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ABSTRACT

The contamination of a signal of interest by other undesired signals (noise) is a
problem encountered in many applications. The conventional linear digital filters
with fixed coefficients exhibit a satisfactory performance in extracting the desired
signal when the signal and noise occupy fixed and separate frequency bands.
However, in most applications, the desired signal has changing characteristics which
requires an update in the filter coefficients for a good performance in the signal
extraction. Since the conventional digital filters with fixed coefficients do not have
the ability to update their coefficients, adaptive digital filters are used to cancel the
noise. The mean square error (MSE) technique is used as a measure of the noise

reduction.

The adaptive filter generally uses finite impulse response (FIR) least-mean-square
(LMS) and normalized LMS (NLMS) algorithms in signal processing or infinite
impulse response (IIR) recursive-least-squares (RLS) algorithm in adaptive control

for the noise cancellation applications.

The main aim of this thesis is to investigate the implementation of a real time noise
cancellation application. The real time implementation is carried out by a Texas
Instruments (TI) TMS320C6416T Digital Signal Processor (DSP). First, the LMS,
NLMS and RLS algorithms are simulated using SIMULINK of MATLAB. Then,
these algorithms have been transferred to the DSP board which let, them to work
alone in real time independent of MATLAB. Furthermore, the performance of the

aforementioned algorithms has been compared in different problem settings.



Keywords: Adaptive Filters, FIR Filters, IR Filters, LMS Algorithm, NLMS

Algorithm, RLS Algorithm.
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Bir sinyalin, istenmeyen sinyal (giiriiltii) tarafindan kirlenmesi bir¢ok uygulamada
kars1 karsiya kalinan bir problemdir. Geleneksel sabit katsayili dogrusal sayisal
stizgegler, sinyal ve giirtiltii sabit ve ayr1 frekans bandlarimi isgal ettigi zaman,
istenen sinyalin elde edilmesi i¢in yeterli bir performans sergilerler. Bununla birlikte,
birgok uygulamada, istenen sinyalin degisen karakteristikerinden dolay: sinyal elde
isleminde 1yi bir performans elde etmek i¢in slizge¢ katsayilarinda bir giincellemeye
ithtiya¢c duyulmaktadir. Geleneksel sabit katsayili sayisal silizgeglerin katsayilarini
giincelleme yetenegi olmadig i¢in giiriiltiiyii yok etmek icin uyarlanabilir sayisal
stizgegler kullanilmaktadir. Ortalama—kare-hata teknigi giiriiltii azaltma Ol¢iimii

olarak kullanilir.

Uyarlanabilen sayisal siizgeg, genellikle sonlu-diirtii-cevabi (FIR) enaz-ortalama-
kare (LMS) ve normalize olmus LMS (NLMS) algoritmalarini sayisal sinyal isleme
alaninda veya sonsuz-diirtii-cevab1 (IIR) tekrarlanan-enaz-kare (RLS) algortimasini

giiriiltii yoketme uygulamalarinda kullanir.

Bu tezin esas amaci gercek zamanda bir giiriiltii yoketme uygulamasini aragtirmaktir.
Gergek zaman uygulamasi, Texas Instruments TMS320C6416T sayisal sinyal
islemcisi ile MATLAB“in Simulink ortaminda yapilmustir. Ik olarak, LMS, NLMS
ve RLS algoritmalarinin benzetimi yapilmistir. Daha sonra, bu algoritmalar sayisal
sinyal islemcisine transfer edilerek sayisal sinyal islemcisinin MATLAB’dan
bagimsiz olarak ger¢ek zamanda kendi basina calismasi saglanmistir. Ayrica, adi

gecen algoritmalarin performansi farkli problemler i¢in karislagtirilmistir.



Anahtar kelimeler: Uyaranabilir siizgegler, FIR siizge¢ler, IIR siizgecler, LMS

algoritmasi, NLMS algoritmasi, RLS algoritmasi
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Chapter 1

INTRODUCTION

1.1 Introduction

In the previous years, adaptive filters have been attracting the attention of many
people due to their self-designing properties [1]-[4]. When some a priori knowledge
about the statistics of the signal is available, an optimal filter for such application
can be designed (i.e. Wiener Filter which minimizes the mean-square-error (MSE);
the difference between the filter output and the desired response) [1]. If this a priori
knowledge is not available, adaptive filtering algorithms possess the ability to adapt
the filter coefficients to be compatible with the involved signal statistics. Hence,
adaptive filtering algorithms have been used in many fields such as signal processing

[1], communications systems [5], and control systems [3].

Adaptive filtering process consists of two major steps; filtering process which
produces an output signal (response) from the input signal, and adaptation process;
which adjusts the coefficients of the filter in a way in order to minimize a function
called the cost function. Basically, there are many filter structures and filtering

algorithms that are used in adaptive filtering applications.

Adaptive filters usually classified to two categories depending on their impulse
response: finite-impulse-response (FIR) adaptive filter [6]; this filter’s impulse

response has a finite duration since it goes to zero after a finite time, and infinite



impulse-response (IIR) adaptive filter [6]; which has an internal feedback
mechanism and continues to respond indefinitely. IIR filters have diverse

applications and are beyond the scope of this thesis.

FIR adaptive filters have different structures; adaptive transversal filters structure,
the lattice predictor structure and the systolic array structure [1]. The adaptive
structure of a transversal filter is shown in Fig. 1.1. The input vector tap at time n is
denoted by u(n), the weight vector w(n) = [wo(n),wx(n), . . . .,wn-1(n)]", and the desired
response estimate (the filter output) is denoted by (f(n|Un), where Un is the space
spanned by the tap inputs u(n), u(n—1), . . ., u(h—N+1). By comparing the filter
response y(n) with the real desired response d(n), we produce an estimation error
denoted by e(n) = d(n)— dA(n|Un) . The control mechanism adaptively adjusts the
filter coefficients in order to obtain the desired response. Mathematically, this is

interpreted as:

y) = ) utn—w, (1.1)
And
¥Y(z) =U(z) Z 70w, (1.2)



Then the transfer function is:

N-1
H(z) = ¥(2) = Z z7'w (1.3)
U(z) “ '
i=0
The impulse response of the transversal filter is h(n) = {wy,wq,.......... WL}
win) u(=1) win=2) wn=N+2) ) uin=N=+1)
Z—I Z—' e z

B - o

-
= ) dme)
Control eln) :
— | ¥
- Mechanism Q
+
din)

Figure 1.1 Structure of the adaptive transversal filter.



