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ABSTRACT 

The contamination of a signal of interest by other undesired signals (noise) is a 

problem encountered in many applications. The conventional linear digital filters 

with fixed coefficients exhibit a satisfactory performance in extracting the desired 

signal when the signal and noise occupy fixed and separate frequency bands. 

However, in most applications, the desired signal has changing characteristics which 

requires an update in the filter coefficients for a good performance in the signal 

extraction. Since the conventional digital filters with fixed coefficients do not have 

the ability to update their coefficients, adaptive digital filters are used to cancel the 

noise. The mean square error (MSE) technique is used as a measure of the noise 

reduction. 

The adaptive filter generally uses finite impulse response (FIR) least-mean-square 

(LMS) and normalized LMS (NLMS) algorithms in signal processing or infinite 

impulse response (IIR) recursive-least-squares (RLS) algorithm in adaptive control 

for the noise cancellation applications. 

The main aim of this thesis is to investigate the implementation of a real time noise 

cancellation application. The real time implementation is carried out by a Texas 

Instruments (TI) TMS320C6416T Digital Signal Processor (DSP). First, the LMS, 

NLMS and RLS algorithms are simulated using SIMULINK of MATLAB. Then, 

these algorithms have been transferred to the DSP board which let, them to work 

alone in real time independent of MATLAB. Furthermore, the performance of the 

aforementioned algorithms has been compared in different problem settings. 
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ÖZ 

Bir sinyalin, istenmeyen sinyal (gürültü) tarafından kirlenmesi birçok uygulamada 

karşı karşıya kalınan bir problemdir. Geleneksel sabit katsayılı doğrusal sayısal 

süzgeçler, sinyal ve gürültü sabit ve ayrı frekans bandlarını işgal ettiği zaman, 

istenen sinyalin elde edilmesi için yeterli bir performans sergilerler. Bununla birlikte, 

birçok uygulamada, istenen sinyalin değişen  karakteristikerinden dolayı sinyal elde 

işleminde iyi bir performans elde etmek için süzgeç katsayılarında bir güncellemeye 

ihtiyaç duyulmaktadır. Geleneksel sabit katsayılı sayısal süzgeçlerin katsayılarını 

güncelleme yeteneği olmadığı için gürültüyü yok etmek için uyarlanabilir sayısal 

süzgeçler kullanılmaktadır. Ortalama–kare-hata  tekniği gürültü azaltma ölçümü 

olarak kullanılır. 

Uyarlanabilen sayısal süzgeç, genellikle sonlu-dürtü-cevabı (FIR) enaz-ortalama-

kare (LMS) ve normalize olmuş LMS (NLMS) algoritmalarını sayısal sinyal işleme 

alanında veya sonsuz-dürtü-cevabı (IIR) tekrarlanan-enaz-kare (RLS) algortimasını 

gürültü yoketme uygulamalarında kullanır. 

Bu tezin esas amacı gerçek zamanda bir gürültü yoketme uygulamasını araştırmaktır. 

Gerçek zaman uygulaması, Texas Instruments TMS320C6416T sayısal sinyal 

işlemcisi ile MATLAB‘ın Simulink ortamında yapılmıştır. İlk olarak, LMS, NLMS 

ve RLS algoritmalarının benzetimi yapılmıştır. Daha sonra, bu algoritmalar sayısal 

sinyal işlemcisine transfer edilerek sayısal sinyal işlemcisinin MATLAB’dan 

bağımsız olarak gerçek zamanda kendi başına çalışması sağlanmıştır. Ayrıca, adı 

geçen algoritmaların performansı farklı problemler için karışlaştırılmıştır. 
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   Chapter 1 

INTRODUCTION 

1.1 Introduction  

In the previous years, adaptive filters have been attracting the attention of many 

people due to their self-designing properties [1]-[4]. When some a priori knowledge 

about the statistics of the signal is available, an optimal filter for such application 

can be designed (i.e. Wiener Filter which minimizes the mean-square-error (MSE); 

the difference between the filter output and the desired response) [1]. If this a priori 

knowledge is not available, adaptive filtering algorithms possess the ability to adapt 

the filter coefficients to be compatible with the involved signal statistics. Hence, 

adaptive filtering algorithms have been used in many fields such as signal processing 

[1], communications systems [5], and control systems [3]. 

Adaptive filtering process consists of two major steps; filtering process which 

produces an output signal (response) from the input signal, and adaptation process; 

which adjusts the coefficients of the filter in a way in order to minimize a function 

called the cost function. Basically, there are many filter structures and filtering 

algorithms that are used in adaptive filtering applications. 

Adaptive filters usually classified to two categories depending on their impulse 

response: finite-impulse-response (FIR) adaptive filter [6]; this filter’s impulse 

response has a finite duration since it goes to zero after a finite time, and infinite 
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impulse-response (IIR) adaptive filter [6]; which has an internal feedback 

mechanism and continues to respond indefinitely. IIR filters have diverse 

applications and are beyond the scope of this thesis. 

FIR adaptive filters have different structures; adaptive transversal filters structure, 

the lattice predictor structure and the systolic array structure [1]. The adaptive 

structure of a transversal filter is shown in Fig. 1.1. The input vector tap at time n is 

denoted by u(n), the weight vector w(n) = [w0(n),w1(n), . . . .,wN- 1(n)]T, and the desired 

response estimate (the filter output) is denoted by d(n|Un), where Un is the space 

spanned by the tap inputs u(n), u(n−1), . . . , u(n−N+1). By comparing the filter 

response y(n) with the real desired response d(n), we produce an estimation error 

denoted by e(n) = d(n)− d(n|Un) . The control mechanism adaptively adjusts the 

filter coefficients in order to obtain the desired response. Mathematically, this is 

interpreted as: 

 

 
 

And     

 
 

 

 

 

^ 

^ 
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 Then the transfer function is:                                              

                                                            

 

 

 The impulse response of the transversal filter is h(n) = {w0,w1,……….,wN-1}. 

