EMU I-REP >
08 Faculty of Arts and Sciences >
Department of Mathematics >
Theses (Master's and Ph.D) – Mathematics >
Please use this identifier to cite or link to this item:
http://hdl.handle.net/11129/184
|
Title: | Multiplicative Runge-Kutta Methods |
Authors: | Aktöre, Hatice |
Keywords: | Applied Mathematics and Computer Science Multiplicative Calculus - Runge-Kutta-Method - Ordinary Differential Equations - Numerical Solution Differential Equations - Numerical Solutions Runge - Kutta Formulas |
Issue Date: | 2011 |
Publisher: | Eastern Mediterranean University (EMU) |
Citation: | Aktore, Hatice. (2011). Multiplicative Runge-Kutta Methods. Thesis (M.S.), Eastern Mediterranean University, Institute of Graduate Studies and Research, Dept. of Mathematics, Famagusta: North Cyprus. |
Abstract: | ABSTRACT: In this thesis the multiplicative Runge-Kutta Method is developed employing the idea of the ordinary Runge-Kutta Method to multiplicative calculus. The multiplicative Runge-Kutta Methods for the orders 2,3, and 4 are developed and discussed. The developed algorithms are applied to examples where the solutions of the Ordinary Differential Equations are known. This gives the opportunity to check the relative error of the calculation reliably. The results in the multiplicative case are also compared with the results from the ordinary Runge-Kutta Methods of the corresponding order. We can see that the Multiplicative Runge-Kutta Method is advantageous to the ordinary Runge-Kutta method of the same order if the solution is of exponential nature. Finally for completeness the multiplicative Finite Difference method is also presented.
Keywords: Multiplicative Calculus, Runge-Kutta-Method, Ordinary Differential Equations,Numerical Solution.
……………………………………………………………………………………………………………………………………………………………………………………………………………………
ÖZ: Bu tezde, Runge-Kutta metodu temel alınarak çarpımsal analiz kurallarına göre 2, 3 ve 4. dereceden çarpımsal Runge-Kutta yöntemleri bulunmuş ve incelenmiştir. Bulunan yöntemler çözümleri bilinen adi diferansiyel denklemlere örnek olarak uygulanmıştır. Böylece hesaplamalardaki hata oranlarının güvenilir bir şekilde kontrol edilmesi sağlanmıştır. Çarpımsal Runge-Kutta metodundan elde edilen sonuçlar ayni dereceden bilinen Runge-Kutta metodu sonuçlarıyla karşılaştırıldı. Bu sonuçlara göre, çözümü eksponensiyel olan denklemlerde çarpımsal Runge-Kutta metodunu kullanmanın ayni dereceden bilinen Runge-Kutta metoduna göre daha avantajlı olduğu görülmüştür. Son olarak da çarpımsal Finite Difference metodu anlatılmıştır.
Anahtar Kelimeler: Çarpımsal Analiz, Runge-Kutta-Yöntemi, Adi Diferensiyel Denklemler, Sayısal Çözümler |
Description: | Master of Science in Applied Mathematics and Computer Science. Thesis (M.S.)--Eastern Mediterranean University, Faculty of Arts and Sciences, Dept. of Mathematics, 2011. Supervisor: Assist. Prof. Dr Mustafa Rıza. |
URI: | http://hdl.handle.net/11129/184 |
Appears in Collections: | Theses (Master's and Ph.D) – Mathematics
|
This item is protected by original copyright
|
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
|