1.2 Objective of the Thesis

The main objective of this thesis is to investigate the implementation of a real time
noise cancellation application. The real time implementation has been carried out by

a Texas Instruments (T1) TMS320C6416T Digital Signal Processor (DSP).

First, the LMS, NLMS and RLS algorithms are simulated using SIMULINK of
MATLAB. Then, these algorithms are transferred to the DSP board which let them
to work alone in real time independent of MATLAB. Furthermore, the performances
of the aforementioned algorithms are compared in different problem settings with
mainly two input signals: (a) sinusoidal input signal with noise and (b) music input

signal with noise.



Chapter 2

DIGITAL FILTERS

2.1 Filters

A filter is any device or system that takes a mixture of inputs and processes them to
give corresponding required outputs. In communication systems, the term filter
refers to a system that reshapes the frequency components of an input to give an
output signal with desirable features. Filters are classified according to the linearity
properties as linear and non-linear filters. In our research, we are going to discuss the

linear adaptive filters.
2.2 Adaptive Filter Structures

Adaptive filtering process involves two basic steps:
1. A filtering process; which is designed to produce a desired output in response
to an input data.
2. An adaptive process; aims to provide a mechanism for adjusting a set of the

filter coefficients.

Generally, there are two types of digital filters, as mentioned in Chapter 1; FIR filters
and IIR filters. IIR filters are beyond the scope of this thesis. FIR filters will be

discussed in detail in the next sections.



2.2.1 Finite Impulse Response Filters
There are three types of filter structures that distinguish themselves in the context of
an adaptive filter with finite impulse response. The three filter structures are as
follows [1]:
1. Transversal Filter: consists of three basic elements, as in Fig. 2.1:
(a) unit-delay element (z%)
(b) multiplier

(c) Adder

The number of delay elements, shown as N — 1 in Fig. 2.1, is commonly referred to
as the order of the filter. Each multiplier in the filter is used to multiply each tap

input (to which it is connected) by a filter coefficient or a tap weight. Thus, a
multiplier connected to the k™ tap input u(n-k) produces the inner product W(n- k) ,
where W is the corresponding tap weight and k = 0, 1, . . . ,N-1. The role of each

adder in the filter is to sum the multiplier outputs and to produce a total filter output

asin (2.1).

uim) in=l) uin=2) wn=N+2) wn=N=1)

Wo

Figure 2.1 Transversal Filters.



N-1
y(n) = Z wru(n — k), (2.1)
k=0

2. Lattice Predictor: is modular in structure in that it consists of a number of
separate stages, each looks as a lattice. Fig. 2.2 shows an N —1 stages lattice
predictor; the number N — 1 refers to the predictor order. The m™ stage of a

lattice predictor is described by the pair of input-output relations:

fu(n) = fma() + I Mbma(n — 1), (2.2)
bm(n) = bm_l(n - 1) + mem-]_(n), (23)
where m = 1, 2, . . ., N — 1, where N — [ is the final predictor order. The

variable fn(n) is the m™ forward prediction error, and by(n) is the m™
backward prediction error. The coefficient 7T, is called the m" reflection
coefficient. The forward prediction error fy(n) is defined as the difference
between the input u(n) and its one-step predicted value. Correspondingly, the
backward prediction error by(n) is defined as the difference between the
input u(n—N) and its “backward” prediction based on the set of m “future”

inputs u(n), . . ., um — N+ 1).



u(n)

Sow) fiw)

5

Figure 2.2 Multistage Lattice Predictor.

3. Systolic Array: consists of a parallel computing network which is used to
map a number of linear algebra operations, such as matrix multiplication,
triangularization, and back substitution. Basically, two types of processing
elements may be distinguished in a systolic array: boundary cells and internal
cells. In each case, the parameter r represents a value stored within the cell. The
function of the boundary cell is to produce a response equal to the input u
divided by r which is a number stored in the cell. The function of the internal
cell is: (a) to multiply the input z by the number r stored in the cell, subtract
product rz from the second input, and thereby produce the difference u — rz as
an output from the right side of the cell, and (b) to transmit the first input z

downward without alteration.



Chapter 3

ADAPTIVE FILTERS AND NOISE CANCILLATION

3.1 Introduction

Digital Signal Processing (DSP) is the major technology that can be applied to noise
filtering, system identification, and voice prediction. Standard DSP techniques are
not enough to solve these problems quickly and obtain acceptable results. Adaptive
filtering techniques must be implemented to obtain accurate solutions with timely

convergence.
3.2 Adaptive Filtering System Configurations

Adaptive filter had first established its engineering use in 1960s. It was applied as an
equalizer to combat the effect of Inter-Symbol Interference (ISI) of data
transmission in telephone channels [1]. Since then, adaptive filter was modified into
different forms and applied in many different areas such as; signal processing and

communication systems.

There are four major types of adaptive filtering configurations; adaptive system
identification [8], adaptive noise cancellation, adaptive linear prediction [9], and
adaptive inverse system [7]. All of the above systems are similar in the
implementation of the algorithm, but different in system configuration. All four
systems have the same general components; an input signal x(n), a desired result
d(n), an output y(n), an adaptive transfer function w(n), and an error signal e(n)

which is the difference between the desired output d(n) and the actual output y(n). In



addition to these, the system identification and the inverse system configurations
have an unknown linear system u(n) that can produce a linear output to the given
input [1].

3.2.1 Adaptive System Identification Configuration

The adaptive system identification is primarily responsible for determining a discrete
estimation of the transfer function for an unknown digital or analog system. The
same input x(n) is applied to both the adaptive filter and the unknown system from
which the outputs are compared, as shown in Fig. 3.1. The output of the adaptive
filter y(n) is subtracted from the output of the unknown system (which results in the
desired response signal d(n)). The resulting difference is an error signal e(n) which is
used to manipulate the filter coefficients of the adaptive system. After convergence,

the error signal tends toward zero.

Al

> w(n)
/ e(n)
x(n)
> u(n)

Figure 3.1 Adaptive System Identification Configuration.

