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Effect of the Born–Infeld parameter in higher dimensional Hawking radiation
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We show in detail that the Hawking temperature calculated from the surface gravity is in agreement with
the result of exact semi-classical radiation spectrum for higher dimensional linear dilaton black holes
in various theories. We extend the method derived first by Clément–Fabris–Marques for 4-dimensional
linear dilaton black hole solutions to the higher dimensions in theories such as Einstein–Maxwell dilaton,
Einstein–Yang–Mills dilaton and Einstein–Yang–Mills–Born–Infeld dilaton. Similar to the Clément–Fabris–
Marques results, it is proved that whenever an analytic solution is available to the massless scalar
wave equation in the background of higher dimensional massive linear dilaton black holes, an exact
computation of the radiation spectrum leads to the Hawking temperature T H in the high frequency
regime. The significance of the dimensionality on the value of T H is shown, explicitly. For a chosen
dimension, we demonstrate how higher dimensional linear dilaton black holes interpolate between the
black hole solutions with Yang–Mills and electromagnetic fields by altering the Born–Infeld parameter in
aspect of measurable quantity T H . Finally, we explain the reason of, why massless higher dimensional
linear dilaton black holes cannot radiate.

© 2009 Elsevier B.V. All rights reserved.
1. Introduction

Although today there are several methods to compute the
Hawking radiation (see for instance [1–6], and references therein),
it still attracts interest to consider alternative derivations. On the
other hand, none of them is completely conclusive. Nevertheless,
the most direct is Hawking’s original study [1], which computes
the Bogoliubov coefficients between in and out states for a realis-
tic collapsing black hole. The most significant remark on this study
is that a black hole can emit particles from its event horizon with
a temperature proportional to its surface gravity. Another elegant
contribution was made to the Hawking radiation by Unruh [7]. He
showed that it is possible to obtain the same Hawking tempera-
ture T H , when the collapse is replaced by appropriate boundary
conditions on the horizon of an eternal black hole. Instead of com-
puting the Bogoliubov coefficients in order to obtain the black hole
radiation, one may alternatively compute the reflection and trans-
mission coefficients of an incident wave by the black hole. This
method works best if the wave equation can be solved, exactly.
From now on, we designate this method with “semi-classical radi-
ation spectrum method” and abbreviate it as SCRSM.

Recently, Clément et al. [8] have studied the SCRSM for a class
of non-asymptotically flat charged massive linear dilaton black
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holes. The metric of the associated linear dilaton black holes
is a solution to the Einstein–Maxwell dilaton (EMD) theory in
4-dimensions. It is shown that in the high frequency regime, the
SCRSM for massive black holes yield the same temperature with
the surface gravity method. Their result for a massless black hole
is in agreement with the fact that a massless object cannot radi-
ate.

In this Letter, we shall extend the application of SCRSM to lin-
ear dilaton black hole solutions in Einstein–Maxwell dilaton (EMD)
[9], Einstein–Yang–Mills dilaton (EYMD) [10] and Einstein–Yang–
Mills-Born–Infeld dilaton (EYMBID) [11] theories in higher dimen-
sions. The spacetimes describing these black holes are charged,
dilatonic and non-asymptotically flat. First, we introduce a generic
line-element of higher dimensional linear dilaton black holes in
which the metric functions are apt for the EMD, EYMD and EYM-
BID theories, where the latter two are presented recently [10,11].
Next, we consider the statistical T H of the massive linear dila-
ton black holes computed by using the surface gravity and discuss
their evaporation processes. According to the Stefan’s law, we show
that higher dimensional linear dilaton black holes evaporate in an
infinite time. In the meantime, during the evaporation process,
the Hawking temperature remains constant for a given dimension.
Besides this, the constant value of T H increases with the dimen-
sionality N . We then apply the SCRSM to the massive linear dilaton
black holes and show that this computation exactly matches with
the statistical T H in the high frequency regime. Finally, we answer
the question, why the massless extreme black holes do not radiate,
by establishing a connection between our work and [8].
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The organization of the our Letter is as follows. In Section 2,
we review briefly the higher dimensional linear dilaton black hole
solutions in the EMD, EYMD and EYMBID theories. In Section 3,
the evaporation of these black holes are discussed according to the
Stefan’s law. Section 4 is devoted to the analytical computation of
the T H via the SCRSM for the massive higher dimensional linear
dilaton black holes. We plot some graphs to compare the results
acquired from each theory. We draw our conclusions in Section 5.

