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ABSTRACT 

This research focuses on predicting the severity of freeway traffic crashes by 

employing two different dataset including Iranian and Cyprus data. In Iranian data, 

twelve variables related to crash parameters were used by considering genetic 

algorithm, combined genetic algorithm and pattern search, and artificial neural 

network methods.  The genetic algorithm evaluated eleven equations to obtain the 

best equation, and then the genetic algorithm and pattern search methods were 

combined using the best genetic algorithm equation. The neural network used a 

multi-layer perceptron architecture that consisted of a multi-layer feed-forward 

network with hidden sigmoid and linear output neurons that can also fit multi-

dimensional mapping problems arbitrarily well. In Cyprus data, seven variables were 

selected to compare two fuzzy clustering algorithms—fuzzy subtractive clustering 

and fuzzy C-means clustering— with a multi-layer perceptron neural network. Four 

clustering algorithms—hierarchical, K-means, subtractive clustering, and fuzzy C-

means clustering—were used to obtain the optimum number of clusters based on the 

mean silhouette coefficient and R-value before applying the fuzzy clustering 

algorithms.  

The selected models used in Iranian and Cyprus dataset were able to predict the 

severity of crash injuries and to estimate the response time on the traffic crash data in 

which the prediction accuracy was determined according to R-value, root mean 

square errors, mean absolute errors, and sum of square error. 

Based on the results obtained from Iranian data, the highest R-value and the 

highest amount of time were obtained for the artificial neural network around 0.87 

and 7.627 seconds, respectively. The results demonstrated that the artificial neural 
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network provided the best prediction accuracy with highest response time, while 

genetic algorithm had the lowest value for prediction accuracy (0.79) and response 

time (0.687) among the applied models. The combination of the GA and PS methods 

allowed for various prediction rankings ranging from linear relationships to complex 

equations. 

Based on the results obtained from Cyprus data, the highest R-value and the 

highest amount of time were obtained for the multi-layer perceptron around 0.89 and 

2.635, respectively demonstrating that the multi-layer perceptron had a high accuracy 

in traffic crash prediction among the prediction models, and that it was stable even in 

the presence of outliers and overlapping data. Meanwhile, in comparison with other 

prediction models, fuzzy subtractive clustering provided the lowest value for 

response time (0.284 ), 9.28 times faster than the time of multi-layer perceptron. 

Overall, the results showed that the MLP can be the best model to predict the 

traffic crash severity regardless of the variables involved with crash data in which the 

accuracy was the important criterion. Meanwhile, more than one model can be 

appropriate according to the determined criteria. Considering prediction accuracy 

and response time could lead to developing an on-line system for processing data 

from detectors and/or a real-time traffic database as well as the system may be 

implemented in an incident management to prevent the traffic crash or secondary 

traffic crash in which the model can be extended through improvements based on 

additional data through induction procedure. 

 

 

Keywords: Accuracy, Classification algorithms, Prediction, Response time, Traffic 

crash severity. 
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ÖZ 

Bu araştırma, İran ve Kıbrıs verileri olmak üzere iki farklı veri seti kullanılarak 

otoyol trafik kazaları ciddiyetinin tahmininde odaklanmıştır. İran verileri, çarpışma 

parametreleri ile ilgili oniki değişkene, genetik algoritma, kombine genetik 

algoritma, ve yapay sinir ağları yöntemleri dikkate alınarak kullanılmıştır. Genetik 

algoritma uygulamasında en iyi denklemi elde etmek için onbir denklem değerlendi.  

Sonra genetik algoritma ve desen arama yöntemleri en iyi genetik algoritma 

denklemi kullanılarak birleştirildi. Sinir ağı da çok boyutlu haritalama sorunlarını da 

rastgele modelleme yapabileceği gizli sigmoid ve lineer çıkış nöronlar ile çok 

katmanlı ileri beslemeli ağ oluşur ve çok katmanlı algılayıcı mimarisi ile kullanıldı. 

Kıbrıs verileri, yedi değişkenin iki bulanık kümeleme algoritmaları-bulanık eksiltici 

kümeleme ve bulanık C-aracı birçok katmanlı algılayıcı sinir ağı kümeleme ile 

karşılaştırmak için seçilmiştir. Dört kümeleme algoritmaları-hiyerarşik, K-means, 

eksiltici kümeleme ve bulanık C-means kümeleme ile elde edildi ve bulanık 

kümeleme algoritmaları uygulamadan önce ortalama siluet katsayısı ve R-değeri esas 

alınarak kümelerinin optimum sayıda elde etmek için kullanılırdı.  

İran ve Kıbrıs verileri için kullanılan seçili modellerin, kazalarda yaralanma 

şiddetini tahmin etme doğruluğu ve tahmin sürelerinin tasbiti yapıldı. Tahmin 

doğruluğu R-değerine göre kararlı olan, kök, hata karelerinin ortalamalarının mutlak 

hataları anlama ve hata kareler toplamıdır. 

İran verileri, yüksek R-değeri ve zaman en yüksek miktarda elde edilen sonuçlara 

dayanarak yapay sinir ağı için elde edildi ve bunlar sırasıyla 0.87 ve 7,627. Sonuçlar 

yapay sinir ağının yüksek tepki süresi ile en iyi tahmin doğruluğu sağladığını 

göstermiştir, genetik algoritma uygulanan modeller arasında tahmin doğruluğu (0.79) 
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ve tepki süresi (0,687) için en düşük değerdir. Doğrusal ilişki karmaşık denklemleri 

kadar çeşitli tahmini sıralaması için GA ve PS yöntemlerinin kombinasyonu 

kullanılmıştır. 

Kıbrıs verilerinde, R-değeri yüksek zaman ve en yüksek miktarda elde edilen 

sonuçlara göre, çok-katmanlı algılayıcı ile elde edilmiştir. Çok katmanlı algılayıcı 

tahmin modellerinin yanında trafik kazasında tahmini yüksek doğruluğu taşıdığını 

gösteren sırasıyla 0.89 ve 2.635, çevresindeki hatta sapan ve üst üste gelen verilerin 

mevcudiyetinde bile kararlı oldu gözlemlenmiştir. Bu arada, diğer tahmin modelleri 

ile karşılaştırıldığında, bulanık kümeleme eksiltici ve düşük değer sağlanan çok 

katmanlı algılayıcı süresinden daha hızlı tepki süresi gerektirmiş (0.284), 9.28 kat 

kadardır. 

Genel olarak, tahmini doğruluk ve tepki süresi dikkate alındığında verilerin 

işlenmesi için bir gerçek zamanlı sistemi geliştirmek için olabilir ayrıca 

detektörlerden gelen ve gerçek zamanlı trafik veri tabanı oluşturulduğunda hem kaza 

yönetim sisteminin çökmesi ya da ikinci kaza oluşumunu önleyebilir. Geliştirilen 

modelde indüksiyon prosedürü aracılığıyla ek verilere dayanarak iyileştirmeler 

yapılabilir ve bu yol ile uygulama aralığı geliştirebilir. 
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   Chapter 1 

INTRODUCTION 

1.1 Background 

As the world population grows and as cars become increasingly common, the 

number of traffic crashes worldwide is increasing. In recent years, a dramatic 

increase in traffic crashes worldwide has brought the problem of improving traffic 

safety to the attention of health officials who now approach the problem as they 

would a biological disease. More than 28,000 and 40 people are killed per year on 

Iranian and Cyprus roads with economic and social consequences, respectively. 

According to the World Health Organization (WHO, 2004), worldwide motor 

vehicle crashes are the second most frequent cause of death for people 5-29 years 

old. As summarized by WHO, “an estimated 1.2 million people are killed each year 

in road crashes and as many as 50 millions are injured. Projections indicate that these 

figures will increase by about 65% over the next 20 years unless there is new 

commitment to prevention”. Traditional measures to reduce crashes include 

improved geometric design, congestion management strategies and better driver 

education and enforcement. While these measures are generally effective, they are 

often not feasible or prohibitively expensive to implement. Many factors are 

involved in traffic crashes, and some of these factors have profound impacts on one 

other, preventing transportation safety designers from using only one parameter to 

fully explain traffic crash severity. Studying the parameters involved in traffic 

crashes together using modern models that include the interactions of input and 
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output variables can lead to a decrease in the number of traffic crashes. The 

relationship between a crash and the influencing factors is nonlinear and 

complicated; thus, it cannot be described with an explicit mathematical model. The 

crash prediction model (also called the safety performance function) is one of the 

most important techniques to investigate the relationship between crash occurrence 

and risk factors associated with various traffic entities. Factors with a profound 

impact on traffic crash severity include the demographic or behavioral characteristics 

of the driver (vehicle speed, driver’s age, driver’s gender, seat belt use, alcohol 

involvement), environmental factors and roadway conditions at the time of the crash 

(crash time, weather conditions, road surface, crash type, collision type, traffic flow, 

trafficway character) and the technical characteristics of the vehicle itself (vehicle 

type, safety of the vehicle). 

1.2 Objectives of the study 

The primary goal of this study is to compare various models and select the most 

suitable model in order to predict traffic crash severity and estimate response time on 

two different traffic crash datasets (Iranian and Cyprus data). It means that the most 

suitable prediction model from among the tested models is determined based on two 

criteria: accuracy (R-value, root mean square (RMSE), mean absolute errors (MAE), 

and sum of square error (SSE)) and response time (t). The accuracy factor establishes 

if a model is able to accurately predict traffic crash severity, while the response time 

establishes if the model can produce results in a reasonable period of time. Thus, 

prediction models are chosen based on having the highest accuracy and the lowest 

response time.  In addition, another purpose of this study is to create a model that can 

be updated with additional data beyond whatever is previously used so that the 

prediction models are improved based on new information through induction 
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procedure. Finally, the system can prevent the traffic crash or secondary traffic crash 

by using real-time traffic dataset and detectors. 

1.3 Works Undertaken 

In connection with Iranian data, driver’s age, driver’s gender, use of seat belt, type 

of vehicle, safety of vehicle, weather condition, road surface, speed ratio, crash time, 

crash type, collision type and traffic flow were selected as input variables and three 

output variables consisted of no injury, evident injury, and disabling injury/fatality. 

Three modeling techniques were applied to Iranian and Cyprus data to achieve a high 

predictive accuracy and low response time. The first model was an artificial neural 

network (ANN) which was able to capture highly nonlinear relationships between the 

predictor variables (crash factors) and the target variables (severity level of the 

injuries). Neural networks can be useful particularly when the relationship between 

the variables is unknown or complex; therefore, it is difficult to be handled, 

statistically. A neural network is composed of simple elements operating in parallel, 

as found in biological nervous systems. As in nature, the connections between the 

elements largely determine the network function. In this study, a multi-layer 

perceptron (MLP) neural network architecture that is consisted of a multi-layer feed-

forward network with sigmoid hidden neurons and linear output neurons was used. 

The second model was a genetic algorithm (GA), which is used to solve both 

constrained and unconstrained optimization problems based on natural selection, the 

process that drives biological evolution. The third investigated model was a model 

combining the GA and pattern search (PS) models. The use of GA-PS models in 

transportation safety studies is relatively new, so we test combining these methods in 

order to improve prediction accuracy.  
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In connection with Cyprus data, seven variables were selected as input for such a 

model: driver’s gender, driver’s age, crash time, type of vehicle, weather conditions, 

trafficway characteristic, and collision type. The selected output variable was the 

injury severity, which consisted of three levels: no injury, evident injury, and 

disabling injury/fatality. Two fuzzy clustering algorithms- fuzzy C-means (FCM) 

and fuzzy subtractive (FS) clustering- and a multi-layer perceptron were used to 

determine the suitability of those input variables and injury severity levels for model 

predictions. Clustering techniques focus on obtaining useful information by the 

grouping of multi-dimensional data into clusters. In this study, four clustering 

algorithms—hierarchical, K-means, subtractive clustering, and FCM clustering—

were used to obtain the optimum number of clusters before conducting an analysis 

with the fuzzy clustering algorithms. The suitability of the input and output variables 

was determined with fuzzy inference system (FIS) using FCM clustering based on 

Takagi-Sugeno-Kang (TSK) and Mamdani. The FCM clustering model optimizes the 

objective function to obtain the membership degree for each sample point relative to 

all the cluster centers. Then it determines the generic of the sample points, and 

finally it achieves automatic classification for data samples. A FIS using subtractive 

clustering based on the TSK-FIS structure was considered as the prediction model. 

