t) = 0, (1.0.1)

where time dependent variable x is national income, α the national propensity to consume

such that α ∈ (0, 1) , ε a positive adjustment coefficient of x and ϕ (x′ (t)) denotes the
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induced investment that is dependent on the rate of change in national income. Goodwin’s

model adopts the nonlinear acceleration principle, according to which investment is pro-

portional to the change in national income in a neighborhood of the equilibrium income

but becomes inflexible for the extremely larger and smaller values of income. In order

to come close to reality, Goodwin introduced the production lag τ between decisions to

invest and corresponding outlays. As a result, model in (1.0.1) resulted in the following

nonlinear neutral delay differential equation

εx′ (t)− ϕ (x′ (t− τ)) + (1− α) x (t) = 0.

The oscillation theory of functional differential equations differs from that of ordinary

differential equations and, in fact, the former reveals the oscillation or non-oscillation of

solutions caused by the appearance of deviating arguments in the differential equation.

Fite’s paper [24] was among the first papers on the oscillation of functional differential

equations. It deals with the n-th order differential equation with a deviating argument

x(n) (t) + p (t) x (σ (t)) = 0, −∞ < t < +∞, (1.0.2)

for n ≥ 1, p ∈ C (−∞,+∞) , σ (t) = k − t, k ∈ R. Fite [24] proved that under the

assumption p (t) > h > 0 for sufficiently large |t| , if

1. n is odd, then every solution of Eq. (1.0.2) oscillates infinitely;

2. n is even, then every solution of Eq. (1.0.2) oscillates either odd number of times

or infinitely.

The first book written in English on oscillation theory of functional differential equations

was by Ladde et. al [55] where achievements in this field up to the year 1984 were

systematically summarized.
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Neutral differential equations play an important role in theory of functional differen-

tial equations. In recent years, the theory of neutral differential equations has become

an independent area of research and literature on this subject comprises over 1000 titles.

Many results concerning the theory of neutral functional differential equations were given

in the monographs by Hale and Lunel [34, 35]. These equations find numerous applica-

tions in natural sciences and technology but, as a rule, they are characterized by specific

properties which make their study difficult both in aspects of ideas and techniques.

Investigation of the oscillation and non-oscillation of neutral differential equations has

already been initiated in sixties and became a popular subject in eighties, see, for instance,

Norkin’s book [67], papers by Zahariev and Bainov [7, 94] and references there. Among

the problems that attracted the attention of many mathematicians around the world, we

mention obtaining of the necessary and sufficient conditions of oscillation of all solutions

to neutral differential equations, the classification of non-oscillatory solutions, existence

of positive solutions, comparison theorems and linearized criteria. In 1991, two books,

one written by Bainov and Mishev [6], the other by Györi and Ladas [32], were published

collecting many results of the oscillation theory of neutral differential equations between

the years 1980 and 1990.

Qualitative analysis of several classes of neutral differential equations is the main

subject of this thesis which is organized as follows. Chapter 2 presents a wide range

of results from literature as well as our recently obtained results. For the second order

nonlinear neutral differential equation

(x (t) + p (t) x (t− τ))′′ + f (t, x (t) , x (ρ (t)) , x′ (t) , x′ (σ (t))) = 0, (1.0.3)

we provide sufficient conditions for the existence of asymptotically linear solutions which

behave like non-trivial linear functions, or, equivalently, solutions of the form

x (t) = At+ o (t) as t→ +∞.
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For a higher order equation of the form

(x (t) + p (t) x (t− τ))(n) + f (t, x (t) , x (ρ (t)) , x′ (t) , x′ (σ (t))) = 0, (1.0.4)

we present sufficient conditions that ensure polynomial-like asymptotic behavior of non-

oscillatory solutions x (t). As a particular case of Eq. (1.0.4), we also consider a neutral

differential equation

(x (t) + p (t) x (t− τ))(n) + f (t, x (t) , x (ρ (t))) = 0

and obtain a new necessary and sufficient condition for the existence of polynomial-like

non-trivial solutions. Results reported in Chapter 2 complements research on asymp-

totic behavior of non-oscillatory solutions of functional differential equations reported by

Dahiya and Singh [16], Dahiya and Zafer [17], Graef et al. [29], Graef and Spikes [30],

Grammatikopoulos et al. [31], Kong et al. [49], Kulcsár [52], Ladas [54], M. Naito [65],

Y. Naito [66], Tanaka [83] and many other authors.

Chapter 3 focuses on oscillatory behavior of solutions of nonlinear neutral differential

equations of the forms

(
r (t)ψ (x (t)) (x (t) + p (t) x (τ (t)))′

)′
+ q (t) f (x (t) , x (σ (t))) = 0 (1.0.5)

and

(
r (t) (x (t) + p (t) x (τ (t)))′

)′
+ q (t) f (x (t) , x (σ (t))) = 0. (1.0.6)

In 1986, Yan [92] proved several important oscillation results for the linear differential

equation with linear damping term

(r (t) x′ (t))′ + p (t) x′ (t) + q (t) x (t) = 0 (1.0.7)

by extending celebrated Kamenev’s oscillation criterion [44]. Yan’s [92] results proved to

be among the most efficient tools for studying oscillatory behavior of solutions not only
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for Eq. (1.0.7) but even for linear differential equations

x′′ (t) + q (t) x (t) = 0

and

(r (t) x′ (t))′ + q (t) x (t) = 0.

Yan’s paper [92] boosted extensive investigation in the field and stimulated further de-

velopment of a so-called integral averaging technique opening a hallway to important

contributions to the Theory of Oscillation.

For more than three decades, conditions like the one used by Yan [92],

lim sup
t→+∞

t−α
∫ t

t0

(t− s)α h (s) q (s) ds < +∞, (1.0.8)

were necessary to prove oscillatory behavior of solutions of various classes of differential

equations. Very recently, Rogovchenko and Tuncay [76] enhanced results due to Yan [92]

by removing condition (1.0.8) thanks to a refined integral averaging technique developed

in [74] and [75]. Following an idea similar to developed by Rogovchenko and Tuncay, we

formulate new oscillatory results for Eqs. (1.0.5) and (1.0.6).

We conclude the introduction by mentioning that results reported in this thesis are

published in the papers [37, 38, 39, 40] and presented at the following international con-

ferences:

• The 7th AIMS (American Institute of Mathematical Sciences) Conference on Dy-

namical Systems and Differential Equations (May 18-21, 2008, Arlington, Texas,

USA);

• The 6th International Conference On Differential Equations and Dynamical Sys-

tems (May 22-26, 2008, Baltimore, Maryland, USA);
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• The 4th International Conference on Mathematical Analysis, Differential Equations

and Their Applications (September 12-15, 2008, Famagusta, North Cyprus);

• Conference on Differential and Difference Equations and Applications 2010 (June

21-25, 2010, Rajecké Teplice, Slovak Republic).
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Chapter 2

ASYMPTOTIC BEHAVIOR

Behavior of solutions of differential equations at infinity attracted many researchers. In

many cases, the main idea is to obtain conditions that ensure behavior of solutions at

infinity similar to that of much simpler differential equations. As a consequence, this

topic resulted in numerous papers. For the differential equation

x′′ (t) + q (t) x (t) = 0, (2.0.1)

Fubini [25] has posed the following question: what could be said about asymptotic behav-

ior of solutions of Eq. (2.0.1) if we suppose that

lim
t→+∞

q (t) < +∞?

Eq. (2.0.1) is asymptotic to

x′′ (t) = 0 (2.0.2)

when q (t) vanishes at infinity. Does this mean that all solutions of Eq. (2.0.1) behave

like linear functions at infinity? The answer is negative. Consider the following classical

example by Sansone [78]. The linear differential equation

x′′ (t) +
(

1

4t
+

3

16t2

)
x (t) = 0

has a two-paramater family of solutions

x (t) = A
√
t sin

(√
t+B

)
,
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where A �= 0 and A,B ∈ R, which is not asymptotic to the solution

x (t) = at+ b (2.0.3)

of Eq. (2.0.2), although

lim
t→+∞

(
1

4t
+

3

16t2

)
= 0.

Clearly, the problem of finding asymptotically linear solutions is related to finding suf-

ficient conditions for the existence of non-oscillatory solutions of differential equations.

The situation is very simple for the linear equations with constant coefficients and in the

case of varying coefficients there is a massive array of results which help to classify the

equation as oscillatory or non-oscillatory. The simplest oscillation and non-oscillation

criteria can be built up by using the classical Sturm theory developed for second order

self-adjoint linear differential equations. However, the things become more complicated

if we have to work with nonlinear differential equations.

2.1 Brief History

There are many reasons why one might be interested in studying seemingly simple

type of asymptotic behavior like the one described by (2.0.3). We note that existence of

asymptotically linear solutions is related, for example, to

1. existence of non-oscillatory solutions,

2. existence of bounded solutions,

3. existence of square integrable solutions and limit point/limit circle classification,

4. existence of monotonic solutions,

5. existence of eventually positive (negative) solutions.
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The asymptotic behavior of solutions of nonlinear equation

x′′ (t) + f (t, x (t)) = 0, (2.1.1)

has been studied by Cohen [12], Constantin [13], Tong [84], Waltman [88] and Wong

[89]. Some results for the linear case are also known, see, for instance, Trench [85] and

Waltman [88]. Cohen [12] proved the following result for Eq. (2.1.1).

Theorem 2.1.1 ([12, p.608, Theorem 1]). Suppose that

(i) f (t, u) is continuous on D = {(t, u) : t ≥ 1, u ∈ R} ;

(ii) the derivative fu (t, u) exists and is positive on D;

(iii) |f (t, u)| < fu (t, u) |u| on D.

In addition, suppose that
∫ +∞

1

sfu (s, 0) ds < +∞.

Then every solution x (t) of Eq. (2.1.1) is asymptotic to at+ b as t→ +∞.

In the proof of Theorem 2.1.1, Cohen [12] used Bellman’s method [9, p. 114-115]

based on Gronwall’s inequality. Using Bihari inequality, Tong [84] proved the following

generalization of the results due to Cohen [12].

Theorem 2.1.2 ([84, p. 235, Theorem B]). Let f (t, u) be continuous on

D = {(t, u) : t ≥ 0, u ∈ R} .

If there are two nonnegative continuous functions v (t) , ϕ (t) for t ≥ 0 and a continuous

function g (x) for x > 0, such that

(i)
∫ +∞
1

v (s)ϕ (s) ds < +∞;

(ii) for x > 0, g (x) is positive and nondecreasing;

(iii) |f (t, u)| < v (t)ϕ (t) g

( |u|
t

)
, for t ≥ 1, u ∈ R,

then Eq. (2.1.1) has solutions which are asymptotic to at+ b, where a, b ∈ R and a �= 0.
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Remark 2.1.3. Notice that, in Theorem 2.1.2, if we let v (t) = fu (t, 0) , ϕ (t) = t and

g (x) = x, we obtain Theorem 2.1.1.

On the other hand, Constantin [13] proved, among other, the following criterion for

the asymptotic behavior of solutions to Eq. (2.1.1).

Theorem 2.1.4 ([13, p 633, Corollary 2]). Let f (t, u) be continuous on

D = {(t, u) : t ≥ 1, u ∈ R} .

Suppose there exists functions ϕ,w ∈ C (R+,R+) , w nondecreasing on R+, w (x) > 0

for x > 0, such that

|f (t, u)| ≤ ϕ (t)w

( |u|
t

)
, t ≥ 1, u ∈ R,

and
∫ +∞

1

ϕ (s) ds < +∞,

∫ +∞

1

ds

w (s)
= +∞.

Then if x (t) is a solution of Eq. (2.1.1) we have that x (t) = at + b + o (t) as t → +∞

where a, b ∈ R.

Another particular case of Eq. (2.1.1) is the autonomous differential equation

x′′ (t) + f (x (t) , x′ (t)) = 0,

which has been studied by Rogovchenko and Villari [77] using the phase plane analysis.

In the study of asymptotic behavior of solutions to differential equation

x′′ (t) + f (t, x (t) , x′ (t)) = 0, (2.1.2)

it is usually supposed that the nonlinearity f in Eq. (2.1.2) satisfies

|f (t, x (t) , x′ (t))| ≤ F (t, |x (t)| , |x′ (t)|) ,
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where the real-valued function F (t, u, v) is continuous, monotone in the last two argu-

ments and vanishes at infinity with the condition of decay expressed in terms of convergent

improper integrals, see, for instance Constantin [13], Mustafa and Rogovchenko [63], S.

Rogovchenko and Yu. Rogovchenko [72], Rogovchenko [73] and Tong [84]. In particular,

S. Rogovchenko and Yu. Rogovchenko [72] studied Eq. (2.1.2) assuming that

|f (t, u, v)| ≤ h1 (t) g1

( |u|
t

)
+ h2 (t) g2 (|v|) + h3 (t) (2.1.3)

or

|f (t, u, v)| ≤ h4 (t) g3

( |u|
t

)
g4 (|v|) + h5 (t) ,

where the functions hi are nonnegative, continuous and integrable over [1,+∞) , for all

i = 1, . . . 5, while gj are nonnegative, continuous and monotone nondecreasing for all

j = 1, . . . 4. It has been proved, among, other results, that all continuable solutions of

Eq. (2.1.2) behave like linear functions at infinity provided that G1 (+∞) = +∞ and

G2 (+∞) = +∞, where

G1 (x) =

∫ x

1

ds

g1 (s) + g2 (s)
and G2 (x) =

∫ x

1

ds

g3 (s) g4 (s)
ds.

The results obtained in [72] extend those by Constantin [13], Meng [59], Rogovchenko

[73] and Tong [84]. Using a different approach based on the fixed point theory, Mustafa

and Rogovchenko [63] have established that assumptions used in [72] are sufficient for

global existence of solutions.

Dannan [18] and S. Rogovchenko and Yu. Rogovchenko [72] studied Eq. (2.1.2)

where the nonlinearity f satisfies (2.1.3) but condition G1 (+∞) = +∞ fails to hold.

In this case, differential equation usually has local non-extendable solutions and the set

of departure points for global solutions of Eq. (2.1.2) that behave like linear functions

at infinity is in many cases a bounded subset of the phase plane. However, Mustafa and

Rogovchenko [62] have proved for a class of nonlinear equations that this set can be also
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unbounded and proper, that is, neither void, nor coinciding with R
2. In 2004, Mustafa and

Rogovchenko [61] established existence of asymptotically linear solutions of Eq. (2.1.2)

locally near +∞ assuming that f satisfies inequality similar to (2.1.3) without requiring

that G1 (+∞) = +∞.