2. Higher dimensional linear dilaton black holes in EMD, EYMD
and EYMBID theories

The metric ansatz for static spherically symmetric solutions
representing N-dimensional (N � 4) linear dilaton black holes can
be introduced by

ds2 = − f dt2 + dr2

f
+ h2 dΩ2

N−2, (1)

where f and h are only functions of r and the spherical line ele-
ment is

dΩ2
N−2 = dθ2

1 +
N−2∑
i=2

i−1∏
j=1

sin2 θ j dθ2
i , (2)

in which 0 � θk � π with k = 1, . . . , N − 3, and 0 � θN−2 � 2π .
Here, we set a proper ansatz for the metric functions h as

h = Ae− 2αΦ
N−2 , (3)

where Φ is the dilaton field, α is the dilaton parameter and A
is a coefficient to be determined for the respective theory. In the
present Letter, dilaton parameter α for linear dilaton black holes is
chosen by

e− 2αΦ
N−2 = √

r → h = A
√

r. (4)

The field equations, which are obtained from the action of the the-
ory together with metric (1) suggest that the general form of the
metric function f is

f = Σr

[
1 −

(
r+
r

) N−2
2

]
, (5)

where Σ is another coefficient to be determined for each the-
ory. From now on, r+ will be interpreted as the event horizon
of the black hole. By following the mass definition for the non-
asymptotically flat black holes, the so-called quasi-local mass M
introduced by Brown and York [12], one can see that the horizon
r+ is related to the mass M and the dimension N through

r+ =
[

8M

(N − 2)Σ AN−2

] 2
N−2

. (6)

Higher dimensional linear dilaton black holes to the EMD the-
ory was found long time ago by Chan et al. [9]. The solution is
obtained from the following N-dimensional EMD action

I = −1

16π

∫
dN x

√−g

(
R − 4

N − 2
(∇Φ)2 − e− 4αΦ

N−2 F 2
)

, (7)

where F 2 = Fμν F μν for the Maxwell field. The coefficients A and
Σ that give the correct metric functions (4) and (5) through the
action for the EMD theory are given by [9]

Σ → ΣEMD = 4

γ 2

(
N − 3

N − 2

)2

and A → AEMD = γ , (8)

where γ is a constant.
Besides the higher dimensional linear dilaton black hole solu-

tions to the EMD theory, new N-dimensional linear dilaton black
hole solutions to the EYMD and EYMBID theories are considered in
the literature [10,11]. The actions are

I = − 1

16π

∫
M

dN x
√−g

[
R − 4

N − 2
(∇Φ)2 + L(Φ)

]

− 1

8π

∫
∂M

dN−1x
√

−hK , (9)

and

I = − 1

16π

∫
M

dN x
√−g

[
R − 4

N − 2
(∇Φ)2 + L(F,Φ)

]

− 1

8π

∫
∂M

dN−1x
√

−hK , (10)

which describe the EYMD and EYMBID theories, respectively. Here,

L(Φ) = e− 4αΦ
N−2 Tr

(
F (a)

λσ F (a)λσ
)
, (11)

L(F,Φ) = 4β2e
4αΦ
N−2

(
1 −

√
1 + e− 8αΦ

N−2 Tr(F (a)
λσ F (a)λσ )

2β2

)
, (12)

in which

Tr(.) =
(N−1)(N−2)/2∑

a=1

(.). (13)

In the actions (9) and (10) R is the usual curvature scalar,
F(a) = F (a)

μν dxμ ∧ dxν stands for the Yang–Mills (YM) 2-forms and
β denotes the Born–Infeld parameter. The second term in the ac-
tions (9) and (10) is the surface integral with its induced metric
hij and trace K of its extrinsic curvature. It is found that the cor-
responding coefficients to the metric functions (4) and (5) of the
N-dimensional linear dilaton black hole solutions to the EYMD the-
ory [10] are

Σ → ΣEYMD = (N − 3)

(N − 2)Q 2
and A → AEYMD = √

2Q , (14)

and to the EYMBID theory [11] obtained as follows

Σ → ΣEYMBID = 2(N − 3)

(N − 2)Q 2
c

[
1 −

√
1 − Q 2

c

Q 2

]
and

A → AEYMBID = √
2Q

(
1 − Q 2

c

Q 2

) 1
4

. (15)

