EMU I-REP >
08 Faculty of Arts and Sciences >
Department of Mathematics >
MAT – Journal Articles: Publisher & Author Versions (Post-Print Author Versions) – Mathematics >
Please use this identifier to cite or link to this item:
http://hdl.handle.net/11129/2809
|
Title: | A Novel Fully Implicit Block Coupled Solution Strategy For The Ultimate Treatment of The Velocity–Pressure Coupling Problem in İncompressible Fluid Flow |
Authors: | Mazhar, Zeka Eastern Mediterranean University, Faculty of Arts and Sciences, Department of Mathematics |
Keywords: | Solution Strategy Ultimate Treatment Velocity–Vressure |
Issue Date: | 21-Jan-2016 |
Publisher: | Taylor & Francis (Routledge) |
Citation: | Zeka Mazhar (2016) A novel fully implicit block coupled solution
strategy for the ultimate treatment of the velocity–pressure coupling problem in
incompressible fluid flow, Numerical Heat Transfer, Part B: Fundamentals, 69:2, 130-149 |
Abstract: | Two new extremely robust, fully implicit coupled solution procedures (FICS-1 and FICS-2) are presented for the ultimate solution of the notorious velocity–pressure coupling problem arising in incompressible fluid flow problems. Based on a previous idea of the author, the algebraic coupled system of equations resulting from the discretization of the momentum and mass conservation equations is taken in its primitive form. A special incomplete decomposition technique is applied to the block matrix of the algebraic system, requiring only two defect vectors in the defect matrix. With the new mechanism applied, the mass and momentum conservations are satisfied simultaneously at all points of the solution region and at each step of the solution process. In this way, the effect of any change in a dependent variable is sensed immediately at all of the points in the solution region. Contrary to the almost outdated segregated-type approaches, the new procedures do not require any explicit equation for pressure, so that the laborious tasks of formulation and solution of any Poisson-type equations are avoided. The procedures are not pressure-based. They are very simple to formulate and implement. The strong coupling preserved and the full implicitness of the algorithm involved helps in treating the nonlinearities most efficiently through a couple of overall block solutions. Tests on the two procedures presented in this work show that up to at least 20 times faster convergence rates can be achieved, compared with any of the segregatedtype procedures, which accounts for a 95% reduction in computing time. The procedures may converge even when no relaxation is applied, but they may converge faster if some optimal relaxation is applied. With these properties, the procedures presented seem to provide a breakthrough in the area of computational fluid mechanics. |
Description: | Due to copyright restrictions, the access to the publisher version (published version) of this article is only available via subscription. You may click URI and have access to the Publisher Version of this article through the publisher web site or online databases, if your Library or institution has subscription to the related journal or publication. |
URI: | http://dx.doi.org/10.1080/10407790.2015.1093787 http://hdl.handle.net/11129/2809 |
ISSN: | 1040-7790 (print) 1521-0626 (online) |
Appears in Collections: | MAT – Journal Articles: Publisher & Author Versions (Post-Print Author Versions) – Mathematics
|
Files in This Item:
There are no files associated with this item.
|
This item is protected by original copyright
|
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
|