The aim of subtractive clustering was to estimate both the number and initial 

locations of cluster centers and to extract the TSK fuzzy rules from the input/output 

variables.  
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Chapter 2 

LITERATURE REVIEW AND BACKGROUND 

Previous studies have focused on identifying a defensible statistical relationship 

between crash counts and exposure. The common models studied in traffic safety are 

the traditional Poisson and Poisson-gamma models. Those models are applied for 

modeling discrete, independent, and non-negative events. The negative binominal 

(NB) model arises mathematically (and conveniently) by considering presumably 

that unobserved crash heterogeneity (variation) across sites (intersections, road 

segments, etc.) is Gamma distributed while crashes within sites are Poisson 

distributed (Washington et al., 2003). The Poisson and Poisson-gamma models have 

been used for predicting motor vehicle crashes (e.g., Donnell and Mason, 2006; 

Lord, 2008). Bayesian empirical methods have also been developed (Mahal et al., 

1982; Ng and Sayed, 2004; Wright et al., 1988). Other statistical models applied to 

accident data include the following: binomial, zero-inflated Poisson (ZIP), zero-

inflated negative binomial (ZINB), and multinomial probability models. Lord et al. 

(2005) used multinomial probability models to conduct an analysis of the 

relationships among crash, density (vehicles per kilometer per lane), and the 

volume/capacity (v/c) ratio. The authors found that, with an increasing v/c ratio, fatal 

and single-vehicle crashes decreased after a certain point, and crash rates followed a 

U-shaped relationship. Bedard et al. (2002) applied a multivariate logistic regression 

analysis to investigate the effects of driver, crash, and vehicle characteristics on fatal 

crashes. Valent et al. (2002) used a logistic regression technique to evaluate the 
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relationship between driver characteristics and injury severity. The effects of road 

geometry and traffic characteristics on crash rates for rural two-lane and multilane 

roads were investigated by Karlaftis and Golias (2002) according to hierarchical tree-

based regression (HTBR). Huang and Abdel-Aty (2010) used Bayesian analysis in 

traffic safety in which they have conducted some improvement on model fitting and 

the accuracy of prediction for the multi-level data structure.   

ANNs have been verified to be efficient in many fields. Neural networks are 

commonly used in non-linear modeling and forecasting. In traffic safety, some 

studies have applied ANN to the prediction of crash rates and to the analysis of 

crashes, but none have used from twelve parameters related to Iranian data, including 

important factors with detail. Thus, this study attempted to incorporate all relevant 

parameters into the models to achieve a high percentage of crash forecasting. 

Mussone et al. (1999) applied ANNs to analyze vehicular crashes that occurred at an 

intersection in Milan, Italy. A number of studies have been conducted to investigate 

the groups of drivers with high risk of being injured or killed in traffic crashes 

(Zhang et al., 2000; Valent et al., 2002). Bedard et al. (2002) used multivariate 

logistic regression model to study the effects of driver, crash and vehicle 

characteristics on fatal crashes. Ivan et al. (2000) investigated single and multi-

vehicle highway crash rates and their relationships with traffic density while 

controlling for land use, time of day and light conditions. Lord et al. (2005) 

conducted an analysis on the relationship among crash, density (vehicles per km per 

lane) and v/c ratio. They found that with increasing v/c ratio, fatal and single-vehicle 

crashes decreased after some point, and crash rates followed a U-shaped relationship. 

In the transportation field, ANNs have been applied to traffic flow prediction (Yin et 

al., 2002; Zhong et al., 2004), estimation of discharge headway (Tong and Hung, 
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2002), ramp control strategy (Zhang et al., 2001), incident detection (Jin et al., 2002; 

Yuan and Cheu, 2003), travel behavior analysis (Subba Rao et al., 1998; Hensher and 

Ton, 2000; Vythoulkas and Koutsopoulos, 2003) and traffic accident analysis 

(Mussone et al., 1996; Mussone et al., 1999; Sohn and Lee, 2003; Abdel-Aty and 

Pande, 2005). ANNs have scarcely been used as a modeling approach in crash injury 

severity analysis. For instance, Abdelwahab and Abdel-Aty (2001) investigated 

ANNs to analyze the relationship between driver injury severity and crash factors 

related to the driver, vehicle, roadway, and environmental characteristics. They have 

attempted to classify a traffic crash into one of three injury severity levels using the 

readily available crash parameters. These authors limit their domain of study to two 

vehicle accidents that happened at intersections with signals. The predicting 

performance of MLP was compared with the performance of the ordered logit model. 

Their results showed that the MLP achieved better classification (correctly 

classifying 65.6 and 60.4% of cases for the training and testing phases, respectively) 

than the ordered logit model (correctly classifying 58.9 and 57.1% of cases for the 

training and testing phases, respectively). Abdel-Aty and Pande (2005) applied a 

probabilistic neural network (PNN) model to predict crash occurrence on the 

Interstate-4 corridor in Orlando, Florida. The average and standard deviation of 

speed around crash sites were extracted from loop data as input variables. The results 

of this analysis showed that at least 70% of the crashes can be correctly identified by 

the proposed PNN model. Delen et al. (2006) defended the use of ANN by pointing 

out the non-linear relationships between injury severity and the traffic accident 

factors. Kunt et al. (2011) used ANN, GA and GA combined with PS for predicting 

the severity of freeway traffic crashes. 
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GAs are powerful stochastic search techniques based on the principle of natural 

evolution. These algorithms were first introduced and investigated by John Holland 

(1975). According to Chang and Chen (2000), the regression models generated by 

genetic programming (GP) are also independent of any model structure. According 

to Deschaine and Francone (2004), GP is observed to perform better than 

classification trees with lower error rates, and GP also outperforms neural networks 

in regression analysis. Several studies (Park et al., 2000; Ceylan and Bell, 2004; 

Teklu et al., 2007) have used GP methods in traffic signal system optimization and 

network optimization. 

Zadeh introduced fuzzy logic in the 1960s. There are a series of justifications for 

using fuzzy logic in the modeling of complex processes. Fuzzy set theory techniques 

have been used in crash prevention. Akiyama and Sho (1993) studied the traffic 

safety problem on urban expressways. Hadji Hosseinlou and Aghayan (2009) used 

fuzzy logic to predict the traffic crash severity on the Tehran-Ghom freeway in Iran. 

Fuzzy logic utilized for the control of traffic systems (Kamijo et al., 2000; Mussa and 

Upchurch, 2002; Lanser and Hoogendoorn, 2000; Niitymaki, 2001). The 

combination of fuzzy logic and neural network has been applied for incident 

detection on freeways by Ishak and Al-Deek (1998).  

Cameron (1997) indicates that clustering methods are an important tool when 

analyzing traffic accidents as these methods are able to identify groups of road users, 

vehicles and road clusters which would be suitable targets for countermeasures. A 

combination of cluster analysis, regression analysis and Geographical Information 

System (GIS) techniques is used to group homogeneous accident data together to 

estimate the number of traffic accidents and assess the risk of traffic accidents in a 

study area (Ng et al., 2002). The results can be helpful authorities effectively to 
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allocate resources for improving the safety levels in those areas with high accident 

risk. In addition, the results provided information for urban planners to develop a 

safer city. 

Ruspini (1969) was the first to propose fuzzy c-partitions as a fuzzy approach for 

clustering, and then the FCM algorithms were modified by Dunn (1974) and 

generalized by Bezdek (1981). In connection with FCM algorithm, Sugeno and 

Yasukawa (1993) determined the optimal number of clusters in the output space. 

Chen et al. (1998) suggested the data space that should be classified with regard to 

the input data in addition to linear relationships between input and output data. A 

feature weighted FCM based on feature selection methods and on competitive 

agglomeration were proposed by Wang et al. (2004) and Frigui and Nasraoui (2004), 

respectively. Aghayan et al., (2012) investigated FCM clustering based on clustering 

algorithms for traffic crash in Cyprus.  

In connection with the subtractive clustering, Chiu (1994) introduced the 

subtractive clustering in which data points were selected for cluster centers in order 

to solve computational difficulties that can arise in mountain clustering when 

problem dimensions are suitably increased for handling large datasets. Yager and 

Filev developed the mountain method for estimating cluster centroids (Yager and 

Filev, 1994). Hayajneh and Hassan (2008) applied a FS clustering and a FIS based 

on Sugeno type in the drilling processes. Aghayan et al. (2012) applied FCM and FS 

clustering compared with ANN by considering accuracy and response time criteria, 

the results represented that ANN can be the appropriate model for prediction 

accuracy and the lowest response time was achieved by FS algorithm in comparison 

with the applied models. 
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One of the clustering methods is the K-means algorithm (MacQueen, 1967). K-

means clustering is an unsupervised pattern classification method. Fukunaga (1990) 

used K-means clustering on continuous data. Pena et al. (1999) applied various 

methods for process of initializing in the K-means algorithm. The K-means 

algorithm performance is related to initial cluster centers; thus, Khan and Ahmad, 

(2004); Redmond and Heneghan, (2007) suggested an algorithm for K-means 

clustering to determine initial cluster centers. Polat et al. (2012) applied K-means 

clustering according to attribute weighting (KMCAW) and classifier models with the 

help of GIS. 
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   Chapter 3 

METHODOLOGY 

3.1 Typical Steps in Designing a Model 

3.1.1 Iranian Data 

The principles of the models employed in this study are shown in Figure 1 in 

which the main part of that Figure is represented with the dashed line. According to 

Iranian data, MLP, GA, and combined GA and PS were compared to investigate the 

behavior of these models through accuracy and response time. Initially, the 1000 

records collected from police records were used to construct objective functions for 

these models. Then, the models were able to modify the objective function with 

regard to each of the 1000 records, which were added to preliminary data. In 

addition, the optimum coefficients of the objective function (for the new records) 

were the initial optimum vector in the combined GA and PS models (for the last 

records). GA and PS methods were combined using the best GA equation. To 

achieve optimal results from the MLP model, new weights and biases were 

calculated from the preliminary weight matrix and bias vector. Finally, the errors of 

objective functions were calculated by these models, and the most appropriate error 

with respect to its type in each model was selected to determine the final objective 

function. The best-fit prediction algorithms between the MLP, GA, and GA-PS were 

selected based on two criteria: accuracy (R, RMSE, MAE, and SSE) and response 

time (t). Thus, it caused the suitable models by considering both mentioned criteria to 

be identified.  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Flowchart for processes carried out in a typical run with Iranian data (Kunt et al., 2011)
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3.1.2 Cyprus Data 

In this study, a comparison of MLP with FCM clustering and FS clustering was 

performed by considering the optimum number of data cluster algorithms employed 

for improving the traffic crash prediction procedure by using of Cyprus data. The 

first modeling step was the training phase that used 70 percent of the data, and the 

other 30 percent of the data were used for model validation and testing to improve 

the model. The 1049 records collected from police records were used to construct the 

initial prediction model. However, before initiating the main part of flowchart shown 

in Figure 2 by the dashed line, the number of available data records was checked 

because the model can be updated with every batch of 1000 records. In other words, 

the model can be updated every additional 1000 records beyond the preliminary data. 