Theorem 2.1.5 ([61, p. 313, Theorem 2.1]). Suppose that the real-valued function f (t, u, v)

is continuous in D = {(t, u, v) : t ≥ 1, u, v ∈ R} and satisfies

|f (t, u, v)| ≤ h1

(
t,
|u|
t

)
+ h2 (t, |v|) ,

where the functions h1 (t, s) and h2 (t, s) are continuous, nonnegative and monotone non-

decreasing in s. Assume that there exists a constant c > 0 such that

∫ +∞

1

(h1 (t, c) + h2 (t, c)) dt < +∞.

Then, for every pair of real numbers x0, x1, where max (|x0| , |x1|) < c/4, there exists a

t0 ≥ 1 such that every solution x (t) of Eq. (2.1.2) satisfying initial conditions x (t0) = x0,

x′ (t0) = x1 is defined on [t0,+∞) and has asymptotic development x (t) = axt+ o (t) at

infinity, where ax is a real constant that depends on x (t) . Furthermore, if x1 �= 0, then

ax �= 0.

Interesting results regarding asymptotic properties of solutions of different classes of

functional differential equations have been obtained by Dahiya and Singh [16], Dahiya

and Zafer [17], Džurina [20], Graef and Spikes [30], Grammatikopoulos et al. [31], Kong

et al. [49], Kulcsár [52], Ladas [54], M. Naito [65], Y. Naito [66] and Tanaka [83].

In particular, Kulcsár [52] obtained sufficient conditions for the convergence to zero

of non-oscillatory solutions of the second order linear neutral differential equations

(x (t)− p (t) x (t− τ))′′ + q (t) x (t) = 0.
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Graef and Spikes [30] derived two sets of sufficient conditions which guarantee that any

bounded non-oscillatory solutions of a forced nonlinear neutral differential equation

(x (t) + p (t) x (ρ (t)))′′ + q (t) f (x (t− σ)) = r (t) (2.1.4)

tends to zero as t → +∞, while Grammatikopoulos et al. [31] established similar con-

ditions for non-oscillatory solutions of Eq. (2.1.4) in the case r (t) ≡ 0. Further studies

in this direction have been undertaken by Graef et al. [29] who derived sufficient condi-

tions for solutions of neutral differential equation (2.1.4) with r (t) ≡ 0 to have one of the

following properties:

1. the non-oscillatory solutions are bounded or tend to zero;

2. the bounded solutions are either oscillatory or tend to zero;

3. the unbounded solutions are either oscillatory or tend to infinity.

Recently, Džurina [20] extended results of Rogovchenko [73] on asymptotic integra-

tion of Eq. (2.1.2) to second order nonlinear neutral differential equation

(x (t) + p (t) x (t− τ))′′ + f (t, x (t)) = 0

establishing conditions under which all non-oscillatory solutions behave like linear func-

tions at+ b as t→ +∞ for some a, b ∈ R and stated without proof a similar theorem for

equations of the form

(x (t) + p (t) x (t− τ))′′ + f (t, x (t) , x′ (t)) = 0.

For higher order equations, Kong et al. [49] gave a classification of non-oscillatory

solutions of odd order linear neutral differential equation

(x (t)− x (t− τ))′′ + p (t) x (t− σ) = 0
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and established conditions for the existence of each type of non-oscillatory solution. Fi-

nally, we note that M. Naito [65] proved that an n-th order nonlinear neutral differential

equation

(x (t) + λx (t− τ))(n) + σf (t, x (ρ (t))) = 0

has a solution satisfying

lim
t→+∞

x (t)

tk
= c > 0

if and only if
∫ +∞

t0

tn−k−1f
(
t, c (ρ (t))k

)
dt < +∞

for some c > 0, whereas Y. Naito [66] derived a necessary and sufficient condition for a

neutral differential equation

(x (t)− p (t) x (τ (t)))(n) + f (t, x (ρ (t))) = 0

to have a positive solution satisfying

lim
t→+∞

x (t)− p (t) x (τ (t))

tk
= c > 0.

2.2 Second Order Nonlinear Neutral Differential Equations

In this section, we consider the neutral differential equations of the form

(x (t) + p (t) x (t− τ))′′ + f (t, x (t) , x (ρ (t)) , x′ (t) , x′ (σ (t))) = 0, (2.2.1)

where t ≥ t0 > 0, t0 ∈ R, τ > 0, p ∈ C ([t0,+∞) ,R) , ρ, σ ∈ C ([t0,+∞) , [t0,+∞))

and f ∈ C ([t0,+∞)× R
4,R) . Firstly, we prove that solutions of Eq. (2.2.1) can be

indefinitely continued to the right. Secondly, using the celebrated Bihari integral inequal-

ity, we obtain conditions for all non-oscillatory solutions to behave like nontrivial linear

functions at infinity. The following are preliminary results together with the Bihari inte-

gral inequality which has an important role in the proofs of the main results.
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Definition 2.2.1. A function ω : [0,+∞)→ [0,+∞) is said to belong to the class H if

(i) ω (t) is nondecreasing and continuous for t ≥ 0 and positive for t > 0;

(ii) there is a continuous function φ defined on [0,+∞) such that

ω (αt) ≤ φ (α)ω (t)

for α > 0, t ≥ 0.

Some important properties of functions from the classH are collected in the following

result due to Dannan [18, Lemma 1].

Lemma 2.2.1. Let f (u) and g (u) belong to the classH with the corresponding multiplier

functions ϕ (α) and ψ (α) . Then

(i) f (u) + g (u) , f (u) g (u) and f (g (u)) belong to the class H;

(ii) h (u) =
∫ u

0
f (s) ds belongs to the class H.

Following is the celebrated Bihari inequality.

Lemma 2.2.2. Let K ≥ 0, f (t) and g (t) be continuous on the interval I = [0,+∞), and

let ω (t) belong to the class H. Then the inequality

f (t) ≤ K +

∫ t

t0

g (s)ω (f (s)) ds (2.2.2)

implies

f (t) ≤ G−1
(
G (K) +

∫ t

t0

g (s) ds

)
,

where t ≥ t0 ≥ 0, G (t) is defined by

G (t)
def
=

∫ t

t∗

ds

ω (s)

and G−1 (t) denotes the inverse of G (t) .
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Proof. Let us denote the right hand side of the inequality (2.2.2) by h (t) . Then, one can

easily see that

h′ (t) = g (t)ω (f (t)) .

Dividing both sides of the latter equality by ω (h (t)) and taking into account that f (t) ≤

h (t) , we get

h′ (t)
ω (h (t))

= g (t)
ω (f (t))

ω (h (t))
≤ g (t)

ω (h (t))

ω (h (t))
= g (t) .

Next, we integrate both sides from t0 to t to obtain

∫ t

t0

h′ (s)
ω (h (s))

ds ≤
∫ t

t0

g (s) ds,

or, equivalently,

G (h (t))−G (h (t0)) ≤
∫ t

t0

g (s) ds. (2.2.3)

Let h (t0) = K. Then, inequality (2.2.3) assumes the form

G (h (t)) ≤ G (K) +

∫ t

t0

g (s) ds.

Applying the inverse of G to both sides of the latter inequality, we obtain

h (t) ≤ G−1
(
G (K) +

∫ t

t0

g (s) ds

)
.

Hence, the conclusion of the lemma follows immediately.

Although independent of Eq. (2.2.1), the next result helps us to study non-oscillatory

nature of solutions of this equation, cf. Džurina [20, Lemma 1], Györi and Ladas [32, p.

17-18, Lemma 1.5.1].

Lemma 2.2.3. Let x (t) > 0 (or x (t) < 0) eventually, τ > 0, and p (t) be a continuous

function, 0 ≤ p (t) ≤ p < 1, such that

lim
t→+∞

p (t) = p0.
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Define

w (t) = x (t) + p (t)
t− τ

t
x (t− τ) . (2.2.4)

If there exists a finite limit limt→+∞w (t) = c, then

lim
t→+∞

x (t) =
c

1 + p0
. (2.2.5)

Proof. Suppose that x (t) > 0. It is clear from (2.2.4) that c ≥ 0 and (2.2.5) yields

lim inf
t→+∞

x (t) ≤ c

1 + p0
≤ lim sup

t→+∞
x (t) .

Assume that there exist α1, α2 ≥ 0 and sequences μn, νn diverging to +∞ such that

lim sup
t→+∞

x (t) = lim
n→+∞

x (μn) =
c+ α1

1 + p0
,

lim inf
t→+∞

x (t) = lim
n→+∞

x (νn) =
c− α2

1 + p0
.

We have to prove that α1 = α2 = 0. Consider the following two cases.

Case 1. Assume that α1 > 0 and α1 ≥ α2 ≥ 0. It follows from (2.2.4) that, for any

ε > 0,

w (t) ≥ x (t) + p (t)
t− τ

t

c− α2 − ε

1 + p0
. (2.2.6)

Letting in (2.2.6) t = μn and passing to the limit as n→ +∞, we obtain

c ≥ c+ α1

1 + p0
+ p0

c− α2 − ε

1 + p0
,

or, equivalently,

α1 ≤ p0 (α2 + ε) . (2.2.7)

Choose now ε = (2p0)
−1 (1− p0)α2. Since p0 < 1, (2.2.7) yields

α1 ≤ 1

2
α2 (p0 + 1) < α2,

which contradicts our initial assumption that α1 ≥ α2.

18



Case 2. Assume now that α2 > 0 and α2 ≥ α1 ≥ 0. Similarly to Case 1, (2.2.4)

implies that, for any ε > 0,

w (t) ≤ x (t) + p (t)
t− τ

t

c+ α1 + ε

1 + p0
. (2.2.8)

Let in (2.2.8) t = νn and pass to the limit as n→ +∞ to obtain

c ≤ c− α2

1 + p0
+ p0

c+ α1 + ε

1 + p0
,

which is equivalent to

α2 ≤ p0 (α1 + ε) . (2.2.9)

Choose ε = (2p0)
−1 (1− p0)α1. Using (2.2.9) and the fact that p0 < 1, we conclude that

α2 ≤ 1

2
α1 (p0 + 1) < α1,

which contradicts our assumption that α2 ≥ α1. The proof is complete.

Remark 2.2.1. In the case p (t) = p, Lemma 2.2.3 reduces to Džurina’s result [20,

Lemma 1].

The following lemma, due to Mustafa and Rogovchenko [63], is used to prove solu-

tions of Eq. (2.2.1) can be continued to the right indefinitely.

Lemma 2.2.4 ([63, p. 346, Lemma 7]). Suppose that the function g (s) is a continuous,

positive and nondecreasing on (0,+∞) . Assume further that

∫ +∞

t0

1

g (s)
ds = +∞.

Then, for every k > 0 one has

∫ +∞

t0

1

k + g (s)
ds = +∞.
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In the sequel, we suppose that the following conditions hold:

(A1) f (t, u1, u2, v1, v2) is continuous in

D = {(t, u1, u2, v1, v2) : t ≥ t0 ≥ 1, u1, u2, v1, v2 ∈ R} ;

(A2) there exist continuous functions h1, . . . , h5, g1, . . . , g4 : [t0,+∞)→ [t0,+∞) such

that either

|f (t, u1, u2, v1, v2)| ≤ h1 (t) g1

( |u1|
t

)
+ h2 (t) g2

( |u2|
ρ (t)

)
+ h3 (t) , (2.2.10)

or

|f (t, u1, u2, v1, v2)| ≤ h4 (t) g3

( |u1|
t

)
g4

( |u2|
ρ (t)

)
+ h5 (t) , (2.2.11)

where, for s > 0, the functions gi (s) , i = 1, . . . , 4, are nondecreasing and

∫ +∞

t0

hi (s) ds = Hi < +∞, i = 1, . . . , 5;

(A3) ρ, σ ∈ C ([t0,+∞) , [t0,+∞)) , ρ (t) ≤ t, σ (t) ≤ t, limt→+∞ ρ (t) = +∞, and

limt→+∞ σ (t) = +∞.

For t ≥ t0, we introduce the functions G1 and G2 by

G1 (t)
def
=

∫ t

t0

ds

g1 (s) + g2 (s)
, G2 (t)

def
=

∫ t

t0

ds

g3 (s) g4 (s)
.

Let

z (t0) = c1 and z′ (t0) = c2.

In what follows, we shall use the notation

c∗
def
= |c1|+ |c2| .

Further, define z (t) by

z (t) = x (t) + p (t) x (t− τ) . (2.2.12)

The next result provides useful estimates for solutions of Eq. (2.2.1).
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Lemma 2.2.5. (i) Assume that f (t, u1, u2, v1, v2) satisfies (2.2.10). Then, for all t ≥ t0,

one has

max

[ |z (t)|
t

,
|z (ρ (t))|
ρ (t)

]
≤ Φ1(t), (2.2.13)

where

Φ1(t)
def
= c∗ +

∫ t

t0

h1 (s) g1

( |z (s)|
s

)
ds

+

∫ t

t0

h2 (s) g2

( |z (ρ (s))|
ρ (s)

)
ds+

∫ t

t0

h3 (s) ds. (2.2.14)

(ii) Assume that f(t, u1, u2, v1, v2) satisfies (2.2.11). Then, for all t ≥ t0, one has

max

[ |z (t)|
t

,
|z (ρ (t))|
ρ (t)

]
≤ Φ2(t), (2.2.15)

where

Φ2(t)
def
= c∗ +

∫ t

t0

h4 (s) g3

( |z (s)|
s

)
g4

( |z (ρ (s))|
ρ (s)

)
ds+

∫ t

t0

h5 (s) ds. (2.2.16)

Proof. Part (i). Let x (t) be a non-oscillatory solution of Eq. (2.2.1). Clearly,

|z (t)| ≥ |x (t)| , (2.2.17)

and it follows from Eq. (2.2.1) that

z′′ (t) = −f (t, x (t) , x (ρ (t)) , x′ (t) , x′ (σ (t))) , (2.2.18)

where z (t) is defined as in (2.2.12). Integrating (2.2.18) twice from t0 to t, we obtain

z′ (t) = c2 −
∫ t

t0

f (s, x (s) , x (ρ (s)) , x′ (s) , x′ (σ (s))) ds, (2.2.19)

z (t) = c2 (t− t0) + c1 −
∫ t

t0

(t− s) f (s, x (s) , x (ρ (s)) , x′ (s) , x′ (σ (s))) ds.