  

 

Figure 1.1 Structure of the adaptive transversal filter. 
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1.2 Objective of the Thesis 

The main objective of this thesis is to investigate the implementation of a real time 

noise cancellation application. The real time implementation has been carried out by 

a Texas Instruments (TI) TMS320C6416T Digital Signal Processor (DSP). 

First, the LMS, NLMS and RLS algorithms are simulated using SIMULINK of 

MATLAB. Then, these algorithms are transferred to the DSP board which let them 

to work alone in real time independent of MATLAB. Furthermore, the performances 

of the aforementioned algorithms are compared in different problem settings with 

mainly two input signals: (a) sinusoidal input signal with noise and (b) music input 

signal with noise. 
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Chapter 2 

DIGITAL FILTERS 

2.1 Filters 

A filter is any device or system that takes a mixture of inputs and processes them to 

give corresponding required outputs. In communication systems, the term filter 

refers to a system that reshapes the frequency components of an input to give an 

output signal with desirable features. Filters are classified according to the linearity 

properties as linear and non-linear filters. In our research, we are going to discuss the 

linear adaptive filters. 

2.2 Adaptive Filter Structures 

Adaptive filtering process involves two basic steps: 

1. A filtering process; which is designed to produce a desired output in response 

to an input data. 

2. An adaptive process; aims to provide a mechanism for adjusting a set of the 

filter coefficients. 

Generally, there are two types of digital filters, as mentioned in Chapter 1; FIR filters 

and IIR filters. IIR filters are beyond the scope of this thesis. FIR filters will be 

discussed in detail in the next sections. 
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2.2.1 Finite Impulse Response Filters 

There are three types of filter structures that distinguish themselves in the context of 

an adaptive filter with finite impulse response. The three filter structures are as 

follows [1]: 

1. Transversal Filter: consists of three basic elements, as in Fig. 2.1: 

(a)  unit-delay element (z
-1

) 

(b)  multiplier 

(c)  Adder 

The number of delay elements, shown as N − 1 in Fig. 2.1, is commonly referred to 

as the order of the filter. Each multiplier in the filter is used to multiply each tap 

input (to which it is connected) by a filter coefficient or a tap weight. Thus, a 

multiplier connected to the k
th

 tap input u(n-k) produces the inner product wk(n- k) , 

where wk is the corresponding tap weight and k = 0, 1, . . . ,N-1. The role of each 

adder in the filter is to sum the multiplier outputs and to produce a total filter output 

as in (2.1). 

 

 

Figure 2.1 Transversal Filters. 
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2. Lattice Predictor: is modular in structure in that it consists of a number of 

separate stages, each looks as a lattice. Fig. 2.2 shows an N −1 stages lattice 

predictor; the number N − 1 refers to the predictor order. The m
th

 stage of a 

lattice predictor is described by the pair of input-output relations:  

 

fm(n) = fm-1(n) + Г 
*

m  mbm-1(n − 1),                                           (2.2) 

bm(n) = bm-1(n − 1) + Г m fm-1(n),                                                (2.3) 

where m = 1, 2, . . . ,N − 1, where N − 1 is the final predictor order. The 

variable fm(n) is the m
th

 forward prediction error, and bm(n) is the m
th 

backward prediction error. The coefficient Гm is called the m
th

 reflection 

coefficient. The forward prediction error fm(n) is defined as the difference 

between the input u(n) and its one-step predicted value. Correspondingly, the 

backward prediction error bm(n) is defined as the difference between the 

input u(n−N) and its “backward” prediction based on the set of m “future” 

inputs u(n), . . . , u(n − N + 1). 
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Figure 2.2 Multistage Lattice Predictor. 

3. Systolic Array: consists of a parallel computing network which is used to 

map a number of linear algebra operations, such as matrix multiplication, 

triangularization, and back substitution. Basically, two types of processing 

elements may be distinguished in a systolic array: boundary cells and internal 

cells. In each case, the parameter r represents a value stored within the cell. The 

function of the boundary cell is to produce a response equal to the input u 

divided by r which is a number stored in the cell. The function of the internal 

cell is: (a) to multiply the input z by the number r stored in the cell, subtract 

product rz from the second input, and thereby produce the difference u – rz as 

an output from the right side of the cell, and (b) to transmit the first input z 

downward without alteration. 
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Chapter 3 

ADAPTIVE FILTERS AND NOISE CANCILLATION 

3.1 Introduction 

Digital Signal Processing (DSP) is the major technology that can be applied to noise 

filtering, system identification, and voice prediction. Standard DSP techniques are 

not enough to solve these problems quickly and obtain acceptable results. Adaptive 

filtering techniques must be implemented to obtain accurate solutions with timely 

convergence. 

3.2 Adaptive Filtering System Configurations 

Adaptive filter had first established its engineering use in 1960s. It was applied as an 

equalizer to combat the effect of Inter-Symbol Interference (ISI) of data 

transmission in telephone channels [1]. Since then, adaptive filter was modified into 

different forms and applied in many different areas such as; signal processing and 

communication systems. 

There are four major types of adaptive filtering configurations; adaptive system 

identification [8], adaptive noise cancellation, adaptive linear prediction [9], and 

adaptive inverse system [7]. All of the above systems are similar in the 

implementation of the algorithm, but different in system configuration. All four 

systems have the same general components; an input signal x(n), a desired result 

d(n), an output y(n), an adaptive transfer function w(n), and an error signal e(n) 

which is the difference between the desired output d(n) and the actual output y(n). In 
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addition to these, the system identification and the inverse system configurations 

have an unknown linear system u(n) that can produce a linear output to the given 

input [1]. 

