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Simple model for vector bosoms
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Using the analogy between the SL(2,C) gauge theory of gravitation and the Yang-Mills theory, we

propose a model for massive vector bosons. The model is based on the Geroch-Held-Penrose treatment of
gravitation in which a reduction from SL(2, C) to an Abelian subgroup of it is made. It is shown that the
proposed model is unitary at the two-loop level.

I. INTRODUCTION

Spontaneous symmetry breaking was considered
to be the only possible method for introducing mass
terms for the vector bosons. ' Recently Hsu and
Mac' proposed a new SU(2) model where intrinsic'
rather than spontaneous breaking of gauge sym-
metry is used. Their Lagrangian is not invariant
under the usual local SU(2) transformations but is
invariant under a local Abelian gauge transforma-
tion. In this paper we propose still another SU(2)
model for massive vector bosons where the masses
are introduced without spontaneously breaking the
gauge symmetry. Our Lagrangian also is not in-
variant under the local SU(2) transformation but
is invariant under a local Abelian subgroup Co of
SU(2). Our global C'-invariant Lagrangian con-
tains charged scalar fields P' and a pair of Max-
wellian fields as the carrier fields of the forma-
lism. These fields can be replaced by spinor and
Proca fields, respectively. Then extension to local
C invariance requires the introduction of a mass-
less vector boson (photon) in accordance with
Utiyama's theory of compensating fields. The
photon introduced by this method together with the
initial pair of Maxwell fields constitutes the local
SU(2) Yang-Mills' (YM) triplet. However, instead
of Maxwellian fields we shall choose the initial
carrier fields to be Proca fields and demand local
C' invariance rather than local SU(2) invariance.
The basic idea in our theory therefore is to re-
duce from a non-Abelian group invariance to an
Abelian subgroup invariance and exploit the local
gauge freedom in the manner of U'tiyama. This
choice provides us with the decomposition of the
three SU(2) YM fields into a photon and two mas-
sive vector bosons. The same procedure can be
generalized to gauge groups of arbitrary rank
which admit an Abelian subgroup. For the SU(N)
case there are as many photons as the rank,
namely N I, and one f-inds N(N I) massive vec--
tor bosons. Similarly for the group SU(2) x U(l)
there are two photons (the first is the usual photon

of electrodynamics and the second comes from the
local C' invariance of the theory) and two charged
massive vector bosons.

The idea of formulating a non-Abelian gauge
theory within the context of one of its Abelian
subgroups seems an interesting concept although
it is not a completely new one. %e can refer to
a previous example of such an idea in the SL(2, C)
gauge theory of gravitation. It is well known that
the general theory of relatively, in the null-tetrad
version of Newman and Penrose' (NP), can be
cast as a gauge theory of gravitation with struc-
ture group SL(2, C).' In a, particular version of
the null-tetrad method, Geroch, Held, and Pen-
rose' (GHP) have formulated a reduction' from
SL(2, C) to an Abelian subgroup of it. The resulting
theory is a bona fide theory of gravity which, in a
class of space-times, completely reproduces the
results of the SL(2, C) formalism. The procedure
for such a reduction amounts to identification of
two of the four principal directions of the Riemann
tensor as the direction of propagation of gravita-
tional fields, and the gauge freedom left in the
problem turns out to be tetrad rotations for the
principal vectors. Our procedure for YM theories
amounts to the same procedure, namely to single
out N- I directions of SU(N) in the internal space
and study the theory within the reduced gauge
freedom.

Il. THE FORMALISM

Consider charged massive scalar fields p' to-
gether with given massive vector fields a'„all of
which transform according to the adjoint repre-
sentation of an Abelian subgroup C' of SU(2),
namely

where A denotes half of the angle of rotation around
the third internal direction. Therefore by this
choice we geometrically single out the third inter-
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nal axis as the invariant direction. The Lagrangian
of the uncoupled system is given by

(2)

where E„'„=~„a'„—a„a„' is a Maxwell tensor. L,
is invariant under the constant-phase transforma-
tions

a„-e'"a„.
After making X an arbitrary function of space-
time, we introduce the compensating field A„ in
order to preserve the local gauge invariance. In
contrast to the case of electrodynamics we intro-
duce Pauli-moment-like terms, "so that we can
make correspondence with the usual YM theory.
The Lagrangian of the model becomes

B„F'"+&ie(a„f""—a'„f "")—i'"
-~ ~"X' ——X'a "+ —X

a'" =0 13
2 2

together with the complex conjugate of Eq. (12).
Here J„ is the conserved current

