DSpace
 

EMU I-REP >
08 Faculty of Arts and Sciences >
Department of Mathematics >
Theses (Master's and Ph.D) – Mathematics >

Please use this identifier to cite or link to this item: http://hdl.handle.net/11129/5857

Title: The Interplay between Fractional Calculus and Complex Analysis
Authors: Fernandez, Arran (Supervisor)
Bouzouina, Chaima
Eastern Mediterranean University, Faculty of Arts and Sciences, Dept. of Mathematics
Keywords: Mathematics
Applied Mathematics and Computer Science
Fractional Calculus
Fractional derivatives
complex analysis
d-bar derivatives
Leibniz rule
Issue Date: Sep-2021
Publisher: Eastern Mediterranean University (EMU) - Doğu Akdeniz Üniversitesi (DAÜ)
Citation: Bouzouina, Chaima. (2021). The Interplay between Fractional Calculus and Complex Analysis. Thesis (Ph.D.), Eastern Mediterranean University, Institute of Graduate Studies and Research, Dept. of Mathematics, Famagusta: North Cyprus.
Abstract: The usual definitions of fractional derivatives and integrals are very well-suited for a fractional generalisation of real analysis. But the basic building blocks of complex analysis are different: although fractional derivatives of complex-valued functions and to complex orders are well known, concepts such as the Cauchy–Riemann equations and d-bar derivatives have no analogues in the standard fractional calculus. In the current work, we propose a formulation of fractional calculus which is better suited to complex analysis and to all the tools and methods associated with this field. We consider some concrete examples and various fundamental properties of this fractional version of complex analysis. Keywords: fractional derivatives, complex analysis, d-bar derivatives, Leibniz rule
ÖZ: Kesirli türevlerin ve integrallerin olagan tanımları, gerçek analizin kesirli bir ˘ genelle¸stirilmesi için çok uygundur. Ancak kompleks analizin temel yapı ta¸sları farklıdır: kompleks degerli fonksiyonların kesirli türevleri ve kompleks emirler iyi ˘ bilinmesine ragmen, Cauchy-Riemann denklemleri ve d-bar türevleri gibi kavramların ˘ standart fraksiyonel kalkülüste analogları yoktur. Mevcut çalı¸smada, kompleks analize ve bu alanla ili¸skili tüm araç ve yöntemlere daha uygun kesirli kalkülüsün formülasyonunu öneriyoruz. kompleks analizin bu kesirli versiyonunun bazı somut örneklerini ve çe¸sitli temel özelliklerini göz önünde bulunduruyoruz. Anahtar Kelimeler: kesirli türevlerin, kompleks analiz, d-bar türevleri, Leibniz kuralı.
Description: Doctor of Philosophy in Mathematics. Institute of Graduate Studies and Research. Thesis (Ph.D.) - Eastern Mediterranean University, Faculty of Arts and Sciences, Dept. of Mathematics, 2021. Supervisor: Asst. Prof. Dr. Arran Fernandez.
URI: http://hdl.handle.net/11129/5857
Appears in Collections:Theses (Master's and Ph.D) – Mathematics

Files in This Item:

File Description SizeFormat
Bouzouinachaima-Ph.D..pdfThesis, Doctoral670.27 kBAdobe PDFView/Open


This item is protected by original copyright

Recommend this item
View Statistics

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0! DSpace Software Copyright © 2002-2010  Duraspace - Feedback