3.2.1 Adaptive System Identification Configuration 

The adaptive system identification is primarily responsible for determining a discrete 

estimation of the transfer function for an unknown digital or analog system. The 

same input x(n) is applied to both the adaptive filter and the unknown system from 

which the outputs are compared, as shown in Fig. 3.1. The output of the adaptive 

filter y(n) is subtracted from the output of the unknown system (which results in the 

desired response signal d(n)). The resulting difference is an error signal e(n) which is 

used to manipulate the filter coefficients of the adaptive system. After convergence, 

the error signal tends toward zero. 

 

Figure 3.1 Adaptive System Identification Configuration. 

 

After a number of iterations of this process, the adaptive filter’s transfer function 

will converge to, or near to, the unknown system’s transfer function. For this 

configuration, the error signal does not have to go to zero (although convergence to 

zero is the ideal situation) to closely approximate the given system. There will, 

however, be a difference between the adaptive filter transfer function and the 
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unknown system transfer function if the error is nonzero and the magnitude of that 

difference will be directly related to the magnitude of the error signal. 

3.2.2 Adaptive Noise Cancellation Configuration 

The second configuration is the adaptive noise cancellation configuration as shown 

in Fig. 3.2. In this configuration, the input x(n) (a noise source N1(n)), is compared 

with a desired signal d(n), which consists of a signal s(n) corrupted by another noise 

signal (N0(n)). The adaptive filter coefficients adapt to cause the error signal to be a 

noiseless version of the signal s(n). 

Both of the noise signals for this configuration need to be uncorrelated to the signal 

s(n). In addition, the noise sources must be correlated to each other in some way, 

preferably equal, to get the best results [2]. Assuming that y(n) ≈ N1(n), d(n) = s(n) 

+ N0(n) and the error can be written as e(n) = s(n) + N0(n) − y(n) since, noise 

sources are correlated to each other the error reduces to e(n) = s(n). 

 

Figure 3.2 Adaptive Noise Cancellation Configuration. 
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3.2.3 Adaptive Linear Prediction Configuration 

Adaptive linear prediction is the third type of adaptive configuration as shown in 

Fig. 3.3. This configuration essentially performs two operations: The first operation, 

is linear prediction; if the output is taken from the error signal e(n). The adaptive 

filter coefficients are being trained to predict, from the statistics of the input signal 

x(n), what the next input signal will be. The second operation, is a noise filter similar 

to the adaptive noise cancellation outlined in the previous section; if the output is 

taken from y(n). 

In the case of noise filtering, as outlined in the previous section, y(n) will converge 

to the noiseless version of the input signal. 

 

Figure 3.3 Adaptive Linear Prediction Configuration. 

3.2.4 Adaptive Inverse System Configuration 

The final filter configuration is the adaptive inverse system configuration as shown in 

Fig. 3.4. The goal of the adaptive filter here is to model the inverse of the unknown 

system u(n). This is particularly useful in adaptive equalization where the goal of the 

filter is to eliminate any spectral changes that are caused by a prior system or 

transmission line. 
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Figure 3.4 Adaptive Inverse System Configuration. 

The way this filter works is as follows; the input x(n) is sent through the unknown 

system u(n) and then through the adaptive filter resulting in an output y(n). The input 

is also sent through a delay to attain d(n). As the error signal is converging to zero, 

the adaptive filter coefficients w(n) are converging to the inverse of the unknown 

system u(n). 

For this configuration, the error can theoretically go to zero. This is only true if the 

unknown system consists only of a finite number of poles or the adaptive filter is an 

Infinite Impulse Response (IIR) filter. If neither of these conditions is true, the 

system will converge only to a constant due to the limited number of zeroes 

available in a Finite Impulse Response FIR system [1]. 

3.3 Performance Measures in Adaptive Systems 

Some important measures will be discussed in the following sections; convergence 

rate, minimum mean square error, computational complexity, stability, and filter 

length [2]. 
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3.3.1 Convergence Rate 

The Convergence rate determines the rate at which the filter converges to its 

resultant state. Usually a faster convergence rate is a desired characteristic of an 

adaptive system. Convergence rate is not independent of all the other performance 

characteristics. There is usually a tradeoff, with convergence rate and other 

performance criteria [2]. 

3.3.2 Mean Square Error 

The MSE is a metric indicating how much a system can adapt to a given solution. A 

small MSE is an indication that the adaptive system has accurately modeled, 

predicted, adapted and/or converged to a solution for the system. There are a number 

of factors which will help to determine the MSE including, but not limited to; 

quantization noise, order of the adaptive system, measurement noise, and error of the 

gradient due to the finite step size [2]. 

3.3.3 Computational Complexity 

Computational complexity is particularly important in real time adaptive filter 

applications. When a real time system is being implemented, there are hardware 

limitations that may affect the performance of the system. A highly complex 

algorithm will require much greater hardware resources than a simplistic algorithm 

[2]. 