J„=P'8„f- f a„g'+2zeA„Q'P . (14)

The remaining equations are the three constraint
equations for the Lagrange multipliers

~ „A~+ nMX' = 0,

(9„—ieA„)a' +—}t'=0, (16)

(9 +ieA„)f ""—iea„F""+M'a"

-M(9 +ieA")y =0, (12)

where

+lM'I" I'-'lf' I'--.'F,„', (4)

together with the complex conjugate of Eq. (16).
Taking the divergence of (12) and (13) and using the
constraint conditions, we get

f'„=B,a„' —B„a' —ie(A„a„' —A„a',),
F„„=9 A„—B„A — ie(a', a„—a„'a,),

(6)

(6)

and the local gauge transformations under which L
is invariant are x'= o. (18)

(
2

0+ — X +2l'eA 8"X -e2A A~X

2 2

+ —a, (X a"—a 'y ') = ——a,J', (17)

ix(x)a„-e a, , (7)

In the light of Eq. (18) we set X'=0, which by the
constraint equation implies

1A„-A„-—e„x. 9 A"=0 (19)

The correspondence of the YM part of the La-
grangian (4) with the usual YM theory is provided
by the identifications

A„= A'„,

A', =A'„- g A'„.
(8)

2

+ zMy (9 —ieA )a' + —y'X (10)

The field equations derived from L+L~ are

(9' —ieA")(9 —ieA„)P'+ m'P'=0,

In order to define the scalar parts a~ of the vec-
tor bosons a'„, we introduce a subsidiary Lagran-
gian I, due to Lee and Yang":

1
(B,A')' —

2
l(9, —ieA„)a "I',

where the masses of a~~ are M~'=M'/t and n is a
constant. We introduce further the gauge-fixing
Lagrangian L~ of three Lagrange multipliers, "

and X,
La=MX(9 A')+ ~ nM'y'+ ~My (9„+ieA„)a "

We next introduce a fictitious Lagrangian L&
which contains a pair of fictitious particles D'
whose statistics we do not specify at the moment
but consider them of parastatistical" nature. We
shall exploit the behavior of these nonphysical
particles to cancel the contributions coming from
the indefinite-metric, spin-zero part of the vec-
tor bosons at the two-loop level. Such a fictitious
Lagrangian can be constructed with the help of
EQ. (17),

'I' — 'eA„(9 D )D'

+ 2 ++ e'A A" ID'I' +
4

ID'a„—D a' I'. (20)

The Feynman rules are derived from the effective
Lagrangian

L ~=I +L(+ L~. (21)

It should be noted that the structure of Eq. (17)
does not provide us with a compact unitarized
Feynman amplitude for L,«. Those terms which
are not suitable for the functional integration must
be treated by perturbation expansion.
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III. UNITARITY

The physical fields of the formalism are f',
transverse photon, and spin-1 part of a'„, while
nonphysical fields are as and O'. In order to veri-
fy unitarity we examine the imaginary parts of the
self-energy diagrams for the physical vector bo-
sons a', . For the one-loop case the nonphysical
contribution comes from the process

a„-+„as-a
which vanishes identically. For the two-loop case
there are three types of diagrams. Denoting their
amplitudes by t)„b„and b„respectively, we
have the following:

First diagram: a„-asasas -a

a„-A„as asasas

Im b, = ———
4 (P, «)',

where &„ is the polarization and P, the momentum
vector of a„',

Third diagram: a„-asD D -a„,
e4

lm l, =-, (P, «)'.

The total contribution to the imaginary part
coming from nonphysical processes is

ImB= Im5, 6 P2 -Ms 5 P3 -Ms 6 P4 -Ms
j=1

x g(P, P, P, P,)

x 8(P„)8(P„)8(P«)d'P, d'P, d'P, ,

(22)

and one can easily show that it vanishes identically.
%e have therefore verified the unitarity at the
two-loop level. Let us note that the assigning
bosonic or fermionic statistics for the fictitious
particles does not provide the unjtarity, and we
should be forced to introduce excess fields in or-
der to cancel the nonphysical contributions. Fi-
nally, the formalism is renormalizable by means
of standard power counting. Extension of this
model to SU(N) will be discussed elsewhere.

Second diagram: a„-as D D —a„,
a~ A~as asD D a~ q

e
Imb, = ~ (P~ «)';
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