Here Q is known as YM charge and Q c is the critical value of YM
charge in which Q 2 > Q 2

c guarantees the existence of the metric
in the EYMBID theory. The value of the Q 2

c is given as

Q 2
c = (N − 2)(N − 3)

8β2
. (16)

3. Evaporation of higher dimensional linear dilaton black holes

It can be seen from the metric function (5) that for r+ > 0, the
horizon at r = r+ hides the null singularity at r = 0. On the other
hand, in the extreme case r+ = 0 metric (1) still exhibits the fea-
tures of the black holes. Since the central singularity r = 0 is null
and marginally trapped, it prevents outgoing signals to reach ex-
ternal observers. Using the conventional definition of the statistical
Hawking temperature [13], we get

T H = 1

4π
f ′(r+) = (N − 2)

8π
Σ. (17)

One can immediately observe that T H is constant for an arbi-
trary dimension N and increases with the dimensionality of the
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spacetime. As we learned from the black body radiation, radiating
objects loose mass in accordance with the Stefan’s law [8]. There-
fore while a black hole radiates, it should also loose from its mass.
According to Stefan’s law, we should first calculate the surface area
of the black hole (1). The horizon area S H is found as

S H = 2π
N−1

2

�( N−1
2 )

hN−2, (18)

where �(z) stands for the gamma function. After assuming that
only neutral quanta are radiated, Stefan’s law admits the following
time-dependent horizon solutions

r+(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

exp(− 1
2γ 6 ( N−3

N−2 )3μ(t)), EMD,

exp(− 1
27 Q 6 μ(t)), EYMD,

exp(− 1
24 Q 6(1+α)3 μ(t)), EYMBID

(19)

where

μ(t) = σ(N − 3)3π( N−9
2 )

(N − 2)�( N−1
2 )

(t − t0) and

0 < α =
√

1 − (N − 2)(N − 3)

8β2 Q 2
� 1, (20)

in which σ is Stefan’s constant, and t0 is an integration constant.
From the results (19), we remark that T H is constant with decreas-
ing mass for a chosen dimension N , and the black holes reach to
their extreme states r+ = 0 in an infinite time. Namely, the re-
quired time to evaporate each black hole is infinite.

4. Calculation of T H via SCRSM

Following the SCRSM [8], we now derive a more precise expres-
sion for the temperature of the higher dimensional linear dilaton
black holes (1). To this end, we should first study the wave scat-
tering in such spacetimes (1) with Eqs. (4) and (5). Contrary to the
several black hole cases, here the massless wave equation

�Ψ = 0, (21)

admits an exact solution in the spacetimes (1). The Laplacian op-
erator on a N-dimensional metric is given by

� = 1√−g
∂υ

(√−g∂υ
)
, (22)

where υ runs from 1 to N . One may consider a separable solution
as

Ψ = R(r)e−iωt Yl(ΩN−2), (23)

in which Yl(ΩN−2) is the eigenfunction of (N − 2)-dimensional
Laplace–Beltrami operator ∇2

N−2 with the eigenvalue −l(l + N − 3)

[14]. After substituting harmonic eigenmodes (23) into the wave
equation (21) and making a straightforward calculation, one ob-
tains the radial equation:

h2−N[
∂rhN−2 f ∂r R(r)

] +
[
ω2

f
− l(l + N − 3)

h2

]
R(r) = 0. (24)

After changing the independent variable and the parameters as

y = 1 −
(

r

r+

)( N−2
2 )

, λ̃2 = 4

(N − 2)2Σ A2
l(l + N − 3),

ω̃ = εω, (25)

where

ε = 2
, (26)
(N − 2)Σ
one transforms the radial equation (24) into the following hyper-
geometric equation

∂y
[

y(y − 1)∂y R(y)
] +

(
ω̃2 y − 1

y
− λ̃2

)
R(y) = 0. (27)

Further, letting

Λ̃ = 2ik, (28)

where k is

k =
√

ω̃2 − λ̃2 − 1

4
(29)

(throughout the Letter we assume that k has a real value), we can
obtain the general solution of (27) as follows

R(y) = C1(−y)iω̃ F

(
1

2
+ i(ω̃ + k),

1

2
+ i(ω̃ − k),1 + 2iω̃; y

)

+ C2(−y)−iω̃ F

(
1

2
+ i(−ω̃ + k),

1

2
− i(ω̃ + k),1 − 2iω̃; y

)
.