After a number of iterations of this process, the adaptive filter’s transfer function
will converge to, or near to, the unknown system’s transfer function. For this
configuration, the error signal does not have to go to zero (although convergence to
zero is the ideal situation) to closely approximate the given system. There will,

however, be a difference between the adaptive filter transfer function and the

10



unknown system transfer function if the error is nonzero and the magnitude of that
difference will be directly related to the magnitude of the error signal.

3.2.2 Adaptive Noise Cancellation Configuration

The second configuration is the adaptive noise cancellation configuration as shown
in Fig. 3.2. In this configuration, the input x(n) (a noise source Ni(n)), is compared
with a desired signal d(n), which consists of a signal s(n) corrupted by another noise
signal (No(n)). The adaptive filter coefficients adapt to cause the error signal to be a

noiseless version of the signal s(n).

Both of the noise signals for this configuration need to be uncorrelated to the signal
s(n). In addition, the noise sources must be correlated to each other in some way,
preferably equal, to get the best results [2]. Assuming that y(n) = Ny(n), d(n) = s(n)
+ No(n) and the error can be written as e(n) = s(n) + No(n) — y(n) since, noise

sources are correlated to each other the error reduces to e(n) = s(n).

s(n)+N,(n)

d(n)

w=Nm VRS

Y

Figure 3.2 Adaptive Noise Cancellation Configuration.
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3.2.3 Adaptive Linear Prediction Configuration

Adaptive linear prediction is the third type of adaptive configuration as shown in
Fig. 3.3. This configuration essentially performs two operations: The first operation,
is linear prediction; if the output is taken from the error signal e(n). The adaptive
filter coefficients are being trained to predict, from the statistics of the input signal
x(n), what the next input signal will be. The second operation, is a noise filter similar
to the adaptive noise cancellation outlined in the previous section; if the output is

taken from y(n).

In the case of noise filtering, as outlined in the previous section, y(n) will converge

to the noiseless version of the input signal.

x(n)

[ \
L
—

]
S
|

¥
~\ el)
J

:

Figure 3.3 Adaptive Linear Prediction Configuration.

3.2.4 Adaptive Inverse System Configuration

The final filter configuration is the adaptive inverse system configuration as shown in
Fig. 3.4. The goal of the adaptive filter here is to model the inverse of the unknown
system u(n). This is particularly useful in adaptive equalization where the goal of the
filter is to eliminate any spectral changes that are caused by a prior system or

transmission line.

12



U(H‘} ] “.(”‘] ‘1'(??} >
) e(n) Q
x(n) o
d(n)

Figure 3.4 Adaptive Inverse System Configuration.

The way this filter works is as follows; the input x(n) is sent through the unknown
system u(n) and then through the adaptive filter resulting in an output y(n). The input
is also sent through a delay to attain d(n). As the error signal is converging to zero,
the adaptive filter coefficients w(n) are converging to the inverse of the unknown

system u(n).

For this configuration, the error can theoretically go to zero. This is only true if the
unknown system consists only of a finite number of poles or the adaptive filter is an
Infinite Impulse Response (IIR) filter. If neither of these conditions is true, the
system will converge only to a constant due to the limited number of zeroes
available in a Finite Impulse Response FIR system [1].

3.3 Performance Measures in Adaptive Systems

Some important measures will be discussed in the following sections; convergence

rate, minimum mean square error, computational complexity, stability, and filter

length [2].

13



3.3.1 Convergence Rate

The Convergence rate determines the rate at which the filter converges to its
resultant state. Usually a faster convergence rate is a desired characteristic of an
adaptive system. Convergence rate is not independent of all the other performance
characteristics. There is usually a tradeoff, with convergence rate and other
performance criteria [2].

3.3.2 Mean Square Error

The MSE is a metric indicating how much a system can adapt to a given solution. A
small MSE is an indication that the adaptive system has accurately modeled,
predicted, adapted and/or converged to a solution for the system. There are a number
of factors which will help to determine the MSE including, but not limited to;
quantization noise, order of the adaptive system, measurement noise, and error of the
gradient due to the finite step size [2].

3.3.3 Computational Complexity

Computational complexity is particularly important in real time adaptive filter
applications. When a real time system is being implemented, there are hardware
limitations that may affect the performance of the system. A highly complex
algorithm will require much greater hardware resources than a simplistic algorithm
[2].

3.3.4 Stability

Stability is probably the most important performance measure for the adaptive
system. By the nature of the adaptive system, there are very few completely
asymptotically stable systems that can be realized. In most cases, the systems that
are implemented are marginally stable, with the stability determined by the initial

conditions, transfer function of the system and the step size of the input [2].

14



3.3.5 Filter Length

The filter length of the adaptive system is inherently tied to many of the other
performance measures. The length of the filter specifies how accurately a given
system can be modeled by the adaptive filter. In addition, the filter length affects the
convergence rate, by increasing or decreasing computation time, it can affect the
stability of the system, at certain step sizes, and it affects the MSE. If the filter length
of the system is increased, the number of computations will increase, decreasing the

maximum convergence rate [2].
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Chapter 4

ADAPTIVE FILTERING ALGORITHMS

4.1 Introduction

Adaptive filtering methods are generally used to cope with the changes in the system
parameters [4]. In FIR adaptive filters, the filter coefficients are iteratively updated
by minimizing the difference between the desired response and the output of the
adaptive filter. Before starting the discussion of the adaptive algorithms that we will
see in this thesis, an optimization technique called the steepest descent will be

presented.
4.2 Steepest-Descent Method

This is a recursive method since it starts from some initial (arbitrary) values of the
weights vector and it improves as the number of iterations increases. The important
thing to note is that the steepest descent method is descriptive of multiparameter
closed-loop deterministic control system which finds the minimum point of the

ensemble-averaged error-performance surface without the knowledge of the surface

itself [1].
Considering a transversal filter having the tap inputs u(n), u(n—1), ..., u(n -N + 1)
and a set of tap weights wo(n),wi(n), . . . ,wn.1(n). The vector of the tap inputs

represents samples drawn from a wide-sense stationary process of zero mean and

correlation matrix R = u(n)u*'(n), where H represents Hermitian transpose. Also the
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filter has a desired response d(n) that provides a frame of reference for the optimum

filtering action; this is illustrated clearly in Fig. 4.1.

ulin) uln=1) uin=2) u{n—=N+2) . uln—N=+1)

din L)

Control e(n) ¥
Mechanism
+

d(n)

Figure 4.1 Adaptive transversal filter’s structure.