This means the model has the ability to improve itself with new data. Hierarchical, 

K-means, subtractive clustering and FCM clustering were employed for obtaining the 

optimum number of clusters based on mean silhouette coefficient and R-value. 

 Consequentially, the optimum number of clusters achieved before was used in FS 

and FCM. In addition, the best-fit prediction algorithms between the fuzzy clustering 

algorithms and MLP were selected based on two criteria: accuracy (R, RMSE, MAE, 

and SSE) and response time (t). This procedure led to identification of suitable 

models with respect to both accuracy (R) and response time (t). Finally, the suitable 

models were selected based on each criterion mentioned above. 



 

 

 

Figure 2: Flowchart for the processes in a typical run with Cyprus data (Aghayan et al., 2012) 
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Overall, by considering of Iranian and Cyprus data, if a fast prediction model was 

the goal, then this procedure identified the prediction model with the lowest response 

time, but if accuracy was the concern, then the procedure found the prediction model 

with the highest accuracy based on checking the data before the model started 

performing predictions. The first model output had the lowest response time, while 

the second model output, delayed by a few seconds, had the highest accuracy.  

3.2 Data Description 

3.2.1 Iranian Data  

The dataset used in this study includes 1063 traffic crashes and was derived from 

reported traffic crashes in Tehran, the capital of Iran. These crashes were selected 

from the total number of crashes that occurred on the Tehran-Ghom freeway in 2007 

because these were the only complete crash records. These data were used as training 

and testing data for the ANN, GA, and combined GA and PS methods, and the 

predictions of the three models were compared. The majority of crashes (74.8%) 

involved two vehicles. The distribution of driver injuries was around 14% fatal 

injuries, 38.4% evident injuries, and 47.6% no injuries.  

Three injury levels were considered for this study (i.e., no injury, evident injury, 

and disabling injury/fatality), and twelve variables were selected from the data. The 

vehicle speed in police reports was calculated by a camera or the breaking distance. 

Speed ratio was used as one of the input variables defined as the ratio of the 

estimated speed at the time of a crash to the posted speed limit at the crash location. 

The safety of vehicle was categorized as high and low standard. High standard was 

used for vehicles having Anti-lock braking system (ABS) and airbag. Road geometry 

parameters were not taken into consideration because the selected road had a 

desirable geometry that is common to all crashes in the dataset. The input variables 
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have either numerical or dummy values for use in the program. Table 1 shows the 

input and output variables for Iranian data. Comparing the performance of the three 

modeling approaches discussed later (ANN, GA, and combined GA and PS) was 

obtained by using MATLAB software. 

Table 1: Description of the study variables for Iranian data (Kunt et al., 2011) 

Input Variables Variable Coding/Values Data 

Variables 
Subdivided 
Variables 

    

1 2 Driver's Gender Man 97.56% 

Woman 2.44% 

2 

 

1 

 

Driver's Age 

 

Year 

20-34=39% 
35-49=44% 

50-64=10% 

65-79=7% 

3 2 Use of Seat Belt In use 78.66% 
Not in use 21.34% 

4  3 Type of Vehicle Passenger car 83.54% 
Bus 2.44% 

 Pick-up 14.02% 

5 2 Safety of Vehicle High standard 31.71% 
Low standard 68.29% 

6 4 Weather Condition 

Clear 56.71% 
Snowy 7.93% 

Rainy 10.37% 

Cloudy 25% 

7 3 Road Surface 
Dry 75% 
Wet 17.68% 

Snowy/Icy 7.32% 

8 1 Speed Ratio km/h/km/h   

9 2 Crash Time Day 65.85% 
Night 34.15% 

10 2 Crash Type With vehicles 74.81% 
With multiple vehicles 25.19% 

11 
 

Collision Type 
Rear-end 51.95% 

3 Right-angle 30.24% 

 Sideswipe 17.80% 

12 1 Traffic Flow         veh/h   

Output variables      

  
Driver Injury Severity 

No injury=(1,0,0) 47.56% 
1 3 Evident injury=(0,1,0) 38.41% 

  Fatality=(0,0,1) 14.02% 
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3.2.2 Cyprus Data 

The dataset used in this study consists of 1049 traffic crashes and was derived 

from traffic crashes reported between 2005 and 2010 on the North Cyprus primary 

road network. The dataset includes only crash data that are complete with regard to 

all input variables that were used in this study. These data were used as training and 

testing data for the MLP, FCM clustering, and FS clustering as well as a comparison 

for the predictions from all three models. Three injury levels were taken into the 

consideration for this study: no injury, evident injury, disabling injury/fatality, and 

seven input variables were selected from the data. Table 2 shows the input and output 

variables for Cyprus data. The performances of the three modeling approaches 

(MLP, FCM clustering, and FS clustering) were obtained using MATLAB software. 

Table 2: Description of the study variables for Cyprus data (Aghayan et al., 2012) 

Input Variable Coding/Values Data 

1      Driver's Gender 
Man 

Woman 

82.28% 

17.72% 

2  Driver's Age Year       - 

3  Crash Time
 

Day
Night

67.17%
32.83%

4 Type of Vehicle
 

Passenger car
Pick-up

59.76%
40.24%

5      Weather Condition 
Clear

Cloudy 
Rainy

95.19%
             1.81% 

      3.00%

6   Trafficway Character Curve
Straight road segment

      30.73%
      69.27%

7  Collision Type 
Rear-end

Right-angle 
Side-wipe

      12.81%
      25.42% 
      61.77%

Output variable  

1    Driver Injury Severity 
No injury=(1,0,0)

Evident injury=(0,1,0) 
Fatality=(0,0,1)

      37.84%
      59.75% 

             2.41% 
 

3.3 Artificial Neural Networks 

Neural networks are massively parallel systems that rely on dense arrangement of 

interconnections and surprisingly simple processors. ANNs take their name from the 

networks of nerve cells in the brain. Although a great deal of biological detail is 
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eliminated in these computing models, the ANNs retain enough of the structure 

observed in the brain to provide insight into how biological neural processing may 

work. Thus, these models contribute to a paramount scientific challenge. 

Neural networks utilize a parallel processing structure that has large numbers of 

processors and many interconnections between them. In a neural network each 

processor is linked to many of its neighbors so that there are many more 

interconnects than processors. The power of neural network lies in the tremendous 

number of interconnections. In addition, the models can be made in neutral networks 

to conduct useful computations as well as the capabilities of the resulting systems 

that provide an effective approach to previously unsolved problems. The processing 

power of a neural network is measured mainly with regard to the number of 

interconnections that update per second.  

The neural network usually has three layers of processing units, a typical 

organization for the neural net paradigm known as back propagation. First is a layer 

of input units. These units assume the values of a pattern represented as a vector, 

which is input to the network. The middle called hidden layer is consisted of “feature 

detectors”. The last layer is the output layer. The activities of these units are read as 

the output of the network.  

Back-propagation is one of the networks to understand. Its learning and update 

procedure is intuitively appealing because it is based on the following concept. If the 

network gives the wrong answer, then the weights are corrected so that the error is 

lessened and as a result future responses of the network are more likely to be correct.   

Back-propagation is a tremendous step forward compared to its processors, the 

perceptron.  The perceptron was limited to only two layers of processing units, with 

only a single layer of adaptable weights. This key limitation meant that the 
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perceptron could only classify patterns that were linearly separable. Back-

progagation overcomes this limitation since it can adapt two or more layers of 

weights, and uses a more sophisticated learning rule. The power of back-propagation 

lies in its ability to train hidden layers and thereby escape the restricted capabilities 

of single-layer networks. 

Different neural network architectures can be made. In this study, multi-layer 

perceptron (MLP) neural network architecture was used which is consisted of a 

multi-layer feed-forward network with sigmoid hidden neurons and linear output 

neurons. Multi-layers of neurons with non-linear transfer function allow the network 

to learn non-linear and linear relationships between input and output vectors. The 

linear output layer lets the network produce values outside the range -1 to +1. This 

network with biases, a sigmoid layer, and a linear output layer are that capable of 

approximating any function with a finite number of discontinuities. This network can 

fit multi-dimensional mapping problems arbitrarily well given consistent data and 

enough neurons in its hidden layer. The network was trained with Levenberg-

Marquardt back-propagation algorithm. This structure essentially consists of a 

collection of non-linear neurons organized and connected to each other in a feed-

forward multi-layer structure using directed arrows as coefficients (commonly called 

weight and bias in neural network terminology). The structure usually consists of 

input nodes, a hidden layer including some neurons, and output nodes. The hidden 

layer is the network layer, which is not connected to the network output (for instance, 

the first layer of a two-layer feed forward network). This pattern is known to be well-

suited to prediction and classification problems. 
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3.4 Genetic Algorithm 

One of the best known Evolution Algorithms (EAs) is the GA developed by 

Holland, his student, and his colleagues at the University of Michigan. The GA is an 

important predecessor of the GP, from which the latter derived its name. GA has 

proved useful in a wide variety of real-world problems. A GA is a method for 

analyzing both constrained and unconstrained optimization problems that is based on 

natural selection, the process that drives biological evolution. 

Until recently, most efforts have been in areas other than program induction, often 

as methods for optimization. EAs work by defining a goal in the form of a quality 

criterion and then use this goal to measure and compare solution candidates in a 

stepwise refinement of a set of data structures. If successful, an EA returns an 

optimal or near optimal individual after a number of iteration. This approach is very 

similar to the basic principle of all evolutionary techniques. The process of selecting 

the best individuals for mating is simply called selection or, more accurately, mating 

selection.  The work of De Jong (1975) demonstrated the usefulness of GAs for 

function optimization and was the first concerted effort to optimize GA parameters. 

The two main variation operators in EAs are mutation and exchange of genetic 

material between individuals (Crossover). Mutation changes a small part of an 

individual’s genome while crossover exchanges genetic material usually between 

two individuals, to create an offspring that is a combination of its parents. GA 

focuses on the crossover operator. In most applications of GA, operations are mainly 

either reproduction or crossover. Usually, only a small probability is used for 

mutations.  

Figure 3 shows a genetic cycle of GA where the best individuals are continuously 

selected and operated on by crossover and mutation. 
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Figure 3: The general structure of GAs (Kunt et al., 2011) 

 

3.5 Pattern Search 

Direct search is a method of solving optimization problems that does not require 

any information about the gradient of the objective function. Unlike more traditional 

optimization methods that use information about the gradient or higher derivatives to 

search for an optimal point, a direct search algorithm searches a set of points around 

the current point, looking for one point where the value of the objective function is 

lower than the value at the current point. Direct search can be used to solve problems 

for which the objective function is not differentiable or is not even continuous. 

Pattern search (PS) algorithms are direct search methods that are capable of solving 

global optimization problems of highly nonlinear, multi-parameter, multimodal 

objective functions without the need to calculate any gradient or curvature 

information, especially to address problems for which the objective functions are not 

differentiable, stochastic, or even discontinuous (Torczon, 1997). 

PS functions include two main algorithms called the generalized pattern search 

(GPS) algorithm and the mesh adaptive search (MADS) algorithm. Both are PS 

algorithms that compute a sequence of points that approach an optimal point. The PS 

algorithm was investigated based on GPS positive basis 2N (Lewis and Torczon, 

1999; Audet and Dennis, 2003).  
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At each step, the algorithm searches a set of points called a mesh around the 

current point that was computed in the previous step of the algorithm. The mesh is 

formed by adding the current point to a scalar multiple of a set of vectors called a 

pattern. If the PS algorithm finds a point in the mesh that improves the objective 

function at the current point, the new point becomes the current point in the next step 

of the algorithm. The MADS and GPS algorithms differ in how the mesh is 

computed. The GPS algorithm uses fixed direction vectors, whereas the MADS 

algorithm uses a random selection of vectors to define the mesh. The MADS 

algorithm uses the relationship between the mesh size, m  and an additional 

parameter called the poll parameter, p  to determine the stopping criteria.  

