

Real-Time Noise Cancellation Using Adaptive

Algorithms

Alaa Ali Hameed

Submitted to the

Institute of Graduate Studies and Research

in partial fulfillment of the requirements for the Degree of

Master of Science

in

Computer Engineering

Eastern Mediterranean University

September 2012

Gazimağusa, North Cyprus

Approval of the Institute of Graduate Studies and Research

 Prof. Dr. Elvan Yılmaz

 Director

I certify that this thesis satisfies the requirements as a thesis for the degree of Master

of Science in Computer Engineering.

 Assoc. Prof. Dr. Muhammed Salamah

 Chair, Department of Computer Engineering

We certify that we have read this thesis and that in our opinion it is fully adequate in

scope and quality as a thesis for the degree of Master of Science in Computer

Engineering.

 Prof. Dr. Hasan Kömürcügil

 Supervisor

 Examining Committee

1. Prof. Dr. Hakan Altınҫay

2. Prof. Dr. Hasan Kömürcügil

3. Assoc. Prof. Dr. Ekrem Varoğlu

 iii

ABSTRACT

The contamination of a signal of interest by other undesired signals (noise) is a

problem encountered in many applications. The conventional linear digital filters

with fixed coefficients exhibit a satisfactory performance in extracting the desired

signal when the signal and noise occupy fixed and separate frequency bands.

However, in most applications, the desired signal has changing characteristics which

requires an update in the filter coefficients for a good performance in the signal

extraction. Since the conventional digital filters with fixed coefficients do not have

the ability to update their coefficients, adaptive digital filters are used to cancel the

noise. The mean square error (MSE) technique is used as a measure of the noise

reduction.

The adaptive filter generally uses finite impulse response (FIR) least-mean-square

(LMS) and normalized LMS (NLMS) algorithms in signal processing or infinite

impulse response (IIR) recursive-least-squares (RLS) algorithm in adaptive control

for the noise cancellation applications.

The main aim of this thesis is to investigate the implementation of a real time noise

cancellation application. The real time implementation is carried out by a Texas

Instruments (TI) TMS320C6416T Digital Signal Processor (DSP). First, the LMS,

NLMS and RLS algorithms are simulated using SIMULINK of MATLAB. Then,

these algorithms have been transferred to the DSP board which let, them to work

alone in real time independent of MATLAB. Furthermore, the performance of the

aforementioned algorithms has been compared in different problem settings.

 iv

Keywords: Adaptive Filters, FIR Filters, IIR Filters, LMS Algorithm, NLMS

Algorithm, RLS Algorithm.

 v

ÖZ

Bir sinyalin, istenmeyen sinyal (gürültü) tarafından kirlenmesi birçok uygulamada

karşı karşıya kalınan bir problemdir. Geleneksel sabit katsayılı doğrusal sayısal

süzgeçler, sinyal ve gürültü sabit ve ayrı frekans bandlarını işgal ettiği zaman,

istenen sinyalin elde edilmesi için yeterli bir performans sergilerler. Bununla birlikte,

birçok uygulamada, istenen sinyalin değişen karakteristikerinden dolayı sinyal elde

işleminde iyi bir performans elde etmek için süzgeç katsayılarında bir güncellemeye

ihtiyaç duyulmaktadır. Geleneksel sabit katsayılı sayısal süzgeçlerin katsayılarını

güncelleme yeteneği olmadığı için gürültüyü yok etmek için uyarlanabilir sayısal

süzgeçler kullanılmaktadır. Ortalama–kare-hata tekniği gürültü azaltma ölçümü

olarak kullanılır.

Uyarlanabilen sayısal süzgeç, genellikle sonlu-dürtü-cevabı (FIR) enaz-ortalama-

kare (LMS) ve normalize olmuş LMS (NLMS) algoritmalarını sayısal sinyal işleme

alanında veya sonsuz-dürtü-cevabı (IIR) tekrarlanan-enaz-kare (RLS) algortimasını

gürültü yoketme uygulamalarında kullanır.

Bu tezin esas amacı gerçek zamanda bir gürültü yoketme uygulamasını araştırmaktır.

Gerçek zaman uygulaması, Texas Instruments TMS320C6416T sayısal sinyal

işlemcisi ile MATLAB‘ın Simulink ortamında yapılmıştır. İlk olarak, LMS, NLMS

ve RLS algoritmalarının benzetimi yapılmıştır. Daha sonra, bu algoritmalar sayısal

sinyal işlemcisine transfer edilerek sayısal sinyal işlemcisinin MATLAB’dan

bağımsız olarak gerçek zamanda kendi başına çalışması sağlanmıştır. Ayrıca, adı

geçen algoritmaların performansı farklı problemler için karışlaştırılmıştır.

 vi

Anahtar kelimeler: Uyaranabilir süzgeçler, FIR süzgeçler, IIR süzgeçler, LMS

algoritması, NLMS algoritması, RLS algoritması

EDICATION

 vii

Dedicated to my Family

 viii

ACKNOWLEDGMENT

I am sincerely thankful to my supervisor, Prof. Dr. Hasan Kömürcügil for his

encouragement, help and support throughout this work. He devoted his time for

helping me to explore knowledge in Digital Signal Processing and Adaptive Filtering

with many motivation and careful review.

I would like to extend my gratitude to my monitoring jury members; Prof. Dr. Hakan

Altinҫay, Assoc. Prof. Dr. Ekrem Varoğlu. I have to thank them for the time they

take to critically review my work and provide me useful and meaningful corrections.

I would like to extend my gratitude to my friends and colleagues from the Computer

Engineering Department of Eastern Mediterranean University, for their help during

my studies and publication of this thesis.

I owe a lot thankful message to my friends, Aliyu Kabir Musa, Ahmed Alyousif,

Moin Naim, Hisham Ahmad, Husam Naufal, Bashar Mahmoud and Yousef Al-

Shamma for their friendship, concern and moral support during my thesis.

I would like to express my deepest gratitude to my family, brothers (Mohammed Ali

Hameed, Ahmed Ali Hameed, Hussein Ali Hameed and Hassan Ali Hameed) and

sisters, who undoubtedly has given me the support and help to accomplish this work,

they have a special place in my heart and indeed I will always be proud of them.