The tap inputs vector at time n is denoted by u(n), and the estimate of the filter
output, which is called the desired response, is denoted by dA(n|Un), where Un is the
space spanned by the tap inputs u(n), u(n —1), ..., u(n —N + 1). By comparing this
with the actual desired response d(n), an estimation error denoted by e(n) is

produced.

e(n) = d(n) — d(n|Uy) = d(n) — w"(n)u(n), (4.1)
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where the inner product of the coefficients vector w(n) and the tap input vector u(n)
is given by the term w"(n)u(n). The coefficients vector, the tap-input vector and the

cost function are, respectively, denoted by:

w(n) = [wo(n) wa(n) . .. wna(M]", (4.2)
u(n) = [u(n)u(n =1)...u(n -N+1)]", (4.3)
J(n) = E{l(MF}, (4.4)

where E[.] denotes the expectation operator. If the tap-input vector u(n) and the
desired d(n) are jointly stationary (i. e., If x and y are jointly stationary then ax+by is
stationary for any constants a and b), then the mean-squared error or cost function

J(n) at time n could be written as:

J(n) = o® —wh(nmp — p"w(n) + w"(n)Rw(n), (4.5)

where;

adZ: variance of the desired response d(n).

p = the vector representing the cross-correlation between the tap-input vector u(n)
and the desired response d(n).

R = the correlation matrix of the tap-input vector u(n).

Equation (4.5) represents the mean-squared error. This error would result if the
coefficients vector of the filter is kept fixed at the value w(n). Since w(n) varies with
time n, the mean-squared error naturally varies with time n in a corresponding

manner. A result of this, the cost function (J(n)) for the mean-squared error is used
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in that equation. The change in the mean-square error J(n) with time n means that

the estimation error process e(n) is non-stationary [1].

The dependence of the mean-squared error J(n) on the entries of the filter
coefficients vector w(n) as a bowl-shaped surface with a unique minimum is
visualized. This is called as the surface error of the adaptive filter. This occurs when

the tap-weight vector takes on the optimum value wy [1]. We define:

Rwo = p, (4.6)

and the minimum mean-squared error is:

Jmin = 0'2 —QPHWo, (4-7)

The Steepest-Descent Algorithm [2] is relatively straightforward; nevertheless, it has
serious difficulties in the computations, especially, when the filter contains a large
number of coefficients and when the input vector has relatively large values. This
implies that we can use the steepest-descent method to find the minimum value of

the function of the mean-squared error Jp;, as follows:

1.Start with an initial value w(0) for the filter coefficients vector, which is
chosen arbitrarily. The value w(0) gives us an initial guess as to where the
minimum point of the error-performance surface may be located. Usually,
w(0) is set equal to the null vector.

2.Using this assumption, we compute the gradient vector, the real and imaginary

parts of which are defined as the derivative of the mean-squared error J(n),
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evaluated with respect to the real and imaginary parts of the tap-weight
vector w(n) at time n.

3.Compute the next guess of the tap-weight vector by changing the present guess
in a direction opposite to that of the gradient vector.

4.Go back to step 2 and repeat the process.

Let V(J(n)) denote the value of the gradient vector at time n. Let w(n) denote the
value of the filter coefficients vector at time n + 1, computed using the recursive

relation given by:

w(n + 1) = w(n) +1/2 u[-VEO)], (4.8)

where x is a positive real-valued constant, and

/ aJ(n) - 8d(n) \
dag(n) J Obg(n)
aJ(n) - dd(n)
dai(n) Ab1(n)
V(J(n)) = ;’ﬂiﬁ{*;)) ;’i&{?;l; = —2p + 2Rw(n), (4.9)
oJ(n) s 0J(n)

day_1(n) Jdb_.\;_l(n]/

where 27t 6J(n)
a(n)

and Bbe(n)

are partial derivatives of the cost function J(n) with
respect to real part a,(n) and the imaginary part b(n) of the k™ tap weight wi(n),
respectively. For the application of the steepest-descent algorithm, we assume that in

(4.9), the correlation matrix R and the cross-correlation vector p are known, so we
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may compute the gradient vector V(n) for a given value of the tap-weight vector
w(n). Substituting (4.9) in (4.8) we will get the updated value of the tap-weight

vector by using the simple recursive relation:

win+1)=w(n)+u[p-Rw(n)] n=1223,... (4.10)

It is known that the parameter u controls the size of the incremental correction
applied to the tap-weight vector as we proceed from one iteration cycle to the other.
We call « the step-size parameter or weighting constant. Equation (4.10) provides

the mathematical description of the steepest-descent algorithm.

According to (4.10), the correction éw(n) = w(n + 1) — w(n) applied to the tap-
weight vector at time n + 1 is equal to u[p — Rw(n)]. This correction may be
expressed as u times the expectation of the inner product of the input vector u(n) and
the estimation error e(n). This suggests using a bank of cross-correlators to compute
the correction éw(n) applied to the tap-weight vector w(n) as in Fig. 4.2. Another

point is that we may view the steepest-descent algorithm of (4.10) as a feedback

model.

21



T g (m)
f ]

u(n) I

;181 <

p o)
El ]
u(n-1) I
‘6@# — n e'(n)
_T()'n':fn)
E[ ]

un-2) I

iy

/)
-

un-N+2)

un-N+1) I

Figure 4.2. Bank of cross-correlators for computing the corrections of the elements
of the tap-weight vector at n + 1.

The operation of the least-mean-square (LMS) algorithm is descriptive of a

feedback control system. Basically, it can be subdivided into two basic processes:

1. An adaptive process, which cares about the automatic adjustment of the filter

coefficients.
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2. A filtering process, which cares about implementing the inner product of the
filter coefficients that emerge from the adaptive process in order to provide a
good estimate of the desired response, and generate an estimation error by
comparing this estimate with the actual value of the desired response; which in
turn (the estimation error) is used to actuate the adaptive process, thereby

closing the feedback loop.