For the positive bases that include N+1 and 2N, the poll parameter is mN   and

m , respectively. The relationship for the MADS stopping criterion is m
 mesh 

tolerance, where m  is the mesh size. 

At each iteration, the PS polls the points in the current mesh by computing the 

objective function at the mesh points to see if any points have function values less 

than the current value. The pattern that defines the mesh is specified by the poll 

method option. The GPS positive basis 2N consists of the following 2N directions, 

where N is the number of independent variables for the objective function. PSs 

sometimes run faster using the GPS positive basis Np1 as the poll method rather than 

the GPS positive basis 2N because the algorithm searches fewer points at each 

iteration (Lewis and Torczon, 2002). However, if the objective function has many 

local minima, using GPS Positive basis 2N as the poll method might avoid finding a 

local minimum that is not the global minimum, because the search explores more 

points around the current point at each iteration.  
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3.6 Types of Fuzzy Inference Systems 

3.6.1 Takagi-Sugeno-type fuzzy model 

The fuzzy model methodology suggested by Takagi-Sugeno (TSK) in 1985 has 

been applied in theoretical analysis, control applications, and fuzzy modeling. A 

typical fuzzy rule for an n-input, single-output TSK fuzzy model has the form: 

1 1 2 2 1 2: ( , ,..., ) 1,2,...,i i i
i n n i i nR if x is A and x is A and x is A then z f x x x for i k        (Eq. 1) 

Where k is the number of fuzzy if-then rules, i
nA is the membership function (MF), 

and )( nA
xi

n
 is the membership degree of nth input nx for thi rule. The consequent part 

of the rule base represents the output of the rule. In the TSK fuzzy inference system, 

the output is a crisp function instead of a fuzzy membership function. The output 

function can be stated as 

1 2 1 1 2 2( , ,..., ) ( ... )i i i i
i i n n nz f x x x a x a x a x c                                                      (Eq. 2) 

Where a1, a2,…, an, c are constants. 

The degree of matching between the inputs and rule iR is defined as the rule firing 

strength, β, and can be calculated by the minimum operator as follows: 

1 2
1 2( ) ( )... ( )i i i

n
i nA A A

x x x                                                                             Eq.  

The overall fuzzy system output is the weighted average of all rule outputs 

determined as: 

Final output = 1

1

k

i i
i

k

i
i

z










                                                                                          (Eq. 4) 

The great advantage of the TSK model is its descriptive ability, and it is capable 

of describing a highly non-linear system using a small number of rules.  
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3.6.2 Mamdani-type fuzzy model 

Initially, the Mamdani FIS (Mamdani and Assilian, 1975) was the most widely 

used in fuzzy systems and fuzzy control for which the implications were that both the 

input and output of the if-then rules consisted only of fuzzy sets. In contrast, the TSK 

is related to rules according to a special format, one characterized by functional-type 

consequents instead of the fuzzy consequents used by Mamdani. 

3.7 Cluster Validity 

One of the cluster validity techniques is to use the silhouette value in order to 

evaluate the quality of a clustering allocation, independently of the clustering 

technique that is used. Thus, silhouette values were used defined as the similarity of 

each point to points in its own cluster with points which belongs to other clusters. 

The Silhouette coefficient varies from +1 to -1. If it is close to zero this indicates that 

the points are not distinct to any given cluster and when it is close to one this means 

the points are assigned to a very appropriate cluster and finally when it is near to -1, 

this represent of misclassifying and the point is merely somewhere in between the 

clusters (Shie and Chen 2008). For this aim, the silhouette coefficient is calculated by 

the Equation 5.   

௜ܵ ൌ
௠௜௡൫௕೔

ೖ൯ି௔೔

௠௔௫ሺ௔೔ ,௠௜௡ሺ௕೔
ೖሻሻ

                                                                                        (Eq. 5) 

Where ܽ௜ is the average distance from the ith point to the other points in its cluster, 

ܾ௜
௞ is the average distance from the ith point to points in another cluster k. In order to 

find the optimum value of the k, it should be increased until the new mean silhouette 

coefficient becomes less than the previous one. At that point, adding further clusters 

begins to reduce accuracy in the clustering, and the addition process must stop. In 

this way, the mean silhouette coefficient between 0.7 and 1.0 indicates a strong 
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structure, between 0.5 and 0.7 means a reasonable structure, between 0.25 and 0.5 

points out a weak structure and less than 0.25 indicates an insubstantial structure 

(Kononenko & Kukar 2007). 

3.8 Hierarchical Clustering 

Clustering is fundamentally a collection of methods of data exploration. 

Hierarchical clustering procedures use the method of summarizing data structure.  

Hierarchical clustering can be categorized as an agglomerative or divisive algorithm 

(Jain at el. 1999, Jiang at el. 2004). The agglomerative hierarchical algorithm is used 

as an explanatory statistical technique to determine the number of clusters of datasets 

(Sneath and Sokal, 1973; King, 1967; Guha et al., 1995, 1998; Karypis et al., 1999). 

In this study, the agglomerative hierarchical algorithm was employed. The 

agglomerative algorithm is initiated by assuming that each of n objects to be 

clustered is a unique cluster. The objects were compared, with each other using a 

Euclidean distance to determine the distance between objects. That process was 

repeated until the number of clusters was obtained. The average linkage method 

defined in Equation 6 was applied for comparing the clusters in each stage between 

all pairs of objects and deciding which of them should be combined.  

݀ሺݎ, ሻݏ ൌ
ଵ

௡ೝ௡ೞ
∑ ∑ ฮݔ௥௜ െ ௦௝ฮݔ

௡ೞ
௝ୀଵ

௡ೝ
௜ୀଵ                                                                    (Eq. 6) 

Here, ݔ௥௜ is the ith object in cluster r and ݊௥ is the number of objects in cluster r. 

This methodology partitions data by identifying natural groupings in the hierarchical 

tree or by cutting off the hierarchical tree at a random point. 

A graphical presentation called dendrogram is available showing the clustering 

results of each stage with regard to 800 training data which belongs to Cyprus data 

presented in Figure 4. Figure 5 shows a simplified dendrogram in which no more that 
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12 leaf nodes were formed by collapsing the lower branches of the tree. By this 

means, cluster 1= [6 9 4 8], cluster 2= [1 3 7 2 5], and cluster 3= [10 12 11]; thus, the 

number of members comprising the nodes was equal to 800, which was obtained 

from the summation of 223, 540, and 37. 

 

Figure 4: Hierarchical clustering dendrogram with Cyprus data (Aghayan et al., 
2013) 

 
Figure 5: Simplified dendrogram for hierarchical clustering with Cyprus data 

(Aghayan et al., 2013) 

3.8.1 Verifying the Cluster Tree 

After the objects in a dataset are linked into a hierarchical cluster tree, the 

distances in the tree are verified as to whether they accurately reflect the original 

distances.  
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In a hierarchical cluster tree, two objects are linked to each other at some level in 

original data. The distance between two clusters is represented with the height of the 

link that includes two objects. The height is considered as the cophenetic distance 

between the two objects. The cophenetic distance is compared to the original 

distance data in order to find the behavior of generated cluster tree. If the clustering 

is valid, the linking of objects in the cluster tree should have a strong correlation with 

the distances between objects in the distance vector. The cophenetic function 

compares these two sets of values and computes their correlation, returning a value 

called the cophenetic correlation coefficient (CPCC). The CPCC for a cluster tree is 

defined as the linear correlation coefficient between the cophenetic distances 

obtained from the tree and the original distances (or dissimilarities), which varies 

between 0 and +1. The CPCC value is close to 1 for a high-quality solution. The 

CPCC between Z, the average linkage method, and Y, the Euclidean distance for all 

data, is defined by Equation 7: 

ܥ ൌ |
∑ ൫௒೔ೕି௬൯೔ಬೕ ൫௓೔ೕି௭൯

ට∑ ൫௒೔ೕି௬൯
మ
∑ ൫௓೔ೕି௭൯

మ
೔ಬೕ೔ಬೕ

|                                                                            (Eq. 7) 

Where ௜ܻ௝ is the distance ሺ ௜ܻ , ௝ܻ  ሻ, ܼ௜௝ is the cophenetic distance between objects 

i and j in Z as well as y and z are the average of Y and Z, respectively.  

In this study, the CPCC was obtained from the preliminary data related to Cyprus 

data was 0.842, which indicated that the hierarchical cluster tree was fairly good in 

terms of accuracy of the clustering solution. 

The clustering efficiency was checked by a silhouette plot method. The overall 

separation parameter was determined by average silhouette values. For example, 

Figures 6 and 7 show the results of using silhouette values for Cyprus dataset. As 

shown, traffic crash data was divided into two and three clusters. The mean 
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silhouette values for the two and three clusters were found to be 0.707 and 0.796, 

respectively. Also, Figure 6 depicts a few points with negative values which mean 

that the separation into two clusters was not justified in comparison with the 

separation into three clusters shown in Figure 7. 

 

Figure 6: Silhouette values for two clusters in the hierarchical clustering with Cyprus 
data (Aghayan et al., 2013) 

 

Figure 7: Silhouette values for three clusters in the hierarchical clustering with 
Cyprus data (Aghayan et al., 2013) 
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3.9 K-means clustering 

The K-means clustering algorithm can be applied as an iterative optimization 

procedure. Generally, the K-means clustering algorithm begins the clustering process 

by using a randomly selected set of initial centroid locations. Just as in many other 

types of numerical minimizations, the solution that K-means reaches sometimes 

depends on the starting point. It is possible for the algorithm to reach a local 

minimum, where reassigning any one point to a new cluster would increase the total 

sum of distances, but where a better solution does exist. However, the parameter is 

replicated to overcome that problem. When more than one replicate is specified, the 

K-means algorithm repeats the clustering process starting from different randomly 

selected centroids for each replication. 

K-means uses a two-phase iterative algorithm (batch and online updates) to 

minimize the sum of point-to-centroid distances, summed over all K clusters. In this 

study, a modified K-means methodology was employed to reach the local minimum 

in any circumstance, which was useful for the large number of records. The modified 

K-means method included batch and online updates in which the first phase entailed 

reassigning the points to the closest cluster centroid through recalculation of cluster 

centroids and the second step entailed determining a clustering solution by 

convergence to a local minimum where points were individually reallocated and 

cluster centers were recalculated after each reallocation. However, partitioning X into 

K exhaustive and mutually exclusive clusters ܵ ൌ ሼ ଵܵ, ܵଶ,⋯ , ܵ௞ሽ , ∪௞ୀଵ
௄ ܵ௞ ൌ ܺ, 

௜ܵ ∩ ௝ܵ ൌ ∅ for 1 ൑ ݅ ് ݆ ൑  performed by minimizing of the squared-error for the ܭ

Equation 8 as used as objective function.  

ሻܥሺܬ ൌ  ∑ ∑ ௜ݔ‖ െ ܿ௞‖
ଶ

௫೔∈௦ೖ
௄
௞ୀଵ                                                                            (Eq. 8) 
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Where ܺ ൌ ሼݔଵ; ݔଶ;  ⋯  ேሽ ∈ Թݔ ;
N×D represents a vector of real numbers, N is the 

number of data, ܥ ൌ ሼܿଵ; ܿଶ,⋯ ; ܿ௄ሽ ∈ Թ
 K×D is the corresponding set of centers, K is 

the number of clusters, and  ‖ݔ௜ െ ܿ௞‖ is the Euclidean distance between ݔ௜ and ܿ௞.  