http://www.facebook.com/ahmed.alyousif
http://www.facebook.com/moinnaim
http://www.facebook.com/moinnaim
http://www.facebook.com/moinnaim
http://www.facebook.com/moinnaim
http://www.facebook.com/moinnaim
http://www.facebook.com/moinnaim

 ix

TABLE OF CONTENTS

ABSTRACT .. iii

ÖZ .. v

EDICATION ... vi

ACKNOWLEDGMENT ... viii

LIST OF TABLES .. xi

LIST OF FIGURES ... xii

1 INTRODUCTION .. 1

2 DIGITAL FILTERS .. 5

2.1 Filters ... 5

2.2 Adaptive Filter Structures .. 5

2.2.1 Finite Impulse Response Filters .. 6

3 ADAPTIVE FILTERS AND NOISE CANCILLATION ... 9

3.1 Introduction .. 9

3.2 Adaptive Filtering System Configurations .. 9

3.2.1 Adaptive System Identification Configuration ... 10

3.2.2 Adaptive Noise Cancellation Configuration ... 11

3.2.3 Adaptive Linear Prediction Configuration .. 12

3.2.4 Adaptive Inverse System Configuration ... 12

3.3 Performance Measures in Adaptive Systems ... 13

3.3.1 Convergence Rate ... 14

3.3.2 Mean Square Error .. 14

3.3.3 Computational Complexity ... 14

3.3.4 Stability ... 14

 x

3.3.5 Filter Length .. 15

4 ADAPTIVE FILTERING ALGORITHMS .. 16

4.1 Introduction .. 16

4.2 Steepest-Descent Method ... 16

4.3 Least-Mean-Square Adaptation Algorithm .. 26

4.4 Normalized Least Mean Square Algorithm ... 28

4.5 Recursive-Least-Squares Algorithm .. 29

5 SIMULATIONS AND EXPERIMENTAL RESULTS .. 31

5.1 Introduction .. 31

5.2 Sinusoidal Input Signal .. 31

5.3 Music Input Signal ... 40

5.3.1 Simulation Results .. 40

5.3.2 Experimental Results .. 41

6 CONCLUSIONS ... 51

6.1 Conclusions .. 51

6.2 Future Work ... 51

REFERENCES ... 53

APPENDICES ... 57

Appendix A: Texas Instruments .. 58

APPENDIX B: Matlab Simulink ... 65

 xi

LIST OF TABLES

Table 4.1 Summary of the LMS algorithm. ... 28

Table 4.2 Summary of the NLMS algorithm ... 28

Table 4.3 Summary of the RLS algorithm ... 30

 xii

 LIST OF FIGURES

Figure 1.1 Structure of the adaptive transversal filter. ... 3

Figure 2.1 Transversal Filters. ... 6

Figure 2.2 Multistage Lattice Predictor. .. 8

Figure 3.1 Adaptive System Identification Configuration. .. 10

Figure 3.2 Adaptive Noise Cancellation Configuration. .. 11

Figure 3.3 Adaptive Linear Prediction Configuration. .. 12

Figure 3.4 Adaptive Inverse System Configuration. .. 13

Figure 4.1 Adaptive transversal filter’s structure. .. 17

Figure 4.2. Bank of cross-correlators for computing the corrections of the elements

of the tap-weight vector at n + 1. ... 22

Figure 4.3 Block Diagram of Adaptive Transversal Filter. 23

Figure 4.4 Detailed Structure of the Transversal Filter Component. 24

Figure 4.5. Detailed Structure of the Adaptive Weight-Control Mechanism. 25

Figure 5.1 SIMULINK schematic for LMS algorithm. ... 32

Figure 5.2 Desired sinusoidal signal (s(n)). ... 33

Figure 5.3 Additive White Gaussian Noise (N(n))... 33

Figure 5.4 Input sinusoid with additive white gaussian noise. 34

Figure 5.5 MSE of LMS, NLMS and RLS algorithms: N = 20 taps, (μ = 0.03) for

LMS and NLMS, (β = 1) for RLS. ... 35

Figure 5.6 Recovered sinusoid by LMS, NLMS and RLS algorithms: N = 20 taps, (μ

= 0.03) for LMS and NLMS, (β = 1) for RLS. .. 35

Figure 5.7 MSE of LMS, NLMS and RLS algorithms: N = 40 taps, (μ = 0.03) for

LMS and NLMS, (β = 1) for RLS. ... 36

 xiii

Figure 5.8 Recovered sinusoid by LMS, NLMS and RLS algorithms: N = 40 taps, (μ

= 0.03) for LMS and NLMS, (β = 1) for RLS. .. 37

Figure 5.9 MSE of LMS, NLMS and RLS algorithms: N = 20 taps, (μ = 0.003) for

LMS and NLMS, (β = 1) for RLS. ... 38

Figure 5.10 Recovered sinusoid by LMS, NLMS and RLS algorithms: N = 20 taps,

(μ = ... 38

Figure 5.11 MSE of LMS, NLMS and RLS algorithms: N = 40 taps, (μ = 0.003) for

 .. 39

Figure 5.12 Recovered sinusoid by LMS, NLMS and RLS algorithms: N = 40 taps,

(μ = 0.003) for LMS and NLMS, (β = 1) for RLS. .. 40

Figure 5.13 Input music signal (s(n)) for simulation results. 42

Figure 5.14 Input music signal (s(n)), as seen on oscilloscope. 42

Figure 5.15 Added noise (N(n)) for simulation results. ... 43

Figure 5.16 Added noise (N(n)), as seen on oscilloscope. ... 43

Figure 5.17 Input signal with noise (d(n)) for simulation results. 44

Figure 5.18 Input music signal with noise (d(n)), as seen on oscilloscope. 44

Figure 5.19 Output error (e(n)) of LMS algorithm: N = 10 taps, (µ = 0.05). 45

Figure 5.20 Output error (e(n)) of LMS algorithm on oscilloscope: N = 10 taps, (µ =

0.05). .. 45

Figure 5.21 Output error (e(n)) of NLMS algorithm: N = 10 taps, (µ = 0.05). 46

Figure 5.22 Output error (e(n)) of NLMS algorithm on oscilloscope: N = 10 taps, (µ

= 0.05). ... 46

Figure 5.23 Output error (e(n)) of RLS algorithm: N = 10 taps, (β = 1). 47

Figure 5.24 Output error (e(n)) of RLS algorithm on oscilloscope: N = 10 taps, (β =

1). ... 47

 xiv

Figure 5.25 Recovered signal by LMS algorithm: N = 10 taps, (µ = 0.05). 48

Figure 5.26 Recovered signal by LMS algorithm on oscilloscope: N = 10 taps, (µ =

0.05). .. 48

Figure 5.27 Recovered signal by NLMS algorithm: N = 10 taps, (µ = 0.05). 49

Figure 5.28 Recovered signal by NLMS algorithm on oscilloscope: N = 10 taps, (µ =

0.05). .. 49

Figure 5.29 Recovered signal by RLS algorithm: N = 10 taps, (β = 1). 50

Figure 5.30 Recovered signal by RLS algorithm on oscilloscope: N = 10 taps, (β =

1). ... 50

 1

 Chapter 1

INTRODUCTION

1.1 Introduction

In the previous years, adaptive filters have been attracting the attention of many

people due to their self-designing properties [1]-[4]. When some a priori knowledge

about the statistics of the signal is available, an optimal filter for such application

can be designed (i.e. Wiener Filter which minimizes the mean-square-error (MSE);

the difference between the filter output and the desired response) [1]. If this a priori

knowledge is not available, adaptive filtering algorithms possess the ability to adapt

the filter coefficients to be compatible with the involved signal statistics. Hence,

adaptive filtering algorithms have been used in many fields such as signal processing

[1], communications systems [5], and control systems [3].

Adaptive filtering process consists of two major steps; filtering process which

produces an output signal (response) from the input signal, and adaptation process;

which adjusts the coefficients of the filter in a way in order to minimize a function

called the cost function. Basically, there are many filter structures and filtering

algorithms that are used in adaptive filtering applications.

