|
|
EMU I-REP >
08 Faculty of Arts and Sciences >
Department of Mathematics >
Theses (Master's and Ph.D) – Mathematics >
Please use this identifier to cite or link to this item:
http://hdl.handle.net/11129/6495
|
| Title: | Series Approximate Analytical Solution of Fractional Partial Differential Equations |
| Authors: | Mahmudov, Nazim Ojo, Gbenga Olayinka Eastern Mediterranean University, Faculty of Arts and Sciences, Dept. of Mathematics |
| Keywords: | Thesis Tez |
| Issue Date: | Aug-2021 |
| Publisher: | Eastern Mediterranean University (EMU) - Doğu Akdeniz Üniversitesi (DAÜ) |
| Citation: | Ojo, Gbenga Olayinka. (2021). Series Approximate Analytical Solution of Fractional Partial Differential Equations. Thesis (Ph.D.), Eastern Mediterranean University, Institute of Graduate Studies and Research, Dept. of Mathematics, Famagusta: North Cyprus. |
| Abstract: | The primary objective of this thesis work is the presentation of a new iterative
procedure to achieve both series approximate solution and analytical solution of
positive non-integer order partial differential equations. The order of the derivative is
considered according to Caputo’s assumption. This iterative procedure is called
Aboodh transform iterative method.
The Aboodh transform iterative method is a combination of the new iterative method
with the Aboodh transform. The new iterative method was introduce as important
tool to linearize all the associated nonlinear terms since the Aboodh transform cannot
handle the nonlinear terms.
Several examples and cases are examined. The solutions obtained were compared
with solutions obtained by other existing methods in literature. Also, the solutions
reveals that the Aboodh transform iterative procedure is less computational involving
and requires no restrictive assumption, Lagrange multipliers and Adomian polynomial.
The software used to implement the Aboodh transform iterative procedure are LaTex,
MATHEMATICA 10.0 and MATLAB R2021. ÖZ:
Bu tez çalı¸smasının temel amacı, pozitif ve tamsayı olmayan mertebeden kısmi
difernsiyel denklemlerin hem seri yakla¸sık çözümünü hem de analitik çözümünü elde
etmek için yeni bir iteratif prosedürün sunulmasıdır. Türevin mertebesini belirlemede
Caputo’nun varsayımı dikkate alınmı¸stır. Bu yinelemeli prosedüre “Aboodh
dönü¸sümü yinelemeli yöntemi” denmektedir.
Aboodh dönü¸sümü yinelemeli yöntemi, Aboodh dönü¸sümü ile yeni yinelemeli
yöntemin bir birle¸simidir. Aboodh dönü¸sümünün dogrusal olmayan terimler için ˘
çalı¸smadıgından dolayı, yeni iteratif metod do ˘ grusal olmayan terimlerin ˘
dogrusalla¸stırması özelli ˘ giyle önemli bir araç olarak sunulmaktadır. ˘
Bu tezde, bazı örnekler ve çe¸sitli vakalar degerlendirilmi¸stir. Elde edilen sonuçlar, ˘
literatürde kullanılan diger metodlar ile kar¸sıla¸stırılmı¸stır. Ayrıca, elde edilen çözümler ˘
Adoodh dönü¸sümü yinelemeli metodun daha az hesap gerektirdigini ve daha kısıtlı ˘
varsayımlar kullanıldıgını ortaya koymu¸stur. ˘
Son olara, Aboodh dönü¸sümü yinelemeli prosedürünü uygulamak için LaTex,
MATHEMATICA 10.0 ve MATLAB R2021 yazılımları kullanılmı¸stır. |
| Description: | Doctor of Philosophy in Mathematics. Institute of Graduate Studies and Research. Thesis (Ph.D.) - Eastern Mediterranean University, Faculty of Arts and Sciences, Dept. of Mathematics, 2021. Supervisor: Prof. Dr. Nazim Mahmudov |
| URI: | http://hdl.handle.net/11129/6495 |
| Appears in Collections: | Theses (Master's and Ph.D) – Mathematics
|
This item is protected by original copyright
|
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
|