3.3.4 Stability 

Stability is probably the most important performance measure for the adaptive 

system. By the nature of the adaptive system, there are very few completely 

asymptotically stable systems that can be realized. In most cases, the systems that 

are implemented are marginally stable, with the stability determined by the initial 

conditions, transfer function of the system and the step size of the input [2].  
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3.3.5 Filter Length 

The filter length of the adaptive system is inherently tied to many of the other 

performance measures. The length of the filter specifies how accurately a given 

system can be modeled by the adaptive filter. In addition, the filter length affects the 

convergence rate, by increasing or decreasing computation time, it can affect the 

stability of the system, at certain step sizes, and it affects the MSE. If the filter length 

of the system is increased, the number of computations will increase, decreasing the 

maximum convergence rate [2].  
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Chapter 4 

ADAPTIVE FILTERING ALGORITHMS 

4.1 Introduction 

Adaptive filtering methods are generally used to cope with the changes in the system 

parameters [4]. In FIR adaptive filters, the filter coefficients are iteratively updated 

by minimizing the difference between the desired response and the output of the 

adaptive filter. Before starting the discussion of the adaptive algorithms that we will 

see in this thesis, an optimization technique called the steepest descent will be 

presented. 

4.2 Steepest-Descent Method 

This is a recursive method since it starts from some initial (arbitrary) values of the 

weights vector and it improves as the number of iterations increases. The important 

thing to note is that the steepest descent method is descriptive of multiparameter 

closed-loop deterministic control system which finds the minimum point of the 

ensemble-averaged error-performance surface without the knowledge of the surface 

itself [1]. 

Considering a transversal filter having the tap inputs u(n), u(n − 1), . . . , u(n −N + 1) 

and a set of tap weights w0(n),w1(n), . . . ,wN-1(n). The vector of the tap inputs 

represents samples drawn from a wide-sense stationary process of zero mean and 

correlation matrix R = u(n)u
H
(n), where H represents Hermitian transpose. Also the 



  

 17  

filter has a desired response d(n) that provides a frame of reference for the optimum 

filtering action; this is illustrated clearly in Fig. 4.1. 

 

 

 

 

Figure 4.1 Adaptive transversal filter’s structure. 

The tap inputs vector at time n is denoted by u(n), and the estimate of the filter 

output, which is called the desired response, is denoted by  d(n|Un), where Un is the 

space spanned by the tap inputs u(n), u(n − 1), . . . , u(n − N + 1). By comparing this 

with the actual desired response d(n), an estimation error denoted by e(n) is 

produced. 

e(n) = d(n) − d(n|Un) = d(n) − w
H
(n)u(n),                                 (4.1) 

^ 

^ 
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where the inner product of the coefficients vector w(n) and the tap input vector u(n) 

is given by the term w
H
(n)u(n). The coefficients vector, the tap-input vector and the 

cost function are, respectively, denoted by: 

w(n) = [w0(n) w1(n) . . . wN-1(n)]
T
 ,                                        (4.2) 

u(n) = [u(n) u(n − 1) . . . u(n − N + 1)]
T
 ,                              (4.3) 

J(n) = E{|e(n)|
2
},                                                                   (4.4) 

where E[.] denotes the expectation operator. If the tap-input vector u(n) and the 

desired d(n) are jointly stationary (i. e., If x and y are jointly stationary then ax+by is 

stationary for any constants a and b), then the mean-squared error or cost function 

J(n) at time n could be written as: 

J(n) = σ
2
 − w

H
(n)p − p

H
w(n) + w

H
(n)Rw(n),                              (4.5) 

 

where; 

σ
2
= variance of the desired response d(n). 

p = the vector representing the cross-correlation between the tap-input vector u(n) 

and the desired response d(n). 

R = the correlation matrix of the tap-input vector u(n). 

Equation (4.5) represents the mean-squared error. This error would result if the 

coefficients vector of the filter is kept fixed at the value w(n). Since w(n) varies with 

time n, the mean-squared error naturally varies with time n in a corresponding 

manner. A result of this, the cost function (J(n)) for the mean-squared error is used 

d 

d 
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in that equation. The change in the mean-square error J(n) with time n means that 

the estimation error process e(n) is non-stationary [1]. 

The dependence of the mean-squared error J(n) on the entries of the filter 

coefficients vector w(n) as a bowl-shaped surface with a unique minimum is 

visualized. This is called as the surface error of the adaptive filter. This occurs when 

the tap-weight vector takes on the optimum value w0 [1]. We define: 

Rw0 = p,                                                        (4.6) 

and the minimum mean-squared error is: 

Jmin = σ
2
 − pH

w0,                                                (4.7) 

The Steepest-Descent Algorithm [2] is relatively straightforward; nevertheless, it has 

serious difficulties in the computations, especially, when the filter contains a large 

number of coefficients and when the input vector has relatively large values. This 

implies that we can use the steepest-descent method to find the minimum value of 

the function of the mean-squared error Jmin as follows: 

1. Start with an initial value w(0) for the filter coefficients vector, which is 

chosen arbitrarily. The value w(0) gives us an initial guess as to where the 

minimum point of the error-performance surface may be located. Usually, 

w(0) is set equal to the null vector. 

2. Using this assumption, we compute the gradient vector, the real and imaginary 

parts of which are defined as the derivative of the mean-squared error J(n), 

d 
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evaluated with respect to the real and imaginary parts of the tap-weight 

vector w(n) at time n. 

3. Compute the next guess of the tap-weight vector by changing the present guess 

in a direction opposite to that of the gradient vector. 

4. Go back to step 2 and repeat the process. 

Let ∇(J(n)) denote the value of the gradient vector at time n. Let w(n) denote the 

value of the filter coefficients vector at time n + 1, computed using the recursive 

relation given by: 

w(n + 1) = w(n) +1/2 μ[−∇(J(n))],                                    (4.8) 

where μ is a positive real-valued constant, and 

 

where                are partial derivatives of the cost function J(n) with 

respect to real part ak(n) and the imaginary part bk(n) of the k
th

 tap weight wk(n), 

respectively. For the application of the steepest-descent algorithm, we assume that in 

(4.9), the correlation matrix R and the cross-correlation vector p are known, so we 
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may compute the gradient vector ∇(n) for a given value of the tap-weight vector 

w(n). Substituting (4.9) in (4.8) we will get the updated value of the tap-weight 

vector by using the simple recursive relation: 

w(n + 1) = w(n) + μ[p − Rw(n)]    n = 1, 2, 3, . . .                  (4.10) 

It is known that the parameter μ controls the size of the incremental correction 

applied to the tap-weight vector as we proceed from one iteration cycle to the other. 