Adaptive filters usually classified to two categories depending on their impulse

response: finite-impulse-response (FIR) adaptive filter [6]; this filter’s impulse

response has a finite duration since it goes to zero after a finite time, and infinite

 2

impulse-response (IIR) adaptive filter [6]; which has an internal feedback

mechanism and continues to respond indefinitely. IIR filters have diverse

applications and are beyond the scope of this thesis.

FIR adaptive filters have different structures; adaptive transversal filters structure,

the lattice predictor structure and the systolic array structure [1]. The adaptive

structure of a transversal filter is shown in Fig. 1.1. The input vector tap at time n is

denoted by u(n), the weight vector w(n) = [w0(n),w1(n),,wN- 1(n)]T, and the desired

response estimate (the filter output) is denoted by d(n|Un), where Un is the space

spanned by the tap inputs u(n), u(n−1), . . . , u(n−N+1). By comparing the filter

response y(n) with the real desired response d(n), we produce an estimation error

denoted by e(n) = d(n)− d(n|Un) . The control mechanism adaptively adjusts the

filter coefficients in order to obtain the desired response. Mathematically, this is

interpreted as:

And

^

^

 3

 Then the transfer function is:

 The impulse response of the transversal filter is h(n) = {w0,w1,……….,wN-1}.

Figure 1.1 Structure of the adaptive transversal filter.

 4

1.2 Objective of the Thesis

The main objective of this thesis is to investigate the implementation of a real time

noise cancellation application. The real time implementation has been carried out by

a Texas Instruments (TI) TMS320C6416T Digital Signal Processor (DSP).

First, the LMS, NLMS and RLS algorithms are simulated using SIMULINK of

MATLAB. Then, these algorithms are transferred to the DSP board which let them

to work alone in real time independent of MATLAB. Furthermore, the performances

of the aforementioned algorithms are compared in different problem settings with

mainly two input signals: (a) sinusoidal input signal with noise and (b) music input

signal with noise.

 5

Chapter 2

DIGITAL FILTERS

2.1 Filters

A filter is any device or system that takes a mixture of inputs and processes them to

give corresponding required outputs. In communication systems, the term filter

refers to a system that reshapes the frequency components of an input to give an

output signal with desirable features. Filters are classified according to the linearity

properties as linear and non-linear filters. In our research, we are going to discuss the

linear adaptive filters.

2.2 Adaptive Filter Structures

Adaptive filtering process involves two basic steps:

1. A filtering process; which is designed to produce a desired output in response

to an input data.

2. An adaptive process; aims to provide a mechanism for adjusting a set of the

filter coefficients.

Generally, there are two types of digital filters, as mentioned in Chapter 1; FIR filters

and IIR filters. IIR filters are beyond the scope of this thesis. FIR filters will be

discussed in detail in the next sections.

 6

2.2.1 Finite Impulse Response Filters

There are three types of filter structures that distinguish themselves in the context of

an adaptive filter with finite impulse response. The three filter structures are as

follows [1]:

1. Transversal Filter: consists of three basic elements, as in Fig. 2.1:

(a) unit-delay element (z
-1

)

(b) multiplier

(c) Adder

The number of delay elements, shown as N − 1 in Fig. 2.1, is commonly referred to

as the order of the filter. Each multiplier in the filter is used to multiply each tap

input (to which it is connected) by a filter coefficient or a tap weight. Thus, a

multiplier connected to the k
th

 tap input u(n-k) produces the inner product wk(n- k) ,

where wk is the corresponding tap weight and k = 0, 1, . . . ,N-1. The role of each

adder in the filter is to sum the multiplier outputs and to produce a total filter output

as in (2.1).

Figure 2.1 Transversal Filters.

 7

2. Lattice Predictor: is modular in structure in that it consists of a number of

separate stages, each looks as a lattice. Fig. 2.2 shows an N −1 stages lattice

predictor; the number N − 1 refers to the predictor order. The m
th

 stage of a

lattice predictor is described by the pair of input-output relations:

fm(n) = fm-1(n) + Г
*

m mbm-1(n − 1), (2.2)

bm(n) = bm-1(n − 1) + Г m fm-1(n), (2.3)

where m = 1, 2, . . . ,N − 1, where N − 1 is the final predictor order. The

variable fm(n) is the m
th

 forward prediction error, and bm(n) is the m
th

backward prediction error. The coefficient Гm is called the m
th

 reflection

coefficient. The forward prediction error fm(n) is defined as the difference

between the input u(n) and its one-step predicted value. Correspondingly, the

backward prediction error bm(n) is defined as the difference between the

input u(n−N) and its “backward” prediction based on the set of m “future”

inputs u(n), . . . , u(n − N + 1).

 8

Figure 2.2 Multistage Lattice Predictor.

3. Systolic Array: consists of a parallel computing network which is used to

map a number of linear algebra operations, such as matrix multiplication,

triangularization, and back substitution. Basically, two types of processing

elements may be distinguished in a systolic array: boundary cells and internal

cells. In each case, the parameter r represents a value stored within the cell. The

function of the boundary cell is to produce a response equal to the input u

divided by r which is a number stored in the cell. The function of the internal

cell is: (a) to multiply the input z by the number r stored in the cell, subtract

product rz from the second input, and thereby produce the difference u – rz as

an output from the right side of the cell, and (b) to transmit the first input z

downward without alteration.

 9

Chapter 3

ADAPTIVE FILTERS AND NOISE CANCILLATION

3.1 Introduction

Digital Signal Processing (DSP) is the major technology that can be applied to noise

filtering, system identification, and voice prediction. Standard DSP techniques are

not enough to solve these problems quickly and obtain acceptable results. Adaptive

filtering techniques must be implemented to obtain accurate solutions with timely

convergence.

3.2 Adaptive Filtering System Configurations

Adaptive filter had first established its engineering use in 1960s. It was applied as an

equalizer to combat the effect of Inter-Symbol Interference (ISI) of data

transmission in telephone channels [1]. Since then, adaptive filter was modified into

different forms and applied in many different areas such as; signal processing and

communication systems.

There are four major types of adaptive filtering configurations; adaptive system

identification [8], adaptive noise cancellation, adaptive linear prediction [9], and

adaptive inverse system [7]. All of the above systems are similar in the

implementation of the algorithm, but different in system configuration. All four

systems have the same general components; an input signal x(n), a desired result

d(n), an output y(n), an adaptive transfer function w(n), and an error signal e(n)

which is the difference between the desired output d(n) and the actual output y(n). In

 10

addition to these, the system identification and the inverse system configurations

have an unknown linear system u(n) that can produce a linear output to the given

input [1].

3.2.1 Adaptive System Identification Configuration

The adaptive system identification is primarily responsible for determining a discrete

estimation of the transfer function for an unknown digital or analog system. The

same input x(n) is applied to both the adaptive filter and the unknown system from

which the outputs are compared, as shown in Fig. 3.1. The output of the adaptive

filter y(n) is subtracted from the output of the unknown system (which results in the

desired response signal d(n)). The resulting difference is an error signal e(n) which is

used to manipulate the filter coefficients of the adaptive system. After convergence,

the error signal tends toward zero.

Figure 3.1 Adaptive System Identification Configuration.