We are going to identify the two basic components in the structural constitution of
the LMS algorithm as in Fig. 4.3, which has a transversal filter with LMS algorithm
(for filtering process), and a mechanism for adaptive control process on the tap

weights of the transversal filter.

u(n) Transversal Filter fg(”' v,)

w(n)

( _

Adaptive weight-control |, e(n) G)

mechanism

A

-+

d(n)

Figure 4.3 Block Diagram of Adaptive Transversal Filter.

While the filtering process is taking place, the desired response d(n) is supplied for
processing alongside the tap-input vector u(n). With this input the transversal filter
produces an output dA(n|Un) used as an estimate of the desired response d(n). Also we

may set up an estimation error e(n) as the difference between the desired response
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and the filter output, as in Fig. 4.4. Both e(n) and u(n) are applied to the control

mechanism, and the feedback loop around the tap weights is thereby closed.

uin) u(n-l) ) uin=2) u(n=N+2) ~ uln=N=+l)

N . o -

din L)

)
éln @
+

dim

Figure 4.4 Detailed Structure of the Transversal Filter Component.

Figure 4.5 presents details of the adaptive weight-control mechanism. Specifically, a
scaled version of the inner product of the estimation error e(n) and tap-input u(n — k)
is computed for k=0, 1,...,N — 1. The obtained result defines the correction owy(n)
applied to the tap weight Wy(n) at time n+1. The scaling factor x is called the step-

size parameter or adaptation constant (as mentioned previously).
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Figure 4.5. Detailed Structure of the Adaptive Weight-Control Mechanism.

Comparing Fig. 4.5 and Fig. 4.2 we see that the LMS algorithm uses the inner
product u(n — k)e (k) as an estimator of element k in the gradient vector V(J(n)) that
characterizes the steepest-descent method. The recursive computation of each tap

weight in the LMS algorithm suffers from gradient noise.
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The filter coefficients vector W(n) which is computed by the LMS algorithm executes
a random motion around the optimum point of the error surface. This motion

motivates us to investigate two convergence behaviors of the LMS algorithm.

1. Convergence behavior in the mean sense.

2. Convergence behavior in the mean square sense.

4.3 Least-Mean-Square Adaptation Algorithm

If it was possible to make an exact measurement of the gradient vector V(J(n)) at
each time iteration, and if the step-size u is chosen suitably, then the filter
coefficients vector computed by using the steepest-descent method would indeed

converge.

Exact measurements of the gradient vector are, in reality, impossible because this
would require prior knowledge of the autocorrelation matrix R of the tap input and
the cross-correlation vector p between the tap input vector and the desired response.
As a result of this, the gradient vector must be estimated using the available data.
That means the tap-weight vector according to an algorithm adapts to the incoming
data (Least-Mean-Square (LMS) Algorithm). A significant feature of the LMS
algorithm is its simplicity; it does not require measurements of the pertinent

correlation functions, and it does not require matrix inversion [1].

To develop a good estimate of the gradient vector V(J(n)), we substituted estimates

of the autocorrelation matrix R and the cross-correlation vector p in (4.9).

V(J(n)) = —2p + 2Rw(n), (4.11)
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The simplest choice of estimator for R and p is to use instantaneous estimates that

are based on sample values of the tap input vector and desired response.

R(n) = u(n)u"(n), (4.12)

b =u(n)d (), (4.13)

Corresponding, the instantaneous estimate equation of the gradient vector is:

vA(n)) = —2u(n)d"(n) + 2u(n)u™(n)w(n), (4.14)

This estimate is generally biased because the filter coefficients estimate vector w(n)
is a random vector that depends on the input vector u(n). Noting that the estimate
%(J(n)) can also be viewed as the gradient operator V applied to the absolute

instantaneous squared error |e(n)|?.

Substituting the estimate of (4.14) for the gradient vector V(J(n)) in the steepest
descent algorithm as described in (4.8), we get a new recursive relation for updating

the tap-weight vector:

W(n + 1) = W(n) + zu(n)[d"(n) — u™(n)W(n)] (4.15)

Here we have used the “cap” over the symbol of the tap-weight vector to distinguish
it from the value obtained by the steepest-descent algorithm. A summary of the LMS

algorithm is shown in Table 4.1.
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Table 4.1 Summary of the LMS algorithm.

1. Filter Output.
u(k) = W" (k)x(k)

2. Estimation Error.
e(k) = d(k) — y(k)

3. Tap — Weight Adaptation.
Wik +1) =w(k) + pe*(k)x(k)

where x(k) is the tap input vector and d(k) is the desired filter output.

4.4 Normalized Least Mean Square Algorithm

In the LMS algorithm, the selection of the step-size causes a problem in many of
applications where the LMS algorithm is used and when the input x(k) is large. To
overcome this problem, the normalized least-mean-square (NLMS) is proposed [10]-
[13]. In NLMS algorithm, the step-size u is normalized by the energy of the data

vector. A summary of the NLMS algorithm is given in Table 4.2.

Table 4.2 Summary of the NLMS algorithm

1. Filter Output.
y(k) = w" (k)x(k)

2. Estimation Error.
(k) = d(k) — y(k)

3. Tap — Weight Adaptation.
Wik +1) = W(k) + LSRG

where € is a the regularization parameter to avoid dividing by zero.
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The NLMS algorithm converges much faster than LMS algorithm with very little
extra computational complexity; NLMS is very commonly used in some applications

such as echo cancellation problems [14].

However, the NLMS algorithm has a problem; when the input vector x(k) is small,
then a rise of numerical difficulties may occur because by then we have to divide by

a small value for tap-input power [Ix(K)II%
4.5 Recursive-Least-Squares Algorithm

The recursive-least-squares (RLS) algorithm [1], [15]-[16] was proposed in order to
provide superior performance compared to those of the LMS algorithm and its
variants [17]-[22], with few parameters to be predefined, especially in highly
correlated environments. In the RLS algorithm, an estimate of the autocorrelation
matrix is used to decorrelate the current input data. Also, the quality of the steady-
state solution keeps on improving over time, eventually leading to an optimal

solution. A summary of the algorithm is shown in Table 4.3.