We call μ the step-size parameter or weighting constant. Equation (4.10) provides 

the mathematical description of the steepest-descent algorithm. 

According to (4.10), the correction δw(n) = w(n + 1) − w(n) applied to the tap-

weight vector at time n + 1 is equal to μ[p − Rw(n)]. This correction may be 

expressed as μ times the expectation of the inner product of the input vector u(n) and 

the estimation error e(n). This suggests using a bank of cross-correlators to compute 

the correction δw(n) applied to the tap-weight vector w(n) as in Fig. 4.2. Another 

point is that we may view the steepest-descent algorithm of (4.10) as a feedback 

model. 
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Figure 4.2. Bank of cross-correlators for computing the corrections of the elements 

of the tap-weight vector at n + 1. 

 

The operation of the least-mean-square (LMS) algorithm is descriptive of a 

feedback control system. Basically, it can be subdivided into two basic processes: 

1.  An adaptive process, which cares about the automatic adjustment of the filter 

coefficients. 
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2.  A filtering process, which cares about implementing the inner product of the 

filter coefficients that emerge from the adaptive process in order to provide a 

good estimate of the desired response, and generate an estimation error by 

comparing this estimate with the actual value of the desired response; which in 

turn (the estimation error) is used to actuate the adaptive process, thereby 

closing the feedback loop. 

We are going to identify the two basic components in the structural constitution of 

the LMS algorithm as in Fig. 4.3, which has a transversal filter with LMS algorithm 

(for filtering process), and a mechanism for adaptive control process on the tap 

weights of the transversal filter. 

 

Figure 4.3 Block Diagram of Adaptive Transversal Filter. 

While the filtering process is taking place, the desired response d(n) is supplied for 

processing alongside the tap-input vector u(n). With this input the transversal filter 

produces an output d(n|Un) used as an estimate of the desired response d(n). Also we 

may set up an estimation error e(n) as the difference between the desired response 

^ 
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and the filter output, as in Fig. 4.4. Both e(n) and u(n) are applied to the control 

mechanism, and the feedback loop around the tap weights is thereby closed. 

 

 

Figure 4.4 Detailed Structure of the Transversal Filter Component. 

Figure 4.5 presents details of the adaptive weight-control mechanism. Specifically, a 

scaled version of the inner product of the estimation error e(n) and tap-input u(n − k) 

is computed for k = 0, 1, . . . ,N − 1. The obtained result defines the correction δwk(n) 

applied to the tap weight wk(n) at time n+1. The scaling factor μ is called the step-

size parameter or adaptation constant (as mentioned previously). 

 

 

^ 

^ 
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Figure 4.5. Detailed Structure of the Adaptive Weight-Control Mechanism. 

Comparing Fig. 4.5 and Fig. 4.2 we see that the LMS algorithm uses the inner 

product u(n − k)e
*
(k) as an estimator of element k in the gradient vector ∇(J(n)) that 

characterizes the steepest-descent method. The recursive computation of each tap 

weight in the LMS algorithm suffers from gradient noise. 
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The filter coefficients vector w(n) which is computed by the LMS algorithm executes 

a random motion around the optimum point of the error surface. This motion 

motivates us to investigate two convergence behaviors of the LMS algorithm. 

1. Convergence behavior in the mean sense. 

2. Convergence behavior in the mean square sense. 

4.3 Least-Mean-Square Adaptation Algorithm 

If it was possible to make an exact measurement of the gradient vector ∇(J(n)) at 

each time iteration, and if the step-size μ is chosen suitably, then the filter 

coefficients vector computed by using the steepest-descent method would indeed 

converge. 

Exact measurements of the gradient vector are, in reality, impossible because this 

would require prior knowledge of the autocorrelation matrix R of the tap input and 

the cross-correlation vector p between the tap input vector and the desired response. 

As a result of this, the gradient vector must be estimated using the available data. 

That means the tap-weight vector according to an algorithm adapts to the incoming 

data (Least-Mean-Square (LMS) Algorithm). A significant feature of the LMS 

algorithm is its simplicity; it does not require measurements of the pertinent 

correlation functions, and it does not require matrix inversion [1]. 

To develop a good estimate of the gradient vector ∇(J(n)), we substituted estimates 

of the autocorrelation matrix R and the cross-correlation vector  p in (4.9). 

∇(J(n)) = −2p + 2Rw(n),                                          (4.11) 

^ 
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The simplest choice of estimator for R and p is to use instantaneous estimates that 

are based on sample values of the tap input vector and desired response. 

R(n) = u(n)u
H
(n),                                                     (4.12) 

p = u(n)d
*
(n),                                                           (4.13) 

Corresponding, the instantaneous estimate equation of the gradient vector is: 

∇(J(n)) = −2u(n)d
*
(n) + 2u(n)u

H
(n)w(n),                               (4.14) 

This estimate is generally biased because the filter coefficients estimate vector w(n) 

is a random vector that depends on the input vector u(n). Noting that the estimate 

∇(J(n)) can also be viewed as the gradient operator ∇ applied to the absolute 

instantaneous squared error |e(n)|
2
. 