After a number of iterations of this process, the adaptive filter’s transfer function

will converge to, or near to, the unknown system’s transfer function. For this

configuration, the error signal does not have to go to zero (although convergence to

zero is the ideal situation) to closely approximate the given system. There will,

however, be a difference between the adaptive filter transfer function and the

 11

unknown system transfer function if the error is nonzero and the magnitude of that

difference will be directly related to the magnitude of the error signal.

3.2.2 Adaptive Noise Cancellation Configuration

The second configuration is the adaptive noise cancellation configuration as shown

in Fig. 3.2. In this configuration, the input x(n) (a noise source N1(n)), is compared

with a desired signal d(n), which consists of a signal s(n) corrupted by another noise

signal (N0(n)). The adaptive filter coefficients adapt to cause the error signal to be a

noiseless version of the signal s(n).

Both of the noise signals for this configuration need to be uncorrelated to the signal

s(n). In addition, the noise sources must be correlated to each other in some way,

preferably equal, to get the best results [2]. Assuming that y(n) ≈ N1(n), d(n) = s(n)

+ N0(n) and the error can be written as e(n) = s(n) + N0(n) − y(n) since, noise

sources are correlated to each other the error reduces to e(n) = s(n).

Figure 3.2 Adaptive Noise Cancellation Configuration.

 12

3.2.3 Adaptive Linear Prediction Configuration

Adaptive linear prediction is the third type of adaptive configuration as shown in

Fig. 3.3. This configuration essentially performs two operations: The first operation,

is linear prediction; if the output is taken from the error signal e(n). The adaptive

filter coefficients are being trained to predict, from the statistics of the input signal

x(n), what the next input signal will be. The second operation, is a noise filter similar

to the adaptive noise cancellation outlined in the previous section; if the output is

taken from y(n).

In the case of noise filtering, as outlined in the previous section, y(n) will converge

to the noiseless version of the input signal.

Figure 3.3 Adaptive Linear Prediction Configuration.

3.2.4 Adaptive Inverse System Configuration

The final filter configuration is the adaptive inverse system configuration as shown in

Fig. 3.4. The goal of the adaptive filter here is to model the inverse of the unknown

system u(n). This is particularly useful in adaptive equalization where the goal of the

filter is to eliminate any spectral changes that are caused by a prior system or

transmission line.

 13

Figure 3.4 Adaptive Inverse System Configuration.

The way this filter works is as follows; the input x(n) is sent through the unknown

system u(n) and then through the adaptive filter resulting in an output y(n). The input

is also sent through a delay to attain d(n). As the error signal is converging to zero,

the adaptive filter coefficients w(n) are converging to the inverse of the unknown

system u(n).

For this configuration, the error can theoretically go to zero. This is only true if the

unknown system consists only of a finite number of poles or the adaptive filter is an

Infinite Impulse Response (IIR) filter. If neither of these conditions is true, the

system will converge only to a constant due to the limited number of zeroes

available in a Finite Impulse Response FIR system [1].

3.3 Performance Measures in Adaptive Systems

Some important measures will be discussed in the following sections; convergence

rate, minimum mean square error, computational complexity, stability, and filter

length [2].

 14

3.3.1 Convergence Rate

The Convergence rate determines the rate at which the filter converges to its

resultant state. Usually a faster convergence rate is a desired characteristic of an

adaptive system. Convergence rate is not independent of all the other performance

characteristics. There is usually a tradeoff, with convergence rate and other

performance criteria [2].

3.3.2 Mean Square Error

The MSE is a metric indicating how much a system can adapt to a given solution. A

small MSE is an indication that the adaptive system has accurately modeled,

predicted, adapted and/or converged to a solution for the system. There are a number

of factors which will help to determine the MSE including, but not limited to;

quantization noise, order of the adaptive system, measurement noise, and error of the

gradient due to the finite step size [2].

3.3.3 Computational Complexity

Computational complexity is particularly important in real time adaptive filter

applications. When a real time system is being implemented, there are hardware

limitations that may affect the performance of the system. A highly complex

algorithm will require much greater hardware resources than a simplistic algorithm

[2].

3.3.4 Stability

Stability is probably the most important performance measure for the adaptive

system. By the nature of the adaptive system, there are very few completely

asymptotically stable systems that can be realized. In most cases, the systems that

are implemented are marginally stable, with the stability determined by the initial

conditions, transfer function of the system and the step size of the input [2].

 15

3.3.5 Filter Length

The filter length of the adaptive system is inherently tied to many of the other

performance measures. The length of the filter specifies how accurately a given

system can be modeled by the adaptive filter. In addition, the filter length affects the

convergence rate, by increasing or decreasing computation time, it can affect the

stability of the system, at certain step sizes, and it affects the MSE. If the filter length

of the system is increased, the number of computations will increase, decreasing the

maximum convergence rate [2].

 16

Chapter 4

ADAPTIVE FILTERING ALGORITHMS

4.1 Introduction

Adaptive filtering methods are generally used to cope with the changes in the system

parameters [4]. In FIR adaptive filters, the filter coefficients are iteratively updated

by minimizing the difference between the desired response and the output of the

adaptive filter. Before starting the discussion of the adaptive algorithms that we will

see in this thesis, an optimization technique called the steepest descent will be

presented.

4.2 Steepest-Descent Method

This is a recursive method since it starts from some initial (arbitrary) values of the

weights vector and it improves as the number of iterations increases. The important

thing to note is that the steepest descent method is descriptive of multiparameter

closed-loop deterministic control system which finds the minimum point of the

ensemble-averaged error-performance surface without the knowledge of the surface

itself [1].

Considering a transversal filter having the tap inputs u(n), u(n − 1), . . . , u(n −N + 1)

and a set of tap weights w0(n),w1(n), . . . ,wN-1(n). The vector of the tap inputs

represents samples drawn from a wide-sense stationary process of zero mean and

correlation matrix R = u(n)u
H
(n), where H represents Hermitian transpose. Also the

 17

filter has a desired response d(n) that provides a frame of reference for the optimum

filtering action; this is illustrated clearly in Fig. 4.1.

Figure 4.1 Adaptive transversal filter’s structure.

The tap inputs vector at time n is denoted by u(n), and the estimate of the filter

output, which is called the desired response, is denoted by d(n|Un), where Un is the

space spanned by the tap inputs u(n), u(n − 1), . . . , u(n − N + 1). By comparing this

with the actual desired response d(n), an estimation error denoted by e(n) is

produced.

e(n) = d(n) − d(n|Un) = d(n) − w
H
(n)u(n), (4.1)

^

^

 18

where the inner product of the coefficients vector w(n) and the tap input vector u(n)

is given by the term w
H
(n)u(n). The coefficients vector, the tap-input vector and the

cost function are, respectively, denoted by:

w(n) = [w0(n) w1(n) . . . wN-1(n)]
T
 , (4.2)

u(n) = [u(n) u(n − 1) . . . u(n − N + 1)]
T
 , (4.3)

J(n) = E{|e(n)|
2
}, (4.4)

where E[.] denotes the expectation operator. If the tap-input vector u(n) and the

desired d(n) are jointly stationary (i. e., If x and y are jointly stationary then ax+by is

stationary for any constants a and b), then the mean-squared error or cost function

J(n) at time n could be written as:

J(n) = σ
2
 − w

H
(n)p − p

H
w(n) + w

H
(n)Rw(n), (4.5)

where;

σ
2
= variance of the desired response d(n).

p = the vector representing the cross-correlation between the tap-input vector u(n)

and the desired response d(n).

