DSpace
 

EMU I-REP >
02 Faculty of Engineering >
Department of Computer Engineering >
Theses (Master's and Ph.D) – Computer Engineering >

Please use this identifier to cite or link to this item: http://hdl.handle.net/11129/4188

Title: Palmprint Image Identification Using PCA, LBP and HOG Features
Authors: Hussin, Zwha Abdulhamid
Eastern Mediterranean University, Faculty of Engineering, Dept. of Computer Engineering
Keywords: Computer Engineering
Biometric identification-Computer Visison
Biometric Recognition-Palmprint
Computer pattern recognition
Image processing - Digital techniques
Pattern recognition systems-Biometric identification
Biometric
Palmprint
Accuracy rates and Recognition algorithms
Issue Date: Feb-2017
Citation: Hussin, Zwha Abdulhamid. (2017).Palmprint Image Identification Using PCA, LBP and HOG Features . Thesis (M.S.), Eastern Mediterranean University, Institute of Graduate Studies and Research, Dept. of Computer Engineering, Famagusta: North Cyprus.
Abstract: Biometrics considered as the science which is playing an important role of person recognition. User identification mainly based on the physiological characteristics of an individual. Palmprint is an example of physiological characteristics of an individual which can be easily captured by using some types of sensors and cameras. The palmprint has many nature compositions which contain rich features that mainly used for distinguishing such as, wrinkles, ridges, principal lines, singular and minutiae points, these make a palmprint as one of a unique biometric and reliable for human recognition. In this work different features extraction algorithms were used such as a texture based method (LBP, HOG), and appearance based method (PCA). Also K-Cross Validation algorithm was implemented. The accuracy rates of recognition results of implemented algorithms were acquired and compared. Keywords: Biometric, Palmprint, Accuracy rates and Recognition algorithms.
ÖZ: Bir bilim dalı olarak Biyometri kişiyi tanımada önemli bir rol oynamaktadır. Biyometri, kişisel belirlemeler esas olarak bir bireyin fizyolojik özelliklerini esas almaktadır. Bireyin fizyolojik özelliklerine bir örnek olarak Palmprint (Avuç İçi ) bazı sensörler ve kameralar kullanılarak kolayca yakalanabilir. Palmprint’de birçok doğal özellik bileşenleri varolmakla birlikte, belirgin özellikler içeren kırışıklıklar, kabarıklar, ana hatlar ve tekil ayrıntı noktaları insan tanımlamasında eşsiz güvenilir biyometrik ölçütleri oluştururlar. Bu çalışmada farklı özellik çıkarma algoritmaları kullanılarak doku tabanlı (LBP,HOG) ve görünüşe dayalı (PCA) özelliklerin çıkarılması çalışılmıştır. Bunlarla birlikte k-çapraz doğrulama algoritması da öğrenme sürecinde uygulandı. Tanıma sonuçlarının doğruluk oranları kullanılarak uygulanmış algoritmalar karşılaştırldı. Anahtar Kelimeler: Biyometri, palmprint, doğruluk oranları ve algoritmaları tanımlama.
Description: Master of Science in Computer Engineering. Thesis (M.S.)--Eastern Mediterranean University, Faculty of Engineering, Dept. of Computer Engineering, 2017. Supervisor: Assist. Prof. Dr. Adnan Acan.
URI: http://hdl.handle.net/11129/4188
Appears in Collections:Theses (Master's and Ph.D) – Computer Engineering

Files in This Item:

File Description SizeFormat
hussinzwha.pdfThesis, Master1.33 MBAdobe PDFView/Open


This item is protected by original copyright

Recommend this item
View Statistics

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0! DSpace Software Copyright © 2002-2010  Duraspace - Feedback