Substituting the estimate of (4.14) for the gradient vector ∇(J(n)) in the steepest 

descent algorithm as described in (4.8), we get a new recursive relation for updating 

the tap-weight vector: 

w(n + 1) = w(n) + μu(n)[d
*
(n) − u

H
(n)w(n)]                          (4.15) 

Here we have used the “cap” over the symbol of the tap-weight vector to distinguish 

it from the value obtained by the steepest-descent algorithm. A summary of the LMS 

algorithm is shown in Table 4.1. 

^ 

^ 

^ ^ 

^ 

^ 

^ ^ ^ 
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Table 4.1 Summary of the LMS algorithm. 

 

4.4 Normalized Least Mean Square Algorithm 

In the LMS algorithm, the selection of the step-size causes a problem in many of 

applications where the LMS algorithm is used and when the input x(k) is large. To 

overcome this problem, the normalized least-mean-square (NLMS) is proposed [10]-

[13]. In NLMS algorithm, the step-size μ is normalized by the energy of the data 

vector. A summary of the NLMS algorithm is given in Table 4.2. 

Table 4.2 Summary of the NLMS algorithm 
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The NLMS algorithm converges much faster than LMS algorithm with very little 

extra computational complexity; NLMS is very commonly used in some applications 

such as echo cancellation problems [14]. 

However, the NLMS algorithm has a problem; when the input vector x(k) is small, 

then a rise of numerical difficulties may occur because by then we have to divide by 

a small value for tap-input power ∥x(k)∥2
. 

4.5 Recursive-Least-Squares Algorithm 

The recursive-least-squares (RLS) algorithm [1], [15]-[16] was proposed in order to 

provide superior performance compared to those of the LMS algorithm and its 

variants [17]-[22], with few parameters to be predefined, especially in highly 

correlated environments. In the RLS algorithm, an estimate of the autocorrelation 

matrix is used to decorrelate the current input data. Also, the quality of the steady-

state solution keeps on improving over time, eventually leading to an optimal 

solution. A summary of the algorithm is shown in Table 4.3. 

Even though the RLS algorithm has very good performance in such environments, it 

actually suffers from its high computational complexity O(N
2
). Also, In RLS 

algorithm, the forgetting factor (β) has to be chosen carefully such that its value 

should be very close to one in order to ensure stability and convergence of the RLS 

algorithm. However, this in turn poses a limitation for the use of the algorithm 

because small values of β may be required for signal tracking if the environment is 

non-stationary [23].  
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Table 4.3 Summary of the RLS algorithm 

 

In the following chapter we will explain the adaptive noise cancellation problem in 

detail and implementing it using LMS, NLMS and RLS algorithms using the 

SIMULINK package. 

 

 



  

 31  

Chapter 5 

SIMULATIONS AND EXPERIMENTAL RESULTS 

5.1 Introduction 

In this thesis, the SIMULINK of MATLAB Software Package is used for the 

simulation of the standard LMS, NLMS and RLS algorithms in noise cancellation 

(see Fig. 3.2) configurations. Simulations discuss the performances of these 

algorithms with additive white Gaussian noise (AWGN) with different parameters 

and different input signals. 

A real time implementation is carried out by a TI TMS320C6416T DSP (full details 

in Appendix) by transferring the SIMULINK schemes (a sample; i.e. the LMS 

SIMULINK schematic is shown in Fig. 5.1) to the DSP board which let it work alone 

in real time independent of MATLAB. 

5.2 Sinusoidal Input Signal 

In this experiment, a sinusoidal signal (s(n)= Asin(2πft)) is created with the following 

parameters: frequency f = 5Hz and amplitude A = 0.4 as shown in Fig. 5.2. Then, an 

AWGN (shown in Fig. 5.3) with zero mean and variance σ
2
 = 0.03 is added to the 

input signal. The resulting signal is assumed to be the received signal 

(d(n)=s(n)+N(n)) and is shown in Fig. 5.4.The performances of the three algorithms 

are compared with different parameters and different filter lengths. 
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Figure 5.1 SIMULINK schematic for LMS algorithm. 

 



  

 33  

 

Figure 5.2 Desired sinusoidal signal (s(n)). 

 

 

 

Figure 5.3 Additive White Gaussian Noise (N(n)). 
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Figure 5.4 Input sinusoid with additive white gaussian noise. 

In the first part of this experiment, the filter length is assumed to be N = 20 taps for 

all algorithms, μ = 0.03 for LMS and NLMS algorithms and for the RLS algorithm β 

= 1. Fig. 5.5 shows the MSE of all algorithms. From the figure we see that the RLS 

algorithm provides the fastest convergence rate and lowest MSE compared to the 

other algorithms. NLMS algorithm converges to the same MSE as that of the RLS 

algorithm with lower convergence rate. Even though the LMS algorithm converges 

to the same MSE of the other algorithms, but it has the lowest convergence rate. Fig. 

5.6 shows the recovered sinusoid by the aforementioned algorithms. 
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Figure 5.5 MSE of LMS, NLMS and RLS algorithms: N = 20 taps, (μ = 0.03) for 

LMS and NLMS, (β = 1) for RLS. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6 Recovered sinusoid by LMS, NLMS and RLS algorithms: N = 20 taps, (μ 

= 0.03) for LMS and NLMS, (β = 1) for RLS. 
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In the second part, the filter length is assumed to be N = 40 taps for all algorithms, μ 

= 0.03 for LMS and NLMS algorithms and for the RLS algorithm β = 1. Fig. 5.7 

shows the MSE of all algorithms. From the figure we again notice that the RLS 

algorithm provides the fastest convergence rate and lowest MSE compared to the 

other algorithms. The NLMS algorithm converges to the same MSE as that of the 

RLS algorithm with slightly lower convergence rate. The LMS algorithm converges 

to the same MSE of the other algorithms. However, it has the lowest convergence 

rate. Fig. 5.8 confirms what has been shown in Fig. 5.7 by showing the recovered 

sinusoid by all algorithms. 

