EMU I-REP >
08 Faculty of Arts and Sciences >
Department of Mathematics >
Theses (Master's and Ph.D) – Mathematics >
Please use this identifier to cite or link to this item:
http://hdl.handle.net/11129/4521
|
Title: | Fractional Differential Equations with Fractional Boundary Conditions |
Authors: | Mahmudov, Nazim Mahmoud, Helal Eastern Mediterranean University, Faculty of Arts and Sciences, Dept. of Mathematics |
Keywords: | Boundary value problems--Functional differential equations Fractional calculus--Differential equations, Fractional Fractional integrals and derivatives Fractional differential equations Existence Uniqueness Fixed point theorems Impulse Multi-orders Mathematics |
Issue Date: | 2016 |
Publisher: | Eastern Mediterranean University (EMU) - Doğu Akdeniz Üniversitesi (DAÜ) |
Citation: | Mahmoud, Helal. (2016). Fractional Differential Equations with Fractional Boundary Conditions. Thesis (Ph.D.), Eastern Mediterranean University, Institute of Graduate Studies and Research, Dept. of Mathematics, Famagusta: North Cyprus. |
Abstract: | This work is dedicated to investigate the existence and uniqueness of solutions for nonlinear fractional differential equations with boundary conditions involving the Caputo fractional derivative in a Banach space. After introducing some basic preliminaries and the important concepts of fractional calculus, we considered two models of boundary value problems of Caputo fractional derivative. The first one is nonlinear fractional differential equation with nonlocal four-point fractional boundary conditions. The second equation is nonlinear impulsive boundary value problem of multi-orders fractional supplemented with nonlocal four-point fractional boundary conditions. The existence and uniqueness of solution are obtained via Banach’s fixed point theorem and Schauder’s fixed point theorem for the two models. In addition, both results are provided by the illustrative examples to support them. ÖZ: Bu çalışma Caputo kesirli türevi içeren sınır koşulları ile doğrusal olmayan fraksiyonel diferansiyel denklemlerin çözümleri varlığını ve tekliğini araştırmaktadır. Bazı temel tanımlar ve Kesirli analizin önemli kavramları tanıttıktan sonra Caputo kesirli türevi yardımıyla sınır değer problemleri için iki model verilecektir. İlki yerel olmayan dört nokta kesirli sınır koşulları ile doğrusal olmayan kesirli diferansiyel denklemdir. İkinci denklem kesirli yerel olmayan dört nokta kesirli sınır koşulları ile desteklenmiş çoklu siparişlerin doğrusal olmayan dürtüsel sınır değer problemidir. Çözümün varlığı ve tekliği iki model için Banach'sabit nokta teoremi ve Schauder'sabit nokta teoremi ile elde edilir. Buna ek olarak, her iki sonuç icin de açıklayıcı örnekler verilmektedir. |
Description: | Doctor of Philosophy in Mathematics. Thesis (Ph.D.)--Eastern Mediterranean University, Faculty of Arts and Sciences, Dept. of Mathematics, 2016. Supervisor: Prof. Dr. Nazim Mahmudov. |
URI: | http://hdl.handle.net/11129/4521 |
Appears in Collections: | Theses (Master's and Ph.D) – Mathematics
|
This item is protected by original copyright
|
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
|