R = the correlation matrix of the tap-input vector u(n).

Equation (4.5) represents the mean-squared error. This error would result if the

coefficients vector of the filter is kept fixed at the value w(n). Since w(n) varies with

time n, the mean-squared error naturally varies with time n in a corresponding

manner. A result of this, the cost function (J(n)) for the mean-squared error is used

d

d

 19

in that equation. The change in the mean-square error J(n) with time n means that

the estimation error process e(n) is non-stationary [1].

The dependence of the mean-squared error J(n) on the entries of the filter

coefficients vector w(n) as a bowl-shaped surface with a unique minimum is

visualized. This is called as the surface error of the adaptive filter. This occurs when

the tap-weight vector takes on the optimum value w0 [1]. We define:

Rw0 = p, (4.6)

and the minimum mean-squared error is:

Jmin = σ
2
 − pH

w0, (4.7)

The Steepest-Descent Algorithm [2] is relatively straightforward; nevertheless, it has

serious difficulties in the computations, especially, when the filter contains a large

number of coefficients and when the input vector has relatively large values. This

implies that we can use the steepest-descent method to find the minimum value of

the function of the mean-squared error Jmin as follows:

1. Start with an initial value w(0) for the filter coefficients vector, which is

chosen arbitrarily. The value w(0) gives us an initial guess as to where the

minimum point of the error-performance surface may be located. Usually,

w(0) is set equal to the null vector.

2. Using this assumption, we compute the gradient vector, the real and imaginary

parts of which are defined as the derivative of the mean-squared error J(n),

d

 20

evaluated with respect to the real and imaginary parts of the tap-weight

vector w(n) at time n.

3. Compute the next guess of the tap-weight vector by changing the present guess

in a direction opposite to that of the gradient vector.

4. Go back to step 2 and repeat the process.

Let ∇(J(n)) denote the value of the gradient vector at time n. Let w(n) denote the

value of the filter coefficients vector at time n + 1, computed using the recursive

relation given by:

w(n + 1) = w(n) +1/2 μ[−∇(J(n))], (4.8)

where μ is a positive real-valued constant, and

where are partial derivatives of the cost function J(n) with

respect to real part ak(n) and the imaginary part bk(n) of the k
th

 tap weight wk(n),

respectively. For the application of the steepest-descent algorithm, we assume that in

(4.9), the correlation matrix R and the cross-correlation vector p are known, so we

 21

may compute the gradient vector ∇(n) for a given value of the tap-weight vector

w(n). Substituting (4.9) in (4.8) we will get the updated value of the tap-weight

vector by using the simple recursive relation:

w(n + 1) = w(n) + μ[p − Rw(n)] n = 1, 2, 3, . . . (4.10)

It is known that the parameter μ controls the size of the incremental correction

applied to the tap-weight vector as we proceed from one iteration cycle to the other.

We call μ the step-size parameter or weighting constant. Equation (4.10) provides

the mathematical description of the steepest-descent algorithm.

According to (4.10), the correction δw(n) = w(n + 1) − w(n) applied to the tap-

weight vector at time n + 1 is equal to μ[p − Rw(n)]. This correction may be

expressed as μ times the expectation of the inner product of the input vector u(n) and

the estimation error e(n). This suggests using a bank of cross-correlators to compute

the correction δw(n) applied to the tap-weight vector w(n) as in Fig. 4.2. Another

point is that we may view the steepest-descent algorithm of (4.10) as a feedback

model.

 22

Figure 4.2. Bank of cross-correlators for computing the corrections of the elements

of the tap-weight vector at n + 1.

The operation of the least-mean-square (LMS) algorithm is descriptive of a

feedback control system. Basically, it can be subdivided into two basic processes:

1. An adaptive process, which cares about the automatic adjustment of the filter

coefficients.

 23

2. A filtering process, which cares about implementing the inner product of the

filter coefficients that emerge from the adaptive process in order to provide a

good estimate of the desired response, and generate an estimation error by

comparing this estimate with the actual value of the desired response; which in

turn (the estimation error) is used to actuate the adaptive process, thereby

closing the feedback loop.

We are going to identify the two basic components in the structural constitution of

the LMS algorithm as in Fig. 4.3, which has a transversal filter with LMS algorithm

(for filtering process), and a mechanism for adaptive control process on the tap

weights of the transversal filter.

Figure 4.3 Block Diagram of Adaptive Transversal Filter.

While the filtering process is taking place, the desired response d(n) is supplied for

processing alongside the tap-input vector u(n). With this input the transversal filter

produces an output d(n|Un) used as an estimate of the desired response d(n). Also we

may set up an estimation error e(n) as the difference between the desired response

^

 24

and the filter output, as in Fig. 4.4. Both e(n) and u(n) are applied to the control

mechanism, and the feedback loop around the tap weights is thereby closed.

Figure 4.4 Detailed Structure of the Transversal Filter Component.

Figure 4.5 presents details of the adaptive weight-control mechanism. Specifically, a

scaled version of the inner product of the estimation error e(n) and tap-input u(n − k)

is computed for k = 0, 1, . . . ,N − 1. The obtained result defines the correction δwk(n)

applied to the tap weight wk(n) at time n+1. The scaling factor μ is called the step-

size parameter or adaptation constant (as mentioned previously).

^

^

 25

Figure 4.5. Detailed Structure of the Adaptive Weight-Control Mechanism.

Comparing Fig. 4.5 and Fig. 4.2 we see that the LMS algorithm uses the inner

product u(n − k)e
*
(k) as an estimator of element k in the gradient vector ∇(J(n)) that

characterizes the steepest-descent method. The recursive computation of each tap

weight in the LMS algorithm suffers from gradient noise.

 26

The filter coefficients vector w(n) which is computed by the LMS algorithm executes

a random motion around the optimum point of the error surface. This motion

motivates us to investigate two convergence behaviors of the LMS algorithm.

1. Convergence behavior in the mean sense.

2. Convergence behavior in the mean square sense.

4.3 Least-Mean-Square Adaptation Algorithm

If it was possible to make an exact measurement of the gradient vector ∇(J(n)) at

each time iteration, and if the step-size μ is chosen suitably, then the filter

coefficients vector computed by using the steepest-descent method would indeed

converge.

Exact measurements of the gradient vector are, in reality, impossible because this

would require prior knowledge of the autocorrelation matrix R of the tap input and

the cross-correlation vector p between the tap input vector and the desired response.

As a result of this, the gradient vector must be estimated using the available data.

That means the tap-weight vector according to an algorithm adapts to the incoming

data (Least-Mean-Square (LMS) Algorithm). A significant feature of the LMS

algorithm is its simplicity; it does not require measurements of the pertinent

correlation functions, and it does not require matrix inversion [1].

To develop a good estimate of the gradient vector ∇(J(n)), we substituted estimates

of the autocorrelation matrix R and the cross-correlation vector p in (4.9).

