DSpace
 

EMU I-REP >
02 Faculty of Engineering >
Department of Civil Engineering >
Theses (Master's and Ph.D) – Civil Engineering >

Please use this identifier to cite or link to this item: http://hdl.handle.net/11129/6116

Title: Seismic Performance Assessment of Reinforced Concrete Building Stock Using Artificial Neural Network and Linear Regression Analysis
Authors: Özay, Giray (Supervisor)
Karayel, Oğuz
Eastern Mediterranean University, Faculty of Engineering, Dept. of Civil Engineering
Keywords: Civil Engineering Department
Earthquake resistant design
Earthquake resistant design--Concrete construction--Reinforced concrete
Buildings--Earthquake effects
Reinforced concrete--Reinforced concrete construction
ANN, TBEC2018, Pushover, Performance
Issue Date: Jan-2020
Publisher: Eastern Mediterranean University (EMU) - Doğu Akdeniz Üniversitesi (DAÜ)
Citation: Karayel, Oğuz. (2020). Seismic Performance Assessment of Reinforced Concrete Building Stock Using Artificial Neural Network and Linear Regression Analysis. Thesis (M.S.), Eastern Mediterranean University, Institute of Graduate Studies and Research, Dept. of Civil Engineering, Famagusta: North Cyprus.
Abstract: Istanbul is located on extensive piece of land which is susceptible by seismic activity. In the last half century, Turkish earthquake codes for designing building under earthquake loads went through many modifications and editions (TEC1975, TEC1997, TEC2007, and TBEC2018). Hence, there are many buildings existing that has been built in accordance with old regulations since improvements in the recent earthquake code. Therefore, the need of a quick assessment method to identify the building seismic performance level in accordance with the latest seismic code is extremely vital. For this purpose, this research is aiming to prepare a database for the quick estimation on building seismic performance by constructing an artificial neural network model that is capable of this, relating building material properties, geometry, designed standard, site class, and peak ground acceleration to the building seismic performance levels. In order to meet these objectives, 540 reinforced concrete building models with various parameters are modeled with respect to TEC1975, TEC1997, TEC2007, TBEC2018 and seismic performance obtained from the analysis in accordance with TBEC2018. Data obtained are used to train and validate the constructed artificial neural network (ANN) model. Also, several training algorithms performed with various number of hidden layers and comparison between them is discussed in order to figure out the optimum number of hidden layers and best train method which gives the highest accuracy of prediction for the performance assessment of the buildings. Since the artificial neural network model created for the performance level estimation of the existing buildings, validity of the created model is checked by the application through the existing buildings as a case study with various parameters within the range of considerations according to the existing study. The data obtained from the analysis is used to perform multiple linear regression analysis (MVLRA) as well. Results indicate that ANN can be a very profound technique in predicting the seismic performance levels with a determination coefficient (R2 ) of 0.8786. Furthermore, identification of the significance of the predictor variables according to their effect on seismic assessment have been done with several methods which are widely used in literature as well.
ÖZ: Istanbul deprem hareketleri ile kritik durumda bulunan büyük bir bölgedir. Bu bağlamda son zamanlarda depreme dayanıklı yapı tasarımı konusunda birçok araştırma ve geliştirmelerle birlikte Türk Deprem Yönetmelikleri tasarlanmıştır. Buna rağmen, farklı tasarım ve yaklaşım öngörüleriyle önceden inşa edilmiş birçok mevcut yapı bulunmaktadır. Bu doğrultuda, yapıların yeni deprem yönetmeliğine göre yapı performans seviyesinin belirlenmesi adına hızlı değerlendirme yönteminin geliştirilmesi hayati bir ihtiyaç haline gelmiştir. Bu çalışmanın amacı yapay sinir ağı modeli ile binaların farklı malzeme özellikleri, geometrisi, tasarım yönetmeliği, zemin çeşidi, yer ivmesine göre bina performans seviyesi hakkında hızlı değerlendime metodu geliştirmektir. Bu bağlamda, TDY1975, TDY1997, TDY2007 ve TBDY2018 kullanılarak belirtilen farklı parametreler doğrultusunda 540 betonarme bina modellenmiş ve TBDY2018 ile bina performans analizi yapılmıştır. Analizlerden elde edilen veriler yapay sinir ağı modeli öğretiminde ve doğrulamasında kullanılmıştır. Buna ek olarak, yapay sinir ağı farklı öğrenim algoritmaları ile modellenip en doğru performans tahmini elde edilen öğrenim algoritması ile çalışan yapay sinir ağı modeli belirlenmiştir. Analizden elde edilen veriler ile doğrusal regresyon analizi de yapılmıştır. Sonuç olarak yapay sinir ağı modelinin doğruluk payı anlamında çok etkili bir teknik olduğu ve modelin doğruluk oranı (R2 ) 0.8786 olarak bulunmuştur. Buna ek olarak, çalışmada kullanılan farklı parametrelerin performans seviyesinin belirlenmesindeki etkisi bağlamında önem sırasına göre sıralanması adına literatür araştırması ile yaygın olarak kullanıldığı belirlenen farklı metodlar uygulanılmıştır.
Description: Master of Science in Civil Engineering. Institute of Graduate Studies and Research. Thesis (M.S.) - Eastern Mediterranean University, Faculty of Engineering, Dept. of Civil Engineering, 2020. Supervisor: Assoc. Prof. Dr. Giray Özay.
URI: http://hdl.handle.net/11129/6116
Appears in Collections:Theses (Master's and Ph.D) – Civil Engineering

Files in This Item:

File Description SizeFormat
OğuzKarayelMs.pdfThesis, Master2.01 MBAdobe PDFView/Open


This item is protected by original copyright

Recommend this item
View Statistics

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0! DSpace Software Copyright © 2002-2010  Duraspace - Feedback