DSpace
 

EMU I-REP >
08 Faculty of Arts and Sciences >
Department of Mathematics >
Theses (Master's and Ph.D) – Mathematics >

Please use this identifier to cite or link to this item: http://hdl.handle.net/11129/4125

Title: Approximation Properties of Schurer Type q-Bernstein Operators
Authors: Özarslan, Mehmet Ali
Vedi, Tuba
Eastern Mediterranean University, Faculty of Arts and Sciences, Dept. of Mathematics
Keywords: Mathematics
Chlodowsky variant of q-Bernstein-Schurer-Stancu operators
Chlodowsky type q-Bernstein-Stancu-Kantorovich
Chlodowsky-type q-Durrmeyer operators
Issue Date: Sep-2015
Publisher: Eastern Mediterranean University EMU
Citation: Vedi, Tuba. (2015). Approximation Properties of Schurer Type q-Bernstein Operators. Thesis (Ph.D.), Eastern Mediterranean University, Institute of Graduate Studies and Research, Dept. of Mathematics, Famagusta: North Cyprus.
Abstract: This thesis consist of five chapters. In the first chapter, the introduction is given. In the second chapter, we consider the Chlodowsky variant of q-Bernstein-Schurer-Stancu operators. We state the Korovkin type approximation theorem and obtain the error of approximation by using modulus of continuity and Lipschitz-type functionals. Moreover, we obtain the rate of approximation in terms of the first derivative of the function and we examine the generalization of the operators. In the third chapter, we define Chlodowsky type q-Bernstein-Stancu-Kantorovich operators. Many properties and results of these polynomials, such as Korovkin type approximation and the rate of convergence of these operators in terms of Lipschitz class functional are given. In the fourth chapter, we introduce and study Chlodowsky-Durrmeyer type q-Bernstein- Schurer-Stancu operators. We state the Korovkin-type approximation theorem and obtain the order of convergence of the operators. In the last chapter, we define two dimensional Chlodowsky type of q-Bernstein-Schurer- Stancu operators. We study Korovkin-type approximation theorem and state the error of approximation by using full and partial modulus of continuity. Finally, we define the generalization of the operators and investigate their approximation properties in weighted space. Keywords: Chlodowsky variant of q-Bernstein-Schurer-Stancu operators, Chlodowsky type q-Bernstein-Stancu-Kantorovich, Chlodowsky-type q-Durrmeyer operators.
ÖZ: Bu tez be¸s bölümden olu¸smaktadır. Birinci bölüm giri¸s kısmına ayrılmı¸stır. ˙Ikinci bölümde, Chlodowsky tipli q-Bernstein-Schurer-Stancu Operatörleri tanımlanmı¸stır. Korovkin tipli teorem yakla¸sımı ispatlanmı¸s ve fonksiyonun yakınsaklı˘gındaki hatalar süreklilik modülü yardımıyla ve Lipschitz sınıfındaki yakınsaklı˘gı incelenmi¸stir. Üçüncü bölümde Chlodowsky tipli q-Bernstein-Stancu-Kantorovich Operatörleri tanımlanmı ¸stır. Bu operatörlerin Korovkin tipli yakla¸sım teoremi ve Lipschitz tipli fonksiyonların yakınsaklık hızları gibi özellikler incelenmi¸stir. Dördüncü bölümde, Chlodowsky-Durrmeyer tipli q-Bernstein-Schurer-Stancu Operatörleri tanımlanmı¸stır. Korovkin tipli yakınsaklık teoremi verilmi¸s ve yakınsamanın yakınsaklık derecesi incelenmi¸stir. Be¸sinci bölümde, iki de˘gi¸skenli Chlodowsky tipli q-Bernstein-Schurer-Stancu Operatörleri tanımlanmı¸stır. Korovkin tipli yakınsaklık teoremi verilmi¸s, fonksiyonun süreklilik modülü ve kısmi süreklilik modülü yardımıyla yakınsama hızları hesaplanmı¸stır. Son olarak, operatörlerin bir genelle¸stirilmesi verilmi¸s ve onların a˘gırlıklı uzaydaki yakla ¸sım özellikleri inclenmi¸stir. AnahtarKelimeler: Chlodowsky tip q-Bernstein-Schurer-Stancu Operatörleri, Chlodowsky tip q-Bernstein-Stancu-Kantorovich Operatörleri, Chlodowsky Tip q-Durrmeyer Operatörleri.
Description: Doctor of Philosophy in Mathematics. Thesis (Ph.D.)--Eastern Mediterranean University, Faculty of Arts and Sciences, Dept. of Mathematics, 2015. Supervisor: Prof. Dr. Mehmet Ali Özarslan.
URI: http://hdl.handle.net/11129/4125
Appears in Collections:Theses (Master's and Ph.D) – Mathematics

Files in This Item:

File Description SizeFormat
VediTuba.pdfThesis, Doctoral462.01 kBAdobe PDFView/Open


This item is protected by original copyright

Recommend this item
View Statistics

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0! DSpace Software Copyright © 2002-2010  Duraspace - Feedback