(2.2.20)

It follows from (2.2.19) and (2.2.20) that, for t ≥ t0,

|z′ (t)| ≤ |c2|+
∫ t

t0

|f (s, x (s) , x (ρ (s)) , x′ (s) , x′ (σ (s)))| ds,

|z (t)| ≤ t

(
c∗ +

∫ t

t0

|f (s, x (s) , x (ρ (s)) , x′ (s) , x′ (σ (s)))| ds
)
.
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Using (2.2.10), (2.2.17) and monotonicity of the functions g1 and g2, we have

|f (t, x (t) , x (ρ (t)) , x′ (t) , x′ (σ (t)))| ≤ h3 (t) + h1 (t) g1

( |x (t)|
t

)

+ h2 (t) g2

( |x (ρ (t))|
ρ (t)

)
≤ h1 (t) g1

( |z (t)|
t

)

+ h2 (t) g2

( |z (ρ (t))|
ρ (t)

)
+ h3 (t) .

Hence, for all t ≥ t0,

|z′ (t)| ≤ |c2|+
∫ t

t0

h1 (s) g1

( |z (s)|
s

)
ds

+

∫ t

t0

h2 (s) g2

( |z (ρ (s))|
ρ (s)

)
ds+

∫ t

t0

h3 (s) ds, (2.2.21)

and

|z (t)|
t

≤ c∗ +
∫ t

t0

h1 (s) g1

( |z (s)|
s

)
ds

+

∫ t

t0

h2 (s) g2

( |z (ρ (s))|
ρ (s)

)
ds+

∫ t

t0

h3 (s) ds, (2.2.22)

from which (2.2.13) follows.

Part (ii). Assume now that f satisfies (2.2.11). Following the same lines as above, we

conclude that, for t ≥ t0,

|z′ (t)| ≤ |c2|+
∫ t

t0

h4 (s) g3

( |z (s)|
s

)
g4

( |z (ρ (s))|
ρ (s)

)
ds+

∫ t

t0

h5 (s) ds, (2.2.23)

and

|z (t)|
t

≤ c∗ +
∫ t

t0

h4 (s) g3

( |z (s)|
s

)
g4

( |z (ρ (s))|
ρ (s)

)
ds+

∫ t

t0

h5 (s) ds, (2.2.24)

which immediately yields (2.2.15).

The following lemma establishes existence of solutions of Eq. (2.2.1) for all t ≥ t0 ≥

1 and resembles the result proved by Mustafa and Rogovchenko [61, p. 318-319, Lemma

3.6] for the differential equation

x′′ (t) + f(t, x (t) , x′ (t)) = 0, t ≥ t0 ≥ 1
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in the case f satisfies the condition

|f (t, u, v)| ≤ h1 (t) g1

( |u|
t

)
+ h2 (t) g2 (|v|) + h3 (t) .

Lemma 2.2.6. Suppose that there exists a solution x(t) of Eq. (2.2.1) defined on [1, T ),

1 < T < +∞, which cannot be continued to the right of T.

(i) If f(t, u1, u2, v1, v2) satisfies (2.2.10), then G1(+∞) < +∞.

(ii) If f(t, u1, u2, v1, v2) satisfies (2.2.11), then G2(+∞) < +∞.

Proof. Part (i). Let x(t) be a solution of Eq. (2.2.1) which is defined on [1, T ), 1 < T <

+∞, and cannot be continued to the right of T, and let z(t) be defined by (2.2.12). Using

estimates (2.2.21) and (2.2.22), we conclude that, for t ∈ [1, T ),

max

[ |z(t)|
T

,
|z (ρ (t))|
ρ (T )

]
≤ max

[ |z(t)|
t

,
|z (ρ (t))|
ρ (t)

]
≤ γ(t), (2.2.25)

where γ(t) is the maximal solution of the initial value problem
{
ξ ′ = (h1(t) + h2(t) + h3(t)) (g1(ξ) + g2(ξ) + 1) ,

ξ(1) = ξ0
def
= c∗.

(2.2.26)

Since solution x(t) of Eq. (2.2.1) cannot be continued to the right,

lim
t→T−

|x(t)| = +∞,

which, in virtue of (2.2.17) and (2.2.25), implies γ(t)→ +∞ as t→ T − . Integration of

(2.2.26) yields, for t ∈ [1, T ),

∫ γ(t)

ξ0

ds

g1(s) + g2(s) + 1
=

∫ t

1

(h1(s) + h2(s) + h3(s)) ds. (2.2.27)

Passing in (2.2.27) to the limit as t→ T−, we deduce that

∫ +∞

ξ0

ds

g1(s) + g2(s) + 1
=

∫ T

1

(h1(s) + h2(s) + h3(s)) ds < +∞. (2.2.28)

If G1(+∞) = +∞, then, according to Lemma 2.2.4, one has

∫ +∞

ξ0

ds

g1(s) + g2(s) + 1
= +∞,
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which contradicts (2.2.28). Thus, Part (i) is proved.

Part (ii). Let x(t) and z(t) be as in Part (i). Using estimates (2.2.23) and (2.2.24),

we conclude that, for t ∈ [1, T ), inequality (2.2.25) holds, where this time γ(t) is the

maximal solution of the initial value problem

{
ξ ′ = (h4(t) + h5(t)) (g3(ξ)g4(ξ) + 1) ,

ξ(1) = ξ0,
(2.2.29)

and ξ0 is as above. Integrating ordinary differential equation in (2.2.29) and taking into

account that γ(t)→ +∞ as t→ T−, we obtain, for t ∈ [1, T ),

∫ γ(t)

ξ0

ds

g3(s)g4(s) + 1
=

∫ t

1

(h4(s) + h5(s)) ds. (2.2.30)

Passing in (2.2.30) to the limit as t→ T−, we conclude that

∫ +∞

ξ0

ds

g3(s)g4(s) + 1
=

∫ T

1

(h4(s) + h5(s)) ds < +∞. (2.2.31)

Another application of Lemma 2.2.4 yields

∫ +∞

ξ0

ds

g3(s)g4(s) + 1
= +∞

provided that G2(+∞) = +∞, which, in virtue of (2.2.31), leads to contradiction. This

completes the proof of lemma.

As an immediate consequence of Lemma 2.2.6, we obtain the following important

continuation result.

Corollary 2.2.1. Assume that the nonlinearity f satisfies (2.2.10) (respectively, (2.2.11))

and G1(+∞) = +∞ (respectively, G2(+∞) = +∞). Then all solutions of Eq. (2.2.1)

can be indefinitely continued to the right.

Next, we present a theorem related with the existence of asymptotically linear solu-

tions.
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Theorem 2.2.2. Suppose that (2.2.10) holds andG1 (+∞) = +∞. Then any non-oscillatory

solution of Eq. (2.2.1) has the asymptotic representation

x (t) = At+ o (t) , (2.2.32)

and there exist solutions for which A �= 0.

Proof. Let x (t) be a non-oscillatory solution of Eq. (2.2.1) and z(t) be defined by

(2.2.12). Then, by virtue of Lemma 2.2.5, (2.2.13) holds. Since g1 (s) and g2 (s) are

nondecreasing for s > 0, one has

g1

( |z (t)|
t

)
≤ g1 (Φ1 (t)) and g2

( |z (ρ (t))|
ρ (t)

)
≤ g2 (Φ1 (t)) . (2.2.33)

Taking into account (2.2.33) and the definition of Φ1 (t) , we conclude that

Φ1 (t) ≤M +

∫ t

t0

h1 (s) g1 (Φ1 (s)) ds+

∫ t

t0

h2 (s) g2 (Φ1 (s)) ds,

where M def
= c∗ +H3. Observing further that

h1 (s) g2 (Φ1 (s)) + h2 (s) g2 (Φ1 (s)) ≤ (h1 (s) + h2 (s))

× (g1 (Φ1 (s)) + g2 (Φ1 (s))) ,

we obtain

Φ1 (t) ≤M +

∫ t

t0

(h1 (s) + h2 (s)) (g1 (Φ1 (s)) + g2 (Φ1 (s))) ds. (2.2.34)

Application of Lemma 2.2.2 to (2.2.34) yields

Φ1 (t) ≤ G−11

(
G1 (M) +

∫ t

t0

(h1 (s) + h2 (s)) ds

)
,

where G−11 is the inverse of G1 defined for x ∈ (G1 (+∞) ,+∞) . Let

K1
def
= G1 (M) +H1 +H2 < +∞.

Since G−11 is increasing, we conclude that

Φ1 (t) ≤ G−11 (K1)
def
= K2 < +∞.
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Thus,

|z (t)|
t

≤ K2 and
|z (ρ (t))|
ρ (t)

≤ K2,

where, in virtue of (A3), the second inequality follows from the fact

|z (ρ (t))| ≤ ρ (t) Φ1 (t) ≤ ρ (t) Φ1 (ρ (t)) .

On the other hand, for t ≥ t0,

∫ t

t0

|f (s, x (s) , x (ρ (s)) , x′ (s) , x′ (σ (s)))| ds ≤ g1 (K2)H1

+ g2 (K2)H2 +H3
def
= K3 < +∞.

Therefore,

lim
t→+∞

∫ t

t0

|f (s, x (s) , x (ρ (s)) , x′ (s) , x′ (σ (s)))| ds

exists, and it follows from (2.2.19) that there exists a number μ ∈ R such that

lim
t→+∞

z′ (t) = μ.

Choosing t0 appropriately, one can always ensure that μ �= 0. Furthermore, application of

l’Hospital’s rule implies that

lim
t→+∞

z (t)

t
= lim

t→+∞
z′ (t) = μ.

Set w (t) = z (t) /t and u (t) = x (t) /t. Then (2.2.12) yields

w (t) = u (t) + p (t)
t− τ

t
u (t− τ) .

Taking into account that

lim
t→+∞

w (t) = lim
t→+∞

z (t)

t
= μ �= 0

and using Lemma 2.2.3, we conclude that

lim
t→+∞

u (t) = lim
t→+∞

x (t)

t
=

μ

1 + p0

def
= A.

The proof is complete now.
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Theorem 2.2.3. Suppose that (2.2.11) holds and G2 (+∞) = +∞. Then the conclusion

of Theorem 2.2.2 holds.

Proof. Let x (t) and z(t) be as be as in Theorem 2.2.2. By Lemma 2.2.5,

|z (t)|
t

≤ Φ2 (t) and
|z (ρ (t))|
ρ (t)

≤ Φ2 (t) . (2.2.35)

Using (2.2.15), (2.2.35), and monotonicity of the functions g3 and g4, we obtain

Φ2 (t) ≤ N +

∫ t

t0

h4 (s) g3 (Φ2 (s)) g4 (Φ2 (s)) ds, (2.2.36)

where N def
= c∗ +H5. Application of the Bihari inequality to (2.2.36) yields

Φ2 (t) ≤ G−12

(
G2 (N) +

∫ t

t0

h4 (s) ds

)
,

where G−12 is the inverse of G2 defined for x ∈ (G2 (+∞) ,+∞) . Let

K4
def
= G2 (N) +H4 < +∞.

Then,

Φ2 (t) ≤ G−12 (K4)
def
= K5 < +∞,

and the proof is completed in the same manner as in Theorem 2.2.2.

2.3 Higher Order Nonlinear Neutral Differential Equations

In this section, we discuss asymptotic behavior of solutions for higher order nonlinear

neutral differential equation

(x (t) + p (t) x (t− τ))(n) + f (t, x (t) , x (ρ (t)) , x′ (t) , x′ (σ (t))) = 0. (2.3.1)

In addition, as a particular case of Eq. (2.3.1), we also consider the differential equation

(x (t) + p (t) x (t− τ))(n) + f (t, x (t) , x (ρ (t))) = 0. (2.3.2)
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2.3.1 Asymptotic Behavior of Solutions of Eq. (2.3.1)

Let R+ = [0,+∞). In what follows, we suppose that

(A1) f ∈ C (R+ × R
4,R) , and there exist functions φk, ωl ∈ C (R+,R+) , k = 1, . . . , 5,

l = 1, . . . 4, such that either

|f (t, u1, u2, v1, v2)| ≤ φ1 (t) + φ2 (t)ω1

( |u1|
tn−1

)
+ φ3 (t)ω2

( |u2|
[ρ (t)]n−1

)
, (2.3.3)

or

|f (t, u1, u2, v1, v2)| ≤ φ4 (t) + φ5 (t)ω3

( |u1|
tn−1

)
ω4

( |u2|
[ρ (t)]n−1

)
, (2.3.4)

where, for s > 0, the functions ωl (s) are positive, nondecreasing and

∫ +∞

t0

φk (s) ds = Ak < +∞, k = 1, . . . , 5; (2.3.5)

(A2) ρ, σ ∈ C (R+,R+) , ρ (t) ≤ t, σ (t) ≤ t, limt→+∞ ρ (t) = +∞, and

limt→+∞ σ (t) = +∞;

(A3) p ∈ C (R+,R+) , 0 ≤ p (t) ≤ p∗ < 1, and limt→+∞ p (t) = p0.

For t ≥ t0, let

Ψ1 (t)
def
= φ1 (t) + φ2 (t) + φ3 (t) , Ω1(t)

def
= ω1 (t) + ω2 (t) , G̃1 (t)

def
=

∫ t

t0

ds

Ω1(s)
,

Ψ2 (t)
def
= φ4 (t) + φ5 (t) , Ω2(t)

def
= ω3 (t)ω4 (t) , G̃2 (t)

def
=

∫ t

t0

ds

Ω2(s)
.

The following result is a generalization of Lemma 2.2.3. Its proof follows a similar pattern

and is therefore omitted, cf. Džurina [20, Lemma 1], Györi and Ladas [32, p. 17-18,

Lemma 1.5.1].

Lemma 2.3.1. Let u (t) > 0 (or u (t) < 0) eventually, p (t) satisfy (A3), and w(t) be

defined by

w (t) = u (t) + p (t)
(t− τ)n−1

tn−1
u (t− τ) . (2.3.6)

If there exists a finite limit limt→+∞ w (t) = c, then

lim
t→+∞

u (t) =
c

1 + p0
.
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The following result has an independent interest and is used to assure that any non-

oscillatory solution of Eq. (2.3.1) can be indefinitely continued to the right.

Theorem 2.3.1. Suppose that there exists a non-oscillatory solution x (t) of Eq. (2.3.1)

defined on [t0, T ), t0 < T < +∞, which cannot be continued to the right beyond T.