 

 

Figure 5.7 MSE of LMS, NLMS and RLS algorithms: N = 40 taps, (μ = 0.03) for 

LMS and NLMS, (β = 1) for RLS. 
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Figure 5.8 Recovered sinusoid by LMS, NLMS and RLS algorithms: N = 40 taps, (μ 

= 0.03) for LMS and NLMS, (β = 1) for RLS. 

 

In the third part, the filter length is assumed to be N = 20 taps for all algorithms, μ = 

0.003 for LMS and NLMS algorithms and for the RLS algorithm β = 1. Fig. 5.9 

shows the MSE of all algorithms. From the figure we again notice that the RLS 

algorithm provides the fastest convergence rate and lowest MSE compared to the 

other algorithms. The LMS algorithm converges to the same MSE as that of the RLS 

algorithm with slightly lower convergence rate. Now, even though the NLMS 

algorithm converges to the same MSE of the other algorithms, it has the lowest 

convergence rate. This is because of the very low step-size when it is divided by the 

power of the input vector. Fig. 5.10 confirms what has been shown in Fig. 5.9 by 

showing the recovered sinusoid by all algorithms. 
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Figure 5.9 MSE of LMS, NLMS and RLS algorithms: N = 20 taps, (μ = 0.003) for 

LMS and NLMS, (β = 1) for RLS. 

 

 

Figure 5.10 Recovered sinusoid by LMS, NLMS and RLS algorithms: N = 20 taps, 

(μ = 0.003) for LMS and NLMS, (β = 1) for RLS. 

 



  

 39  

In the last part, the filter length is assumed to be N = 40 taps for all algorithms, μ = 

0.003 for LMS and NLMS algorithms and for the RLS algorithm β = 1. Fig. 5.11 

shows the MSE of all algorithms. From the figure we again notice that the RLS 

algorithm provides the fastest convergence rate and lowest MSE compared to the 

other algorithms. The LMS algorithm converges to the same MSE as that of the RLS 

algorithm with slightly lower convergence rate. Now, even though the NLMS 

algorithm converges to the same MSE of the other algorithms, it has the lowest 

convergence rate. This is because of the very low step-size when it is divided by the 

power of the input vector. Fig. 5.12 confirms what has been shown in Fig. 5.11 by 

showing the recovered sinusoid by all algorithms. Also, it is noted that increasing the 

filter length for the aforementioned experiments provides no gain; hence 20 taps 

filter length could be enough for recovering such signal. 

 

Figure 5.11 MSE of LMS, NLMS and RLS algorithms: N = 40 taps, (μ = 0.003) for 

LMS and NLMS, (β = 1) for RLS. 
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Figure 5.12 Recovered sinusoid by LMS, NLMS and RLS algorithms: N = 40 taps, 

(μ = 0.003) for LMS and NLMS, (β = 1) for RLS. 

 

5.3 Music Input Signal 

5.3.1 Simulation Results 

In this experiment, a music signal is used. To be comparable with the results shown 

by the oscilloscope, a portion of the signal is shown in Fig. 5.13. Then, an AWGN 

(shown in Fig. 5.15) with zero mean and variance σ
2
 = 0.03 is added to the input 

signal. The resulting signal is assumed to be the received signal and is shown in Fig. 

5.17. 

The filter length is assumed to be N = 10 taps for all algorithms, μ = 0.05 for LMS 

and NLMS algorithms and for the RLS algorithm β = 1. Figs. 5.19, 5.21 and 5.23 

show the output errors of LMS NLMS and RLS algorithms, respectively. From the 

figure we see that the RLS algorithm provides smallest estimated output error 

compared to the other algorithms. Figs. 5.25, 5.27 and 5.29 show the recovered 

music signal by LMS NLMS and RLS algorithms, respectively. 
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5.3.2 Experimental Results 

In this part, the experiments of section 5.3.1 are uploaded to the DSP card and the 

results are shown on the oscilloscope. Fig. 5.14 shows the input music signal. Then, 

an AWGN (shown in Fig. 5.16) with zero mean and variance σ
2
 = 0.03 is added to 

the input signal. The resulting signal is assumed to be the received signal and is 

shown in Fig. 5.18. 

The filter length of the filter specifies how accurately a given system can be modeled 

by the adaptive filter. In addition, the filter length affects the convergence rate, by 

increasing or decreasing computation time, it can affect the stability of the system, at 

certain step sizes, and it affects the MSE. 

In this experiment the filter length is assumed to be N = 10 taps for all algorithms, μ 

= 0.05 for LMS and NLMS algorithms and for the RLS algorithm β = 1. Figs. 5.20, 

5.22 and 5.24 show the output errors of the LMS, NLMS and RLS algorithms, 

respectively. From the figures we see that the RLS algorithm provides smallest 

estimated output error compared to the other algorithms. And Figs. 5.26, 5.28 and 

5.30 show the recovered music signal by the LMS, NLMS and RLS algorithms, 

respectively. The results seen by the oscilloscope are in compatible with the 

simulation results. 
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Figure 5.13 Input music signal (s(n)) for simulation results. 

 

 

 

 

 

Figure 5.14 Input music signal (s(n)), as seen on oscilloscope. 
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Figure 5.15 Added noise (N(n)) for simulation results. 

 

 

 

 

 

Figure 5.16 Added noise (N(n)), as seen on oscilloscope. 
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Figure 5.17 Input signal with noise (d(n)) for simulation results.  

 

 

 

 

 

Figure 5.18 Input music signal with noise (d(n)), as seen on oscilloscope. 
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Figure 5.19 Output error (e(n)) of LMS algorithm: N = 10 taps, (µ = 0.05). 