Even though the RLS algorithm has very good performance in such environments, it
actually suffers from its high computational complexity O(N?). Also, In RLS
algorithm, the forgetting factor () has to be chosen carefully such that its value
should be very close to one in order to ensure stability and convergence of the RLS
algorithm. However, this in turn poses a limitation for the use of the algorithm
because small values of  may be required for signal tracking if the environment is

non-stationary [23].
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Table 4.3 Summary of the RLS algorithm

Imitialize the algorithm by setting,

w(l) =0
P(0) =41
and

small positive constant for high SNR
d =
large positive constant for low SNR.

for each mstant of time, k = 1,2,... compute

D(k) = P(k — 1)x(k)

k{k‘] _ Dk

Fx (k)D(F)

£(k) = d(k) — w" (k — 1)x(k)
wik) =w(k —1) + k(k)&* (k)
and

P(k) = A 'P(k — 1) — B k(k)x" (k)P(k — 1).

In the following chapter we will explain the adaptive noise cancellation problem in
detail and implementing it using LMS, NLMS and RLS algorithms using the

SIMULINK package.
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Chapter 5

SIMULATIONS AND EXPERIMENTAL RESULTS

5.1 Introduction

In this thesis, the SIMULINK of MATLAB Software Package is used for the
simulation of the standard LMS, NLMS and RLS algorithms in noise cancellation
(see Fig. 3.2) configurations. Simulations discuss the performances of these
algorithms with additive white Gaussian noise (AWGN) with different parameters

and different input signals.

A real time implementation is carried out by a TI TMS320C6416T DSP (full details
in Appendix) by transferring the SIMULINK schemes (a sample; i.e. the LMS
SIMULINK schematic is shown in Fig. 5.1) to the DSP board which let it work alone

in real time independent of MATLAB.
5.2 Sinusoidal Input Signal

In this experiment, a sinusoidal signal (s(n)= Asin(2zft)) is created with the following
parameters: frequency f = 5Hz and amplitude A = 0.4 as shown in Fig. 5.2. Then, an
AWGN (shown in Fig. 5.3) with zero mean and variance ¢° = 0.03 is added to the
input signal. The resulting signal is assumed to be the received signal
(d(n)=s(n)+N(n)) and is shown in Fig. 5.4.The performances of the three algorithms

are compared with different parameters and different filter lengths.
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Figure 5.3 Additive White Gaussian Noise (N(n)).
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Figure 5.4 Input sinusoid with additive white gaussian noise.

In the first part of this experiment, the filter length is assumed to be N = 20 taps for
all algorithms, x = 0.03 for LMS and NLMS algorithms and for the RLS algorithm S
= 1. Fig. 5.5 shows the MSE of all algorithms. From the figure we see that the RLS
algorithm provides the fastest convergence rate and lowest MSE compared to the
other algorithms. NLMS algorithm converges to the same MSE as that of the RLS
algorithm with lower convergence rate. Even though the LMS algorithm converges
to the same MSE of the other algorithms, but it has the lowest convergence rate. Fig.

5.6 shows the recovered sinusoid by the aforementioned algorithms.
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Figure 5.5 MSE of LMS, NLMS and RLS algorithms: N = 20 taps, (« = 0.03) for
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Figure 5.6 Recovered sinusoid by LMS, NLMS and RLS algorithms: N = 20 taps, («
=0.03) for LMS and NLMS, (B = 1) for RLS.
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In the second part, the filter length is assumed to be N = 40 taps for all algorithms, u
= 0.03 for LMS and NLMS algorithms and for the RLS algorithm g = 1. Fig. 5.7
shows the MSE of all algorithms. From the figure we again notice that the RLS
algorithm provides the fastest convergence rate and lowest MSE compared to the
other algorithms. The NLMS algorithm converges to the same MSE as that of the
RLS algorithm with slightly lower convergence rate. The LMS algorithm converges
to the same MSE of the other algorithms. However, it has the lowest convergence
rate. Fig. 5.8 confirms what has been shown in Fig. 5.7 by showing the recovered

sinusoid by all algorithms.
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Figure 5.7 MSE of LMS, NLMS and RLS algorithms: N = 40 taps, (« = 0.03) for
LMS and NLMS, (5 = 1) for RLS.
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Figure 5.8 Recovered sinusoid by LMS, NLMS and RLS algorithms: N = 40 taps, («
=0.03) for LMS and NLMS, (5 = 1) for RLS.

In the third part, the filter length is assumed to be N = 20 taps for all algorithms, « =
0.003 for LMS and NLMS algorithms and for the RLS algorithm g = 1. Fig. 5.9
shows the MSE of all algorithms. From the figure we again notice that the RLS
algorithm provides the fastest convergence rate and lowest MSE compared to the
other algorithms. The LMS algorithm converges to the same MSE as that of the RLS
algorithm with slightly lower convergence rate. Now, even though the NLMS
algorithm converges to the same MSE of the other algorithms, it has the lowest
convergence rate. This is because of the very low step-size when it is divided by the
power of the input vector. Fig. 5.10 confirms what has been shown in Fig. 5.9 by

showing the recovered sinusoid by all algorithms.
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Figure 5.10 Recovered sinusoid by LMS, NLMS and RLS algorithms: N = 20 taps,
(uw=0.003) for LMS and NLMS, (B = 1) for RLS.
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In the last part, the filter length is assumed to be N = 40 taps for all algorithms, u =
0.003 for LMS and NLMS algorithms and for the RLS algorithm g = 1. Fig. 5.11
shows the MSE of all algorithms. From the figure we again notice that the RLS
algorithm provides the fastest convergence rate and lowest MSE compared to the
other algorithms. The LMS algorithm converges to the same MSE as that of the RLS
algorithm with slightly lower convergence rate. Now, even though the NLMS
algorithm converges to the same MSE of the other algorithms, it has the lowest
convergence rate. This is because of the very low step-size when it is divided by the
power of the input vector. Fig. 5.12 confirms what has been shown in Fig. 5.11 by
showing the recovered sinusoid by all algorithms. Also, it is noted that increasing the
filter length for the aforementioned experiments provides no gain; hence 20 taps

filter length could be enough for recovering such signal.
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Figure 5.11 MSE of LMS, NLMS and RLS algorithms: N = 40 taps, (« = 0.003) for
LMS and NLMS, (5 = 1) for RLS.
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5.3 Music Input Signal

5.3.1 Simulation Results

In this experiment, a music signal is used. To be comparable with the results shown
by the oscilloscope, a portion of the signal is shown in Fig. 5.13. Then, an AWGN
(shown in Fig. 5.15) with zero mean and variance ¢° = 0.03 is added to the input
signal. The resulting signal is assumed to be the received signal and is shown in Fig.