(i) If f (t, u1, u2, v1, v2) satisfies (2.3.3), then G̃1 (+∞) < +∞.

(ii) If f (t, u1, u2, v1, v2) satisfies (2.3.4), then G̃2 (+∞) < +∞.

Proof. (i) Let x (t) be a non-oscillatory solution of Eq. (2.3.1) defined on [t0, T ), t0 <

T < +∞, which cannot be continued to the right beyond T. Then,

lim
t→T−

|x (t)| = +∞. (2.3.7)

Define z (t) as in (2.2.12). Clearly,

|z (t)| ≥ |x (t)| ,

and it follows from Eq. (2.3.1) that

z(n) (t) = −f (t, x (t) , x (ρ (t)) , x′ (t) , x′ (σ (t))) .

Integrating the latter equation n times from t0 and t, one obtains, for t ≥ t0,

z (t) =n−1
i=1

z(i) (t0)

i!
(t− t0)

i

−
∫ t

t0

(t− s)n−1

(n− 1)!
f (s, x (s) , x (ρ (s)) , x′ (s) , x′ (σ (s))) ds.

Then, for t ≥ t0,

|z (t)| ≤ tn−1
(
M +

∫ t

t0

|f (s, x (s) , x (ρ (s)) , x′ (s) , x′ (σ (s)))| ds
)
,

where

M =
n−1∑

i=1

∣
∣z(i) (t0)

∣
∣

i!
. (2.3.8)
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Using (2.3.3), (2.2.17), and monotonicity of the functions ωi (s) , we obtain

|f (t, x (t) , x (ρ (t)) , x′ (t) , x′ (σ (t)))| ≤ φ1 (t)

+ φ2 (t)ω1

( |z (t)|
tn−1

)

+ φ3 (t)ω2

( |z (ρ (t))|
[ρ (t)]n−1

)
, (2.3.9)

which yields

|z (t)|
tn−1

≤ Φ̃1 (t)
def
= M +

∫ t

t0

φ1 (s) ds

+

∫ t

t0

φ2 (s)ω1

( |z (s)|
sn−1

)
ds

+

∫ t

t0

φ3 (s)ω2

( |z (ρ (s))|
[ρ (s)]n−1

)
ds.

Clearly, Φ̃1 (t) is increasing because, for all t ≥ t0,

Φ̃′1 (t) = φ1 (t) + φ2 (t)ω1

( |z (t)|
tn−1

)
+ φ3 (t)ω2

( |z (ρ (t))|
[ρ (t)]n−1

)
> 0.

By the assumption (A2), one has

|z (ρ (t))| ≤ [ρ (t)]n−1 Φ̃1 (ρ (t)) ≤ [ρ (t)]n−1 Φ̃1 (t) ,

or

|z (ρ (t))|
[ρ (t)]n−1

≤ Φ̃1 (t) ,

and thus, for all t ≥ t0,

max

[ |z (t)|
tn−1

,
|z (ρ (t))|
[ρ (t)]n−1

]
≤ Φ̃1 (t) . (2.3.10)

It follows from (2.3.10) that, for t ∈ [t0, T ),

max

[ |z (t)|
T n−1 ,

|z (ρ (t))|
[ρ (T )]n−1

]
≤ max

[ |z (t)|
tn−1

,
|z (ρ (t))|
[ρ (t)]n−1

]
≤ ϑ (t) , (2.3.11)

where ϑ (t) is the maximal solution of the initial value problem

{
ζ ′ = Ψ1 (t) (Ω1 (ζ) + 1) ,

ζ (t0) = ζ0 =M.
(2.3.12)
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By virtue of (2.2.17) and (2.3.11), (2.3.7) implies

lim
t→T−

ϑ (t) = +∞. (2.3.13)

Integration of (2.3.12) yields, for t ∈ [t0, T ),

∫ ϑ(t)

ζ0

ds

Ω1 (s) + 1
=

∫ t

t0

Ψ1 (s) ds.

Passing to the limit as t→ T−, one has

∫ +∞

ζ0

ds

Ω1 (s) + 1
=

∫ T

t0

Ψ1 (s) ds < +∞. (2.3.14)

Since the integrals

∫ +∞

ζ0

ds

Ω1 (s) + 1
and

∫ +∞

ζ0

ds

Ω1 (s)

converge or diverge simultaneously, it follows from (2.3.14) that G̃1 (+∞) < +∞.

(ii) Assume now that f satisfies (2.3.4). By an argument similar to the one used in part

(i), we conclude that, for t ≥ t0,

|z (t)|
tn−1

≤ Φ̃2 (t)
def
= M +

∫ t

t0

{
φ4 (s) + φ5 (s)ω3

( |z (s)|
sn−1

)
ω4

( |z (ρ (s))|
[ρ (s)]n−1

)}
ds,

where M is given by (2.3.8). With the same reasoning as above, we arrive at the estimate

max

[ |z (t)|
tn−1

,
|z (ρ (t))|
[ρ (t)]n−1

]
≤ Φ̃2 (t) . (2.3.15)

Furthermore, we conclude that, for t ∈ [t0, T ), inequality (2.3.11) holds, where ϑ (t) is

the maximal solution of the initial value problem

{
ζ ′ = Ψ2 (t) (Ω2 (ζ) + 1) ,

ζ (t0) = ζ0 =M.

The rest of the proof follows the same lines as in part (i).

An immediate consequence of Theorem 2.3.1 and [63, Lemma 7] is the following

extension result.
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Corollary 2.3.1. Assume that nonlinearity f satisfies (2.3.3) (respectively (2.3.4)) and

G̃1 (+∞) = +∞ (respectively G̃2 (+∞) = +∞). Then all non-oscillatory solutions of

Eq. (2.3.1) can be indefinitely continued to the right.

Theorem 2.3.2. Suppose that (2.3.3) holds and

G̃1 (+∞) = +∞. (2.3.16)

Then any non-oscillatory solution x(t) of Eq. (2.3.1) satisfies

lim
t→+∞

x (t)

tn−1
= a, (2.3.17)

and there exist non-oscillatory solutions for which a �= 0.

Proof. Let x (t) be a non-oscillatory solution of Eq. (2.3.1) and z (t) be defined by

(2.2.12). Then, (2.3.10) holds, and

Φ̃1 (t) ≤M + A1 +

∫ t

t0

[φ2 (s)ω1 (Φ1 (s)) + φ3 (s)ω2 (Φ1 (s))] ds.

Observing that

φ2 (t)ω1

(
Φ̃1 (t)

)
+ φ3 (t)ω2

(
Φ̃1 (t)

)
≤ [φ2 (t) + φ3 (t)] Ω1

(
Φ̃1 (t)

)
,

one has

Φ̃1 (t) ≤M + A1 +

∫ t

t0

[φ2 (s) + φ3 (s)] Ω1

(
Φ̃1 (s)

)
ds.

An application of Lemma 2.2.2 yields

Φ̃1 (t) ≤ G̃−11

(
G̃1 (M + A1) +

∫ t

t0

[φ2 (s) + φ3 (s)] ds

)
,

where G̃−11 is the inverse of G̃1 defined for x ∈
(
G̃1 (0+) ,+∞

)
. Let

K̃1
def
= G̃1 (M + A1) + A2 + A3 < +∞.

Since G̃−11 is increasing, we conclude that

Φ̃1 (t) ≤ G̃−11

(
K̃1

)
def
= K̃2 < +∞.
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Thus, it follows from (2.3.10) and the latter inequality that

max

[ |z (t)|
tn−1

,
|z (ρ (t))|
[ρ (t)]n−1

]
≤ K̃2.

On the other hand, by virtue of (2.3.9), for t ≥ t0,

∫ t

t0

|f (s, x (s) , x (ρ (s)) , x′ (s) , x′ (σ (s)))| ds

≤ A1 + A2ω1

(
K̃2

)

+ A3ω2

(
K̃2

)
def
= K̃3 < +∞.

Therefore, the limit

lim
t→+∞

∫ t

t0

|f (s, x (s) , x (ρ (s)) , x′ (s) , x′ (σ (s)))| ds

is finite, and there exists a number q ∈ R such that

q = lim
t→+∞

z(n−1) (t) = z(n−1) (t0)

−
∫ +∞

t0

f (s, x (s) , x (ρ (s)) , x′ (s) , x′ (σ (s))) ds.

Choosing t0 appropriately, one can always ensure that q �= 0, see, for instance, Dahiya

and Singh [16], Džurina [20], or Ladas [54]. Repeated application of the l’Hôpital’s rule

yields

lim
t→+∞

z (t)

tn−1
=

q

(n− 1)!
. (2.3.18)

Let z (t) = tn−1w (t) and x (t) = tn−1u (t) . It is easy to see that, by virtue of (2.2.12),

w(t) satisfies (2.3.6), and it follows from (2.3.18) that

lim
t→+∞

w (t) =
q

(n− 1)!
.

Using Lemma 2.3.1, we conclude that

lim
t→+∞

u (t) = lim
t→+∞

x (t)

tn−1
=

q

(1 + p0) (n− 1)!
def
= a �= 0,

which completes the proof.
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Theorem 2.3.3. Suppose that (2.3.4) is satisfied and

G̃2 (+∞) = +∞. (2.3.19)

Then the conclusion of Theorem 2.3.2 holds.

Proof. Let x (t) and z (t) be as in Theorem 2.3.1. By virtue of (2.3.15),

Φ̃2 (t) ≤M + A4 +

∫ t

t0

φ5 (s) Ω2

(
Φ̃2 (s)

)
ds.

An application of Lemma 2.2.2 yields

Φ̃2 (t) ≤ G̃−12

(
G̃2 (M + A4) +

∫ t

t0

φ5 (s) ds

)
,

where G̃−12 is the inverse of G̃2 defined for x ∈
(
G̃2 (0+) ,+∞

)
. Let

K̃4
def
= G̃2 (M + A4) + A5 < +∞.

Then, it is not hard to prove that

Φ̃2 (t) ≤ G̃−12

(
K̃4

)
< +∞,

and the rest of the proof resembles that of Theorem 2.3.2.

2.3.2 Asymptotic Behavior of Solutions of Eq. (2.3.2)

In this section, we study asymptotic behavior of solutions of Eq. (2.3.2). In what

follows, we suppose that

(B1) f ∈ C (R+ × R
2,R) , and there exist functions φk, ηl ∈ C (R+,R+) , k = 1, . . . , 5,

l = 1, . . . , 4, such that, for s > 0, ηj (s) are nondecreasing, and either

|f (t, u1, u2)| ≥ φ1 (t) + φ2 (t) η1

( |u1|
tn−1

)
+ φ3 (t) η2

( |u2|
[ρ (t)]n−1

)
, (2.3.20)

or

|f (t, u1, u2)| ≥ φ4 (t) + φ5 (t) η3

( |u1|
tn−1

)
η4

( |u2|
[ρ (t)]n−1

)
; (2.3.21)

34



(B2) ρ ∈ C (R+,R+) , ρ (t) ≤ t, and limt→+∞ ρ (t) = +∞;

(B3) p ∈ C (R+,R+) , 0 ≤ p (t) ≤ p∗ < 1, and limt→+∞ p (t) = p0;

(B4) if u1 and u2 have the same sign, then f (t, u1, u2) has that sign for all t sufficiently

large.

The following lemma, due to Kiguradze [45], is essential for the proof of the main

result of this section.

Lemma 2.3.2 ([45]). Let z (t) be an n times differentiable function on R+ of constant

sign, z (t) �≡ 0 on [t0,+∞) which satisfies z(n) (t) z (t) ≤ 0. Then there is an integer l,

0 ≤ l ≤ n− 1, such that n+ l is even and

z (t) z(i) (t) > 0, 0 ≤ i ≤ l,

(−1)n+i+1 z (t) z(i) (t) > 0, l + 1 ≤ i ≤ n.

Theorem 2.3.4. Assume that (2.3.20) holds. If Eq. (2.3.2) has a solution x (t) satisfying

(2.3.17), then (2.3.5) holds for k = 1, 2, 3.

Proof. Let x (t) be a non-oscillatory solution of Eq. (2.3.2). Without loss of generality,

we may assume that x (t) > 0, for t ≥ t1 ≥ t0. It follows from (2.2.12) that there exists a

t2 such that, for t ≥ t2, one has z (t) > x (t) > 0, whereas

z(n) (t) = −f (t, x (t) , x (ρ (t))) (2.3.22)

yields that z(n) (t) < 0, for t ≥ t2. Consequently, by Lemma 2.3.2, all derivatives z′(t),

z′′(t), . . . , z(n−1)(t) are of constant sign for sufficiently large t. We claim that z(n−1) (t) is

eventually nonnegative. Indeed, assuming that there exists a T ≥ t2 such that z(n−1) (T ) <

0 and using the fact that z(n−1) (t) is decreasing, we conclude that, for t ≥ T,

z(n−1) (t) < z(n−1) (T ) < 0. (2.3.23)

It follows from (2.3.23) that limt→+∞ z(n−2) (t) = −∞ and limt→+∞ z (t) = −∞. There-

fore, by (2.2.12), x (t) is eventually negative, which contradicts our assumption of even-
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tual positivity of x(t). Thus, we have established that there exists a t3 ≥ t2 such that, for

all t ≥ t3,

z(n−1) (t) ≥ 0. (2.3.24)

Integration of Eq. (2.3.22) yields

z(n−1) (t) = z(n−1) (t3)−
∫ t

t3

f (s, x (s) , x (ρ (s))) ds,

which, by (2.3.24), immediately implies that

∫ +∞

t3

f (s, x (s) , x (ρ (s))) ds ≤ z(n−1) (t3) < +∞.

On the other hand, by (2.3.17) and (B2), there exists a t4 ≥ t3 such that

x (t)

tn−1
>
a

2
and

x (ρ (t))

[ρ (t)]n−1
>
a

2
, (2.3.25)

for all t ≥ t4. Taking into account (2.3.20), (2.3.25), and using monotonicity of the func-

tions η1 and η2, we observe that

+∞ >

∫ +∞

t4

f (s, x (s) , x (ρ (s))) ds

≥
∫ +∞

t4

[
φ1 (s) + φ2 (s) η1

(
x (s)

sn−1

)
+ φ3 (s) η2

(
x (ρ (s))

[ρ (s)]n−1

)]
ds

≥
∫ +∞

t4

[
φ1 (s) + φ2 (s) η1

(a
2

)
+ φ3 (s) η2

(a
2

)]
ds,

which yields the desired conclusion.