∇(J(n)) = −2p + 2Rw(n), (4.11)

^

 27

The simplest choice of estimator for R and p is to use instantaneous estimates that

are based on sample values of the tap input vector and desired response.

R(n) = u(n)u
H
(n), (4.12)

p = u(n)d
*
(n), (4.13)

Corresponding, the instantaneous estimate equation of the gradient vector is:

∇(J(n)) = −2u(n)d
*
(n) + 2u(n)u

H
(n)w(n), (4.14)

This estimate is generally biased because the filter coefficients estimate vector w(n)

is a random vector that depends on the input vector u(n). Noting that the estimate

∇(J(n)) can also be viewed as the gradient operator ∇ applied to the absolute

instantaneous squared error |e(n)|
2
.

Substituting the estimate of (4.14) for the gradient vector ∇(J(n)) in the steepest

descent algorithm as described in (4.8), we get a new recursive relation for updating

the tap-weight vector:

w(n + 1) = w(n) + μu(n)[d
*
(n) − u

H
(n)w(n)] (4.15)

Here we have used the “cap” over the symbol of the tap-weight vector to distinguish

it from the value obtained by the steepest-descent algorithm. A summary of the LMS

algorithm is shown in Table 4.1.

^

^

^ ^

^

^

^ ^ ^

 28

Table 4.1 Summary of the LMS algorithm.

4.4 Normalized Least Mean Square Algorithm

In the LMS algorithm, the selection of the step-size causes a problem in many of

applications where the LMS algorithm is used and when the input x(k) is large. To

overcome this problem, the normalized least-mean-square (NLMS) is proposed [10]-

[13]. In NLMS algorithm, the step-size μ is normalized by the energy of the data

vector. A summary of the NLMS algorithm is given in Table 4.2.

Table 4.2 Summary of the NLMS algorithm

 29

The NLMS algorithm converges much faster than LMS algorithm with very little

extra computational complexity; NLMS is very commonly used in some applications

such as echo cancellation problems [14].

However, the NLMS algorithm has a problem; when the input vector x(k) is small,

then a rise of numerical difficulties may occur because by then we have to divide by

a small value for tap-input power ∥x(k)∥2
.

4.5 Recursive-Least-Squares Algorithm

The recursive-least-squares (RLS) algorithm [1], [15]-[16] was proposed in order to

provide superior performance compared to those of the LMS algorithm and its

variants [17]-[22], with few parameters to be predefined, especially in highly

correlated environments. In the RLS algorithm, an estimate of the autocorrelation

matrix is used to decorrelate the current input data. Also, the quality of the steady-

state solution keeps on improving over time, eventually leading to an optimal

solution. A summary of the algorithm is shown in Table 4.3.

Even though the RLS algorithm has very good performance in such environments, it

actually suffers from its high computational complexity O(N
2
). Also, In RLS

algorithm, the forgetting factor (β) has to be chosen carefully such that its value

should be very close to one in order to ensure stability and convergence of the RLS

algorithm. However, this in turn poses a limitation for the use of the algorithm

because small values of β may be required for signal tracking if the environment is

non-stationary [23].

 30

Table 4.3 Summary of the RLS algorithm

In the following chapter we will explain the adaptive noise cancellation problem in

detail and implementing it using LMS, NLMS and RLS algorithms using the

SIMULINK package.

 31

Chapter 5

SIMULATIONS AND EXPERIMENTAL RESULTS

5.1 Introduction

In this thesis, the SIMULINK of MATLAB Software Package is used for the

simulation of the standard LMS, NLMS and RLS algorithms in noise cancellation

(see Fig. 3.2) configurations. Simulations discuss the performances of these

algorithms with additive white Gaussian noise (AWGN) with different parameters

and different input signals.

A real time implementation is carried out by a TI TMS320C6416T DSP (full details

in Appendix) by transferring the SIMULINK schemes (a sample; i.e. the LMS

SIMULINK schematic is shown in Fig. 5.1) to the DSP board which let it work alone

in real time independent of MATLAB.

5.2 Sinusoidal Input Signal

In this experiment, a sinusoidal signal (s(n)= Asin(2πft)) is created with the following

parameters: frequency f = 5Hz and amplitude A = 0.4 as shown in Fig. 5.2. Then, an

AWGN (shown in Fig. 5.3) with zero mean and variance σ
2
 = 0.03 is added to the

input signal. The resulting signal is assumed to be the received signal

(d(n)=s(n)+N(n)) and is shown in Fig. 5.4.The performances of the three algorithms

are compared with different parameters and different filter lengths.

 32

Figure 5.1 SIMULINK schematic for LMS algorithm.

 33

Figure 5.2 Desired sinusoidal signal (s(n)).

Figure 5.3 Additive White Gaussian Noise (N(n)).

 34

Figure 5.4 Input sinusoid with additive white gaussian noise.

In the first part of this experiment, the filter length is assumed to be N = 20 taps for

all algorithms, μ = 0.03 for LMS and NLMS algorithms and for the RLS algorithm β

= 1. Fig. 5.5 shows the MSE of all algorithms. From the figure we see that the RLS

algorithm provides the fastest convergence rate and lowest MSE compared to the

other algorithms. NLMS algorithm converges to the same MSE as that of the RLS

algorithm with lower convergence rate. Even though the LMS algorithm converges

to the same MSE of the other algorithms, but it has the lowest convergence rate. Fig.

5.6 shows the recovered sinusoid by the aforementioned algorithms.

 35

Figure 5.5 MSE of LMS, NLMS and RLS algorithms: N = 20 taps, (μ = 0.03) for

LMS and NLMS, (β = 1) for RLS.

Figure 5.6 Recovered sinusoid by LMS, NLMS and RLS algorithms: N = 20 taps, (μ

= 0.03) for LMS and NLMS, (β = 1) for RLS.

 36

In the second part, the filter length is assumed to be N = 40 taps for all algorithms, μ

= 0.03 for LMS and NLMS algorithms and for the RLS algorithm β = 1. Fig. 5.7

shows the MSE of all algorithms. From the figure we again notice that the RLS

algorithm provides the fastest convergence rate and lowest MSE compared to the

other algorithms. The NLMS algorithm converges to the same MSE as that of the

RLS algorithm with slightly lower convergence rate. The LMS algorithm converges

to the same MSE of the other algorithms. However, it has the lowest convergence

rate. Fig. 5.8 confirms what has been shown in Fig. 5.7 by showing the recovered

sinusoid by all algorithms.

Figure 5.7 MSE of LMS, NLMS and RLS algorithms: N = 40 taps, (μ = 0.03) for

LMS and NLMS, (β = 1) for RLS.

 37

Figure 5.8 Recovered sinusoid by LMS, NLMS and RLS algorithms: N = 40 taps, (μ

= 0.03) for LMS and NLMS, (β = 1) for RLS.

In the third part, the filter length is assumed to be N = 20 taps for all algorithms, μ =

0.003 for LMS and NLMS algorithms and for the RLS algorithm β = 1. Fig. 5.9

shows the MSE of all algorithms. From the figure we again notice that the RLS

algorithm provides the fastest convergence rate and lowest MSE compared to the

other algorithms. The LMS algorithm converges to the same MSE as that of the RLS

algorithm with slightly lower convergence rate. Now, even though the NLMS

algorithm converges to the same MSE of the other algorithms, it has the lowest

convergence rate. This is because of the very low step-size when it is divided by the

power of the input vector. Fig. 5.10 confirms what has been shown in Fig. 5.9 by

showing the recovered sinusoid by all algorithms.