5.17.

The filter length is assumed to be N = 10 taps for all algorithms, x = 0.05 for LMS
and NLMS algorithms and for the RLS algorithm g = 1. Figs. 5.19, 5.21 and 5.23
show the output errors of LMS NLMS and RLS algorithms, respectively. From the
figure we see that the RLS algorithm provides smallest estimated output error
compared to the other algorithms. Figs. 5.25, 5.27 and 5.29 show the recovered

music signal by LMS NLMS and RLS algorithms, respectively.
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5.3.2 Experimental Results

In this part, the experiments of section 5.3.1 are uploaded to the DSP card and the
results are shown on the oscilloscope. Fig. 5.14 shows the input music signal. Then,
an AWGN (shown in Fig. 5.16) with zero mean and variance ¢° = 0.03 is added to
the input signal. The resulting signal is assumed to be the received signal and is

shown in Fig. 5.18.

The filter length of the filter specifies how accurately a given system can be modeled
by the adaptive filter. In addition, the filter length affects the convergence rate, by
increasing or decreasing computation time, it can affect the stability of the system, at

certain step sizes, and it affects the MSE.

In this experiment the filter length is assumed to be N = 10 taps for all algorithms, u
= 0.05 for LMS and NLMS algorithms and for the RLS algorithm £ = 1. Figs. 5.20,
5.22 and 5.24 show the output errors of the LMS, NLMS and RLS algorithms,
respectively. From the figures we see that the RLS algorithm provides smallest
estimated output error compared to the other algorithms. And Figs. 5.26, 5.28 and
5.30 show the recovered music signal by the LMS, NLMS and RLS algorithms,
respectively. The results seen by the oscilloscope are in compatible with the

simulation results.
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Figure 5.14 Input music signal (s(n)), as seen on oscilloscope.
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Figure 5.15 Added noise (N(n)) for simulation results.
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Figure 5.16 Added noise (N(n)), as seen on oscilloscope.
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Figure 5.18 Input music signal with noise (d(n)), as seen on oscilloscope.
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Figure 5.20 Output error (e(n)) of LMS algorithm on oscilloscope: N = 10 taps, (u =
0.05).
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Figure 5.21 Output error (e(n)) of NLMS algorithm: N = 10 taps, (« = 0.05).
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Figure 5.22 Output error (e(n)) of NLMS algorithm on oscilloscope: N = 10 taps, («
=0.05).
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Figure 5.24 Output error (e(n)) of RLS algorithm on oscilloscope: N = 10 taps, (5 =
1).
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Figure 5.26 Recovered signal by LMS algorithm on oscilloscope: N = 10 taps, (u =
0.05).
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Figure 5.28 Recovered signal by NLMS algorithm on oscilloscope: N = 10 taps, (u =
0.05).
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Chapter 6

CONCLUSIONS

6.1 Conclusions

In this thesis, a performance comparison between the LMS, NLMS and RLS
algorithms under different step-sizes and filter lengths has been investigated using
the SIMULINK package. The simulations have been done with different input
signals (mainly a sinusoid and general music signals were used). Simulations have
shown that the RLS algorithm outperforms the other algorithms; of course, this high
performance is with a trade-off with the high computational complexity of the RLS
algorithm. NLMS algorithm provides very good performance (better than the LMS
and close to that of the RLS) with almost the same computational complexity of that

of the LMS algorithm.

A real time implementation is also carried out by a TI TMS320C6416T DSP by
transferring the SIMULINK schemes to the DSP board which let it work alone in
real time independent of MATLAB. Furthermore, the performance of the
aforementioned algorithms as seen on oscilloscope was compatible to what has been

investigated by the software.
6.2 Future Work

As a future work, different algorithms' performances can be compared by the
investigated ones and their simulation results can be compared by their hardware

ones. Also, one of the main disadvantages of the RLS algorithm is its stability if the
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autocorrelation matrix is singular; hence a way to make the RLS more stable could

be investigated.
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Appendix A: Texas Instruments

Steps for using the software and Hardware and how can we connect both of them to
make real time implementation noise cancellation:-

For using Texas Instruments DSK6416 (TMS320C6416 (1 GHZ)).

System requirements for DSK 6416 are:-
A) You should install MATLAB R2006a.
B) 500MB of free hard disk space.
C) 128MB of RAM.
D) 16-bit color display.
E) CD-ROM Drive.
F) Hardware installation using operating systems as windows XP or

windows 2000.
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PART A: Software Installation

A.1l: Insert the code composer studio installation CD into the CD-ROM drive. An
install menu (see below) should appear. If it does not, manually run Launch.exe from

the install products option from the menu.

TMS320C6000 DSK Tools

artnership with Texas Instruments

SPECTRUM
ITAL

CORPORATED

A.2: Install any components you need. To debug with the DSK you must have:-
A) A copy of code composer studio.
B) The target content package for your board.

C) A copy of the Flash Burn plug-in.
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S TASSPF P RODUCT'S

Installation Requirements:

You must be logged on with
administrator privliges to install most
products.

C6000 Code Comoser Studio v3.1
MUST be installed first, followed by
FlashBurn. You can then install one or
more driver/target content packages.

Adobe Acrobat reader is required to
view online documentation.

& MAIN MENU

A.3: The installation procedure will create two icons on your desktop:-

6461 DSK CCStudio v3.1

6416 DSK Diagnostics Utility v3.1
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PART B: Hardware Connection

A.4: Connect the supplied USB cable to your PC or laptop.

A.5: If you plan to connect a microphone, speaker. Or expansion card these must be
plugged in properly before you connect power to the DSK board.

A.6: Connect the included 5V power adapter brick to your AC power cord.

A.7: Apply power to the DSK by connecting the power brick to the 5V input on the
DSK.

A.8: When power is applied to the board the power on self-Test (POST) will run.
A.9: Make sure you DSK CD-ROM is installed in your CD-ROM drive. Now
connect the DSK to your PC using the included USB.