(30)

Thus, the solution (30) leads to the general solution of Eq. (24) as

R(ρ)

= C1

(
ρ − τ

τ

)iω̃

F

(
1

2
+ i(ω̃ + k),

1

2
+ i(ω̃ − k),1 + 2iω̃; τ − ρ

τ

)

+ C2

(
ρ − τ

τ

)−iω̃

× F

(
1

2
+ i(−ω̃ + k),

1

2
− i(ω̃ + k),1 − 2iω̃; τ − ρ

τ

)
, (31)

in which

ρ = (r)(
N−2

2 ), τ = (r+)(
N−2

2 ). (32)

Letting

ρ − τ

τ
= ex/ε, (33)

one gets the behavior of the partial wave near the horizon (r → r+)
as

Ψ � C1eiω(x−t) + C2e−iω(x−t), (34)

where C1 and C2 are the amplitudes of the near-horizon outgoing
and ingoing waves.

Now, we shall use the one of the special features of the hyper-
geometric functions in which it leads us to obtain the asymptotic
behavior of the partial wave. The feature is nothing but a transfor-
mation of the hypergeometric functions of argument y in (31) to
the hypergeometric functions of argument 1/y. The relevant trans-
formation is given by [15]

F (a,b; c; y)

= �(c)�(b − a)

�(b)�(c − a)
(−y)−a F (a,a + 1 − c;a + 1 − b;1/y)

+ �(c)�(a − b)

�(a)�(c − b)
(−y)−b F (b,b + 1 − c;b + 1 − a;1/y). (35)

This transformation yields the partial wave near spatial infinity as

Ψ �
(

r

r+

) 2−N
4

{
B1 exp

[
i

(
k

ε
x − ωt

)]
+ B2 exp

[
−i

(
k

ε
x + ωt

)]}
,

(36)
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where B1 and B2 denote the amplitudes of the asymptotic outgo-
ing and ingoing waves, respectively. After a straightforward calcu-
lation, one may derive the relations between B1, B2 and C1, C2 as
follows

B1 = C1
�(ĉ)�(â − b̂)

�(â)�(ĉ − b̂)
+ C2

�(2 − ĉ)�(â − b̂)

�(â − ĉ + 1)�(1 − b̂)
,

B2 = C1
�(ĉ)�(b̂ − â)

�(b̂)�(ĉ − â)
+ C2

�(2 − ĉ)�(b̂ − â)

�(b̂ − ĉ + 1)�(1 − â)
, (37)

where

â = 1

2
+ i(ω̃ + k), b̂ = 1

2
+ i(ω̃ − k), ĉ = 1 + 2iω̃. (38)

The coefficient of reflection by the black hole is calculated by
virtue of the fact that outgoing mode must be absent at the spatial
infinity. This is because the Hawking radiation is considered as the
inverse scattering by the black hole. Briefly B1 = 0 and it naturally
leads to

R = |C1|2
|C2|2 = |�(â)2|2

|�(â − ĉ + 1)2|2 , (39)

which is equivalent to

R = cosh2 π(k − ω̃)

cosh2 π(k + ω̃)
. (40)

Thus the resulting radiation spectrum is

(
e

ω
T H − 1

)−1 = R

1 − R
= cosh2 π(k − ω̃)

cosh2 π(k + ω̃) − cosh2 π(k − ω̃)
. (41)

From here one may easily read the temperature

T H = ω

2 ln[ coshπ(k+ω̃)
coshπ(k−ω̃)

]
, (42)

and for high frequencies k � ω̃ = 2
(N−2)Σ

ω, Eq. (41) reduces to

T H � lim
ω→large value

ω

2 ln[ coshπ(k+ω̃)
coshπ(k−ω̃)

]
� ω

2 ln(cosh 2πω̃)

� N − 2

8π
Σ (43)

which is nothing but the statistical Hawking temperature (17),
which we obtained before.

