|
EMU I-REP >
08 Faculty of Arts and Sciences >
Department of Mathematics >
Theses (Master's and Ph.D) – Mathematics >
Please use this identifier to cite or link to this item:
http://hdl.handle.net/11129/218
|
Title: | Some Schurer Type q-Bernstein Operators |
Authors: | Vedi, Tuba |
Keywords: | Applied Mathematics and Computer Science Mathematical Operators Q-Bernstein Schurer Operators - Schurer Type Q-Bernstein Operators - Kantorovich Type Q-Bernstein Schurer Chlodowsky Operators - Korovkin Theorem |
Issue Date: | 2011 |
Publisher: | Eastern Mediterranean University (EMU) |
Citation: | Vedi, Tuba. (2011). Some Schurer Type q-Bernstein Operators. Thesis (M.S.), Eastern Mediterranean University, Institute of Graduate Studies and Research, Dept. of Mathematics, Famagusta: North Cyprus. |
Abstract: | ABSTRACT: In this thesis consist of six chapters. The introduction is given in the first chapter. In the second chapter, some necessary definitions, preliminaries and theorems are given. In this
chapter, we also give the important theorems; by Korovkin and Volkov, Bernstein polynomials in one two variables, q-Bernstein, Bernstein-Chlodowsky and q-Bernstein Chlodowsky polynomials. In the third chapter, q-Bernstein Schurer operators are defined. Many properties and results of these polynomials, such as Korovkin type approximation and the rate of convergence of these operators in terms of Lipschitz class functional are given. In the fourth chapter q-Bernstein-Schurer-Chlodowsky operators are introduced. Korovkin type approximation theorem is given and the rate of convergence of this approximation is obtained by means of modulus of continuity of the function is obtained. In the fifth chapter, Schurer-type q-Bernstein Kantorovich operators are defined. Moreover the order of convergence of the operators in terms of modulus of continuity of the derivative of the function, and elements of Lipschitz classes are discussed. In the last chapter, Kantorovich type q-Bernstein operators are defined. Furthermore, Korovkin type approximation theorem is proved and the rate of convergence of this
approximation are given.
Keywords: q-Bernstein Schurer operators, Korovkin theorem, Schurer Type q-Bernstein Polynomials, Kantorovich type q-Bernstein-Schurer-Chlodovsky operators.
……………………………………………………………………………………………………………………………………………………………………………………………………………………
ÖZ: Bu tez altı bölümden olusmaktadır. Birinci bölüm giris kısmı olarak verilmistir. İkinci
bölümde, tez boyunca ihtiyaç duyulacak bazı tanımlar, tanımlarla ilgili bazı temel özellikler
ve teoremler verilmistir. Ayrıca Korovkin and Volkov Teoremleri, bir ve iki değiskenli
Bernstein Polinomları, q-Bernstein Polinomları ve Bernstein Chlodowsky and q-Bernstein
Chlodowsky Polinomları incelenmistir. Üçüncü bölümde q-Bernstein Schurer Operatörleri tanımlanmıstır. q-Bernstein Schurer Operatörlerinin yakınsaklığı Korovkin Teoremi yardımıyla ve Liptsitz sınıfındaki yakınsaklığı incelenmistir. Dördüncü bölümde q-Bernstein Schurer-Chlodowsky Operatörü tanımlanmıstır. Korovkin tipli yakınsaklık teoremi, fonksiyonun ve fonksiyonunun türevinin süreklilik modülü yardımıyla yakınsama hızları hesaplanmıstır. Besinci bölümde Schurer tipli q-Bernstein Kantorovich Operatörleri tanımlanmıstır. Bu operatörlerin modüllerinin ve türevlerinin yakınsaklıkları hesaplanmıstır. Altıncı bölümde Kantorovich tipli q-Bernstein-Schurer-Chlodowsky Operatörleri tanımlanmıstır. Bununla birlikte Korovkin tipli teorem yaklasımı ispatlanmıs ve bu yakınsamanın yakınsaklık derecesi hesaplanmıstır.
Anahtar Kelimeler: q-Bernstein Schurer Operatörleri, Korovkin Teoremi, Schurer Type q-Bernstein Operatörleri, Kantorovich Type q-Bernstein-Schurer-Chlodovsky operatörleri. |
Description: | Master of Science in Applied Mathematics and Computer Science. Thesis (M.S.)--Eastern Mediterranean University, Faculty of Arts and Sciences, Dept. of Mathematics, 2011. Supervisor: Assoc. Prof. Dr. Mehmet Ali Özarslan. |
URI: | http://hdl.handle.net/11129/218 |
Appears in Collections: | Theses (Master's and Ph.D) – Mathematics
|
This item is protected by original copyright
|
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
|