
Elimination of Repeated Occurrences in Image
Search Engines

Saed Alqaraleh

Submitted to the
Institute of Graduate Studies and Research

in partial fulfillment of the requirements for the Degree of

Master of Science
in

Computer Engineering

Eastern Mediterranean University
January 2011

Gazimagusa, North Cyprus



Approval of the Institute of Graduate Studies and Research

________________________________
Prof. Dr. Elvan Yılmaz

Director (a)

I certify that this thesis satisfies the requirements as a thesis for the degree of Master
of Science in Computer Engineering.

____________________________________
Assoc. Prof. Dr. Muhammed Salamah

Chair, Department of Computer Engineering

We certify that we have read this thesis and that in our opinion it is fully adequate in
scope and quality as a thesis for the degree of Master of Science in Computer
Engineering.

________________________________
Assoc.Prof.Dr. Işık AYBAY

Supervisor

Examining Committee
__________________________________________________________________

1. Assoc.Prof.Dr. Işık AYBAY ______________________________

2. Assoc. Prof. Dr. Muhammed Salamah ______________________________

3. Asst. Prof. Dr. Gürcü ÖZ ______________________________



iii

ABSTRACT

We propose a new method for elimination of repeated occurrences in image search

engines. We have built software that: Compares images in a database, and marks only

one copy of repeating files using a hashing technique. Marking one of the repeating

images will lead to faster access and will eliminate the repetition of the same images

more than once. The software can work periodically, for dealing with any updates on

the image database.

We have developed another version of the software to be multipurpose, making use

of the query by example tool, and it can also find images which are similar to each other

within some percentages limits.

Keywords: Image Search Engines, Query by Example, Hash Algorithm, Information

Retrieval.



iv

ÖZ

Resim arama motorlarındaki tekrarlanan bulguları gidermek için yeni bir yöntem

öneriyoruz. Geliştirdiğimiz yazılım: Veritabanındaki resimleri karşılaştırıyor, ve Hesaba

dayalı adresleme (Hashing) tekniğini kullanarak tekrarlanan dosyaların bir kopyasını

işaretliyor. Tekrarlanan resimlerin birini işaretlemek, daha hızlı erişim sağlıyor ve aynı

resmin birden fazla görüntülenmesini engelliyor. Resim veritabanındaki güncellemelerle

başa çıkmak için, yazılım periodik olarak çalıştırılabiliyor.

Örnek ile çalışan sorgu aracını kullanarak yazılımın bir diğer çok amaçlı versiyonu

da geliştirilmiştir. Bu versiyonda yazılım benzer resimleri bazı yüzdelik sınırları

kullanarak bulabiliyor.

Anahtar Kelimeler: Resim Arama Motorları, Örnek ile çalışan sorgu aracı, Hesaba

Dayalı Adresleme Algoritması, Bilgi Erişimi.



v

DEDICATION

To My Family

(Especially to my Grandfather and my Grandmother Peace on their souls)



vi

ACKNOWLEDGMENT

I would like to thank Assoc. Prof. Dr. Işık AYBAY for his guidance and continuous

support through my study. Without his appreciated supervision, I would not be in this

position.

I owe a big thank to my family. Thanks to my parents for their support through the

period of my study. I will never forget my wife’s support, as she was beside me, and

encouraging me all the time.

I would like to great my friends who were always around to support.

I know that saying thanks comparing with what they all have done is nothing. But all

of them will be always in my Heart.



vii

TABLE OF CONTENTS

ABSTRACT ................................................................................................................ iii

ÖZ ………………………………………………………………………………………iv

DEDICATION ............................................................................................................. v