 38

Figure 5.9 MSE of LMS, NLMS and RLS algorithms: N = 20 taps, (μ = 0.003) for

LMS and NLMS, (β = 1) for RLS.

Figure 5.10 Recovered sinusoid by LMS, NLMS and RLS algorithms: N = 20 taps,

(μ = 0.003) for LMS and NLMS, (β = 1) for RLS.

 39

In the last part, the filter length is assumed to be N = 40 taps for all algorithms, μ =

0.003 for LMS and NLMS algorithms and for the RLS algorithm β = 1. Fig. 5.11

shows the MSE of all algorithms. From the figure we again notice that the RLS

algorithm provides the fastest convergence rate and lowest MSE compared to the

other algorithms. The LMS algorithm converges to the same MSE as that of the RLS

algorithm with slightly lower convergence rate. Now, even though the NLMS

algorithm converges to the same MSE of the other algorithms, it has the lowest

convergence rate. This is because of the very low step-size when it is divided by the

power of the input vector. Fig. 5.12 confirms what has been shown in Fig. 5.11 by

showing the recovered sinusoid by all algorithms. Also, it is noted that increasing the

filter length for the aforementioned experiments provides no gain; hence 20 taps

filter length could be enough for recovering such signal.

Figure 5.11 MSE of LMS, NLMS and RLS algorithms: N = 40 taps, (μ = 0.003) for

LMS and NLMS, (β = 1) for RLS.

 40

Figure 5.12 Recovered sinusoid by LMS, NLMS and RLS algorithms: N = 40 taps,

(μ = 0.003) for LMS and NLMS, (β = 1) for RLS.

5.3 Music Input Signal

5.3.1 Simulation Results

In this experiment, a music signal is used. To be comparable with the results shown

by the oscilloscope, a portion of the signal is shown in Fig. 5.13. Then, an AWGN

(shown in Fig. 5.15) with zero mean and variance σ
2
 = 0.03 is added to the input

signal. The resulting signal is assumed to be the received signal and is shown in Fig.

5.17.

The filter length is assumed to be N = 10 taps for all algorithms, μ = 0.05 for LMS

and NLMS algorithms and for the RLS algorithm β = 1. Figs. 5.19, 5.21 and 5.23

show the output errors of LMS NLMS and RLS algorithms, respectively. From the

figure we see that the RLS algorithm provides smallest estimated output error

compared to the other algorithms. Figs. 5.25, 5.27 and 5.29 show the recovered

music signal by LMS NLMS and RLS algorithms, respectively.

 41

5.3.2 Experimental Results

In this part, the experiments of section 5.3.1 are uploaded to the DSP card and the

results are shown on the oscilloscope. Fig. 5.14 shows the input music signal. Then,

an AWGN (shown in Fig. 5.16) with zero mean and variance σ
2
 = 0.03 is added to

the input signal. The resulting signal is assumed to be the received signal and is

shown in Fig. 5.18.

The filter length of the filter specifies how accurately a given system can be modeled

by the adaptive filter. In addition, the filter length affects the convergence rate, by

increasing or decreasing computation time, it can affect the stability of the system, at

certain step sizes, and it affects the MSE.

In this experiment the filter length is assumed to be N = 10 taps for all algorithms, μ

= 0.05 for LMS and NLMS algorithms and for the RLS algorithm β = 1. Figs. 5.20,

5.22 and 5.24 show the output errors of the LMS, NLMS and RLS algorithms,

respectively. From the figures we see that the RLS algorithm provides smallest

estimated output error compared to the other algorithms. And Figs. 5.26, 5.28 and

5.30 show the recovered music signal by the LMS, NLMS and RLS algorithms,

respectively. The results seen by the oscilloscope are in compatible with the

simulation results.

 42

Figure 5.13 Input music signal (s(n)) for simulation results.

Figure 5.14 Input music signal (s(n)), as seen on oscilloscope.

 43

Figure 5.15 Added noise (N(n)) for simulation results.

Figure 5.16 Added noise (N(n)), as seen on oscilloscope.

 44

Figure 5.17 Input signal with noise (d(n)) for simulation results.

Figure 5.18 Input music signal with noise (d(n)), as seen on oscilloscope.

 45

Figure 5.19 Output error (e(n)) of LMS algorithm: N = 10 taps, (µ = 0.05).

Figure 5.20 Output error (e(n)) of LMS algorithm on oscilloscope: N = 10 taps, (µ =

0.05).

 46

Figure 5.21 Output error (e(n)) of NLMS algorithm: N = 10 taps, (µ = 0.05).

Figure 5.22 Output error (e(n)) of NLMS algorithm on oscilloscope: N = 10 taps, (µ

= 0.05).

 47

Figure 5.23 Output error (e(n)) of RLS algorithm: N = 10 taps, (β = 1).

Figure 5.24 Output error (e(n)) of RLS algorithm on oscilloscope: N = 10 taps, (β =

1).

 48

Figure 5.25 Recovered signal by LMS algorithm: N = 10 taps, (µ = 0.05).

Figure 5.26 Recovered signal by LMS algorithm on oscilloscope: N = 10 taps, (µ =

0.05).

 49

Figure 5.27 Recovered signal by NLMS algorithm: N = 10 taps, (µ = 0.05).

Figure 5.28 Recovered signal by NLMS algorithm on oscilloscope: N = 10 taps, (µ =

0.05).

 50

Figure 5.29 Recovered signal by RLS algorithm: N = 10 taps, (β = 1).

Figure 5.30 Recovered signal by RLS algorithm on oscilloscope: N = 10 taps, (β =

1).

 51

Chapter 6

CONCLUSIONS

6.1 Conclusions

In this thesis, a performance comparison between the LMS, NLMS and RLS

algorithms under different step-sizes and filter lengths has been investigated using

the SIMULINK package. The simulations have been done with different input

signals (mainly a sinusoid and general music signals were used). Simulations have

shown that the RLS algorithm outperforms the other algorithms; of course, this high

performance is with a trade-off with the high computational complexity of the RLS

algorithm. NLMS algorithm provides very good performance (better than the LMS

and close to that of the RLS) with almost the same computational complexity of that

of the LMS algorithm.

A real time implementation is also carried out by a TI TMS320C6416T DSP by

transferring the SIMULINK schemes to the DSP board which let it work alone in

real time independent of MATLAB. Furthermore, the performance of the

aforementioned algorithms as seen on oscilloscope was compatible to what has been

investigated by the software.

6.2 Future Work

As a future work, different algorithms' performances can be compared by the

investigated ones and their simulation results can be compared by their hardware

ones. Also, one of the main disadvantages of the RLS algorithm is its stability if the

 52

autocorrelation matrix is singular; hence a way to make the RLS more stable could

be investigated.

 53

REFERENCES

[1] S. Haykin, Adaptive Filter Theory, 4th ed., Prentice Hall, Upper Saddle River,

NJ, 2002.