The pseudocode for K-means clustering is given in Algorithm 1. 

Algorithm 1: Modified K-means clustering algorithm (Aghayan et al., 2012) 

 
Clustering variables 
 
X: An objects; Si: The ith cluster; ci: The centroid of cluster Si; C: The centroid of all 
points; N: The number of object in the dataset; K: The number of clusters.  

 
input:   X = {x1; x2;…; xN} ∈ Թ N×D  (N×D input data set) 
output: C = {c1; c2;…; cK } ∈ Թ K×D  (K cluster centers) 
%replicates: Number of times to repeat the clustering, with a new set of initial cluster 
centroid    
for (replicates =1:1:rep); 

 Choose a random subset C of X as the initial set of cluster centers; 
 while termination criterion is not met: ሼ݉݅݊݅݉݅݁ݖ ∶  { ሻܥሺܬ
           for (j=1:1:N);  
                 Assign xj to the nearest cluster; 
               for (i=1:1:K); 
ܑ܁                          

ܜ ൌ ሼܒܠ ∶ Minሺฮܒܠ െ ܑ܋
, ฮܜ ฮܒܠ െ ∗ܑ܋

ܜ ฮ  for i*∈ [1: K]-[i])} 
               end 
           end 
           Recalculate the cluster centers; 
           for (k=1:1:K)  
                   Cluster ܁୩

 includes the set of point's xi that are nearest to the center  ܜ
                   ܿ௞

௧ାଵ
୩܁| ; 

ܜ | = {xi | ܓ܁
ܜ  }; the number of data in cluster i;     

                  Calculate the new center ck as the mean of the points that belong to 

୩܁                   
ܜ

 ; ܿ௞
௧ାଵ ൌ  

ଵ

|ௌೖ
೟|
∑ሼݔ௜ ∈ ܵ௞

௧ ሽ         

           end 
   end 
end 
Best replicates: min {total sum of distances: [1: rep]} 
    
 

Silhouette plots are shown in Figures 8 and 9 for two clusters and three clusters 

with Cyprus data, respectively. As shown, the most points in both clusters had large 

silhouette values, greater than 0.8, showing that those points were well separated 

from neighboring clusters. For the two and three clusters, the mean silhouette value 
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was found to be 0.807 and 0.788, respectively. The number of clusters was increased 

to find out if K-means could find further grouping structures in the data.  

 

 

Figure 8: Silhouette values for two clusters in the K-means with Cyprus data 
(Aghayan et al., 2013) 

 

Figure 9: Silhouette values for three clusters in the K-means with Cyprus data 
(Aghayan et al., 2013) 
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3.10 Fuzzy C-means clustering 

Similar to fuzzy rules, fuzzy clusters, are well suited as a means for building a 

classification model. Clusters are often considered as fuzzy rules to initialize a fuzzy 

rule system that is then optimized. The essential procedure of FCM is to find clusters 

such that the overall distance from a cluster prototype to each datum is minimized. 

The FCM algorithm is defined by the objective function: 

,ி஼ெሺܷܬ ܸ; ܺሻ ൌ ∑ ∑ ௜ܷ௞
௠௖

௜ୀଵ ௞ݔ‖ െ ‖௜ݒ
ଶ௡

௞ୀଵ                                                         (Eq. 9) 

Where ݀௜௞
ଶ ൌ ௞ݔ‖ െ ‖௜ݒ

ଶ, and ‖ݔ௞ െ  ௜‖ is the Euclidean distance between theݒ

centroids that characterizes the kth data point and ith cluster. Moreover, n is the 

number of data points, c is the number of cluster, xk is the kth data point, ݒ௜ is the ith 

cluster center, m is weighting exponent on each fuzzy membership function, and ௜ܷ௞ 

is the degree of membership of the kth data point in the ith cluster. The parameter m 

controls the fuzziness of the resulting partition varying in the range [1, ∞). The 

cluster center ݒ௜ and the degree of MF, ௜ܷ௞ that are used in  ܬி஼ெሺܷ, ܸ; ܺሻ are defined 

by: 

௜ܷ௞ ൌ
ଵ

∑ ቆ
ฮೣೖషೡ೔ฮ

ቛೣೖషೡೕቛ
ቇ

మ
ሺ೘షభሻ

೎
ೕసభ

                                                                                     (Eq. 10) 

௜ݒ  ൌ
∑ ௎೔ೖ

೘௫ೖ
೙
ೖసభ

∑ ௎೔ೖ
೘೙

ೖసభ
                                                                                                  (Eq. 11) 

In this study, a modified FCM clustering was employed. For this procedure, the 

initial FCM partition was defined and set with the number of clusters equal to 3, the 

exponent for the partition matrix equal to 2, the maximum number of iterations equal 

to100 and minimum improvement equal to 1e-10. Based on this, the initial fuzzy 
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cluster centers were calculated through the generation of the initial fuzzy partition. 

To improve the FCM clustering, the cluster centers and the membership grade points 

were updated, and the objective function defined in Equation 9 was minimized to 

find the best location for each cluster. This procedure was terminated when the 

maximum number of iterations or minimum amount of improvement were reached. 

Figures 10, 11, 12 and 13 show the results of silhouette values and the objective 

function values for two and three clusters with Cyprus data, respectively. After 26 

iterations for two clusters, the objective function and the mean silhouette value were 

equal to 28645.730 and 0.799, respectively. After 39 iterations for three clusters, the 

objective function and the mean silhouette value were equal to 13531.845 and 0.788, 

respectively.  

 

Figure 10: Silhouette values for two clusters in the FCM with Cyprus data (Aghayan 
et al., 2013) 
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Figure 11: The objective function values at each iteration in the FCM for Cyprus data 
(Two clusters)  



Figure 12: Silhouette values for three clusters in the FCM with Cyprus data 
(Aghayan et al., 2013) 

0 5 10 15 20 25 30 35 40
1

2

3

4

5

6

7

8
x 10

4 Objective Function Values

Iteration Count

O
bj

ec
tiv

e 
F

un
ct

io
n 

V
al

ue

-0.2 0 0.2 0.4 0.6 0.8 1

1

2

3

Silhouette Value

C
lu

st
er



 

35 



Figure 13: The objective function values at each iteration in the FCM for Cyprus data 
(Three clusters) 

 

Figure 14 depicts the relationship between iterration count and objective function 

value in FCM clustering with regard to the number of clusters. 

 

Figure 14: The relationship between iteration count and objective function value in 
FCM for Cyprus data (Aghayan et al., 2013) 
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3.11 Fuzzy subtractive clustering 

Subtractive clustering uses data points as the candidates for cluster centers 

instead of grid points, which means that the computation is related to the problem 

size (Hammouda and Fakhreddine, 2002). In fact, the cluster centers should be 

located at the data points to reduce the computation effort. Thus, each data point is a 

candidate for cluster centers; a potential measure at any point xi is defined as: 

௜ܲ ൌ ∑ exp  ቆെ
ฮ௫೔ି௫ೕฮ

మ

ቀ
ೝೌ
మ
ቁ
మ ቇே

௝ୀଵ                                                                              Eq. 2 

Where ݔ௜ is the ith data point, N is the total number of data points, and ݎ௔ is a 

positive constant representing a neighborhood radius. Hence, a data point will have 

a high potential value if it has many neighboring data points. The first cluster center 

ଵݔ
∗ is chosen as the point having the largest potential value ݌ଵ 

∗ . In order to locate the 

next cluster center, the influence of the previous identified cluster center and the 

data points near to the center are reduced by revising the potential measure. This 

procedure is conducted by subtraction, as shown in Equations 13 and 14. 

௞ܲ ൌ ௞ܲିଵ െ ௞ܲିଵ
∗ ݌ݔ݁ ቆെ

ฮ௫ೖషభ
∗ ି௫೔ฮ

మ

ቀ
ೝ್
మ
ቁ
మ ቇ                                                              (Eq. 13) 

௕ݎ ൌ ߩ ∗  ௔                                                                    Eq. 4ݎ

Where ߩ is a positive constant greater than 1 and is called squash factor. In 

addition, ݎ௕ is a positive constant which defines a neighborhood. That 

neighborhood, moreover, has measurable reductions in the potential measure and is 

somewhat greater than ݎ௔, which helps in avoiding closely spaced cluster centers. 

Thus, the data points near to the first cluster center ݔଵ
∗ will have a significantly 
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reduced potential measure. After revising the potential function, the next cluster 

center is chosen as the point having the greatest potential value. This process is 

stopped when a sufficient number of clusters are achieved. 

The process of acquiring new cluster centers is based on potential values related 

to an acceptance threshold ߝ௨௣௣௘௥, a rejection threshold ߝ௟௢௪௘௥, and the relative 

distance criterion. A data point with the potential greater than the acceptance 

threshold is accepted directly as a cluster center. The relative distance equation is 

defined as: 

ௗ೘೔೙

௥ೌ
൅

௣ೖ
∗

௣భ
∗ ൒ 1                                                                                                      Eq. 5 

Where ݀୫୧୬  is the shortest distance between the candidate cluster center and all 

previously found clusters’ centers. The pseudocode for subtractive clustering and FS 

clustering are given in Algorithm 2 and 3, respectively.  

 

Algorithm 2: Subtractive clustering algorithm (Aghayan et al., 2012) 

Clustering variables 
 

X: An objects (N×D); ݔ௜
∗: Location of ith cluster;  ௜ܲ

∗: Potential of ith cluster; C: The 
number of clusters; ra & rb: Positive constant; ߝ௨௣௣௘௥: Accept ratio; ߝ௟௢௪௘௥: Reject 
ratio 

 
input: X = {ݔଵ; ݔଶ;…; ݔே} ∈ Թ N×D  (N×D input data set) 
output: X* = {ݔଵ

ଶݔ ;∗
஼ݔ ;…;∗

∗}  ∈ Թ C×D  (C cluster centers) 
for (i =1:1:N); 

 P1 (xi)=∑ ݌ݔ݁ ቀെߙฮݔ௜ െ ௝ฮݔ
ଶ
ቁே

௝ୀଵ ߙ & ൌ
ସ

௥ೌమ
  ; %initial potential for each data point 

end 
ଵܲ
∗ = argmax(i=1,2,…,N) (P1 (xi)) %potential value for the first cluster center. 

