DSpace
 

EMU I-REP >
02 Faculty of Engineering >
Department of Computer Engineering >
Theses (Master's and Ph.D) – Computer Engineering >

Please use this identifier to cite or link to this item: http://hdl.handle.net/11129/3897

Title: Gender Classification Using Local Binary Patterns and its Variants
Authors: Toygar, Önsen
Ardakani, Parichehr Behjati
Eastern Mediterranean University, Faculty of Engineering, Dept. of Computer Engineering
Keywords: Computer Engineering
Face Recognition
Pattern recognition systems
Image processing
Pattern perception
Gender recognition
feature extraction
Local Binary Patterns (LBP)
Issue Date: Sep-2016
Publisher: Eastern Mediterranean University (EMU) - Doğu Akdeniz Üniversitesi (DAÜ)
Citation: Ardakani, Parichehr Behjati. (2016). Gender Classification Using Local Binary Patterns and its Variants. Thesis (M.S.), Eastern Mediterranean University, Institute of Graduate Studies and Research, Dept. of Computer Engineering, Famagusta: North Cyprus.
Abstract: Many social interactions and services are dependent on gender today, so, gender classification is appearing as an active research area. Most of the existing studies are based on face images acquired under controlled conditions. In our work, we used different databases such as FERET, AR and ORL for controlled conditions and Labeled Faces in the Wild (LFW) database as real-life faces for uncontrolled conditions. Local Binary Patterns (LBP) and its variants such as Uniform LBP, Completed LBP and Rotation - Invariant LBP are employed to describe faces by extracting features from the region of interests. Manhattan distance measure is used to compare difference between test and training images for gender recognition. Based on the results reported as the state-of-the-art, we have achieved satisfactory results. Keywords: Gender recognition, feature extraction, Local Binary Patterns (LBP)
Öz: Günümüzde birçok sosyal etkileşim ve hizmetler cinsiyete bağlı olduğu için cinsiyet sınıflandırma aktif bir araştırma alanıdır. Literatürde varolan birçok çalışma, denetimli durumlardan elde edilen yüz resimlerini kullanmaktadır. Bu çalışmada, denetimli ortamlarda elde edilen FERET, AR ve ORL yüz veritabanları ve denetimsiz ortamlar için de doğal yaşamda çekilen yüz resimlerini içeren LFW veritabanı kullanılmıştır. Yüz resimlerinin özniteliklerini elde etmek için Yerel İkili Örüntü (LBP) yaklaşımı ve bu yaklaşımın Birbiçimli LBP, Tamamlanmış LBP, Dönme Değişimsiz LBP isimli değişik varyantları kullanılmıştır. Cinsiyet tanımada, test ve eğitilmiş yüz resimlerinin farkını karşılaştırmak için Manhattan uzaklık ölçüsü kullanılmıştır. Literatürde bildirilen cinsiyet sınıflandırma sonuçlarıyla karşılaştırıldığında bu tezde elde edilen sonuçlar memnuniyet vericidir. Anahtar Kelimeler: Cinsiyet tanıma, öznitelik çıkarma, Yerel İkili Örüntü (LBP).
Description: Master of Science in Computer Engineering. Thesis (M.S.)--Eastern Mediterranean University, Faculty of Engineering, Dept. of Computer Engineering, 2016. Supervisor: Assoc. Prof. Dr. Önsen Toygar.
URI: http://hdl.handle.net/11129/3897
Appears in Collections:Theses (Master's and Ph.D) – Computer Engineering

Files in This Item:

File Description SizeFormat
ardakaniparichehr.pdfThesis, Master1.24 MBAdobe PDFView/Open


This item is protected by original copyright

Recommend this item
View Statistics

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0! DSpace Software Copyright © 2002-2010  Duraspace - Feedback