Theorem 2.3.5. Assume that (2.3.21) holds. If Eq. (2.3.2) has a solution x (t) satisfying

(2.3.17), then property (2.3.5) holds for k = 4, 5.

Proof. The proof is similar to that of Theorem 2.3.4 and is therefore omitted.

Combining Theorems 2.3.2 and 2.3.4 (respectively, Theorems 2.3.3 and 2.3.5), we

obtain necessary and sufficient conditions for existence of solutions of Eq. (2.3.2) that

satisfy (2.3.17).
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Theorem 2.3.6. Let conditions (2.3.3), (2.3.16), and (2.3.20) (respectively, (2.3.4), (2.3.19),

and (2.3.21)) be satisfied. Then, a necessary and sufficient condition for Eq. (2.3.2)

to have solutions x (t) with the asymptotic property (2.3.17) is that (2.3.5) holds for

k = 1, 2, 3 (respectively, for k = 4, 5).

Remark 2.3.7. We conclude this section by noting that Džurina formulated without proof

a result [20, Theorem 2] stating that all non-oscillatory solutions of

(x (t) + p (t) x (t− τ))′′ + f (t, x (t) , x′ (t)) = 0 (2.3.26)

are asymptotic to at+ b as t→ +∞ for some a, b ∈ R, under the assumption that

|f (t, u, v)| ≤ h (t) g

( |u|
t

)
|v| ,

where h(t) is integrable on [t0,+∞) and
∫ x

t0
1/g(s)ds → +∞ as x → +∞. However,

in order to prove this assertion, in addition to the estimate (2.2.17), one has to use the

inequality |x′(t)| ≤ |z′(t)| which, in general, is not satisfied for solutions of Eq. (2.3.26).

This fact explains our main assumptions (2.3.3) and (2.3.4) on the nonlinearity f.

2.4 Examples

In the following examples, classification of the solutions has been done according to

Kong et. al [49, Definition 2.1].

Definition 2.4.1. For t ∈ [T,+∞) , a non-oscillatory solution x (t) of equation

(x (t)− x (t− τ))(n) + p (t) x (t− σ) = 0 (2.4.1)

is said to be of type Ak, k ∈ {0, . . . , n} if x (t) = atk + b (t) , where a �= 0 and b (t) is a

bounded function on [T,+∞) .

For t ∈ [T,+∞) , a non-oscillatory solution x (t) of Eq. (2.4.1) is said to be of type Bk,l,

k ∈ {1, . . . , n} , l ∈ {1, . . . , k} if x (t) = atk + b (t) , where a �= 0 and b (t) = o
(
tl
)

as

t→ +∞.
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For t ∈ [T,+∞) , a non-oscillatory solution x (t) of Eq. (2.4.1) is said to be of type Ch

for an odd number h ∈ {1, 3, . . . , n, } if

lim
t→+∞

x (t)

th−1
= +∞ and lim

t→+∞
x (t)

th
= 0.

Example 2.4.1. For t ≥ 2, consider the nonlinear neutral differential equation

(x (t) + p (t) x (t− 1))′′ + a (t) tanh (x′ (σ (t))) + b (t) = 0, (2.4.2)

where

α (t) =
[
(2t+ 1)3 (t− 1)2

]−1
, a(t) =

12t3α (t)

tanh (1 + 2/t)
,

b(t) = α (t) t−2
[
(4 ln (t− 1)− 10) t4 + (5− 8 ln (t− 1)) t3

+(4 ln (t− 1)− 3) t2 + 4t+ 1
]
,

p (t) =
t

2t+ 1
and σ (t) =

t

2
.

By Theorem 2.2.2, for any non-oscillatory solution of Eq. (2.4.2), (2.2.32) holds. In fact,

x (t) = t+ln t is such a solution. Observe also that this solution belongs to the class B1,1.

Example 2.4.2. For t ≥ 2, consider the nonlinear neutral differential equation

(x (t) + p (t) x (t− 1))′′ + a (t)

[
x2 (t)

x2 (t) + 1

]3/4 [
(x′ (t))2

(x′ (t))2 + 1

]1/4

= b (t) (2.4.3)

where

a (t) =
28t3 (t4 − t2 + 1)

3/4
(2t4 + 2t2 + 1)

1/4

(t2 − 1)3/2 (t2 + 1)1/2 (2t2 − t− 1)3
,

b (t) =
2 (18t5 − 6t4 − 8t3 − 3t2 + 3t+ 1)

t3 (2t2 − t− 1)3
and p (t) =

1

2t+ 1
.

By Theorem 2.2.3, for any non-oscillatory solution x (t) of Eq. (2.4.3), (2.2.32) holds. In

fact, x (t) = t − t−1 is such a solution. In addition, according to Definition 2.4.1, this

solution is in the class A1 since b(t) = −1/t is a bounded function on [2,+∞).

38



Remark 2.4.1. We note that neither results reported by Džurina in [20], nor those in the

references [29], [30], [31], [42], [52], [65], [66] apply to Eqs. (2.4.2) and (2.4.3).

Example 2.4.3. For t ≥ 4, consider the second order nonlinear neutral differential equa-

tion

(
x (t) +

1

2t+ 1
x (t− 1)

)′′
+ a (t) x (t) + b (t)

x′ (t/2)
√

(x′ (t/2))2 + 1
= 0, (2.4.4)

where α (t) = [(2t+ 1) (t− 1)]−3 , a (t) = −4t4 (t2 + 1)
−1
α (t) , and

b (t) =

√
2 (−36t5 + 60t4 − 40t3 − 6t2 + 6t+ 2) (t4 − 4t2 + 8)

1/2

t3 (t2 − 4)
α (t) .

By Theorem 2.3.2, any non-oscillatory solution of Eq. (2.4.4) satisfies (2.3.17). In fact,

x (t) = t + t−1 is such a solution. According to classification of Kong et al. [49], this

solution belongs to the classA1 because x(t) = t+b(t), where b(t) is a bounded function

on [4,+∞).

Example 2.4.4. For t ≥ 6, consider the third order nonlinear neutral differential equation

(
x (t) +

t

2t+ 1
x (t− 1)

)′′′
+ a (t) x (t) + b (t) x (t− 2)

+c (t)
(x′ (t))2 + 1

(x′ (t))2 + 2
+ d (t) = 0, (2.4.5)

where β (t) = [(t− 1) (2t+ 1)]−4 , a (t) = 126t5 (t3 + t2 + 1)
−1
β (t) ,

b (t) = −120t3 (t− 2)
(
t3 − 5t2 + 8t− 3

)−1
β (t) ,

c (t) = −124t
6 + 4t5 + 3t4 − 4t3 − 2t2 + 1

4t6 + 4t5 + 2t4 − 4t3 − 2t2 + 1
t2β (t) ,

d (t) =
(
264t5 + 6t4 − 120t3 − 12t2 + 24t+ 6

)
t−4β (t)

By Theorem 2.3.2, any non-oscillatory solution of Eq. (2.4.5) satisfies (2.3.17). In fact,

x (t) = t2 + t + t−1 is such a solution. In the classification suggested by Kong et al.

[49], this solution belongs to the class B2,2 because x(t) = t2 + b(t), and b(t) = o(t2) as

t→∞.
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Example 2.4.5. For t ≥ 5, consider the third order nonlinear neutral differential equation

(
x (t) +

t

3t+ 2
x (t− 1)

)′′′
+ a (t)

√

x (t) x

(
t− 1

2

)
+ b (t) = 0, (2.4.6)

where

a (t) = 12

√
t (t− 1)

(t2 − t+ 1) (t2 − 4t+ 7)
×

× 92t7 − 354t6 + 380t5 + 109t4 − 136t3 − 72t2 + 32t+ 16

t4 (t− 1)4 (t+ 1) (3t+ 2)4
,

b (t) =
348t4

(t− 1)4 (3t+ 2)4
.

By Theorem 2.3.3, any non-oscillatory solution of Eq. (2.4.6) satisfies (2.3.17), and

x (t) = t2 + t−1 is such a solution, which, according to Definition 2.4.1, belongs to

the class A2 since x(t) = t2 + b(t), where b(t) is a bounded function on [5,+∞).

Remark 2.4.2. We would like to stress that theorems reported by Dahiya and Singh [16],

Dahiya and Zafer [17], Džurina [20], Graef and Spikes [30], Grammatikopoulos et al.

[31], Kong et al. [49], Kulcsár [52], Lacková [53], Ladas [54], M. Naito [65], Y. Naito

[66], Tanaka [83] do not apply to neutral differential equations considered in Examples

2.4.3, 2.4.4, and 2.4.5.
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Chapter 3

OSCILLATION

Oscillation theory is a rapidly developing branch of the qualitative theory of differential

equations. Its foundations were laid down by the well-known results regarding zeros

of solutions of self-adjoint second order differential equations obtained by Sturm [81].

Since then oscillatory properties of solutions to different classes of linear and nonlinear

ordinary, functional, partial, discrete and impulsive differential equations have attracted

attention of many researchers. An elevated interest to this topic has been reflected, for

instance, in monographs on oscillation by Agarwal et al. [1, 2], Bainov and Mishev [6],

Erbe et al. [23], Győri and Ladas [32], Kreith [50], Ladde et al. [55], Swanson [82];

chapters in monographs on asymptotic behavior of solutions of differential equations by

Bellman [9], Coppel [15], Kiguradze and Chanturiya [46], Norkin [67] and survey papers

by Wong [89, 90].

In this chapter, we focus on second order nonlinear neutral differential equations

(
r (t) (x (t) + p (t) x (t− τ))′

)′
+ q (t) f (x (t) , x (σ (t))) = 0, (3.0.1)

and

(
r (t)ψ (x (t)) (x (t) + p (t) x (δ (t)))′

)′
+ q (t) f (x (t) , x (σ (t))) = 0, (3.0.2)

where t ≥ t0 > 0, τ ≥ 0 is a constant, δ ≥ 0, r, σ ∈ C1 ([t0,+∞) , (0,+∞)) , p, q ∈

C ([t0,+∞) ,R) , ψ ∈ C1 (R,R) and f ∈ C (R2,R). Our aim is to provide new efficient

41



oscillation results for Eqs. (3.0.1) and (3.0.2).

3.1 Brief History

In what follows, we briefly review several important oscillation results obtained for

second order neutral differential equations. Grammatikopoulos et al. [31] established that

condition
∫ +∞

t0

q (s) (1− p (s− σ)) ds = +∞,

ensures oscillation of a linear neutral differential equation

(x (t) + p (t) x (t− τ))′′ + q (t) x (t− σ) = 0.

Sufficient conditions for the oscillation of solutions of a slightly more general neutral

differential equation

(x (t) + p (t) x (t− τ))′′ + q (t) x (σ(t)) = 0,

including the case when p = 1, were obtained by Džurina and Mihalı́ková [22]. By using

the integral averaging method, Ruan [70] derived a number of general oscillation criteria

for a nonlinear neutral differential equation

(
r (t) (x (t) + p (t) x (t− τ))′

)′
+ q (t) f (x (t− σ)) = 0, (3.1.1)

whereas Li [56] provided classification of nonoscillatory solutions of the equation (3.1.1)

and established necessary and/or sufficient conditions for the existence of eventually pos-

itive solutions. Ruan’s results for equation (3.1.1) have been further improved by Li and

Liu [57] who exploited a generalized Riccati transformation. Interesting applications of

the integral averaging technique to oscillation of several classes of nonlinear neutral dif-

ferential equations can be found in the papers by Džurina and Lacková [21], Gai et al.

[26], and Xu et al. [91]. In particular, the latter paper addresses the oscillation of a
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nonlinear neutral differential equation

(
r (t) (x (t) + p (t) x (t− τ))′

)′
+ f (t, x (t) , x (t− σ) , x′(t)) = 0,

where

f (t, x (t) , x (t− σ) , x′(t)) ≥ q (t) f1 (x (t)) f2 (x (t− σ)) g (x′(t)) ,

f1(x) ≥ k1 > 0, f2(x)/x ≥ k2 > 0, g(x) ≥ k3 > 0.

Recently, Shi and Wang [86] proved several oscillation criteria for equation (3.0.1),

one of which we present below.

Theorem 3.1.1. Let the following conditions hold:

(A1) for all t ≥ t0, 0 ≤ p (t) ≤ 1, r (t) > 0, q (t) ≥ 0, and q (t) is not identically zero

for large t,

(A2)
∫ +∞

r−1 (s) ds = +∞,

(A3) for all t ≥ t0, σ (t) ≤ t, σ′ (t) > 0, and limt→+∞ σ (t) = +∞,

(A4)
∣
∣
∣
∣
f (x, y)

y

∣
∣
∣
∣ ≥ K > 0, for y �= 0, and f(x, y) has the sign of x and y if they have

the same sign.

Suppose further that there exist functions H ∈ C1 (D,R) , h ∈ C (D0,R) , and k, ρ ∈

C1 ([t0,+∞) , (0,+∞)) satisfying

(i) H (t, t) = 0, t ≥ t0; H (t, s) > 0, t > s ≥ t0;

(ii)
∂H

∂s
(t, s) ≤ 0, (t, s) ∈ D0;

(iii)
∂ (H (t, s) k (s))

∂s
+H (t, s) k (s)

ρ′ (s)
ρ (s)

= −h (t, s)√H (t, s) k (s).

Assume also that

0 < inf
s≥t0

[
lim inf
t→+∞

H (t, s)

H (t, t0)

]
≤ +∞ (3.1.2)

and

lim sup
t→+∞

1

H (t, t0)

∫ t

t0

r (σ (s)) ρ (s)

σ′ (s)
h2 (t, s) ds < +∞. (3.1.3)
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If there exists a function B ∈ C ([t0,+∞) ,R) such that

lim sup
t→+∞

∫ t

t0

σ′ (s)B2
+ (s)

k (s) ρ (s) r (σ (s))
ds = +∞

and

lim sup
t→+∞

1

H (t, T )

∫ t

T

[
KH (t, s) k (s) ρ (s) q (s) (1− p (σ (s)))

−r (σ (s)) ρ (s)
4σ′ (s)

h2 (t, s)

]
ds ≥ B (T ) ,

for any T ≥ t0, where B+ (t) = max (B (t) , 0) , then equation (3.0.1) is oscillatory.

