DSpace
 

EMU I-REP >
08 Faculty of Arts and Sciences >
Department of Mathematics >
Theses (Master's and Ph.D) – Mathematics >

Please use this identifier to cite or link to this item: http://hdl.handle.net/11129/6040

Title: Existence Results for Boundary Value Problems of Fractional Type Differential Equations
Authors: Mahmudov, Nazım (Supervisor)
Emin, Sedef Sultan
Eastern Mediterranean University, Faculty of Arts and Sciences, Dept. of Mathematics
Keywords: Mathematics Department
Boundary Value Problems--Differential Equations
Fractional differential equations; Katugampola fractional integral; Caputo fractional derivative; Riemann-Liouville fractional integral; fixed point theorems; parametrization technique; successive approximations; multivariable operations
Issue Date: Jun-2019
Publisher: Eastern Mediterranean University (EMU) - Doğu Akdeniz Üniversitesi (DAÜ)
Citation: Emin, Sedef Sultan. (2019). Existence Results for Boundary Value Problems of Fractional Type Differential Equations. Thesis (Ph.D.), Eastern Mediterranean University, Institute of Graduate Studies and Research, Dept. of Mathematics, Famagusta: North Cyprus.
Abstract: The theme of this thesis is based on the solutions of fractional differential equations. We investigate the existence and uniqueness results of the fractional differential equations with boundary value conditions. Mostly, in this thesis, one of the fractional differential equation which is the Caputo type fractional differential equation is used and also, for the boundary conditions, different types of boundary conditions are used such as nonlocal Katugampola fractional integral conditions and nonlinear boundary conditions. The existence and uniqueness results of solutions are discussed by using standard fixed point theorems such as Banach fixed point theorem, Leray-Schauder nonlinear alternative and Krasnoselskii's fixed point theorem. Furthermore, Perov's fixed point theorem is investigated for multivariable operators. Moreover, Ulam Hyers stable is studied. In addition, for the nonlinear boundary conditions of Caputo type fractional differential equation, parametrization technique is used. So, numerical analytic scheme is established for finding the successive approximations. Theories which are studied in this thesis are illustrated with examples.
ÖZ: Bu tezin konusu kesirli diferansiyel denklemlerin çözümüne dayanmaktadır. Tanımlanmış olan kesirli diferensiyel denklemlerin varlığı ve tek çözüm olma sonuçları araştırıldı. Bu tezde, çoğunlukla, kesirli diferansiyel denklemlerden biri olan Caputo tipi kesirli diferansiyel denklem kullanılmıştır. Ayrıca, sınır koşulları için, yerel olmayan Katugampola kesirli integral koşulları ve doğrusal olmayan sınır koşulları gibi farklı sınır koşulları uygulanmıştır. Çözümlerin varlığı ve tek olma sonuçları, Banach sabit nokta teoremi, Leray-Schauder'ın doğrusal olmayan alternatifi ve Krasnoselskii'nin sabit nokta teoremleri kullanılarak tartışılmıştır. Ayrıca, Perov'un sabit nokta teoremi çok değişkenli operatörler için incelenmiştir. Ek olarak, Caputo tipi kesirli diferensiyel denklemin doğrusal olmayan sınır koşulları için parametreleme tekniği kullanılmıştır. Böylece, ardışık yaklaşılanları bulmak için sayısal analitik şema kullanılmıştır. Ayrıca, bu tezde incelenen teoriler örneklerle gösterilmiştir.
Description: Doctor of Philosophy in Mathematics. Institute of Graduate Studies and Research. Thesis (Ph.D.) - Eastern Mediterranean University, Faculty of Arts and Sciences, Dept. of Mathematics, 2019. Supervisor: Prof. Dr. Nazım Mahmudov
URI: http://hdl.handle.net/11129/6040
Appears in Collections:Theses (Master's and Ph.D) – Mathematics

Files in This Item:

File Description SizeFormat
EminSedef.pdfThesis, Doctoral860.76 kBAdobe PDFView/Open


This item is protected by original copyright

Recommend this item
View Statistics

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0! DSpace Software Copyright © 2002-2010  Duraspace - Feedback