DSpace
 

EMU I-REP >
08 Faculty of Arts and Sciences >
Department of Mathematics >
Theses (Master's and Ph.D) – Mathematics >

Please use this identifier to cite or link to this item: http://hdl.handle.net/11129/2842

Title: Unsupervised Learning Method Based on Partitioning in Data Mining
Authors: Bodur, Ersin Kuset
Onyejiaka, Kelechi Churchill
Eastern Mediterranean University, Faculty of Arts and Science, Department of Mathematics
Keywords: Mathematics
Applied Mathematics and Computer Science
Cluster analysis - Data mining
Data mining
data mining algorithms
data mining applications
Issue Date: May-2015
Publisher: Eastern Mediterranean University (EMU) - Doğu Akdeniz Üniversitesi (DAÜ)
Citation: Onyejiaka, Kelechi Churchill (2015). Unsupervised Learning Method Based on Partitioning in Data Mining. . Thesis (M.S.), Eastern Mediterranean University, Institute of Graduate Studies and Research, Dept. of Mathematics, Famagusta: North Cyprus.
Abstract: This study provides the introduction of some basic definitions about clustering method of data mining. For this purpose, it is given the methods of data mining, some algorithms of clustering method. Meanwhile, the k -Means clustering and Hierarchical clustering algorithms are defined. The aim of this study is to cluster the dataset into two clusters using Hierarchical clustering algorithm and k -Means algorithm. In order to achieve our target, two distance formulas are used to measure the distance between the vectors in the algorithms: the Euclidean distance and k -Nearest neighborhood distance.to compare two methods. Keywords: Data mining, data mining algorithms, data mining applications
ÖZ: Bu çalışma veri madenciliği kümeleme yönteminin bazı temel tanımlarını sunar. Bu amaçla, veri madenciliği yöntemleri, veri madenciliğinin bazı kümeleme yöntemleri algoritmaları veriliyor. Bunun yanında, K -ortalama ve Hiyerarşik kümeleme algoritmaları tanımlanır. Bu çalışmanın amacı, Hirerarşik ve K -ortalama algoritmalarını kullanıp veri kümesini iki kümeye ayırmaktır. Amacımıza ulaşmak için, vektörler arasındaki uzaklığı ölçmek için iki tane tanım kullanılır: Öklit uzaklık ve en yakın K komşu bağıntıları. Anahtar kelimeler: Veri madenciliği teknikleri, veri madenciliği algorimaları, veri madenciliği uygulamaları
Description: Master of Science in Applied Mathematics and Computer Science. Thesis (M.S.)--Eastern Mediterranean University, Faculty of Arts and Sciences, Dept. of Mathematics, 2015. Supervisor: Assist. Prof. Dr. Ersin Kuset Bodur.
URI: http://hdl.handle.net/11129/2842
Appears in Collections:Theses (Master's and Ph.D) – Mathematics

Files in This Item:

File Description SizeFormat
OnyejiakaKelechi Churchill.pdfThesis, Master1.07 MBAdobe PDFView/Open


This item is protected by original copyright

Recommend this item
View Statistics

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0! DSpace Software Copyright © 2002-2010  Duraspace - Feedback