Džurina and Lacková [21] proved a number of oscillation criteria for differential equa-

tion

(
r (t)ψ (x (t)) (x (t) + p (t) x (τ (t)))′

)′
+ q (t) f (x (σ (t))) = 0. (3.1.4)

The following theorem is one of the results due to Džurina and Lacková [21].

Theorem 3.1.2 ([21, Theorem 1.1]). Let the following conditions be satisfied:

(A1) for all t ≥ t0, 0 ≤ p (t) ≤ p < 1;

(A2) q (t) ≥ 0 and q (t) is not identically zero for large t;

(A3) R (+∞) = +∞, where R (t) =
∫ t

t0

1
r(s)

ds;

(A4) for all t ≥ t0, τ (t) ≤ t, σ (t) ≤ t, limt→+∞ σ (t) = limt→+∞ τ (t) = +∞, and

σ′ (t) ≥ 0;

(A5) 0 < m ≤ ψ (u) ≤M ;

(A6) f is nondecreasing, f ∈ C1 (R\ {0} ,R) and, for y �= 0, yf (y) > 0;

(A7) f ′ is nondecreasing in (−∞,−t∗) and nonincreasing in (t∗,+∞) , for some

t∗ ≥ 0.

Suppose also that

∫ +∞
q (s) f (±NR (σ (s))) ds = +∞, (3.1.5)
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for all N > 0, and

∫ +∞ [
R (σ (s)) q (s)− M

4 (1− p)R (σ (s))

× σ′ (s)
r (σ (s)) f ′ (±KR (σ (s)))

]
ds = +∞,

for some K > 0. Then Eq. (3.1.4) is oscillatory.

To the best of our knowledge, apart from the paper by Džurina and Lacková [21],

oscillation results for equations with a nonlinear neutral term involving the function ψ(x)

were discussed only by Wang and Yu [87] for a class of neutral differential equations with

continuously distributed deviating arguments of the form

(

r (t)ψ (x (t))

(

x (t) +
n∑

i=1

pi (t) x (τi (t))

)′)′

+

∫ b

a

q(t, s)f (y (g (t, s))) dσ(s) = 0.

3.2 Second Order Nonlinear Neutral Differential Equations

In this section, our purpose is to strengthen oscillation results obtained for equation

(3.0.1) by Shi and Wang [86] using a generalized Riccati transformation and developing

ideas exploited by Rogovchenko and Tuncay [74].

Definition 3.2.1. A solution x (t) is called continuable if x (t) exists for all t ≥ t0. A

non-constant continuable solution x (t) called proper if

sup
t≥t0

|x (t)| > 0.

A proper solution x (t) is called oscillatory if there exits a sequence of real numbers

{tn}+∞n=1 diverging to +∞ such that x (tn) = 0 for all n ∈ N. Otherwise it is called non-

oscillatory. An equation is said to be oscillatory if all its proper solutions are oscillatory.

In what follows, we use the following notations:

D0 = {(t, s) : t0 ≤ s < t < +∞}
45



and

D = {(t, s) : t0 ≤ s ≤ t < +∞} .

Definition 3.2.2. We say that a continuous function H : D → [0,+∞) belongs to the

class � if:

(i) H (t, t) = 0 and H (t, s) > 0 for (t, s) ∈ D0;

(ii) H has a continuous partial derivative with respect to the second variable satisfy-

ing, for some locally integrable function h,

∂H

∂s
(t, s) = −h (t, s)

√
H (t, s). (3.2.1)

By a solution of equation (3.0.1) we mean a continuous function x(t), defined on

[tx,+∞), such that r (t) (x (t) + p (t) x (t− δ))′ is continuously differentiable and x (t)

satisfies (3.0.1) for t ≥ tx. In the sequel, we assume that solutions of equation (3.0.1)

exist and can be continued indefinitely to the right.

Theorem 3.2.1. Let conditions (A1)-(A3) of Theorem 3.1.1 hold with (A4) replaced by

(A∗4)
f (x, y)

y
≥ κ > 0, for y �= 0, and yf(x, y) > 0, for xy > 0.

Suppose that there exits a function ρ ∈ C1 ([t0,+∞) ,R) such that, for some β ≥ 1

and for some H ∈ �,

lim sup
t→+∞

1

H (t, t0)

∫ t

t0

[
H (t, s)ψ (s)− βv (s) r (σ (s))

4σ′ (s)
h2 (t, s)

]
ds = +∞, (3.2.2)

where

ψ (t) = v (t)

[
κq (t) [1− p (σ (t))] + σ′ (t)

r2 (t) ρ2 (t)

r (σ (t))
− (r (t) ρ (t))′

]
(3.2.3)

and

v (t) = exp

(
−2

∫ t

σ′ (s)
r (s) ρ (s)

r (σ (s))
ds

)
. (3.2.4)

Then equation (3.0.1) is oscillatory.
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Proof. Let x (t) be a non-oscillatory solution of equation (3.0.1). Then, there exists a

T0 ≥ t0 such that x (t) �= 0 for all t ≥ T0. Without loss of generality, we may assume that

x (t) > 0 and x (σ (t)) > 0 for all t ≥ T0 ≥ t0. Define

z (t) = x (t) + p (t) x (t− δ) , t ≥ T0.

Obviously, for all t ≥ T0, z (t) ≥ x (t) > 0, and r (t) z′ (t) is nonincreasing because

(r (t) z′ (t))′ = −q (t) f (x (t) , x (σ (t))) ≤ 0.

We claim that z′ (t) ≥ 0, for all t ≥ T0. Otherwise, there should exist a T1 ≥ T0 ≥ t0 such

that z′ (T1) < 0, which implies that r (T1) z′ (T1) < 0. Since r (t) z′ (t) is nonincreasing

and q (t) does not eventually vanish, there exists a T2 ≥ T1 such that r (T2) z′ (T2) < 0

and r (t) z′ (t) ≤ r (T2) z
′ (T2) < 0, for all t ≥ T2. Thus,

z′ (t) ≤ r (T2) z
′ (T2)

1

r (t)
.

Integration of the latter inequality from T2 to t yields

z (t) ≤ z (T2) + r (T2) z
′ (T2)

∫ t

T2

1

r (s)
ds. (3.2.5)

Passing in (3.2.5) to the limit as t→ +∞ and using (A2), we conclude that

lim
t→+∞

z (t) = −∞,

which contradicts the fact that z (t) > 0.

Note that condition (A∗4) implies that

(r (t) z′ (t))′ + κq (t) x (σ (t)) ≤ 0. (3.2.6)

On the other hand,

x (t) = z (t)− p (t) x (t− δ) ≥ z (t)− p (t) z (t− δ) ≥ (1− p (t)) z (t) .
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Since limt→+∞ σ (t) = +∞, there exists a T3 ≥ T2 > 0 such that, for all t ≥ T3,

x (σ (t)) ≥ (1− p (σ (t))) z (σ (t)) . (3.2.7)

It follows from (3.2.6) and (3.2.7) that, for all t ≥ T3,

(r (t) z′ (t))′ ≤ −κq (t) (1− p (σ (t))) z (σ (t)) . (3.2.8)

Introduce the generalized Riccati transformation by

u (t) = v (t) r (t)

[
z′ (t)

z (σ (t))
+ ρ (t)

]
, (3.2.9)

where ρ is a C1 function and v is defined by (3.2.4). Differentiating (3.2.9) and using

(3.0.1), (A3) and (A∗4), after some algebra we conclude that, for all t ≥ T3,

u′ (t) =
v′ (t)
v (t)

u (t) + v (t)
(r (t) z′ (t))′

z (σ (t))

− v (t) r (t)
σ′ (t) z′ (σ (t))

z′ (t)

(
z′ (t)

z (σ (t))

)2

+ v (t) (r (t) ρ (t))′

≤ v′ (t)
v (t)

u (t)− κv (t) q (t) (1− p (σ (t)))

− v (t) σ′ (t)
r2 (t)

r (σ (t))

(
u (t)

v (t) r (t)
− ρ (t)

)2

+ v (t) (r (t) ρ (t))′ .

The latter inequality yields, for all t ≥ T3,

u′ (t) ≤ −ψ (t)− σ′ (t)
u2 (t)

v (t) r (σ (t))
, (3.2.10)

where ψ is defined by (3.2.3). Multiplying (3.2.10) by H(t, s) and integrating between T3

and t, we have, for all β ≥ 1 and for all t ≥ T3,

∫ t

T3

[
H (t, s)ψ (s)− βv (s) r (σ (s))

4σ′ (s)
h2 (t, s)

]
ds

≤ H (t, T3) u (T3)−
∫ t

T3

(β − 1) σ′ (s)H (t, s)

βv (s) r (σ (s))
u2 (s) ds

−
∫ t

T3

[√
σ′ (s)H (t, s)

βv (s) r (σ (s))
u (s) +

√
βv (s) r (σ (s))

4σ′ (s)
h (t, s)

]2

ds. (3.2.11)
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Using monotonicity of H, we conclude that, for all t ≥ T3,

∫ t

T3

[
H (t, s)ψ (s)− βv (s) r (σ (s))

4σ′ (s)
h2 (t, s)

]
ds ≤ H (t, T3) |u (T3)|

≤ H (t, t0) |u (T3)| ,

and, correspondingly,

∫ t

t0

[
H (t, s)ψ (s)− βv (s) r (σ (s))

4σ′ (s)
h2 (t, s)

]
ds ≤ H (t, t0)

[
|u (T3)|

+

∫ T3

t0

|ψ (s)| ds
]
. (3.2.12)

By virtue of (3.2.12),

lim sup
t→+∞

1

H (t, t0)

∫ t

t0

[
H (t, s)ψ (s)− βv (s) r (σ (s))

4σ′ (s)
h2 (t, s)

]
ds

≤ |u (T3)|+
∫ T3

t0

|ψ (s)| ds < +∞,

which contradicts (3.2.2). Therefore, all solutions of equation (3.0.1) are oscillatory.

Remark 3.2.2. Efficient oscillation tests can be derived from Theorem 3.2.1 with the

appropriate choice of the functions H and h. For instance, the standard choice for many

handy oscillation results is a Kamenev-type function H defined by

H (t, s) = (t− s)n−1 , (t, s) ∈ D, (3.2.13)

where n > 2 is an integer. It is easily seen that the function H belongs to the class �, and

one chooses the function

h (t, s) = (n− 1) (t− s)(n−3)/2 , (t, s) ∈ D,

to meet the condition (ii) of Definition 3.2.2.

A consequence of Theorem 3.2.1 is the following oscillation criterion.
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Corollary 3.2.1. Suppose that there exists a function ρ ∈ C1 ([t0,+∞) ,R) such that, for

some integer n > 2 and for some β ≥ 1,

lim sup
t→+∞

1

tn−1

∫ t

t0

(t− s)n−3
[
(t− s)2 ψ (s)− β (n− 1)2

v (s) r (σ (s))

4σ′ (s)

]
ds = +∞,

where ψ and v are as in Theorem 3.2.1. Then equation (3.0.1) is oscillatory.

The following theorem brings improvements to the result due to Shi and Wang [86]

by removing a condition similar to (3.1.3).

Theorem 3.2.3. Suppose that (3.1.2) holds. Assume also that there exist functionsH ∈ �,

ρ ∈ C1 ([t0,+∞) ,R) and φ ∈ C ([t0,+∞) ,R) such that, for all T ≥ t0 and for some

β > 1,

lim sup
t→+∞

1

H (t, T )

∫ t

T

[
H (t, s)ψ (s)− βv (s) r (σ (s))

4σ′ (s)
h2 (t, s)

]
ds ≥ φ (T ) ,

where ψ and v are as in Theorem 3.2.1. Suppose further that

lim sup
t→+∞

∫ t

t0

σ′ (s)φ2
+ (s)

v (s) r (σ (s))
ds = +∞, (3.2.14)

where φ+ (t) = max (φ (t) , 0) . Then equation (3.0.1) is oscillatory.

Proof. Without loss of generality, assume again that equation (3.0.1) possesses a solution

x (t) such that x (t) > 0 and x (σ (t)) > 0 on [T0,+∞) , for some T0 ≥ t0. Proceeding

as in the proof of Theorem 3.2.1, we arrive at the inequality (3.2.11), which yields, for all

t ≥ T3 and for any β > 1,

φ (T3) ≤ lim sup
t→+∞

1

H (t, T3)

∫ t

T3

[
H (t, s)ψ (s)− βv (s) r (σ (s))

4σ′ (s)
h2 (t, s)

]
ds

≤ u (T3)− lim inf
t→+∞

1

H (t, T3)

∫ t

T3

(β − 1) σ′ (s)H (t, s)

βv (s) r (σ (s))
u2 (s) ds.

The latter inequality implies that, for all t ≥ T3,

φ (T3) + lim inf
t→+∞

1

H (t, T3)

∫ t

T3

(β − 1) σ′ (s)H (t, s)

βv (s) r (σ (s))
u2 (s) ds ≤ u (T3) .
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Consequently,

φ (T3) ≤ u (T3) (3.2.15)

and

lim inf
t→+∞

1

H (t, T3)

∫ t

T3

σ′ (s)H (t, s)

v (s) r (σ (s))
u2 (s) ds

≤ β

β − 1
(u (T3)− φ (T3)) < +∞. (3.2.16)

Assume now that
∫ +∞

T3

σ′ (s) u2 (s)
v (s) r (σ (s))

ds = +∞. (3.2.17)

Condition (3.1.2) implies existence of a ϑ > 0 such that

lim inf
t→+∞

H (t, s)

H (t, t0)
> ϑ > 0. (3.2.18)

It follows from (3.2.17) that, for any positive constant η, there exists a T4 > T3 such that,

for all t ≥ T4,
∫ t

T3

σ′ (s) u2 (s)
v (s) r (σ (s))

ds ≥ η

ϑ
. (3.2.19)

Using integration by parts and (3.2.19), we have, for all t ≥ T4,

1

H (t, T3)

∫ t

T3

H (t, s)
σ′ (s) u2 (s)
v (s) r (σ (s))

ds

=
1

H (t, T3)

∫ t

T3

H (t, s) d

[∫ s

T3

σ′ (ξ) u2 (ξ)
v (ξ) r (σ (ξ))

dξ

]

=
1

H (t, T3)

∫ t

T3

[∫ s

T3

σ′ (ξ) u2 (ξ)
v (ξ) r (σ (ξ))

dξ

] [
−∂H
∂s

(t, s)

]
ds

≥ 1

H (t, T3)

∫ t

T4

[∫ s

T3

σ′ (ξ) u2 (ξ)
v (ξ) r (σ (ξ))

dξ

] [
−∂H
∂s

(t, s)

]
ds

≥ η

ϑ

1

H (t, T3)

∫ t

T4

[
−∂H
∂s

(t, s)

]
ds

=
η

ϑ

H (t, T4)

H (t, T3)
≥ η

ϑ

H (t, T4)

H (t, t0)
.

