DSpace
 

EMU I-REP >
08 Faculty of Arts and Sciences >
Department of Mathematics >
Theses (Master's and Ph.D) – Mathematics >

Please use this identifier to cite or link to this item: http://hdl.handle.net/11129/4761

Title: Quantum Integral Inequalities on Finite Intervals
Authors: Oğurlu, Sonuç Zorlu
Taher, Farhad Mustafa
Eastern Mediterranean University, Faculty of Arts and Sciences, Dept. of Mathematics
Keywords: Differential equations--Numerical solutions
Quantum Integral Inequalities
Hölder’s inequality
Hermite-Hadamard’s inequality
Ostrowski's Inequality
Grüss-Chebysev integral inequality
Mathematics
Issue Date: 2018
Publisher: Eastern Mediterranean University (EMU) - Doğu Akdeniz Üniversitesi (DAÜ)
Citation: Taher, Farhad Mustafa. (2018). Quantum Integral Inequalities on Finite Intervals. Thesis (M.S.), Eastern Mediterranean University, Institute of Graduate Studies and Research, Dept. of Mathematics, Famagusta: North Cyprus.
Abstract: The Integral Inequalities can be used for the study of qualitative and quantitative properties of integrals and they perform an important role in the theory of differential equations. The study of the fractional q-integral inequalities is also of great importance. The purpose of this thesis is to study q-calculus analogs of some classical integral inequalities. In particular, some of the greatest significant integral inequalities of analysis are extended to Quantum calculus. We will work on the q-generalization of the Hölder, Hermite-Hadamard, Trapezoid, Ostrowski, Cauchy-BunyakovskySchwarz, Grüss, and Grüss-Chebysev integral inequalities. The analysis is based on the notions of q-derivative and q-integral on finite intervals presented recently by the author in [9]. Keywords: Quantum Integral Inequalities; Hölder’s inequality, Hermite-Hadamard’s inequality, Ostrowski's Inequality, Grüss-Chebysev integral inequality
ÖZ: İntegral eşitsizlikleri, integrallerin nitel ve nicel özelliklerinin incelenmesi için kullanılabilir ve diferansiyel denklemler teorisinde temel bir rol oynar. Kesirli qintegral eşitsizliklerinin incelenmesi de büyük önem taşımaktadır. Bu çalışmanın amacı bazı klasik integral eşitsizliklerinin q-Kalkülüs analoglarını bulmaktır. Özellikle analizin en önemli integral eşitsizliklerinin bazılarının kuantum Kalkülüs’e genelleştirmelerini incelenecektir. Bunlar, Hölder, Hermite-Hadamard, Trapezoid, Ostrowski, Cauchy-Bunyakovsky-Schwarz, Grüss ve Grüss-Čebyšev integral eşitsizlikleri olacaktır. Yapılan çalışmalar ve analizler, son zamanlarda J. Tariboon ve S. Ntouyas v.s. araştırmacıların çalıştığı sınırlı aralıklarda q-türev ve qintegral kavramlarına dayanmaktadır. Anahtar Kelimeler: Quantum İntegral eşitsizlikleri, Hölder eşitsizliği, HermiteHadamard eşitsizliği, Ostrovski eşitsizliği, Grüss-Chebysev eşitsizliği, Konvekslik
Description: Master of Science in Mathematics. Thesis (M.S.)--Eastern Mediterranean University, Faculty of Arts and Sciences, Dept. of Mathematics, 2018. Supervisor: Prof. Dr. Sonuç Zorlu Oğurlu.
URI: http://hdl.handle.net/11129/4761
Appears in Collections:Theses (Master's and Ph.D) – Mathematics

Files in This Item:

File Description SizeFormat
taherfarhad.pdfTheses ,Master.845.71 kBAdobe PDFView/Open


This item is protected by original copyright

Recommend this item
View Statistics

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0! DSpace Software Copyright © 2002-2010  Duraspace - Feedback