|
|
EMU I-REP >
11 Faculty of Tourism >
Theses (Master's and Ph.D) – Tourism >
Please use this identifier to cite or link to this item:
http://hdl.handle.net/11129/6535
|
| Title: | Do eReferral, eWOM, Familiarity, and Cultural Distance Predict Enrollment Intention among Educational Tourists? Application of Artificial Intelligence Technique |
| Authors: | İlkan, Mustafa (Co-Supervisor) Öztüren, Ali (Supervisor) Oday, Akile Eastern Mediterranean University, Faculty of Tourism |
| Keywords: | Thesis Tez Faculty of Tourism Tourism--Educational Tourism--Educational Tourist Foreign Study--International education--Applications--Artificial Intelligence Students--Travel--Foreign study--Tourism Familiarity eReferral eWOM Online reviews Cultural distance Enrollment Educational tourism |
| Issue Date: | Sep-2021 |
| Publisher: | Eastern Mediterranean University (EMU) - Doğu Akdeniz Üniversitesi (DAÜ) |
| Citation: | Oday, Akile. (2021). Do eReferral, eWOM, Familiarity, and Cultural Distance Predict Enrollment Intention among Educational Tourists? Application of Artificial Intelligence Technique. Thesis (Ph.D.), Eastern Mediterranean University, Institute of Graduate Studies and Research, Faculty of Tourism, Famagusta: North Cyprus. |
| Abstract: | The extant literature has demonstrated the benefits of electronic word-of-mouth
(eWOM), electronic referral (eReferral), familiarity, and cultural distance on
behavioral outcomes separately. Research efforts have overlooked their collective
effects from educational tourism perspective. This dissertation fecundates the concept
of eWOM, eReferral, familiarity, and cultural distance with social network theory to
explore their influence on enrollment intention. Cross-sectional data garnered from
educational tourists based on a judgmental sampling technique were subjected to linear
modeling and artificial neural network modeling in training and testing phases.
Empirical analysis based on a single-sourced data of n=931 educational tourists
confirmed the influence of eReferral, eWOM, familiarity, and cultural distance on
enrollment intentions symmetrically (linear modeling) and asymmetrically (artificial
neural network). The artificial neural network technique exerted higher predictive
relevance and validity. This dissertation provides meaningful theoretical, practical,
and methodological insights into the collective and contributive effects of eReferral,
eWOM, familiarity, and cultural distance on ed-tourist enrollment intentions.
Practically, implications for university administrators and marketers are prescribed.
Methodologically, the research provides incremental insights from orthodox (i.e.,
linear) and contemporary analytical (i.e., artificial neural network) techniques, which
are relevant to the wider management and tourism literature. The results suggest that
eReferral, eWOM, familiarity and cultural distance can predict intention to enroll in
both symmetrically (linear modelling) and asymmetrically (Artificial Neural Network)
manner. The asymmetric modeling possesses greater predictive validity and relevance.
This study contributes theoretically and methodologically to the management literature
by validating the proposed relationships and deploying contemporary method such as
Artificial Neural Network. ÖZ:
Mevcut literatür, elektronik ağızdan ağıza iletişim (eWOM), elektronik yönlendirme
(eReferral), aşinalık ve kültürel mesafenin davranışsal sonuçlar üzerindeki faydalarını
ayrı ayrı göstermiştir. Araştırma çabaları, eğitim turizmi perspektifinden kolektif
etkilerini gözden kaçırmıştır. Bu tez, kayıt niyeti üzerindeki etkilerini araştırmak için
eWOM, eReferral, aşinalık ve kültürel mesafe kavramlarını sosyal ağ teorisi ile besler.
Eğitim turistlerinden yargısal örnekleme tekniğine dayalı olarak elde edilen kesitsel
veriler, eğitim ve test aşamalarında doğrusal modelleme ve yapay sinir ağı
modellemesine tabi tutulmuştur. n=931 eğitim turistinin tek kaynaklı verilerine
dayanan ampirik analiz, eReferral, eWOM, aşinalık ve kültürel mesafenin kayıt
niyetleri üzerindeki etkisini simetrik (doğrusal modelleme) ve asimetrik (yapay sinir
ağı) olarak doğruladı. Yapay sinir ağı tekniği, daha yüksek öngörücü alaka ve
geçerlilik uyguladı. Bu tez, eReferral, eWOM, aşinalık ve kültürel mesafenin ed-turist
kayıt niyetleri üzerindeki kolektif ve katkıda bulunan etkilerine dair anlamlı teorik,
pratik ve metodolojik içgörüler sağlar. Pratik olarak, üniversite yöneticileri ve
pazarlamacılar için çıkarımlar öngörülmüştür. Metodolojik olarak, araştırma, daha
geniş yönetim ve turizm literatürü ile ilgili olan ortodoks (yani doğrusal) ve çağdaş
analitik (yani yapay sinir ağı) tekniklerinden artan içgörüler sağlar. Sonuçlar,
eReferral, eWOM, aşinalık ve kültürel mesafenin hem simetrik (doğrusal modelleme)
hem de asimetrik (Yapay Sinir Ağı) şekilde kaydolma niyetini tahmin edebileceğini
göstermektedir. Asimetrik modelleme, daha fazla tahmin geçerliliğine ve alaka
düzeyine sahiptir. Bu çalışma, önerilen ilişkileri doğrulayarak ve Yapay Sinir Ağı gibi
çağdaş bir yöntemi kullanarak yönetim literatürüne teorik ve metodolojik olarak
katkıda bulunmaktadır. |
| Description: | Doctor of Philosophy in Tourism Management. Institute of Graduate Studies and Research. Thesis (Ph.D.) - Eastern Mediterranean University, Faculty of Tourism, 2021. Co-Supervisor: Prof. Dr. Mustafa İlkan and Supervisor: Prof. Dr. Ali Öztüren. |
| URI: | http://hdl.handle.net/11129/6535 |
| Appears in Collections: | Theses (Master's and Ph.D) – Tourism
|
This item is protected by original copyright
|
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
|