By virtue of (3.2.18), there exists a T5 ≥ T4 such that

H (t, T4)

H (t, t0)
≥ ϑ,
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for all t ≥ T5, which implies that

1

H (t, T3)

∫ t

T3

H (t, s)
σ′ (s) u2 (s)
v (s) r (σ (s))

ds ≥ η.

Since η is an arbitrary positive constant,

lim inf
t→+∞

1

H (t, T3)

∫ t

T3

H (t, s)
σ′ (s) u2 (s)
v (s) r (σ (s))

ds = +∞,

and the latter contradicts (3.2.16). Consequently,

∫ +∞

T3

σ′ (s) u2 (s)
v (s) r (σ (s))

ds < +∞,

and, by virtue of (3.2.15),

∫ +∞

T3

σ′ (s)φ2
+ (s)

v (s) r (σ (s))
ds ≤

∫ +∞

T3

σ′ (s) u2 (s)
v (s) r (σ (s))

ds < +∞,

which contradicts (3.2.14). Therefore, equation (3.0.1) is oscillatory.

Choosing H as in Corollary 3.2.1, we observe that condition (3.1.2) holds because

lim
t→+∞

H (t, s)

H (t, t0)
= lim

t→+∞
(t− s)n−1

(t− t0)
n−1 = 1.

Thus, we derive from Theorem 3.2.3 a useful oscillation test for equation (3.0.1).

Corollary 3.2.2. Assume that there exist functions ρ ∈ C1 ([t0,+∞) ,R) and φ ∈ C ([t0,+∞) ,R)

such that, for all T ≥ t0, some integer n > 2 and for some β > 1,

lim sup
t→+∞

1

tn−1

∫ t

T

(t− s)n−3
[
(t− s)2 ψ (s)− β (n− 1)2

v (s) r (σ (s))

4σ′ (s)

]
ds

≥ φ (T ) .

Suppose also that (3.2.14) holds, where ψ, v and φ+ are as in Theorem 3.2.3. Then

equation (3.0.1) is oscillatory.

The result that follows is an immediate consequence of properties of the limits.
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Theorem 3.2.4. Let (3.1.2) be satisfied. Assume also that there exist functions H ∈ �,

ρ ∈ C1 ([t0,+∞) ,R) and φ ∈ C ([t0,+∞) ,R) such that, for all T ≥ t0 and for some

β > 1,

lim inf
t→+∞

1

H (t, T )

∫ t

T

[
H (t, s)ψ (s)− βv (s) r (σ (s))

4σ′ (s)
h2 (t, s)

]
ds ≥ φ (T ) ,

where ψ, v, and φ+ are as in Theorem 3.2.3. Suppose further that (3.2.14) holds. Then

equation (3.0.1) is oscillatory.

Proof. The conclusion of the theorem follows immediately from the properties of the

limits

φ (T ) ≤ lim inf
t→+∞

1

H (t, T )

∫ t

T

[
H (t, s)ψ (s)− βv (s) r (σ (s))

4σ′ (s)
h2 (t, s)

]
ds

≤ lim sup
t→+∞

1

H (t, T )

∫ t

T

[
H (t, s)ψ (s)− βv (s) r (σ (s))

4σ′ (s)
h2 (t, s)

]
ds

and Theorem 3.2.3.

The following result, analogous to Corollary 3.2.2, is derived by choosing a Kamenev-

type function H (t, s) = (t− s)n−1 .

Corollary 3.2.3. Assume that there exist functions ρ ∈ C1 ([t0,+∞) ,R) and φ ∈ C ([t0,+∞) ,R)

such that, for all T ≥ t0, for some integer n > 2, and for some β > 1,

lim inf
t→+∞

1

tn−1

∫ t

T

(t− s)n−3
[
(t− s)2 ψ (s)− β (n− 1)2

v (s) r (σ (s))

4σ′ (s)

]
ds ≥ φ (T ) .

Suppose also that (3.2.14) holds, where ψ, v, and φ+ are as in Theorem 3.2.3. Then

equation (3.0.1) is oscillatory.

Consider now Eq. (3.0.2). Similarly, by a solution of Eq. (3.0.2) we mean a continu-

ous function x (t) , defined on [t∗, T ) , such that

r (t)ψ (x (t)) (x (t) + p (t) x (δ (t)))′
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is continuously differentiable and x (t) satisfies (3.0.2) for t ∈ [t∗, T ) . Our aim is to ex-

tend and improve oscillation results obtained by Džurina and Lacková [21] by developing

ideas suggested by Rogovchenko and Tuncay [76]. Oscillation criteria we will provide

for Eq. (3.0.2) prove to be more efficient compared to known results even for less general

classes of equations, including, for instance, Eq. (3.1.4) and alike.

We start our discussion with an auxiliary lemma.

Lemma 3.2.1. Assume that conditions (A2)-(A5) of Theorem 3.1.2 hold with (A1) and

(A6) replaced respectively by

(A∗1) for all t ≥ t0, 0 ≤ p (t) ≤ 1;

(A∗6) for y �= 0, f(x,y)
y
≥ κ > 0 and, for xy > 0, yf (x, y) > 0.

Let x (t) be an eventually positive solution of Eq. (3.0.2). For t ≥ t0, define

z (t) = x (t) + p (t) x (δ (t)) . (3.2.20)

Then z′ (t) ≥ 0.

Proof. Without loss of generality, we may assume that x (t) > 0 and x (σ (t)) > 0, for

all t ≥ T0 ≥ t0. Similar arguments apply when x (t) < 0 and x (σ (t)) < 0. Then, for all

t ≥ T0, z (t) ≥ x (t) > 0 and r (t)ψ (x (t)) z′ (t) is nonincreasing since

(r (t)ψ (x (t)) z′ (t))′ = −q (t) f (x (t) , x (σ (t))) ≤ 0.

Suppose, contrary to our assertion, that there exists a T1 ≥ T0 such that z′ (T1) < 0.

Consequently, r (T1)ψ (x (T1)) z
′ (T1) < 0. Since r (t)ψ (x (t)) z′ (t) is nonincreasing

and q (t) does not eventually vanish, there exists a T2 ≥ T1 such that

r (T2)ψ (x (T2)) z
′ (T2) < 0

and

r (t)ψ (x (t)) z′ (t) ≤ r (T2)ψ (x (T2)) z
′ (T2) < 0,
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for all t ≥ T2. Thus,

z′ (t) ≤ r (T2)ψ (x (T2)) z
′ (T2)

ψ (x (t))

1

r (t)

≤ r (T2)ψ (x (T2)) z
′ (T2)

m

1

r (t)
.

Integration of the latter inequality from T2 to t yields

z (t) ≤ z (T2) +
r (T2)ψ (x (T2)) z

′ (T2)
m

∫ t

T2

1

r (s)
ds. (3.2.21)

Passing in (3.2.21) to the limit as t→ +∞ and using (A2), we conclude that

lim
t→+∞

z (t) = −∞,

which contradicts the fact that the function z (t) is eventually positive.

Remark 3.2.5. Under the conditions of Lemma 3.2.1, for an eventually negative solution

x (t) of Eq. (3.0.2), one has z′ (t) ≤ 0.

Theorem 3.2.6. Let the conditions (A∗1), (A2)-(A5) and (A∗6) hold. Suppose that there

exists a function ρ ∈ C1 ([t0,+∞) ,R) such that, for some β ≥ 1 and for some H ∈ �,

lim sup
t→+∞

1

H (t, t0)

∫ t

t0

[
H (t, s)ϑ (s)− βMv (s)

4

× r (σ (s))

σ′ (s)
h2 (t, s)

]
ds = +∞, (3.2.22)

where

ϑ (t) = v (t)
[
κq (t) (1− p (σ (t))) +

1

M

σ′ (t) ρ2 (t)
r (σ (t))

− ρ′ (t)
]

(3.2.23)

and

v (t) = exp

(
− 2

M

∫ t σ′ (s) ρ (s)
r (σ (s))

ds

)
. (3.2.24)

Then Eq. (3.0.2) is oscillatory.
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Proof. Let x (t) be a nonoscillatory solution of Eq. (3.0.2). Then, there exists a T0 ≥ t0

such that x (t) �= 0 for all t ≥ T0. Without loss of generality, suppose that x (t) > 0 and

x (σ (t)) > 0, for all t ≥ T0. It follows from (A∗6) that

(r (t)ψ (x (t)) z′ (t))′ + κq (t) x (σ (t)) ≤ 0. (3.2.25)

By Lemma 1, z (t) is nondecreasing. Therefore,

x (t) = z (t)− p (t) x (δ (t))

≥ z (t)− p (t) z (δ (t)) ≥ (1− p (t)) z (t) . (3.2.26)

Since σ (t)→ +∞ as t→ +∞, there exists a T1 ≥ T0 such that, for all t ≥ T1,

x (σ (t)) ≥ (1− p (σ (t))) z (σ (t)) .

By virtue of (3.2.25) and (3.2.26), it follows that, for all t ≥ T1,

(r (t)ψ (x (t)) z′ (t))′ ≤ −κq (t) (1− p (σ (t))) z (σ (t)) .

Let

u (t) = v (t)

[
r (t)ψ (x (t)) z′ (t)

z (σ (t))
+ ρ (t)

]
, (3.2.27)

where ρ is a C1 function and v is defined by (3.2.24). Differentiating (3.2.27), using

(3.0.2) and conditions (A3)-(A5), we conclude that, for all t ≥ T1,

u′ (t) =
v′ (t)
v (t)

u (t) + v (t)

[
(r (t)ψ (x (t)) z′ (t))′

z (σ (t))

− σ′ (t) z′ (σ (t))
r (t)ψ (x (t)) z′ (t)

[
u (t)

v (t)
− ρ (t)

]2
+ ρ′ (t)

]

≤ v (t)

[
−κq (t) (1− p (σ (t)))− σ′ (t) u2 (t)

Mr (σ (t)) v2 (t)

+
2σ′ (t) u (t) ρ (t)
Mr (σ (t)) v (t)

− σ′ (t) ρ2 (t)
Mr (σ (t))

+ ρ′ (t)
]

+
v′ (t)
v (t)

u (t) .
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The latter inequality yields, for all t ≥ T1,

u′ (t) ≤ −ϑ (t)− σ′ (t)
u2 (t)

Mr (σ (t)) v (t)
, (3.2.28)

where ϑ is defined by (3.2.23). Multiplying (3.2.28) by H (t, s) and integrating from T1

to t, we have, for all β ≥ 1 and for all t ≥ T1,

∫ t

T1

[
H (t, s)ϑ (s)− βMr (σ (s)) v (s)

4σ′ (s)
h2 (t, s)

]
ds

≤ H (t, T1) u (T1)

−
∫ t

T1

(β − 1) σ′ (s)H (t, s)

βMr (σ (s)) v (s)
u2 (s) ds

−
∫ t

T1

[√
σ′ (s)H (t, s)

βMr (σ (s)) v (s)
u (s)

+

√
βMr (σ (s)) v (s)

4σ′ (s)
h (t, s)

]2

ds. (3.2.29)

Using monotonicity of H, we conclude that, for all t ≥ T1,

∫ t

T1

[
H (t, s)ϑ (s)− βMr (σ (s)) v (s)

4σ′ (s)
h2 (t, s)

]
ds

≤ H (t, T1) |u (T1)| ≤ H (t, t0) |u (T1)|

and

∫ t

t0

[
H (t, s)ϑ (s)− βMr (σ (s)) v (s)

4σ′ (s)
h2 (t, s)

]
ds

≤ H (t, t0)

[
|u (T1)|+

∫ T1

t0

ϑ (s) ds

]
.

The latter inequality implies that, for all t ≥ t0,

lim sup
t→+∞

1

H (t, t0)

∫ t

t0

[
H (t, s)ϑ (s)− βMv (s)

4

× r (σ (s))

σ′ (s)
h2 (t, s)

]
ds

≤ |u (T1)|+
∫ T1

t0

ϑ (s) ds < +∞,

which contradicts (3.2.22). Thus, all solutions of Eq. (3.0.2) are oscillatory.
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Due to Theorem 3.2.6, useful oscillation criteria can be deduced by introducing a

Kamenev-type function. For instance, the following result is obtained by choosing the

function (3.2.13).

Corollary 3.2.4. Suppose that there exist functions ρ ∈ C1 ([t0,+∞) ,R) and ϕ ∈

C ([t0,+∞) ,R) such that, for all T ≥ t0, for some integer n > 3 and for some β ≥ 1,

lim sup
t→+∞

1

tn−1

∫ t

t0

(t− s)n−3
[

(t− s)2 ϑ (s)− β (n− 1)2

4

× Mv (s) r (σ (s))

σ′ (s)

]
ds = +∞, (3.2.30)

where ϑ and v are as in Theorem 3.2.6. Then Eq. (3.0.2) is oscillatory.

Theorem 3.2.7. Suppose that (3.1.2) holds. Assume also that there exist functionsH ∈ �,

ρ ∈ C1 ([t0,+∞) ,R) and ϕ ∈ C ([t0,+∞) ,R) such that, for all T ≥ t0 and for some

β > 1,

lim sup
t→+∞

1

H (t, T )

∫ t

T

[
H (t, s)ϑ (s)− βMv (s)

4

× r (σ (s))

σ′ (s)
h2 (t, s)

]
ds ≥ ϕ (T ) , (3.2.31)

where ϑ, ϕ+ and v are as in Theorem 3.2.6. Suppose finally that

lim sup
t→+∞

∫ t

t0

σ′ (s)ϕ2
+ (s)

v (s) r (σ (s))
ds = +∞. (3.2.32)

Then Eq. (3.0.2) is oscillatory.