ACKNOWLEDGMENT.............................................................................................. vi

1 INTRODUCTION ..................................................................................................... 1

2 RELATED WORKS.................................................................................................. 4

2.1 Overview of Internet Search Engines................................................................... 4

2.2 Overview of Related Work .................................................................................. 5

2.2.1 Studies on Current Search Engine Mechanisms for Finding Images............... 5

2.2.2 Studies for Improving the Efficiency of Search Engines ................................ 9

2.2.2.1 Flexible and Extensible Framework for Web Image Retrieval................. 9

2.2.2.2 Direct Searching of Video Content (DIVAS) ........................................ 10

2.2.2.3 SCENIQUE .......................................................................................... 10

2.2.2.4 Lazy ..................................................................................................... 11

2.2.2.5 Query by Example ................................................................................ 11

2.2.2.6 Query by Sketch ................................................................................... 12

2.2.2.7 Hybrid Methods.................................................................................... 12

2.2.2.8 Automatic Ranking of Websites............................................................ 13

2.2.2.9 Key Block ............................................................................................ 13

2.2.2.10 Document Clustering .......................................................................... 14

3 ELIMINATION OF REPEATED OCCURRENCES IN IMAGE SEARCHING...... 17

3.1 Programming Environment................................................................................ 17

3.2 The Database..................................................................................................... 17

3.3 Software Mechanism ......................................................................................... 18



viii

3.3.1 Creating the Images Database ..................................................................... 18

3.3.2 Computing the Hash Value ......................................................................... 19

3.3.3 Comparing the Hash Value ......................................................................... 20

3.4 User Interface .................................................................................................... 21

4 PERFORMANCE STUDIES ................................................................................... 25

4.1 Introduction....................................................................................................... 25

4.2 Bit-Wise Comparisons....................................................................................... 25

4.2.1 Sequential Execution ...................................................................................... 26

4.2.2 Parallel execution: Client - Server Architecture .............................................. 27

4.3 Hash Comparison .............................................................................................. 31

4.4 Comparison of Hash Algorithm and Bit-wise techniques ................................... 33

4.5 Parallel Work with Hash Algorithm................................................................... 34

4.6 Saving the Hash Values in the Database ............................................................ 36

4.7 Mechanism of Dividing the Work between Parallel Copies................................ 36

4.8 Comparing dynamically way versus. Saving the Hash Values earlier in the
Database.................................................................................................................. 41

5 STUDIES ON FINDING SIMILAR IMAGES......................................................... 43

5.1 Introduction....................................................................................................... 43

5.2 Query by Example Mechanism.......................................................................... 43

5.3 Methodology Developed For Implementing the Query by Example Techniques 47

5.3.1 Bit- Wise Comparison .................................................................................... 47

5.3.2 Exhaustive Template Matching....................................................................... 48

5.3.3 Comparison between Exhaustive Template Matching and Bit- Wise Comparison
Techniques.............................................................................................................. 50

CONCLUSION .......................................................................................................... 52

APPENDICES............................................................................................................ 59

Appendix A: The source code of the module. ......................................................... 59



ix

LIST OF TABLES

Table 2.1.Number of Images For Some Queries (Reachable By Google)....................... 5

Table 4.1.Results of Sequential Comparison / Deletion for Base Image....................... 26

Table 4.2.Results of Sequential Comparison / Deletion for Random Image. ................ 27

Table 4.3.Results of the Client – Server Method for Base Images. .............................. 28

Table 4.4.Result of the Client –Server Method for Random Images. ........................... 30

Table 4.5.Comparison of SHA and MD5. ................................................................... 32

Table 4.6.Execution Times for Different Hash Algorithms.......................................... 32

Table 4.7.Execution Time of Hash Algorithms and Bit Wise Comparison Technique.. 33

Table 4.8.Execution Time for 4 and 8 Clients. ............................................................ 34

Table 4.9.Execution Time Versus Number of Images for 8, 12, 16 Clients. ................. 35

Table 4.10.Time for Saving the Hash Values in Database. .......................................... 36

Table 4.11.Execution Time Versus. Number of Images for 4, 8, 12, 16 Clients, Using
Multiple Copies of the Program. ................................................................................. 40

Table 4.12.Dynamic Way Versus. Saving the Hash Values in Database. ..................... 41

Table 5.1.Bit Wise Comparison for Similarity Using 25,100,200,500 Images. ............ 48

Table 5.2.Exhaustive Template Matching Using 25,100,200,500 Images. ................... 49

Table 5.3.Comparing Between Exhaustive Template Matching and Bit Wise
Comparison. ............................................................................................................... 50



x

LIST OF FIGURES

Figure 3.1: Creating the Images Database Flow Chart. ................................................ 18

Figure 3.2: Extracting the Hash Value Flow Chart. ..................................................... 19

Figure 3.3: Comparing the Hash Value Flow Chart. .................................................... 20

Figure 3.4:Creating the Database. ............................................................................... 21

Figure 3.5: Extracting Hash Value. ............................................................................. 22

Figure 3.6: Specification of number of clients. ............................................................ 23

Figure 3.7: Client Form............................................................................................... 24

Figure 4.1: Time versus Number of Images for Sequential Comparison / Deletion for
Base Image. ................................................................................................................ 26