We plot T H (42) versus frequency ω for each theory with
N = 5, and display all graphs in Fig. 1. As it can be seen from
the Fig. 1, in the high limits of the Born–Infeld parameter β , the
thermal behavior of the linear dilaton black holes in the EYMBID
theory exhibits similar behavior to the EYMD theory. For a par-
ticular choice of β , it is possible to see the common behaviors in
thermal manner for the linear dilaton black holes in the EYMBID
and EMD theories. So we can deduce that in a special range of
the Born–Infeld parameter β , the linear dilaton black holes in the
EYMBID theory interpolate thermally between the black holes in
the EYMD and EMD theories. However, for ω → ∞, T H reduces
to the almost same constant value for each theory. The next fig-
ure, Fig. 2 is to examine T H versus dimension N within the high
frequency regime. According to Eq. (43), Fig. 2 represents T H in-
creasing linearly with N for the linear dilaton black holes in the
EMD and EYMD theories, it increases parabolically in the EYM-
BID case. On the other hand, the similar behavior, where at the
high limits of the Born–Infeld parameter β the behavior of the
T H in the EYMBID theory is almost close to the behavior of T H

in the EYMD theory, is also observed in Fig. 2 as highlighted in
Fig. 1. On the other hand, in the EYMBID theory T H takes limited
real values depending on the Born–Infeld parameter β through the
Fig. 1. Hawking temperature T H as a function of ω in 5D. The relation is given
by (42). Different line styles belong to different theories: Dotted lines represent the
EMD, dashed lines represent the EYMD and solid lines correspond to the EYMBID.
The physical parameters in (42) are chosen as follows: l = 1, Q = 1 and γ = √

2.

Fig. 2. A plot of the high frequency limits of Hawking temperatures T H versus the
dimension number N of the spacetime (1). Eq. (43) or Eq. (17) governs the plots.
Different line styles belong to different theories: Dotted lines represent the EMD,
dashed lines represent the EYMD and solid lines correspond to the EYMBID. The
physical parameters in (43) are chosen as follows: l = 1, Q = 1 and γ = √

2.

dimension N . In the EYMBID theory, T H is real as long as the di-
mension N satisfies the condition
(N − 2)(N − 3)

8Q 2
< β. (44)

If one studies the case r+ = 0 (i.e. the case of extreme mass-
less black holes), the above analysis for computing the Hawking
radiation fails. In [8], it is successfully shown that the wave scatter-
ing problem in the extreme four-dimensional linear dilaton black
holes in the EMD theory reduces to the propagation of eigenmodes
of a free Klein–Gordon field in two-dimensional Minkowski space-
time with an effective mass. Conclusively, there is no reflection, so
that the extreme linear dilaton black holes cannot radiate, although
their surface gravities remain finite. Since setting r+ = 0 reduces
metric (1) to a conformal product M2 × S N−2 of a two-dimensional
Minkowski spacetime with the (N − 2)-sphere of constant radius,
the same interpretation is valid also for the extreme higher dimen-
sional linear dilaton black holes in the EMD, EYMD and EYMBID
theories. In summary, the massless higher dimensional linear dila-
ton black holes in the EMD, EYMD and EYMBID theories cannot
radiate as well.
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5. Conclusion

In this Letter, we have effectively utilized the SCRSM to de-
rive the Hawking temperature T H for massive, higher-dimensional
(N � 4), linear dilatonic black holes in the EMD, EYMD and EYM-
BID theories. To do this, first we have attempted to solve the
massless scalar wave equation, exactly. Exact solution of the wave
equation plays a crucial role in deriving a more precise result of
the temperature of those non-asymptotically flat black holes. Af-
ter finding the solution in terms of the hypergeometric functions
and using their intriguing features, we have demonstrated that in
the high frequency regime, the results of SCRSM agree with the
temperature obtained from the surface gravity for all considered
theories.

One of the main results obtained from the Stefan’s law is that
as in the case N = 4 [8] the linear dilaton black holes evaporate in
an infinite time, for N � 5 as well. The figures of T H have some
important results which are summarized as follows: (i) When the
dimension N is fixed, the behavior of T H versus frequency ω in
the EYMBID theory exhibits similar behavior of the T H in the
EYMD theory with large β . (ii) From the thermal point of view,
for a special range of β the linear dilaton black hole solutions to
the EYMBID theory interpolate between the black hole solutions
to the EMD and EYMD theories. (iii) Contrary to the EMD and
EYMD theories, in the EYMBID theory, at high frequency regime,
T H increases with N parabolically rather than linearly. (iv) In the
EYMBID theory, T H is real unless the condition (N−2)(N−3)

8Q 2 < β is
violated.

We also verify that contrary to the non-zero values of their sur-
face gravity the massless, extreme higher dimensional linear dila-
ton black holes do not radiate. Finally, we remark that since our
dilatonic black holes are conformally related to the Brans–Dicke
black holes [16] our results can be extended to the latter theory as
well.
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