 

 

 

 

 

Figure 5.20 Output error (e(n)) of LMS algorithm on oscilloscope: N = 10 taps, (µ = 

0.05). 
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Figure 5.21 Output error (e(n)) of NLMS algorithm: N = 10 taps, (µ = 0.05). 

 

 

 

 

 

Figure 5.22 Output error (e(n)) of NLMS algorithm on oscilloscope: N = 10 taps, (µ 

= 0.05). 
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Figure 5.23 Output error (e(n)) of RLS algorithm: N = 10 taps, (β = 1). 

 

 

 

 

 

Figure 5.24 Output error (e(n)) of RLS algorithm on oscilloscope: N = 10 taps, (β = 

1). 
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Figure 5.25 Recovered signal by LMS algorithm: N = 10 taps, (µ = 0.05). 

 

 

 

 

 

Figure 5.26 Recovered signal by LMS algorithm on oscilloscope: N = 10 taps, (µ = 

0.05). 
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Figure 5.27 Recovered signal by NLMS algorithm: N = 10 taps, (µ = 0.05). 

 

 

 

 

 

Figure 5.28 Recovered signal by NLMS algorithm on oscilloscope: N = 10 taps, (µ = 

0.05). 
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Figure 5.29 Recovered signal by RLS algorithm: N = 10 taps, (β = 1). 

 

 

 

 

 

Figure 5.30 Recovered signal by RLS algorithm on oscilloscope: N = 10 taps, (β = 

1). 

 



  

 51  

Chapter 6 

CONCLUSIONS 

6.1 Conclusions 

In this thesis, a performance comparison between the LMS, NLMS and RLS 

algorithms under different step-sizes and filter lengths has been investigated using 

the SIMULINK package. The simulations have been done with different input 

signals (mainly a sinusoid and general music signals were used). Simulations have 

shown that the RLS algorithm outperforms the other algorithms; of course, this high 

performance is with a trade-off with the high computational complexity of the RLS 

algorithm. NLMS algorithm provides very good performance (better than the LMS 

and close to that of the RLS) with almost the same computational complexity of that 

of the LMS algorithm. 

A real time implementation is also carried out by a TI TMS320C6416T DSP by 

transferring the SIMULINK schemes to the DSP board which let it work alone in 

real time independent of MATLAB. Furthermore, the performance of the 

aforementioned algorithms as seen on oscilloscope was compatible to what has been 

investigated by the software. 

6.2 Future Work 

As a future work, different algorithms' performances can be compared by the 

investigated ones and their simulation results can be compared by their hardware 

ones. Also, one of the main disadvantages of the RLS algorithm is its stability if the 
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autocorrelation matrix is singular; hence a way to make the RLS more stable could 

be investigated. 
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Appendix A: Texas Instruments 

Steps for using the software and Hardware and how can we connect both of them to 

make real time implementation noise cancellation:- 

For using Texas Instruments DSK6416 (TMS320C6416 (1 GHZ)). 

 

 
 

System requirements for DSK 6416 are:- 

A) You should install MATLAB R2006a. 

B) 500MB of free hard disk space. 

C) 128MB of RAM. 

D) 16-bit color display. 

E) CD-ROM Drive. 

F)  Hardware installation using operating systems as windows XP or 

windows 2000. 

 

 

 



  

 59  

PART A: Software Installation  

A.1: Insert the code composer studio installation CD into the CD-ROM drive. An 

install menu (see below) should appear. If it does not, manually run Launch.exe from 

the install products option from the menu. 

 

 

 
 

 

 

A.2: Install any components you need. To debug with the DSK you must have:- 

A) A copy of code composer studio. 

B) The target content package for your board. 

C) A copy of the Flash Burn plug-in. 
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A.3: The installation procedure will create two icons on your desktop:- 

 

 

 

6461 DSK CCStudio v3.1 

 

 

 

6416 DSK Diagnostics Utility v3.1 
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PART B: Hardware Connection 

 

 

 

A.4: Connect the supplied USB cable to your PC or laptop. 

A.5: If you plan to connect a microphone, speaker. Or expansion card these must be 

plugged in properly before you connect power to the DSK board.   

A.6: Connect the included 5V power adapter brick to your AC power cord.  

A.7: Apply power to the DSK by connecting the power brick to the 5V input on the 

DSK. 

A.8: When power is applied to the board the power on self-Test (POST) will run. 

A.9: Make sure you DSK CD-ROM is installed in your CD-ROM drive. Now 

connect the DSK to your PC using the included USB. 

A.10: Test you connection, if you want to test your DSK and USB connection you 

can launch the C6416 DSK Diagnostic Utility from the icon on your desktop. 
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A.11: Start Code Composer; double click the 6416 DSK CCStudio icon on your 

desktop and connect DSK6416, select Debug -> Connect:- 
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A.12: You should prepare your MATLAB SIMULINK and you should make it as 

you see from this SIMULINK:- 
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A.13: When you open the SIMULINK you should connect it to DSP kit, using this 

way: - Select Tools -> Real-Time Workshop -> Build Model. 

 

 

 

A.14: And then your work will transfer to DSK6416 card, than you can get the 

output filtering from output for DSK cart. 
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APPENDIX B: Matlab Simulink 

PART A: First experiment for sinusoidal noise cancellation:- 

B.1:  LMS Algorithm. 
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B.2: NLMS Algorithm. 
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B.3: RLS Algorithm. 
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PART B: Hardware Experiment for Music Noise Cancellation: 

B.4: LMS Algorithm. 
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B.5: NLMS Algorithm. 
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B.6: RLS Algorithm. 

 

 

 

 

 

 

 