ଵܲ
∗= ଵܲ(ݔଵ

∗ ) % location of the first cluster center 
while (݇ ൑  ;k=2 ;(ܥ

    Pk (xi) =Pk-1(xi) –  ௞ܲିଵ
∗ ௞ିଵݔ‖ߚሺെ݌ݔ݁

∗ െ ‖௜ݔ
ଶሻ & ߚ ൌ

ସ

௥್మ
% next cluster center 

     if  ε୪୭୵ୣ୰ Pଵ
∗ ൏ ୩ܲ

∗ ൏ ε୳୮୮ୣ୰ Pଵ
∗ 

  ݀௠௜௡ ൌ ݉݅݊ሺ ௞ݔ‖
∗ െ ଵ:௞ିଵݔ

∗ ‖ሻ 
  if ݀௠௜௡/ݎ௔ + ௞ܲ

∗/ ଵܲ 
∗ ൒ 1 

        ௞ܲ
∗= ௞ܲ(ݔ௞

∗  ); % location of the next cluster center 
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       continue; k=k+1;%go to the beginning of the loop 
  else  
     Pk-1(xi | ௞ܲିଵ

∗ = ௞ܲିଵ(ݔ௜)) =0; % eliminating rejected value by assigning 
     potential value 0.        
       ௞ܲିଵ

∗  = argmax(i=1,2,…,N) (Pk-1(xi)); % choose next higher potential value        
     ௞ܲିଵ

∗ = ௞ܲିଵ(ݔ௞ିଵ
∗ ሻ; return; 

  end  
     end 
   if   ௞ܲ

∗ ൐  ௨௣௣௘௥ߝ ଵܲ
∗ 

    ௞ܲ
∗= ௞ܲ(ݔ௞

∗  ) % location of the next cluster center 
    continue; k=k+1;%go to the beginning of the loop 
   elseif ௞ܲ

∗ ൏ ௟௢௪௘௥ߝ ଵܲ
∗ 

Break; %the algorithm is finished. 
   end 
end 
 

 

Algorithm 3: Fuzzy subtractive clustering-Rule ith (Aghayan et al., 2012) 

Clustering variables 
 

X: An objects (N×D); ܺ∗: location of data cluster; Y: Input; ܻ∗: location of input 
cluster; Z: Output; ܼ∗: location of output cluster; ܣ௝

௜: Gaussian Membership function; 

௝ܤ
௜ : Singleton Membership function 

 
ܺ = {ܻ, ܼሽ ൌ {ݔଵ; ݔଶ;…; ݔே}; Y = {ݕଵ; ݕଶ;…; ݕ଻}; Z = {ݖଵ; ݖଶ; ݖଷ} 
ܺ∗={ܻ∗, ଵݔ}={∗ܼ

ଶݔ ;∗
ேݔ ;…;∗

∗ }; Y = {ݕଵ
ଶݕ ;∗

଻ݕ ;…;∗
∗}; Z = {ݖଵ

ଶݖ ;∗
ଷݖ ;∗

∗} 
Rule୧: ݂݅ ሼݕଵ ݅ܣ ݏଵ

௜ ଶܣ ݏ݅ ଶݕ ݀݊ܽ 
௜ , … , ଻ܣ ݏ݅ ଻ݕ

௜  ሽ Then { ݖଵ݅ܤ ݏଵ
௜  , ଶܤ ݏଶ݅ݖ

௜ , ଷܤ ݏ݅ ଷݖ
௜ ሽ , 

Where: 

௝ܣ
௜൫ݕ௝൯ ൌ ݌ݔ݁ ቈ

ିଵ

ଶ
൬
ሺ௬ೕି௬೔,ೕ

∗  ሻ

ఙೕ
೔ ൰

ଶ

቉  &  ܤ௝
௜൫ݖ௝൯ = {1, if : ݕ௝ ൌ ௜,௝ݕ

∗  or 0, if : ݕ௝ ് ௜,௝ݕ
∗  } , 

Therefore: 

መܼ ൌ
∑ ሺఓ೔
೎
೔సభ ௭೔

∗ሻ

∑ ሺఓ೔
೎
೔సభ ሻ

ൌ
∑ ሺ∏ ሺళ

ೕసభ ஺ೕ
೔ ሺ௬ೕሻሻ

೎
೔సభ ௭೔

∗ሻ

∑ ሺ೎
೔సభ ∏ ሺళ

ೕసభ ஺ೕ
೔ ሺ௬ೕሻሻሻ

;%Output vector 

 

3.12 Regression Model Goodness-of-Fit Measures 

Goodness-of-fit (GOF) statistics are useful for comparing results across multiple 

studies, for comparing competing models within a single study, and for providing 

feedback on the extent of knowledge about the uncertainty involved with the 

phenomenon of interest. Four measures of model GOF are discussed: the sum of 
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squared error (SSE), root mean square error (RMSE), the correlation coefficient (R), 

mean absolute error (MAE).  

3.12.1 Sum of Squares Due to Error 

This statistic measures the discrepancy between the data and an estimation model. 

It is also called the sum of squared residuals (SSR) or is usually labeled as SSE of 

prediction by Equation 16 in which iy is response value (target output) and ˆiy is 

prediction response value: 

2

1

n

ii
i

SSE y y




   
 

                                                                                         (Eq. 16) 

An SSE value closer to 0 indicates that the model has a smaller random error 

component. 

3.12.2 Root Mean Squared Error 

This statistic is also known as the fit standard error and the standard error of the 

regression. RMSE is used as the measure of the differences between values predicted 

by a model or an estimator and the observed values defined as Equation 17: 

RMSE S MSE                                                                                          (Eq. 17) 

Where MSE is the mean squared error, Equation 18: 

2

1

1 n

i i
i

MSE y y
n





   
 

                                                                                        (Eq. 18) 

Where, n denotes the size of predicting sample, iy  and iy


represent the measured 

and estimated values, respectively. An MSE value closer to 0 indicates a fit that is 

more useful for prediction.  
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3.12.3 Mean Absolute Error (MAE) 

The average error of an estimator iy


with respect to the estimated parameter iy  is 

defined as the mean of the absolute difference between the estimator and the real 

value, Equation 19: 

1

1 n

ii
i

MAE y y
n





 
 
                                                                                        (Eq. 19) 

3.12.4 Correlation coefficient (R)   

Correlation is a criterion used for measuring if an attribute is relevant to others in 

dataset and the relevant to classes. The strength and the direction of a linear 

relationship between two variables can be measured by correlation coefficient (R) 

defined by Equation 20: 

( , )
( , )

( , ) ( , )

C i j
R i j

C i i C j j
                                                                            (Eq. 20) 

Where R value is the correlation coefficient between variables ݅ and ݆, ܥሺ݅, ݆ሻ is 

the covariance matrix defined by Equation 21: 

1

( )( )

1

n

i i
i

X x Y y

COV
n

 



 





                                                                                 (Eq. 21) 

The correlation coefficients range from -1 to 1, where values close to 1 suggest 

that there is a positive linear relationship between the data columns, values close to -

1 suggest that one column of data has a negative linear relationship to another 

column of data (anticorrelation), and values close to or equal to 0 suggest that no 

linear relationship exists between the data columns. 
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3.12.5 Data Normalization 

Some data for each variable should be normalized due to dissimilar units and 

magnitudes. Data normalization leads to improving the data fitting and prediction 

accuracy. The normalization can be conducted by using the following formula: 

min

max min

( )

( )n

X X
X

X X





                                                                                           (Eq. 22) 

Where nX  is the normalized value within [0, 1], X is the original value, minX  

and maxX are an instance of the minimum and the maximum values of the vector to 

be normalized. 

3.13 Models Used For Analysis with Iranian Data 

3.13.1 Multilayer Perceptron Neural Networks 

The MLP model consisted of two layers that each layer had a weight matrix W, a 

bias vector b, and an output vector ip  that 1i  . Figure 15 shows the selected final 

model for each of these layers in the MLP model. The number of the layer was 

appended as a superscript to the variable of interest. Superscripts were used to 

identify the source (second index) and the destination (first index) for the various 

weights and other elements of the network. 

The weight matrix connected to the input vector 1p  was labeled as an input weight 

matrix (IW1,1) having a source 1 (second index) and a destination 1 (first index). 

Elements of layer 1, such as its bias, net input (n), and output have a superscript 1 to 

represent that they were associated with the first layer. 



 

42 

 

Figure 15: The structure of the final MLP model for Iranian data (Kunt et al., 2011) 

 

Layer weight (LW) matrices and input weight (IW) matrices were used in the MLP 

model. The data were randomly divided into three parts: training, testing, and 

validating. The MLP model had 12 inputs, 25 neurons in the first layer, 3 neurons in 

the second layer. The output layer of the MLP model consisted of three neurons 

representing the three levels of injury severity. Seventy percent of the original data 

were used in the training phase, and the validation and test data sets each contained 

15% of the original data.  

A constant input 1 was fed to the bias for each neuron with regard to the outputs 

of each intermediate layer that were the inputs to the following layer. Therefore, 

layer 2 can be analyzed as a one-layer network with 25 inputs, 3 neurons, and a 3*25 

weight matrix W2; in such circumstances, the input layer 2 is 2p . All vectors and 

matrices of layer 2 have been determined and it can be considered as a single-layer 

network on its own. The layers of a multi-layer network play different roles in 

prediction process. This type of two-layer network was applied in back-propagation 

algorithm. In this study, it was assumed that the output of the second layer, 3p , was 

the network output of interest, and this output was labeled as y.  
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However, the objective of this network is to reduce the error e through the least 

mean square error (LMS) algorithm. The perceptron learning rule calculates the 

desired changes (target output) to the perceptron's weights and biases, given an input 

vector
1p and the associated error e. It causes the average of the sum of those errors to 

be minimized. 

The error at the output neuron  j at iteration t can be calculated by the difference 

between the desired output (target output) and the corresponding real output, 

( ) ( ) ( )j j je t d t y t  . Accordingly, Equation 23 is the total error energy of all output 

neurons. 

21
( ) ( )

2 jJ c
t e t


                                                                                              (Eq. 23) 

Referring to Figure 15, the output of the jth neuron in the lth layer can be 

calculated by Equation 24 in which the transfer function is defined as 2 logf sig

and 3f purelin . Log-sigmoid transfer function ( log sig ) is used in multilayer 

networks and the linear transfer function ( purelin ) is used in back-propagation 

networks. 

1
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 

                                                                                  
                (Eq. 24)  

Where1 3l  , n1 refers to the number of neurons in the layer 1. For the input 

layer thus holds 1l  , 1
j jy x  and for the output layer 3l  , 3

j jy y . The MSE of 

the output can be computed by: 

2
3 3 25

2 3 2
3

1 1 1

1 1
( ) .

2 2j j j ij i
j j i

E d y d f w y
  

  
  
   

                                                      (Eq. 25) 

The steepest descent of the MSE can be used to update the weights by Equation 

26 (Yeung et al. 2010): 
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3 3
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E
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

                                                                                                  (Eq. 26) 

The mean square error performance index for the linear network is a quadratic 

function as shown in Equation 25. Thus, the performance index will either have one 

global minimum, a weak minimum, or no minimum, depending on the characteristics 

of the input vectors. Specifically, the characteristics of the input vectors determine 

whether or not a unique solution exists (Hagan et al. 1996). 

The results of the MLP model are represented in Table 3 in the form of prediction 

table for 20 runs. Table 3 depicts the prediction level of injury severity patterns in 

training, test, validation phases. 

 Table 3: Prediction table for MLP model with Iranian data (Kunt et al., 2011) 

R No Injury Evident Injury Fatality Overall
Training 0.9091 0.9029 0.8966 0.9125

Validation 0.8187 0.7613 0.6974 0.7863
Test 0.8372 0.6936 0.7587 0.7737
All 0.8849 0.8513 0.8372 0.8731

 

Figure 16 shows regression plots for the output according to training, validation, 

and test data. The value of the correlation coefficient (R) for each phase was 

calculated.  The R-value was around 0.87 for the total response in the MLP model. 

Figure 17 plots the training, validation, and test errors to find the validation error 

in the training window. The best validation performance occurred at iteration 7, and 

the network at this iteration was returned. The plot in Figure 17 shows the mean 

squared error of the network starting at a large value and decreasing to a smaller 

value, which means that the network learning was improving. The plot has three 

lines, because the 1000 input and target vectors were randomly divided into three 

sets. 70% of the vectors were being used to train the network. 15% of the vectors 

were used to validate how well the network was generalized. Training on the training 
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vectors continued as long as the training reduced the network's error on the validation 

vectors. After the network memorized the training set (at the expense of generalizing 

more poorly), training is stopped. This technique automatically avoided the problem 

of over fitting, which plagued many optimization and learning algorithms. Finally, 

the last 15% of the vectors provided an independent test of network generalization to 

data that the network has never seen. Figure 18 shows the time response of MLP 

with regard to number of runs which was around 7.627 seconds. 