Proof. Without loss of generality, we may assume that Eq. (3.0.2) has a solution x (t)

such that x (t) > 0 and x (σ (t)) > 0 on [T0,+∞) , for some T0 ≥ t0. Then (3.2.29) holds

and, for all t ≥ T1 and for all β > 1,

u (T1) ≥ ϕ (T1)

+ lim inf
t→+∞

1

H (t, T1)

∫ t

T1

H (t, s)
(β − 1) σ′ (s)

βMr (σ (s)) v (s)
u2 (s) ds.
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Consequently,

u (T1) ≥ ϕ (T1)

and

lim inf
t→+∞

1

H (t, T1)

∫ t

T1

H (t, s)
σ′ (s)

r (σ (s)) v (s)
u2 (s) ds

≤ βM

β − 1
(u (T1)− ϕ (T1)) < +∞. (3.2.33)

Assume that
∫ +∞

T1

σ′ (s) u2 (s)
r (σ (s)) v (s)

ds = +∞. (3.2.34)

By condition (3.1.2), there exists a constant η such that

inf
s≥t0

[
lim inf
t→+∞

H (t, s)

H (t, t0)

]
> η > 0. (3.2.35)

If follows from the assumption (3.2.34) that, for any positive constant ν, there exists a

T2 > T1 such that, for all t ≥ T2,

∫ t

T1

σ′ (s) u2 (s)
r (σ (s)) v (s)

ds ≥ ν

η
> 0. (3.2.36)

Using integration by parts and (3.2.36), we have, for all t ≥ T2,

1

H (t, T1)

∫ t

T1

H (t, s)
σ′ (s) u2 (s)
r (σ (s)) v (s)

ds

=
1

H (t, T1)

∫ t

T1

H (t, s) d

[∫ s

T1

σ′ (ξ) u2 (ξ)
r (σ (ξ)) v (ξ)

dξ

]

≥ 1

H (t, T1)

∫ t

T2

[∫ t

T1

σ′ (ξ) u2 (ξ)
r (σ (ξ)) v (ξ)

dξ

] [
−∂H
∂s

(t, s)

]
ds

≥ ν

η

1

H (t, T1)

∫ t

T2

[
−∂H
∂s

(t, s)

]
ds

=
ν

η

H (t, T2)

H (t, T1)
≥ ν

η

H (t, T2)

H (t, t0)
.

Inequality (3.2.35) implies that there exists a T3 ≥ T2 such that

H (t, T2)

H (t, t0)
≥ η,
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for all t ≥ T3, which yields

1

H (t, T1)

∫ t

T1

H (t, s)
σ′ (s) u2 (s)
r (σ (s)) v (s)

ds ≥ ν.

Since ν is an arbitrary positive constant,

lim inf
t→+∞

1

H (t, T1)

∫ t

T1

H (t, s)
σ′ (s) u2 (s)
r (σ (s)) v (s)

ds = +∞.

But the latter contradicts (3.2.33). Therefore,

∫ +∞

T1

σ′ (s) u2 (s)
r (σ (s)) v (s)

ds < +∞.

Then,
∫ +∞

T1

σ′ (s)ϕ2
+ (s)

r (σ (s)) v (s)
ds ≤

∫ +∞

T1

σ′ (s) u2 (s)
r (σ (s)) v (s)

ds < +∞.

Hence, a contradiction with the assumption (3.2.32).

Choosing H as in (3.2.13), one obtains from Theorem 3.2.7 the following useful

proposition.

Corollary 3.2.5. Suppose that there exist functions ρ ∈ C1 ([t0,+∞) ,R) and ϕ ∈

C ([t0,+∞) ,R) such that, for all T ≥ t0, for some integer n > 3 and for some β > 1,

lim sup
t→+∞

1

tn−1

∫ t

T

(t− s)n−3
[

(t− s)2 ϑ (s)− βM (n− 1)2

4

×v (s) r (σ (s))
σ′ (s)

]
ds ≥ ϕ (T ) . (3.2.37)

Assume also that (3.2.32) holds, where ϑ, v and ϕ+ are as in Theorem 3.2.6. Then Eq.

(3.0.2) is oscillatory.

Theorem 3.2.8. Assume that conditions of Theorem 3.2.7 hold except that (3.2.31) is

replaced with

lim inf
t→+∞

1

H (t, T )

∫ t

T

[
H (t, s)ϑ (s)− βMv (s)

4

×r (σ (s))
σ′ (s)

h2 (t, s)

]
ds ≥ ϕ (T ) .

Then, assertion of Theorem 3.2.7 remains intact.
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Proof. The conclusion follows immediately from the properties of the limits and Theorem

3.2.7.

The following result is derived by choosing again a Kamenev-type function (3.2.13).

Corollary 3.2.6. Assume that conditions of Corollary 3.2.5 hold with the condition (3.2.37)

being replaced by

lim inf
t→+∞

1

tn−1

∫ t

T

(t− s)n−3
[

(t− s)2 ϑ (s)− βM (n− 1)2

4

×v (s) r (σ (s))
σ′ (s)

]
ds ≥ ϕ (T ) .

Then, conclusion of Corollary 3.2.5 holds.

Remark 3.2.9. Observe that a variety of new oscillation criteria can be obtained from

the general Theorems 3.2.1, 3.2.3, 3.2.4, 3.2.6, 3.2.7 and 3.2.8 with different choices of H

and h. For instance, one may take the pairs

H(t, s) = lnn−1
(
t

s

)

and

h(t, s) =
n− 1

s

[
ln

(
t

s

)](n−3)/2

or

H(t, s) =
(
et−s − es−t

)n−1

and

h(t, s) = (n− 1) (et−s + es−t)
(
et−s − es−t

)(n−3)/2
.

Remark 3.2.10. In the stated results, we enjoy the advantages of the technique developed

in [76] and would like to stress that it is very important that the parameter β in Theorems

3.2.3, 3.2.4 and 3.2.7 is strictly larger than one. This allows us to eliminate in the stated

results condition similar to (3.1.3) which has been assumed in most papers on the subject.

61



Furthermore, modifications of the proofs through the refinement of the standard integral

averaging method allowed us to shorten significantly the proofs of Theorems 3.2.3, 3.2.4

and 3.2.7, cf. [86]. If one selects β = 1 in Theorems 3.2.3, 3.2.4 and 3.2.7, all advantages

of a new technique are lost, and assumptions similar to (3.1.3) should be introduced. We

also note that a different approach, which allows one to eliminate assumption (3.1.3) or

alike using an elementary quadratic inequality, is suggested in the papers [76] and [91].

3.3 Examples

Example 3.3.1. For t ≥ 1, consider the second order neutral differential equation

[
1

t2

(
x (t) +

t

2t+ 1
x (t− 1)

)′]′

+
1

t+ 2

(
2 + x4 (t)

)
x

(
t

2

)
= 0. (3.3.1)

Let

ρ (t) = −8

t
and v (t) = t2.

Then,

ψ (t) =
t4 − 16t− 16

t2 (t+ 1)
.

An application of Corollary 3.2.1 with n = 3 establishes the oscillation of equation (3.3.1)

since, for any β ≥ 1,

lim sup
t→+∞

1

t2

∫ t

1

[
(t− s)2

s4 − 16s− 16

s2 (s+ 1)
− 8β

]
ds = +∞.

Example 3.3.2. For t ≥ 1, consider the nonlinear neutral differential equation

(
r (t) (x (t) + p (t) x (t− 1))′

)′
+ q (t)

(
x2 (t) + 2

)
x

(
t

2

)
= 0, (3.3.2)

where

r (t) =
1

4

(
1

4t2
+

1

3

)
(2 + cos 2t) , σ (t) =

t

2
, q (t) = t2 + 3,

p (t) = 1 +
(4t2 (4t (t− 1)− 1)− 1) cos 2t

32t4 (4t2 + 3)
− 2 + t sin 2t

96t4
.
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We apply Corollary 3.2.2 with n = 3 and

ρ (t) = − 8 (t2 + 3) (2 + cos t)

t (4t2 + 3) (2 + cos 2t)
.

Then, v (t) = t2 and

ψ (t) =
(
2t− t2 + 1

)
cos t+

2

3
.

Let β = 2. Then,

lim sup
t→+∞

1

t2

∫ t

T

[
(t− s)2

(
(
2s− s2 + 1

)
cos s+

2

3

)
−

(
s2

3
+ 1

)
(2 + cos s)

]
ds

def
= φ (T ) =

5

3
− 2T

3
+ T 2 sinT + 2T cosT − 3 sinT − 2 cosT − 2T sinT,

and it follows from

lim sup
t→+∞

∫ t

1

2
φ2
+ (s)

(s2/3 + 1) (2 + cos s)
ds ≥ 2 lim sup

t→+∞

∫ t

1

φ2
+ (s)

s2 + 3
ds = +∞

that equation (3.3.2) is oscillatory. Note that in this example

lim sup
t→+∞

1

t2

∫ t

1

(
s2

3
+ 1

)
(2 + cos s) ds = +∞,

which means that an analogue of the condition (3.1.3) in Theorem 3.1.1, not requested for

our oscillation criterion, fails to hold.

Remark 3.3.1. Note that it is much simpler to determine an appropriate function h(t, s)

coupled with one’s selection of H(t, s) using (3.2.1) rather than the condition (iii) in The-

orem 3.1.1 since the latter condition involves, in addition to functions H and h, functions

k and ρ. Examples 3.3.1 and 3.3.2 clearly demonstrate that our approach leads to more

flexible and easily verifiable criteria for oscillation.

Example 3.3.3. For t ≥ 2, consider the second order nonlinear neutral differential equa-

tion,

(
r (t) (x (t) + p (t) x (δ (t)))′

)′

+
1

t2
x (σ (t))

(
x2 (σ (t)) + 1

)
= 0, (3.3.3)
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where r (t) = p (t) = (t+ 1)−1 and σ (t) = t− 2. We apply Corollary 3.2.4 choosing

ρ (t) = − 2

t2 − t
and v (t) = t4.

Then,

ϑ (t) =
t3 (t− 3)

(t− 1)2

and Eq. (3.3.3) is oscillatory since, for n = 3 and any β ≥ 1,

lim sup
t→+∞

1

t2

∫ t

1

[
(t− s)2

s3 (s− 3)

(s− 1)2
− β

s4

s− 1

]
= +∞.

Observe that in this example two conditions of Theorem 3.1.2 fail to hold. Namely, con-

trary to assumption (A7), f ′ is decreasing on (−∞, 0), increasing on (0,+∞) . Conse-

quently, Theorem 3.1.2 cannot be applied to establish oscillatory nature of Eq. (3.3.3).

Note that our example is a particular case of a more general equation
⎛

⎝r (t)

(

p0(t)x (t) +
k∑

i=1

pi (t) x (t− ti)

)′⎞

⎠

′

+ q (t) f (x (t− t0)) = 0, (3.3.4)

studied in the paper of Budinčević [11]. However, none of the three oscillation theorems

reported in the cited paper apply to Eq. (3.3.3). In fact, since the integral

∫ ∞

t0

q(s)ds =

∫ ∞

t0

s−2ds

converges, [11, Theorems 1 and 2] cannot be used. On the other hand, the integral

∫ ∞

t0

1

r(s)
ds =

∫ ∞

t0

(s+ 1) ds

diverges, and one of the assumptions in [11, Theorem 3] fails to hold.

Example 3.3.4. For t ≥ 1, consider a neutral differential equation

(
r (t)ψ (x (t)) (x (t) + p (t) x (δ (t)))′

)′

+ q (t) x (σ (t))
(
1 + ln

(
1 + x2 (σ (t))

))
= 0, (3.3.5)
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where

r (t) =
(4t2 + 3) (2 + sin 2t)

192t2
, σ (t) =

t

2
,

ψ (t) =
3t2 + 2

2t2 + 1
, q (t) = t2 + 1

and

p (t) =
192t6 + 48t4 − 4t2 − 3

48t4 (4t2 + 1)
+

(4t2 + 3) cos 2t

96t3 (4t2 + 1)

+
(16t4 − 16t3 − 4t2 − 1) sin 2t

32t4 (4t2 + 1)
.

Let

ρ (t) = −(t2 + 3) (2 + sin t)

12t3
and v (t) = t2.

Then,

ϑ (t) =

(
t− t2

2
+

1

2

)
sin t+

1

3
.

An application of Corollary 3.2.5 with n = 3 and β = 2 yields

lim sup
t→∞

1

t2

∫ t

T

[
(t− s)2

((
s− s2

2
+

1

2

)
sin s+

1

3

)

−
(
s2

6
+

1

2

)
(2 + sin s)

]
ds

def
= ϕ (T ) =

5

6
− T

3
+ T sinT − sinT

+
3

2
cosT + T cosT − T 2

2
cosT,

and Eq. (3.3.5) is oscillatory because

lim sup
t→∞

1

t2

∫ t

1

3
ϕ2
+ (s)

(s2 + 3) (2 + sin s)
ds

≥ 3 lim sup
t→∞

1

t2

∫ t

1

ϕ2
+ (s)

(s2 + 3)
ds = +∞.
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Chapter 4

CONCLUSIONS

The main results in this thesis are collected in Chapters 2 and 3. In Chapter 2, using

the Bihari integral inequality, we formulate sufficient conditions for all non-oscillatory

solutions of Eqs. (2.2.1) to behave like nontrivial linear functions at infinity. We prove

that all non-oscillatory solutions of Eq. (2.3.1) satisfy (2.3.17). In addition, for a partic-

ular case of Eq. (2.3.1), Eq. (2.3.2), we provide necessary and sufficient conditions that

guarantee existence of non-oscillatory solutions with the same property. In Chapter 3,

we address oscillation problem of solutions of second order nonlinear neutral differential

equations of the forms (3.0.1) and (3.0.2). By using a generalized Riccati transformation

and techniques developed by Rogovchenko and Tuncay [74, 75, 76], we state new effi-

cient oscillation criteria for Eqs. (3.0.1) and (3.0.2). Chapters 2 and 3 conclude with a

number of carefully selected examples which illustrate main results obtained in this the-

sis. Routine calculations are performed by computer algebra system Wolfram Research

Mathematica.

Some of the features that characterize this thesis are as follows:

• results provided in Chapter 2 apply to wider classes of neutral differential equations;

they improve and extend many results known in the literature;

• oscillation criteria formulated in Chapter 3 improve most related results reported in

literature by removing conditions similar to (3.1.3) which have been traditionally
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used for almost three decades;

• proofs of Theorems 3.2.1, 3.2.3, 3.2.6, 3.2.7 and alike are significantly shorter due

to technique improved by Rogovchenko and Tuncay [74, 75, 76];

• proofs of Theorems 3.2.4 and 3.2.8 are reduced to a few lines from several pages;

• our general results are flexible in applications;

• a variety of simple and efficient oscillation criteria are obtained by choosing, for

instance, appropriate Kamenev-type functions.
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