DSpace
 

EMU I-REP >
08 Faculty of Arts and Sciences >
Department of Mathematics >
Theses (Master's and Ph.D) – Mathematics >

Please use this identifier to cite or link to this item: http://hdl.handle.net/11129/3245

Title: The Block-Hexagonal Grid Method for Laplace’s Equation with Singularities
Authors: Dosiyev, Adıgüzel
Çeliker, Emine
Eastern Mediterranean University, Faculty of Arts and Science, Department of Mathematics
Keywords: Mathematics
Applied Mathematics and Computer Science
Hexagonal grids
Laplace’s equation
singularity problem
block-grid method
Issue Date: Dec-2014
Publisher: Eastern Mediterranean University (EMU) - Doğu Akdeniz Üniversitesi (DAÜ)
Citation: Çeliker, Emine. (2014).The Block-Hexagonal Grid Method for Laplace’s Equation with Singularities. Thesis (Ph.D.), Eastern Mediterranean University, Institute of Graduate Studies and Research, Dept. of Mathematics, Famagusta: North Cyprus.
Abstract: A fourth order accurate matching operator is constructed on a hexagonal grid, for the interpolation of the mixed boundary value problem of Laplace’s equation, by using the harmonic properties of the solution. With the application of this matching operator for the connection of the subsystems, the Block-Grid method (BGM), which is a difference-analytical method, has been analysed on a hexagonal grid, for the solution of both the Dirichlet and mixed boundary value problems of Laplace’s equation with singularities. First of all, BGM is considered on staircase polygons and it is justified that when the boundary functions outside the finite neighbourhood of the singular points are from the Hölder classes C6;l ; 0 < l < 1; the error of approximation has an accuracy of O 􀀀��� h4 ; where h is the mesh size. The analysis of this method is extended to special polygons whose interior angles are a jp; a j 2 1 3 ; 2 3 ;1;2 ; and for the Dirichlet problem of Laplace’s equation it is proved that, with the application of BGM, it is possible to lower the smoothness requirement on the boundary functions to C4;l ; 0 < l < 1; outside the finite neighbourhood of the singular points, in order to obtain an accuracy of O 􀀀��� h4 . For the demonstration of the theoretical results on staircase polygons, BGM has been applied on an L-shaped domain for two examples, which has a singularity at the vertex with an interior angle of 3p 2 ; where Dirichlet and mixed boundary conditions are assumed respectively. The slit problem, which has the strongest singularity due to the interior angle of 2p at the vertex of the slit, has been considered on a parallelogram with a slit, in order to illustrate the results obtained on polygons with interior angles of a jp; a j 2 1 3 ; 2 3 ;1;2 : The second example on a parallelogram demonstrates the application of BGM on a domain with two singularities as it is assumed that the vertices with interior angles of 2p 3 are singular points. Solutions of the numerical examples are consistent with the theoretical results obtained. Keywords: Hexagonal grids, Laplace’s equation, singularity problem, block-grid method.
ÖZ Laplace denklemi sınır problemleri için, dördüncü derece hata payı olan birless¸tirme (matching) operatörü petek düg˘ ümleri üzerinde kurulmuss¸tur. Bu enterpolasyon oper- atörünün kurulumu için çözümün harmonik özellikleri kullanılmıss¸tır. Alt sistemlerin birless¸tirilmesinde uygulanan matching operatörü ile Block-Grid metodu (BGM), petek ag˘ lar üzerinde analiz edilmiss¸tir. Bu metod, tekillig˘ i olan Laplace denkleminin Dirich- let ve karıss¸ık (mixed) sınır problemlerine uygulanmıss¸tır. ˙Ilk önce BGM, iç açıları α j π , α j ∈ { 1 , 1, 3 , 21 olan çokgenler üzerinde incelenmiss¸tir. 2 2 Tekil noktalardan belli bir uzaklıkta olan sınır üzerindeki fonksiyonlar C6,λ , 0 < λ < 1, Hölder gruplarından oldug˘ u zaman yakınsaklık hatasının O (h4) oldug˘ u kanıtlanmıs¸tır (h ag˘ aralıg˘ ıdır). ˙Il˙lalaveten, BGM’nin analizi özel çokgenler üzerine genisss¸letilmisss¸tir. Bu özel çokgenlerin iç açıları α j j , α j ∈ { { 3 , 2 , 1, 2 21 iç açıları α j , α j ∈ { 3 , 2 , 1, 21 , olarak verilmisssssssssss¸tir. Laplace’ın Dirichlet probleminin yaklasssssssssss¸ık çözümü için, bu çokgenler üzerinde, tekil noktalardan belli bir uzaklıkta olan sınır fonksiyonlarının C4,λ , 0 < λ < 1, Hölder grubundan olması ve BGM metodunun uygulanması ile hata payının yine O (h4) oldug˘ u kanıtlanmısssssssssss¸tır. Teorik sonuçların nümerik çözümlemesi için BGM, iç açılarından biri 3π olan L- s¸ekilli (L-shaped) çokgende uygulanmıs¸tır. Açıları α j π , α j ∈ { 1 , 2 , 1, 21 , olan çok- 3 3 genler üzerinde BGM’nin uygulanmasını göstermek üzere, iç açısı 2π oldug˘ undan dolayı en güçlü tekillig˘ e sahip olan kesik problemi (slit problem), paralelkenar üz- erinde çözülmüs¸tür. Yine paralelkenar üzerinde, 2π iç açılı kenarların ikisinde de tekil- lik oldug˘ u varsayılarak BGM ile Laplace sınır problemi çözümlenmis¸tir. Elde edilen v sayısal çözümlerin teorik sonuçlarla uyumlu oldug˘ u sergilenmis¸tir. Anahtar Kelimeler: Laplace denklemi, tekil problemi, Block-Grid metodu, petek ag˘ lar.
Description: Doctor of Philosophy in Applied Mathematics and Computer Science. Thesis (Ph.D.)--Eastern Mediterranean University, Faculty of Arts and Sciences, Dept. of Mathematics, 2014. Supervisor: Prof. Dr. Adıgüzel Dosiyev.
URI: http://hdl.handle.net/11129/3245
Appears in Collections:Theses (Master's and Ph.D) – Mathematics

Files in This Item:

File Description SizeFormat
celemi.pdfThesis, Doctoral539.86 kBAdobe PDFView/Open


This item is protected by original copyright

Recommend this item
View Statistics

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0! DSpace Software Copyright © 2002-2010  Duraspace - Feedback