 

 

Figure 16: The regression plots for training, test, validation phases and total response 
in the MLP model for Iranian data (Kunt et al., 2011) 
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Figure 17: The validation error in the MLP model for Iranian data (Kunt et al., 2011) 

 

 

Figure 18: The time response of MLP with regard to number of runs for Iranian data 

 

3.13.2 Genetic Algorithm 

The GA is an optimization and search technique based on the principles of 

genetics and natural selection. The GA starts with a population of solutions 

(chromosomes) represented by coded strings (typically 0 and 1 binary bits) as the 

underlying parameter set of the optimization problem. GAs generate successively 

improved populations of solutions (better generations) by applying three main 

genetic operators: selection, crossover, and mutation. The selection function chooses 

parents for the next generation based on their scaled values from the fitness scaling 
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function, where the stochastic uniform selection function was used in this study. 

Crossover is achieved by exchanging coding bits between two mated strings. The 

chromosomal material of different parents can be combined to produce an individual 

that could get benefit from the strength of both parents. In this case, the applied 

crossover function used was scattered. 

Mutation occasionally provides and recovers useful material for chromosomes 

through random alteration of the value of a string bit (in the binary case, from 0 to 1 

and vice versa). In our case, Gaussian mutation function was used. The following 

formula was obtained from 1000 police records, and the system was able to modify 

the formula based on added records. The goal was to find the solution in the set with 

the highest (optimum) performance according to the GOF. An objective function can 

be defined to represent the severity of the traffic crash (prediction target), seeking to 

be optimized. The objective functions were selected by checking the values of R, 

MAE, RMSE, and SSE shown in Table 4.  

Based on the obtained results, the objective function given in Equation 27 had the 

best results for the GA model, with an R-value around 0.78 because the GA started 

by creating a random initial population that contains individual vector related to 

population and this GA process stopped when stopping criteria was met such as 

maximum number of generation, stall time, stall generation, fitness limit and 

function tolerance happen. In Table 4, objective function having the higher R was in 

the first row while it can be changed. To check conclusion function with different 

initial population vectors and also by stopping criteria then better coefficients related 

to our model were obtained. After checking multiple of these situations for getting 

better coefficient results, the improved R-value was around 0.79. 
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Where X is the coefficient of the objective function that was optimized, b and Out 

parameters were related to the input and output variables, respectively. 

       Table 4: Objective functions used in the GA model for Iranian data  
      (Kunt et al., 2011) 
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Table 5 presents the modified coefficients for the objective function. Figure 19 

depicts the best and mean values of the fitness function at each generation. In 
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addition, the best and mean values in the current generation are shown at the top of 

Figure 19. Figure 20 shows the time response of the GA with regard to number of 

running which was around 0.687. 

Table 5: Modified coefficients for objective function in the GA model with Iranian 
data (Kunt et al., 2011) 

 

 

 

Figure 19: The best and mean values of the fitness function at each generation in the 
GA model for Iranian data (Kunt et al., 2011) 

 

 

Figure 20: The time response of the GA with regard to number of runs for Iranian 
data 

0 500 1000 1500
0

100

200

300

400

500

600

Generation

F
itn

es
s 

va
lu

e

Best: 53.3669 Mean: 56.9196

 

 

Best fitness
Mean fitness

0 2 4 6 8 10 12 14 16 18 20
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Number of runs

T
im

e
- 

S
e

c

 

 

GA

X=0
Y=0.687



 

50 

3.13.3 Combination of Genetic Algorithm and Pattern Search 

The GA and PS models were combined to determine whether this combined 

method would achieve better results than the genetic algorithm. This research was 

based on GPS Positive Basic 2N, which enhanced the performance of pattern search 

algorithms. 

The initial point of this method was obtained from the optimum point of the GA 

shown in Table 5. Table 6 depicts the modified coefficients of the combined model. 

The combined GA and PS model had an R-value of around 0.79. 

Table 6: Modified coefficients for the objective function in the combined GA-PS 
model with Iranian data (Kunt et al., 2011) 

 

 

Figure 21 shows the objective function value at the best point of each iteration for 

Iranian data. Typically, the value of the objective function was improved in the early 

iterations and then level off as they approached the optimal value. The initial point of 

this graph was the optimum final result of the GA. 

The convergence curve in Figure 21 is typical of PS algorithms. The initial 

convergence occurred after the first 800 iterations, followed by progressively slower 

improvements as the optimal solution was approached. 

Figure 22 displays the mesh size at each iteration for Iranian data. The mesh size 

increased after each successful iteration and decreased after each unsuccessful one. 

The best point did not change following an unsuccessful poll. Thus, the algorithm 

halved the mesh size with a contraction factor set to 0.5. The computed objective 
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function value at iteration 2 was less than the value at iteration 1 in Figure 22, which 

indicated that the poll at iteration 2 was successful. Thus, the algorithm doubled the 

mesh size with the expansion factor set to 2. The poll at iteration 4 was unsuccessful. 

As a result, the function value remained unchanged from iteration 3, and the mesh 

size was halved.  

 

Figure 21: The function value at each iteration in the combined GA-PS model for 
Iranian data (Kunt et al., 2011) 

 

 

Figure 22: Mesh size at each iteration in the combined GA-PS model for Iranian data 
(Kunt et al., 2011) 
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In Figure 23, after 1297 iterations were completed, the PS algorithm performed 

approximately 98,000 function evaluations to locate the most promising region in the 

solution space containing the global minima.  

Figure 24 shows the time response of GA-PS with regard to number of running 

which was around 0.975. 

 

Figure 23: Function evaluation per interval in the combined GA-PS model for 
Iranian data (Kunt et al., 2011) 

 

 

Figure 24: The time response of GA-PS with regard to number of runs for Iranian 
data 
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3.14 Models Used for Analysis with Cyprus Data 

3.14.1 Multi-layer perceptron neural network 

This study used a multi-layer perceptron (MLP) neural network architecture that 

consisted of a multi-layer feed-forward network with sigmoid hidden neurons and 

linear output neurons as well as a network that was trained with the Levenberg-

Marquardt back-propagation algorithm.  

The MLP model consisted of two layers, with each layer having a weight matrix 

W, a bias vector b, and an output vector
ip , with 1i  . Figure 25 shows the selected 

final prediction model for each layer in the MLP model where the number of the 

layer was appended as a superscript to the variable. For the different weights and 

other elements of the network, superscripts were applied to recognize the source 

(second index) and the destination (first index). Layer weight (LW) matrices and 

input weight (IW) matrices were used in the MLP model.  

The model was applied to data that were randomly divided into sets for model 

training, test, and validating. The MLP model had 7 inputs, 20 neurons in the first 

layer, and 3 neurons in the second layer. The output layer of the MLP model 

consisted of three neurons representing the three levels of injury severity. Of the 

original data, 70% were used in the training phase. While the validation and test data 

sets each contained 15% of the original data. The MLP structure for Cyprus data was 

almost same with the MLP structure used in Iranian data as mentioned before. 
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Figure 25: The structure of final MLP model for Cyprus data (Aghayan et al., 2012) 

 

The MLP, which was applied for training, test, and validation, consisted of 7 

inputs, 20 neurons in the hidden layers, and 3 neurons in the output layer. The data 

for training, validation, and test of the MLP application represented 70, 15, and 15 

percent of all crash data, respectively. The results of the MLP model are shown in 

Table 7 for 20 runs, which tabulates the prediction levels of injury severity patterns 

in the training, test, and validation phases. 

  Table 7: Prediction table for MLP model with Cyprus data (Aghayan et al., 2012) 

R No Injury Evident Injury Fatality Overall 

Training 0.7383 0.8819 0.8805 0.9102 

Validation 0.6449 0.7208 0.7408 0.8115 

Test 0.5291 0.8259 0.8723 0.8547 

All 0.6783 0.8623 0.8673 0.8948 

 

Figure 26 depicts regression plots for the output with respect to training, 

validation, and test data. The value of the correlation coefficient (R) for each phase 

was calculated.  The R-value was around 0.89 for the total response in the MLP 

model. 
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Figure 26: The regression plots for training, test, validation phases and total response 
in the MLP model with Cyprus data  

 

Figure 27 plots the training, validation, and test errors to determine the validation 

error in the training window. The best validation performance happened at Iteration 

15. Figure 27 shows the mean squared error of the network starting at a large value 

and decreasing to a smaller value, which means that the network learning was 

improving. Training on the training vectors continued as long as the training reduced 

the network's error on the validation vectors. The behavior of that plot and the 

procedure used is similar to Figure 17 mentioned earlier. 
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Figure 27: The validation error in the MLP model for Cyprus data 
 

 
Figures 28 and 29 show the time response and R-value of the MLP model with 

regard to the number of runs; those values were 2.635 and 0.892, respectively. 

 

Figure 28: The time response of MLP model with regard to number of runs for 
Cyprus data 

 

0 2 4 6 8 10 12 14 16 18 20
10

-2

10
-1

10
0

10
1

Best Validation Performance is 0.07646 at epoch 15

M
e

a
n

 S
q

u
a

re
d

 E
rr

o
r 

 (
m

s
e)

21 Epochs

 

 

Train

Validation
Test

Best

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1.5

2

2.5

3

3.5

4

4.5

 

 

X: 0
Y: 2.635

Number of runs

T
im

e
-s

e
c

ANN
Mean(Time)



 

57 

 

Figure 29: The R-value of MLP model with regard to number of runs for Cyprus data 

 

3.14.2 Comparison of clustering models 

Use of a clustering methodology resulted in the optimum number of MFs. Figure 

30 depicts the influence of the number of clusters along with the various radii in 

subtractive clustering. Figure 31 shows the R-value for a given radius in the FS 

clustering algorithm. In Figures 30 and 31, the minimum number of clusters was 10, 

and the R-value achieved by the 10 clusters was 0.855. In addition, Figure 32 shows 

the relationships between the number of clusters and the mean silhouette coefficient. 

It was found that, when the number of clusters was increased, the mean silhouette 

coefficient, which represented the overall quality of the clustering measurement, was 

decreased. In addition, Figure 32 shows that the mean silhouette coefficients for 

hierarchical, K-means, and FCM clustering converged to 12 clusters. As explained 

above, by increasing the number of clusters, the R-value increased and the mean 

silhouette coefficient was decreased. Therefore, to satisfy two different evaluations 

for the cluster validity, 12 clusters were selected, which was more than the minimum 

number of 10 clusters obtained from subtractive clustering in Figure 30.  

All clustering algorithms identified 12 clusters, which meant that each input and 

output was characterized by 12 membership functions. Moreover, the number of 

rules equaled the number of clusters, and hence, 12 rules were created. 
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Figure 30: The influence of the number of clusters with given radius in subtractive 
clustering for Cyprus data (Aghayan et al., 2012) 

 

 

Figure 31: R-values for given radii in FS for Cyprus data (Aghayan et al., 2012) 
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Figure 32: Comparing the mean silhouette values in K-means, hierarchical, and FCM 
clustering for Cyprus data (Aghayan et al., 2012) 

 

3.14.3 Fuzzy C-Means clustering 

Figure 33 shows the structure of the FCM clustering, which consists of the seven 

input variables, each of which was connected to the 12 membership functions of the 

clusters. After processing according to the rule base, the MF’s output were obtained, 

which led to the aggregated outputs. Finally, the best aggregated output was selected 

as the output results. 



Figure 33: Graphic representation in the FCM clustering algorithm for Cyprus data 
(Aghayan et al., 2013) 
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Figures 34 and 35 show an example of the MFs of the collision type and driver’s 

age obtained from the FCM clustering algorithm. The actual values and predicted 

values for 15% of the training and checking data are shown in Figures 36, 37, 

respectively. The output values of the three levels (no injury: 1, evident injury: 2, 

fatality: 3) were either 0 or 1, as shown in Table 2. The mean response time of the 

FCM approach for 20 runs was 0.474 seconds shown in Figure 38.  