A.10: Test you connection, if you want to test your DSK and USB connection you

can launch the C6416 DSK Diagnostic Utility from the icon on your desktop.
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A.11: Start Code Composer; double click the 6416 DSK CCStudio icon on your

desktop and connect DSK6416, select Debug -> Connect:-

DSK6416/MSP_Codx 6430 pde Compose flio ot Connected L]
File Edit ‘iew Project GEL Option Profle Tools DSPYEIOS Window Help
EE I B % % B | S W | s e | 3 E
Probe Paoints...
I Step Inko F11 |IU ﬂ | Si % . )2
Step Cwer F10
"
@ | ﬂ EH Skep Cut Shift+F11
G- 8
= : D EL Files Halt Shift+F5
i &3 Profects Animate A4S
i Run Free Crl+FS
?} Fun to Cursor Chrl+F10
Set PC ko Cursor Chrl+shift+F10
ﬁ' Multiple Operation. ..
Aszembly fSource Steppin »
0 yf pRing
{J,} Reset CPU Chrl+R
. Festart Chrl+3hift+FS
‘& a0 Main Chrlm
a: Reset Emulabor ChrH-5hiFE+R.
% Connect Alk+C
e Restore Debug State
[E=¢]
= Enable Thread Level Debugging...
Real-time Mode
Mo target connected Enable Rude Real-time Made
Select Connect from the Del
 Flush Pipeling an Halt

_(_%;g @0 LUINKMOWH | [Toggle the connection b the target A
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A.12: You should prepare your MATLAB SIMULINK and you should make it as

you see from this SIMULINK:-

i1 projectfinalRLS *

Fle Edit Wiew Simulation Format Tools Help

O EdE NS =2 » 4 Mormal - @ H@

|

input2

Signal T
Warkspa Filtered Signal

Input Output e 1322 y_filtered

321
L | Desired RLS Errar Lsndle ] ! =
[32x1] [32x1]

o

Ismgle(Wavread('dspafxfjﬂﬂﬂ.wav’) G

8 kHz audio signal

b

e [[f 0:

=

Lambda Vil [

=]

v

yout2

321 >

RLE Filter

Signal To
TEa2 Wiorkspace

-0.0182
0.40%
0.230

Fast Adapt [0 0123
Hoise EIIPE]

CHE4TE DSK

FDATaal
M sincle 3% 1 r‘\ single [32]1] -0.0197 [EZA] T DAC

-0.0873
DA

Moise Filter 0134

Display

CHEABDEK

|

Ready 121% FixedstepDiscrete
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A.13: When you open the SIMULINK you should connect it to DSP kit, using this

way: - Select Tools -> Real-Time Workshop -> Build Model.

& projectfinalRLS *

File Edit WYiew Simulation Format WE==8 Help
R = =] 4 Simulink Debugger. .. Bl ’m @ “ i @
Fixed-Point Settings...
Model Advisor... 5
Madel Reference Graph... input2
Lookup Table Editor. ..
Data Class Designer... gnal To i .
X rtkspa Filtered Signal
Bus Editor,..
Is\ngIe(wavread('dspafxf_BDDD.w y_filtered
Profiler
8 kHz audio signal Coverage Settings...
‘ =]
Requirernents 4 [32x1] v
Y 0]
Signal & Scope Manager...
sho i 2] yout2
External Mode Control Panel... il Ctrl+E Signal To
ontrol Design 3 05827 Waorkspace
Parameter Estimation. . . -0.071825
Report Generator,.. 04050
Data Ohject wizard 0.2306
l—- -0.08574
single .
Fast Adapt [10x1] RISEEN
Ioize -0.028Y
FOAT o0l CH416 DSK
single 32 singe (321 007872 T DAC
-0.09736
DAC
Moise Filter 01345
Display
CR4TEDEK \:,
< 1>
Generate RTW code 121%: FixedStepDiscrete

A.14: And then your work will transfer to DSK6416 card, than you can get the

output filtering from output for DSK cart.
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APPENDIX B: Matlab Simulink

PART A: First experiment for sinusoidal noise cancellation:-

B.1: LMS Algorithm.

aal

ine Yygve

floize

single [32

inpulins

Signal Ta
Warkspace!

single

singlg|[32:1]

(3ain

[2x1] ™ I]
Fittered Signal
: ToWave
single [3fat! )
Irput Output F—— 88— fitered i
P F' ] Device
Desired  LMS Error %WE
=
Step-size s ' || 2% [32:1] v
- Signal To
LM= Fiter Workspace
CEH1E DK
:’
[32:1] DA
01763 DAC
Slowe Adapt T
003
single 0.151
single o 01377
Fazt Adsy
. ; 1_.. 0124
e 01108
009725
008367
1006333 CE416DSK
¥
Dizplay
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B.2: NLMS Algorithm.

I_|'L]SP

Sine Wave

MHoise

o

single [32x1
[32x1]

66

I}
i [3201]
2 inputt
Signal Ta Filterad Signal ToWave
Workspacel sine [32x1] Device
T Input Output o y_filtered
) ) Marmalized )
single [32x1 sindle [3241] Desied LMS Errar singe [3)fd ) E
LUJ 2] ‘:.') [k [32¢1] N '
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| Step-size Wits Signal Ta
| D.EDDE| Woarkspace
LM Filter 01825
0158
0142
01232
Slow Adapt
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Isingle i 0.09047 N 064[1)ECDSK
single : '},_,._ 2]
’ single - 007411 132¢1]
Fast Adapt TREY DAL
(1.04666 .
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¥
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L]
CE41E0SK




B.3: RLS Algorithm.

[32x1+ Input2 = I}
WSii”a'T°1 Fitered Signal
QIHSpace To'ave
] Inpu Output y fitered Do
Desited  RLS B
e fat NETTAE )
| P | s (2] |
single [32 B 32 _
[ 2] —— b e it pne (21 Signal To
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Display
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PART B: Hardware Experiment for Music Noise Cancellation:

B.4: LMS Algorithm.

[32x1 inputims [32x1] <l])
Signal To
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Dievice
Filtered Signal
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B.5: NLMS Algorithm.
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B.6: RLS Algorithm.
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