|
EMU I-REP >
08 Faculty of Arts and Sciences >
Department of Mathematics >
Theses (Master's and Ph.D) – Mathematics >
Please use this identifier to cite or link to this item:
http://hdl.handle.net/11129/4039
|
Title: | On Fractional Differential Equations |
Authors: | Mahmudov, Nazım Khaleel, Hogir Ageed Faculty of Arts and Sciences, Dept. of Mathematics |
Keywords: | Mathematics Fractional calculus-Differential equations Differential equations-Numerical solutions Boundary Value Problems Fractional Differential Equation Fractional Calculus |
Issue Date: | Sep-2015 |
Publisher: | Eastern Mediterranean University EMU |
Citation: | Khaleel, Hogir Ageed. (2015).On Fractional Differential Equations . Thesis (M.S.), Eastern Mediterranean University, Institute of Graduate Studies and Research, Dept. of Mathematics, Famagusta: North Cyprus. |
Abstract: | In this thesis, we collect some results on sufficient conditions for the existence and unique of solutions for various classes of initial and boundary value problem for fractional differential equations involving the Caputo fractional derivative. Although the tools of fractional calculus have been available and applicable to various fields of study, the investigation of the theory of fractional differential equations has only been started quite recently. The differential equations involving Caputo differential operators of fractional order, appear to be important in modeling several physical phenomena and therefore seem to deserve an independent study of their theory parallel to the well-known theory of ordinary differential equations.
In this thesis, we shall study systematically the basic theory of fractional differential equations involving Caputo differential operators. We follow the method of deducing the basic existence and uniqueness results from the fixed point theory.
Keywords: Boundary Value Problems, Fractional Differential Equation, Fractional Calculus ÖZ:
Bu tezde, Caputo fraksiyonel türevli fraksiyonel diferansiyel denklemler için başlangıç ve sınır değer probleminin çeşitli sınıflar için varlığı ve tekliği araştırılmıştır. Kesirli analizin araçları, çalışmanın çeşitli alanlarda kullanılabilir ve uygulanabilir olmasına rağmen, fraksiyonel diferansiyel denklemlerin teorisi sadece çok yakın zamanda araştırılmaya başlanmıştır. Fraksiyonel düzenin Caputo diferansiyel operatörleri kapsayan diferansiyel denklemler, çeşitli fiziksel olguları modelleme de önemli gibi görünmektedir ve bu nedenle adi diferansiyel denklemlerin tanınmış teoriye kendi teorisi paralel bağımsız bir çalışma yı haketmekte gibi görünüyor.
Bu tezde, sistematik olarak Caputo diferansiyel operatörleri kapsayan fraksiyonel diferansiyel denklemlerin temel teorisini incelenecektir.
Anahtar Kelimeler: Sınır değer problemi, Fraksiyonel diferansiyel denklemler, Fraksiyonel kalkulus |
Description: | Master of Science in Mathematics. Thesis (M.S.)--Eastern Mediterranean University, Faculty of Arts and Sciences, Dept. of Mathematics, 2015. Supervisor: Prof. Dr. Nazım Mahmudov. |
URI: | http://hdl.handle.net/11129/4039 |
Appears in Collections: | Theses (Master's and Ph.D) – Mathematics
|
This item is protected by original copyright
|
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
|