|
|
EMU I-REP >
08 Faculty of Arts and Sciences >
Department of Mathematics >
Theses (Master's and Ph.D) – Mathematics >
Please use this identifier to cite or link to this item:
http://hdl.handle.net/11129/6486
|
| Title: | On Langevin Type of Fractional Time - Delay Differential Equations |
| Authors: | Mahmudov, Nazım (Supervisor) Aydın, Mustafa Eastern Mediterranean University, Faculty of Arts and Sciences, Dept. of Mathematics |
| Keywords: | Thesis Tez |
| Issue Date: | Jan-2023 |
| Publisher: | Eastern Mediterranean University (EMU) - Doğu Akdeniz Üniversitesi (DAÜ) |
| Citation: | Aydın, Mustafa. (2023).On Langevin Type of Fractional Time - Delay Differential Equations . Thesis (Ph.D.), Eastern Mediterranean University, Institute of Graduate Studies and Research, Dept. of Mathematics, Famagusta: North Cyprus. |
| Abstract: | The existence uniqueness of solutions of the impulsive delayed fractional differential
equations(IDFDEs) was proved. The Ulam-Hyers stability of IDFDEs was
demonstrated. The controllability of IDFDEs was shown via iterative learning control
technique. In the sequel, the neutral fractional multi-delayed differential
equations(NFMDDEs) was introduced. The existence and uniqueness of NFMDDEs
was investigated in addition to its stability, and relative controllability of NFMDDEs
was proved by means of fixed point technique. Lastly, new fractional integral and
derivatives, i.e. φ-generalized Riemann Liouville k-fractional integral, φ-generalized
Riemann Liouville k-fractional derivative, φ-generalized Caputo k-fractional
derivative were defined and some fundamental features were discussed to build
theory’s basement. ÖZ:
˙Impulsif ve gecikmeli kesirli bir diferansiyel denklemin çözümünün var ve tek oldugu˘
ispatlandı. Bu kesirli diferansiyel denklemin Ulam-Hyers anlamında kararlı oldugu˘
gösterildi. Yinelemeli ögrenme kontrol edilebilirlik tekni ˘ gi yardımıyla da bu ˘
denklemin kontrol edilebilecegi gösterildi. Hemen akabinde, çok gecikmeli nötr ve ˘
kesirli diferansiyel denklemi tanıtıldı. Bu kesirli diferansiyel denklemin kararlılıgına ˘
ilaveten sistemin çözümünün var ve tek oldugu ara¸stırıldı ve sabit nok teoremleri ˘
teknigi aracılı ˘ gıyla bu kesirli diferansiyel denklemin nisbi kontrol edilebilece ˘ gi ispat ˘
edildi. Son olarak, φ-genelle¸stirilmi¸s Riemann Liouville k-kesirli integrali,
φ-genelle¸stirilmi¸s Riemann Liouville k-kesirli türevi, φ-genelle¸stirilmi¸s Caputo
k-kesirli türevi olmak üzere yeni kesirli integral ve türevleri tanımlandı ve teorinin
temelini in¸sa etmek için bazı temel özellikler tartı¸sıldı. |
| Description: | Doctor of Philosophy in Mathematics. Institute of Graduate Studies and Research. Thesis (Ph.D.) - Eastern Mediterranean University, Faculty of Arts and Sciences, Dept. of Mathematics, 2023. Supervisor: Prof. Dr. Nazım Mahmudov |
| URI: | http://hdl.handle.net/11129/6486 |
| Appears in Collections: | Theses (Master's and Ph.D) – Mathematics
|
This item is protected by original copyright
|
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
|