DSpace
 

EMU I-REP >
02 Faculty of Engineering >
Department of Computer Engineering >
Theses (Master's and Ph.D) – Computer Engineering >

Please use this identifier to cite or link to this item: http://hdl.handle.net/11129/4300

Title: Stock Market Prediction Using Analytic Hierarchy Process and Support Vector Machine
Authors: Acan, Adnan
Saeed, Vaman Ashqi
Eastern Mediterranean University, Faculty of Engineering, Dept. of Computer Engineering
Keywords: Computer Engineering
Machine learning
Computational intelligence-Artificial intelligence
stock market prediction
analytic hierarchy process
support vector machine
least squares support vector machines
weighted kernel
Issue Date: Jan-2017
Publisher: Eastern Mediterranean University EMU - Doğu Akdeniz Üniversitesi (DAÜ)
Citation: Saeed, Vaman Ashqi. (2017).Stock Market Prediction Using Analytic Hierarchy Process and Support Vector Machine . Thesis (M.S.),Eastern Mediterranean University, Faculty of Engineering, Dept. of Computer Engineering, Famagusta: North Cyprus.
Abstract: Prediction of the stock market behavior has been a research topic for decades. Because it is a challenging subject both in terms of the choice of the prediction model and in terms of constructing the set of features that model will use for forecasting. In this thesis, a novel feature ranking and feature selection approach incorporation with weighted kernel least squares support vector machines (LS-SVMs) were used. We introduce the analytic hierarchy process (AHP) into the stock market and then evaluate criteria which provide the prediction model with relevant knowledge of the underlying processes of the studied stock market. The feature weights obtained by the AHP method are applied for feature ranking and selection and used with the LS-SVMs through a weighted kernel. The experimental results specify that the new model outperforms the benchmark models. Furthermore, the set of feature weights obtained by the new approach can also independently be incorporated into other kernel-based learners. Keywords: stock market prediction, analytic hierarchy process, support vector machine, least squares support vector machines, weighted kernel.
ÖZ: Borsa davranışının tahmini çeyrek yüzyıl boyunca bir araştırma konusu olmuştur. Çünkü, tahmin modelinin seçimi ve modelin kullanacağı özellikler kümesimin inşası açılarından borsa davranışının tahmini iddialı bir konudur. Bu tezde, yeni bir özellik sıralama ve özellik seçme yöntemi, ağırlılı çekirdek en küçük kareler destek vektör makineleri (LS-SVM) beraberinde kullanılmıştır. Analitik hiyerarşi süreci (AHP) yöntemini borsa özellik seçimi için kullandık ve kullanılan borsa verileri için ilgili bilgiye dayanan tahmin modeli için kriterleri değerlendirdik. AHP ile elde edilen özellik ağırlıkları LS-SVM’in ağırlıklı çekirdek yaklaşımı aracılığıyla özellik sıralama ve seçimi için kullanıldı. Deneysel sonuçlar kullanılan modelin ölçüt modellerden daha başarılı olduğunu göstermiştir. Buna ek olarak, yeni yöntemle elde edilen özellik ağrılıkları başka çekirdek tabanlı sistemlere bağımsız olarak eklenebilir. Anahtar kelimeler: Borsa tahmini, analitik hiyerarşi süreç, destek vector makineleri, en küçük kareler destek vector makineleri, ağırlıklı çekirdek.
Description: Master of Science in Computer Engineering. Thesis (M.S.)--Eastern Mediterranean University, Faculty of Engineering, Dept. of Computer Engineering, 2017. Supervisor: Assist. Prof. Dr. Adnan Acan.
URI: http://hdl.handle.net/11129/4300
Appears in Collections:Theses (Master's and Ph.D) – Computer Engineering

Files in This Item:

File Description SizeFormat
saeedvaman.pdfThesis, Master1.35 MBAdobe PDFView/Open


This item is protected by original copyright

Recommend this item
View Statistics

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0! DSpace Software Copyright © 2002-2010  Duraspace - Feedback