[2] B. F. Boroujeny, Adaptive Filters: Theory and Applications, JohnWiley,

BaffinsLane, Chichester, 1998.

[3] B.Widrow and E.Walach, Adaptive Inverse Control, Reissue Edition: A Signal

Processing Approach, Wiley-IEEE Press, 2007.

[4] B. Widrow and S. D. Stearns, Adaptive Signal Processing, Prentice Hall,

Eaglewood Cliffs, N.J., 1985.

[5] D. Starer and A. Nehorai, “Newton algorithms for conditional and unconditional

maximum likelihood estimation of the parameters of exponential signals in

noise,” IEEE Transactions on Acoustics, Speech and Signal Processing, Vol. 40,

No. 6, 1992, pp. 1528-1534.

[6] M. G. Bellanger, Adaptive Digital Filters, 2nd ed., Marcel Dekker, New York,

2001.

[7] C. V. Sinn and J. Gotze, “Comparative study of techniques to compute FIR filter

weights in adaptive channel equalization,” IEEE International Conference on

Acoustic, Speech and Signal Processing (ICASSP03), vol. 6, April 2003, pp.

217-220.

 54

[8] X. Guan, X. Chen; and G. Wu, “QX-LMS adaptive FIR filters for system

identification,” 2nd International Congress on Image and Signal Processing

(CISP2009), 2009, pp. 1-5.

[9] B. Allen and M. Ghavami, Adaptive Array Systems: Fundamentals and

Applications, John Wiley & Sons Ltd, West Sussex, England, 2005.

[10] J. I. Nagumo and A. Noda, “A Learning method for system identification,”

IEEE Transactions on Automation and Control, vol. AC-12, 1967, pp. 282-287.

[11] A. E. Albert and L. S. Gardner, Stochastic Approximation and Nonlinear

Regression, MIT Press, Cambridge, MA, 1967.

[12] R. R. Bitmead and B. D. O. Anderson, “Lyapunov techniques for the

exponential stability of linear difference equations with random coefficients,”

IEEE Transactions on Automation and Control, vol. AC-25, 1980, pp. 782-787.

[13] R. R. Bitmead and B. D. O. Anderson, “Performance of adaptive estimation

algorithms in independent random environments,” IEEE Transactions on

Automation and Control, vol. AC-25, 1980, pp. 788-794.

[14] G. Tummarello, F. Nardini and F. Piazza, “Step size control in NLMS acoustic

echo cancellation using a neural network approach,” International Symposium on

Circuits and Systems, Vol. 5, May 2003, pp. 705-708.

 55

[15] R. Hastings-James, R. and M. W. Sage, “Recursive generalised-least-squares

procedure for online identification of process parameters,” Proceedings of the

Institution of Electrical Engineers, vol. 116, no. 12, 1969, pp. 2057-2062.

[16] V. Panuska, “An adaptive recursive-least-squares identification algorithm,” 8th

IEEE Symposium on Adaptive Processes and Decision and Control, vol. 8, part

1, 1969, pp. 65-69.

[17] G. O. Glentis, K. Berberidis and S. Theodoridis, “Efficient least squares

adaptive algorithms for FIR transversal filtering,” IEEE Signal Processing

Magazine, July 1999, pp. 13-41,

[18] G. O. Glentis, “Efficient fast recursive least-squares adaptive complex filter

using real valued arithmetic,” Elsevier Signal Processing, vol. 85, 2005, pp.

1759-1779.

[19] S. Makino and Y. Kaneda, “A New RLS algorithm based on the variation

characteristics of a room impulse response,” IEEE International Conference on

Acoustics, Speech, and Signal Processing (ICASSP-94), vol. 3, 1994, pp. 373-

376.

[20] K. Maouche and D. T. M. Slock, “Fast subsampled-updating stabilized fast

transversal filter (FSU SFTF) RLS algorithm for adaptive filtering,” IEEE

Transactions on Signal Processing, vol. 48, no. 8, 2000, pp. 2248-2257.

 56

[21] E. M. Eksioglu and A. K. Tanc, “RLS algorithm with convex regularization,”

IEEE Signal Processing Letters, vol. 18, no. 8, 2011, pp. 470-473.

[22] J. Wang, “A variable forgetting factor RLS adaptive filtering algorithm,” 3rd

IEEE International Symposium on Microwave, Antenna, Propagation and EMC

Technologies for Wireless Communications, 2009, pp. 1127-1130.

[23] A. H. Sayed, Adaptive Filters, John Wiley & Sons, NJ, 2008.

 57

APPENDICES

 58

Appendix A: Texas Instruments

Steps for using the software and Hardware and how can we connect both of them to

make real time implementation noise cancellation:-

For using Texas Instruments DSK6416 (TMS320C6416 (1 GHZ)).

System requirements for DSK 6416 are:-

A) You should install MATLAB R2006a.

B) 500MB of free hard disk space.

C) 128MB of RAM.

D) 16-bit color display.

E) CD-ROM Drive.

F) Hardware installation using operating systems as windows XP or

windows 2000.

 59

PART A: Software Installation

A.1: Insert the code composer studio installation CD into the CD-ROM drive. An

install menu (see below) should appear. If it does not, manually run Launch.exe from

the install products option from the menu.

A.2: Install any components you need. To debug with the DSK you must have:-

A) A copy of code composer studio.

B) The target content package for your board.

C) A copy of the Flash Burn plug-in.

 60

A.3: The installation procedure will create two icons on your desktop:-

6461 DSK CCStudio v3.1

6416 DSK Diagnostics Utility v3.1

 61

PART B: Hardware Connection

A.4: Connect the supplied USB cable to your PC or laptop.

A.5: If you plan to connect a microphone, speaker. Or expansion card these must be

plugged in properly before you connect power to the DSK board.

A.6: Connect the included 5V power adapter brick to your AC power cord.

A.7: Apply power to the DSK by connecting the power brick to the 5V input on the

DSK.

A.8: When power is applied to the board the power on self-Test (POST) will run.

A.9: Make sure you DSK CD-ROM is installed in your CD-ROM drive. Now

connect the DSK to your PC using the included USB.

A.10: Test you connection, if you want to test your DSK and USB connection you

can launch the C6416 DSK Diagnostic Utility from the icon on your desktop.

 62

A.11: Start Code Composer; double click the 6416 DSK CCStudio icon on your

desktop and connect DSK6416, select Debug -> Connect:-

 63

A.12: You should prepare your MATLAB SIMULINK and you should make it as

you see from this SIMULINK:-

 64

A.13: When you open the SIMULINK you should connect it to DSP kit, using this

way: - Select Tools -> Real-Time Workshop -> Build Model.

A.14: And then your work will transfer to DSK6416 card, than you can get the

output filtering from output for DSK cart.

 65

APPENDIX B: Matlab Simulink

PART A: First experiment for sinusoidal noise cancellation:-

B.1: LMS Algorithm.

 66

B.2: NLMS Algorithm.

 67

B.3: RLS Algorithm.

 68

PART B: Hardware Experiment for Music Noise Cancellation:

B.4: LMS Algorithm.

 69

B.5: NLMS Algorithm.

 70

B.6: RLS Algorithm.