 

Figure 34: MF for collision type in the FCM clustering with Cyprus data (Aghayan et 
al., 2012) 

 

 

Figure 35: MF for driver’s age in the FCM clustering with Cyprus data (Aghayan et 
al., 2012) 
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Figure 36: Comparison of actual and predicted values for training data in the FCM 
clustering with Cyprus data  

 

 

Figure 37: Comparison of the actual and predicted values for checking the data in the 
FCM clustering with Cyprus data (Aghayan et al., 2012) 

 

 

Figure 38: The time response of the FCM clustering with regard to number of runs 
for Cyprus data (Aghayan et al., 2013) 
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3.14.4 Fuzzy subtractive clustering 

Subtractive clustering is a fast, one-pass algorithm to determine the approximate 

number of clusters and the cluster centers in the training dataset. However, in FS 

clustering, both input and output training data generates a Sugeno-type FIS structure.  

In this case, the cluster radius indicated the range of influence of a cluster when 

the data space as a unit hypercube was considered. Specifying a small cluster radius 

usually yielded many small clusters in the data and resulted in many rules. 

Specifying a large cluster radius usually yielded a few large clusters in the data and 

results in fewer rules. Figures 39 and 40 present an example of the MFs of the 

collision type and the driver’s age as used in FS clustering, respectively. When 

compared with Figures 34 and 35, the figures revealed that the FS clustering 

algorithm had a lower computational cost than the FCM clustering because of a 

smaller number of MFs and rules. The actual and predicted values based on the 

coding variables given in Table 2 are shown in Figures 41 and 42 for 15% of the 

training and checking data, respectively. In few circumstances, the predicted values 

were out of boundary condition defined to be between 0 and 1; meanwhile, overall 

similarity between actual and predicted values was not affected by errors happened 

in predicted values. The mean response time of the FS clustering for 20 runs was 

0.284 seconds shown in Figure 43. 

 

Figure 39: MF for collision type in the FS clustering with Cyprus data (Aghayan et 
al., 2012) 
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Figure 40: MF for driver’s age in the FS clustering with Cyprus data (Aghayan et al., 
2012) 

 

 

Figure 41: Comparison of actual and predicted values for training data in FS 
clustering with Cyprus data 

 

 

Figure 42: Comparison of actual and predicted value for checking the data in FS 
clustering with Cyprus data (Aghayan et al., 2012) 
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Figure 43: The time response of FS clustering with regard to number of runs for 
Cyprus data 
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  Chapter 4 

RESULTS AND DISCUSSION 

4.1 Iranian Data 

This study used the ANN, GA, and GA-PS models to predict the severity of traffic 

crashes. The final results showed that the ANN performed better than the GA and the 

combined GA and PS models based on the accuracy, while the lowest response time 

was achieved with the GA. 

Table 8 presents the R, MAE, RMSE, SSE, and t values. These results 

demonstrate that the MLP and GA constructed are promising for modeling traffic 

injury severity according to accuracy and response time, respectively. 

The GA provided the lowest elapsed time, 0.687 seconds, followed by GA-PS, 

with an elapsed time of 0.975 seconds. GA used the least amount of time with the 

accuracy that was less than MLP’s accuracy, while MLP model used an exhaustive 

search in the greatest amount of time with the best accuracy. Thus, if a fast prediction 

model is the goal, GA can be the right choice, but if accuracy is the main concern, 

then MLP is the best choice.   

Table 8: Final results for the objective function in each model with Iranian data 
(Kunt et al., 2011) 

Used Model MAE RMSE SSE R T(sec) 

GA 0.323436 0.43992 175.628 0.792411 0.687 

GA-PS 0.321709 0.437782 173.9248 0.793479 0.975 

MLP 0.16178 0.22979 123.4373 0.87319 7.627 
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Figures 44, 45, and 46 compares the actual output crash severity values with the 

predicted values for the MLP, GA, and GA-PS models by considering 15% of the 

data, respectively. This graphical presentation depicts considerable overlap between 

the actual and predicted graphs, showing that the models successfully predict traffic 

crash severity with a high accuracy.  

 

Figure 44: Comparing the actual and predicted values in MLP for Iranian data 

 

 

Figure 45: Comparing the actual and predicted values in GA for Iranian data 
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Figure 46: Comparing the actual and predicted values in GA-PS for Iranian data 

 

Figure 47 represents the relationship between the number of program runs and the 

response time for the MLP, GA, and GA-PS models. The mean response time for GA 

was less than that for the other models. 

 

Figure 47: Comparing the response time among the prediction models used for 
Iranian data 
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Figure 48: The regression plots for each crash severity level in the MLP model with 
Iranian data (Kunt et al., 2011) 

 

4.2 Cyprus Data 

The relationship between the R-value and the number of clusters for FCM 

clustering calculated by the Mamdani and Sugeno fuzzy algorithms is represented in 

Figure 49. With the Sugeno fuzzy algorithm, the R-value was not related to the 

cluster number; whereas, with the Mamdani fuzzy algorithm the R-value increased 

approximately with the number of clusters. Figure 50 shows the relationship between 

the R-value and the number of clusters in the FS clustering. The R-value was 0.855 

for the FS clustering with 12 clusters. Figures 49 and 50 show that increasing the 
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number of clusters typically caused the R-value to increase, but Figure 32 shows that 

such an increase in the number of clusters caused the mean silhouette coefficient to 

decrease. Subsequently, 10 was the optimum number of clusters determined by 

subtractive clustering as shown in Figure 30, the mean silhouette coefficient 

converged at 12 clusters, as shown in Figure 32. Then, because 12 was greater than 

10, 12 clusters were selected for the fuzzy clustering algorithms. 

 

Figure 49: The R-values in FCM for Cyprus data (Aghayan et al., 2012) 

 

 

Figure 50: The R-values in FS for Cyprus data (Aghayan et al., 2012) 
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Figure 51 represents the relationship between the number of program runs and the 

response time for the MLP, FS clustering and FCM clustering. The mean response 

time for FS clustering was less than that for the other models. 

 

Figure 51: Comparing the response time among the prediction models used for 
Cyprus data (Aghayan et al., 2012) 
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 Table 9: Final results for the objective function in each model with Cyprus data 
(Aghayan et al., 2012) 

Used Model MAE SSE MSE RMSE R T(sec) 

Multi-Layer Perceptron 
(MLP) 

0.129 132.927 0.044 0.211 0.895 2.635 

Fuzzy Subtractive Clustering 0.148 159.62 0.060 0.245 0.855 0.284 

Fuzzy C -Means Clustering 
(TSK) 

0.247 245.31 0.120 0.347 0.725 0.474 

 

Figures 52, 53, and 54 compare the actual output crash severity values with the 

predicted values for the MLP, FS, and FCM models by considering 15% of the data, 

respectively. This graphical presentation depicts considerable overlap between the 

actual and predicted graphs, showing that the models successfully predict traffic 

crash severity with a high accuracy. 

 

Figure 52: Comparing the actual and predicted values in MLP for Cyprus data 
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Figure 53: Comparing the actual and predicted values in FS for Cyprus data 

 

 

Figure 54: Comparing the actual and predicted values in FCM for Cyprus data 
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Figure 55: The residuals for MLP model with Cyprus data (Aghayan et al., 2012) 

 

 

Figure 56: The residuals for the FS clustering model with Cyprus data (Aghayan et 
al., 2012) 

 

 

Figure 57: The residuals for the FCM model with Cyprus data (Aghayan et al., 2012) 
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The regression plots for three levels of crash severity are shown in Figure 58. The 

amount of R-value which was mentioned above the plot represented the prediction 

accuracy of MLP model for each level. 

 

Figure 58: The regression plots for each crash severity level in the MLP model with 
Cyprus data 
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   Chapter 5 

CONCLUSION 

Based on Iranian data, the GA, combined GA and PS, and ANN with MLP 

architecture were used to predict traffic crash severity and to estimate the response 

time using twelve input parameters and three injury severity levels. The performance 

of these models was compared to find the most suitable model for the prediction of 

crash severity and the response time at three levels: fatality, evident injury, and no 

injury. The following results were obtained from Iranian data. 

1. The MLP was applied at training, testing and validation and had 12 

inputs, 25 neurons in the hidden layers and 3 neurons in the output layer. 

The data for training, validation and testing of the MLP application 

represented 70, 15 and 15 percent of all crash data, respectively. The R-

value and response time for ANN was around 0.87 and 7.627, 

respectively. 

2. The GA alone performed as well as the combined GA and PS model in 

predicting the crash severity.  The MLP provided the highest prediction 

accuracy with an R-value around 0.87, followed by the combination of 

GA and PS with an R-value around 0.79 and GA at 0.79, while the great 

amount of time and the lowest elapsed time were achieved from the MLP 

and GA models, respectively. Therefore, for this dataset, the MLP 

constructs a better relationship between the twelve model input 

parameters and the crash severity. The advantage of using the GA or the 
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combined GA and PS model was that the functions and coefficients of the 

relationships were known; meanwhile, the limitation of the MLP is that to 

include the black box approach. Thus, each model had its own advantage, 

and using more than one method may provide a better understanding of 

the relationship between the input and output variables. 

3. The models were constructed to be able to incorporate additional data. In 

addition, the optimum coefficients of the objective function are the initial 

optimum vector in the combined GA and PS model. For reaching 

optimum results with the MLP model, a new weight and bias were 

calculated from the preliminary weight matrix and bias vector. 

4. The use of more than one model investigated in this research provided a 

complete understanding of the relationship between input and output 

variables and allowed for high prediction accuracy (MLP) as well as low 

response time (GA). 

Based on Cyprus data, this study compared the FS clustering, FCM clustering, 

and MLP models to identify the model best suited for predicting traffic crash severity 

by using seven input parameters at three levels, fatality, evident injury, and no injury, 

as well as estimating the response time for processing traffic crash data. The 

following results were obtained from Cyprus data. 

1. Twelve clusters were obtained from four clustering algorithms - 

hierarchical, K-means, FCM, and subtractive clustering - as the optimum 

number of clusters, as at this value, the mean silhouette coefficient and R-

value converged in the clustering algorithms. Clustering should be applied 

to the input and output of the training records, which comprised 

approximately 800 records of the overall used data. The optimum number 
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of clusters and the number of rules should be equal; therefore, 12 rules 

were created. In addition, each input and output was characterized by 12 

membership functions. This number of clusters was applied to the FS 

clustering and FCM clustering. 

2. Our procedure was able to identify the best two models based on accuracy 

(R) and response time (t). MLP model via exhaustive search took the 

greatest amount of time (2.635 seconds) with the best accuracy (R-value of 

0.89). However, FS clustering took the least amount of time (0.284 

seconds) with accuracy that R-value was 0.85. Thus, if a faster modeling 

time was desired, then FS clustering can be the right choice, but if 

accuracy is the goal, then MLP can be selected. In certain circumstances, 

MLP model could give higher accuracy, but MLP model would take more 

than 2.635/0.284 = 9.28 times longer to yield an answer than FS 

clustering.  

3. The comparison of multiple models in this research provided a complete 

understanding of the relationship between input and output variables and 

allowed for identification of models yielding the highest prediction 

accuracy (MLP) and lowest response time (FS).  

Overall, the findings showed that more than one model can be suitable, depending 

on the selected criterion (accuracy and response time). The MLP can be the best 

model to predict the traffic crash severity regardless of the variables involved with 

crash data in which the accuracy was the important criterion. While high accuracy 

resulted in better prediction levels of the crash severity, low response time can allow 

the developed system to assist agencies in performing real-time prediction with data 
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from detectors and/or real-time traffic data. In addition, the system may be 

implemented in an incident management to warn drivers in advance or it can prevent 

the traffic crash or secondary traffic crash. The model adjusted itself by incorporating 

additional data, which means that the determined models based on each criterion were 

modified with added data through induction procedure.  
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