|
EMU I-REP >
08 Faculty of Arts and Sciences >
Department of Mathematics >
Theses (Master's and Ph.D) – Mathematics >
Please use this identifier to cite or link to this item:
http://hdl.handle.net/11129/4125
|
Title: | Approximation Properties of Schurer Type q-Bernstein Operators |
Authors: | Özarslan, Mehmet Ali Vedi, Tuba Eastern Mediterranean University, Faculty of Arts and Sciences, Dept. of Mathematics |
Keywords: | Mathematics Chlodowsky variant of q-Bernstein-Schurer-Stancu operators Chlodowsky type q-Bernstein-Stancu-Kantorovich Chlodowsky-type q-Durrmeyer operators |
Issue Date: | Sep-2015 |
Publisher: | Eastern Mediterranean University EMU |
Citation: | Vedi, Tuba. (2015). Approximation Properties of Schurer Type q-Bernstein Operators. Thesis (Ph.D.), Eastern Mediterranean University, Institute of Graduate Studies and Research, Dept. of Mathematics, Famagusta: North Cyprus. |
Abstract: | This thesis consist of five chapters. In the first chapter, the introduction is given. In the
second chapter, we consider the Chlodowsky variant of q-Bernstein-Schurer-Stancu
operators. We state the Korovkin type approximation theorem and obtain the error of
approximation by using modulus of continuity and Lipschitz-type functionals. Moreover,
we obtain the rate of approximation in terms of the first derivative of the function
and we examine the generalization of the operators.
In the third chapter, we define Chlodowsky type q-Bernstein-Stancu-Kantorovich operators.
Many properties and results of these polynomials, such as Korovkin type approximation
and the rate of convergence of these operators in terms of Lipschitz class
functional are given.
In the fourth chapter, we introduce and study Chlodowsky-Durrmeyer type q-Bernstein-
Schurer-Stancu operators. We state the Korovkin-type approximation theorem and obtain
the order of convergence of the operators.
In the last chapter, we define two dimensional Chlodowsky type of q-Bernstein-Schurer-
Stancu operators. We study Korovkin-type approximation theorem and state the error
of approximation by using full and partial modulus of continuity. Finally, we define
the generalization of the operators and investigate their approximation properties in
weighted space.
Keywords: Chlodowsky variant of q-Bernstein-Schurer-Stancu operators, Chlodowsky
type q-Bernstein-Stancu-Kantorovich, Chlodowsky-type q-Durrmeyer operators. ÖZ:
Bu tez be¸s bölümden olu¸smaktadır. Birinci bölüm giri¸s kısmına ayrılmı¸stır. ˙Ikinci
bölümde, Chlodowsky tipli q-Bernstein-Schurer-Stancu Operatörleri tanımlanmı¸stır.
Korovkin tipli teorem yakla¸sımı ispatlanmı¸s ve fonksiyonun yakınsaklı˘gındaki hatalar
süreklilik modülü yardımıyla ve Lipschitz sınıfındaki yakınsaklı˘gı incelenmi¸stir.
Üçüncü bölümde Chlodowsky tipli q-Bernstein-Stancu-Kantorovich Operatörleri tanımlanmı
¸stır. Bu operatörlerin Korovkin tipli yakla¸sım teoremi ve Lipschitz tipli fonksiyonların
yakınsaklık hızları gibi özellikler incelenmi¸stir.
Dördüncü bölümde, Chlodowsky-Durrmeyer tipli q-Bernstein-Schurer-Stancu Operatörleri
tanımlanmı¸stır. Korovkin tipli yakınsaklık teoremi verilmi¸s ve yakınsamanın
yakınsaklık derecesi incelenmi¸stir.
Be¸sinci bölümde, iki de˘gi¸skenli Chlodowsky tipli q-Bernstein-Schurer-Stancu Operatörleri
tanımlanmı¸stır. Korovkin tipli yakınsaklık teoremi verilmi¸s, fonksiyonun süreklilik
modülü ve kısmi süreklilik modülü yardımıyla yakınsama hızları hesaplanmı¸stır. Son
olarak, operatörlerin bir genelle¸stirilmesi verilmi¸s ve onların a˘gırlıklı uzaydaki yakla
¸sım özellikleri inclenmi¸stir.
AnahtarKelimeler: Chlodowsky tip q-Bernstein-Schurer-Stancu Operatörleri, Chlodowsky
tip q-Bernstein-Stancu-Kantorovich Operatörleri, Chlodowsky Tip q-Durrmeyer Operatörleri. |
Description: | Doctor of Philosophy in Mathematics. Thesis (Ph.D.)--Eastern Mediterranean University, Faculty of Arts and Sciences, Dept. of Mathematics, 2015. Supervisor: Prof. Dr. Mehmet Ali Özarslan. |
URI: | http://hdl.handle.net/11129/4125 |
Appears in Collections: | Theses (Master's and Ph.D) – Mathematics
|
This item is protected by original copyright
|
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
|