DSpace
 

EMU I-REP >
02 Faculty of Engineering >
Department of Computer Engineering >
Theses (Master's and Ph.D) – Computer Engineering >

Please use this identifier to cite or link to this item: http://hdl.handle.net/11129/4676

Title: Hybrid PSO Algorithm for the Solution of Learningbased Real-Parameter Single Objective Optimization Problems
Authors: Ünveren, Ahmet
Holoubi, Batoul Abdulmoti
Eastern Mediterranean University, Faculty of Engineering, Dept. of Computer Engineering
Keywords: Computer Engineering
Evolutionary programming (Computer science)--Evolutionary computation
Evolutionary Algorithms
Local search
Single Objective Problems
Issue Date: 2018
Publisher: Eastern Mediterranean University (EMU) - Doğu Akdeniz Üniversitesi (DAÜ)
Citation: Holoubi, Batoul Abdulmoti. (2018). Hybrid PSO Algorithm for the Solution of Learningbased Real-Parameter Single Objective Optimization Problems. Thesis (M.S.), Eastern Mediterranean University, Institute of Graduate Studies and Research, Dept. of Computer Engineering, Famagusta: North Cyprus.
Abstract: During the past 20 years, the community of science have become more interested in Evolutionary Algorithms which have been used in many applications. This thesis proposes hybridized Particle Swarm Optimization (PSO) algorithm that targets to combine the original PSO with a simple local search technique (HPSO-FminLS). FminLS, have been used as a simple local search with original PSO for solving Learning-based-Real-Parameter Single Objective Optimization Problems (LbRPSOOP). These problems are provided in CEC2015 Congress on Evolutionary Computation. Technically, we solved CEC15 in dimensions D10, D30, D50 with HPSO-FminLS then developed 4 different versions by using local search and PSO algorithms. HPSO-FminLS reached optimal solution in Unimodal problems, and the near optimal solution in other problems.
ÖZ: Son 20 yılda, Bilim Topluluğu, birçok uygulamada kullanılan Metaheuristik yöntemler olarak kullanılan Evrim Algoritmalarına daha fazla ilgi duydu. Bu tez, orijinal Parçacık Sürüsü Optimizasyonu'nu (PSO) basit bir yerel arama tekniği ile birleştirmeyi hedefleyen melezleştirilmiş HPSO-FminLS algoritmasını öneriyor. FminLS, Öğrenme Tabanlı Gerçek Parametre Tek Hedefli Optimizasyon Problemlerini (LbRPSOOP) çözmek için orijinal PSO ile basit bir yerel arama olarak kullanılmıştır. Kullanılan problemler, CEC2015 Evrimsel Hesaplama Kongresi'nden sağlanmaktadır. Teknik olarak, HPSO-FminLS ile üç farklı boyutta, 10, 30 ve 50, CEC15'de verilen problemler, yerel arama ve PSO algoritmaları kullanarak 4 farklı versiyon ile çözülmüşlerdir. HPSO-FminLS, Unimodal problemlerde en iyi çözüme, diğer problemlerde ise en iyi çözüme kabuledilir bir yakınlıkta ulaşmıştır.
Description: Master of Science in Computer Engineering. Thesis (M.S.)--Eastern Mediterranean University, Faculty of Engineering, Dept. of Computer Engineering, 2018. Supervisor: Assist. Prof. Dr. Ahmet Ünveren.
URI: http://hdl.handle.net/11129/4676
Appears in Collections:Theses (Master's and Ph.D) – Computer Engineering

Files in This Item:

File Description SizeFormat
holoubibatoul.pdfThesis, Master2.1 MBAdobe PDFView/Open


This item is protected by original copyright

Recommend this item
View Statistics

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0! DSpace Software Copyright © 2002-2010  Duraspace - Feedback