Figure 4.2: Time Verses Number of Images Sequential Comparison /Deletion for
Random Image............................................................................................................ 27

Figure 4.3: Speed-Up versus Number of Images (Second Experiment)........................ 29

Figure 4.4: Efficiency versus Number of Images for the Second Experiment. ............. 29

Figure 4.5: Speed- Up versus Number of Images for the Second Experiment. ............. 30

Figure 4.6: Efficiency versus Number of Images for the Second Experiment. ............. 30

Figure 4.7: Execution Time for Different Hash Algorithms. ........................................ 32

Figure 4.8: Hash Algorithms versus Bit Wise Technique. (Execution Time). .............. 34

Figure 4.9: Execution Time Versus Number of Images for 4, 8 clients. ....................... 35

Figure 4.10: Execution Time Versus. Number of Images for 8, 12, 16 Clients............. 35

Figure 4.11: Processing of Images............................................................................... 37

Figure 4.12: Execution Time Versus. Number of Images for 4, 8, 12, 16 Clients, Using
Copies of the Program. ............................................................................................... 40

Figure 4.13: Execution Time Versus. Number of Working Copies for 2500 and 3000
Images. ....................................................................................................................... 41

Figure 4.14: Dynamic Way Versus. Saving the Hash Values in Database.................... 42

Figure 5.1: Query by Example Form. .......................................................................... 44



xi

Figure 5.2: Query by Example Module Flow Chart. .................................................... 45

Figure 5.3: Query by Example with Options Form. ..................................................... 46

Figure 5.4: Bit Wise Comparison for Similarity Using 25,100,200,500 Images. .......... 48

Figure 5.5: Exhaustive Template Matching Using 25,100,200,500 Images. ................. 50

Figure 5.6: Comparing Exhaustive Template Matching and Bit Wise Comparison for
finding similarity. ....................................................................................................... 51



1

Chapter 1

1 INTRODUCTION

The number of images stored and applications developed for accessing images on

the Internet has grown considerably in the last ten years. This causes many problems

related with information retrieval on the Internet. Among a large number of images,

it is often hard to find required images. There are three main problems that can be

mentioned:

1) The naming problem

2) The description problem

3) The redundancy problem

Firstly, search engines are still using mainly metadata or keywords to create

image databases. Metadata cannot deal with different meanings of words, and

sometimes there may be no relation between the contents of the images and their

names. For example, when one uses a camera for taking images, the camera

generates names for those images automatically, with no relation with the image

content. We call this the” naming problem”.

Secondly, when the user doesn’t know how to describe the image he/she requires,

it is hard to find out the image he/she is trying to get.  This will be referred to as the

“description problem”

Finally, information redundancy consumes extra time in checking the results.

Hence, there is a need for improving matching image display efficiency, this is called



2

the” redundancy problem”. One way of improving display efficiency is the

elimination of repetitions, which is the topic of this study.

Many studies have been performed for solving the three main problems discussed

above.  New search mechanisms and algorithms have been developed for more

efficient image retrieval.

Content image retrieval mechanism is one such method. Content image retrieval

appears as a way of solving the naming problem stated above. The content- based

retrieval method works by considering   the low level features of multimedia files.

Ontology based retrieval method is one technique for content image retrieval.

The Ontology based method uses Meta data and some keywords, Hybrid methods

can also be used, combining the two methods mentioned above.

On the other hand, new ranking algorithms were developed to find matching

results in a short time. Those algorithms take into account the multimedia content of

the website in the ranking process .The aim of the new ranking algorithms is

improving the chance of finding multimedia files through the internet.

Query by example method was developed to solve the description problem

mentioned above. This method is efficient when the users have some images and

they want to get similar images. The user uploads the image at hand and the search

engine tries to find similar images. Lately, query by sketch method was developed to

increase the efficiency of the query by example technique. Query by sketch works

using the same techniques as query by example, but with more options. For example,

query by sketch allows the user to employ drawing tools to describe the expected

image.

Lately, various software packages were developed using these new mechanisms,

to improve the performance of search engines. One example is the flexible and



3

extensible framework for web image retrieval mechanism (FGWIM) [8]. FGWIM

works using high level semantics and low level visual features of images for

extracting information from files.

Document clustering can also be used to solve the naming problem when data is

clustered, and similar web documents can be found more easily using search engines.

Considering the redundancy problem, up to our knowledge, there is no research

on eliminating the repetition of the same result in search engine outcomes. The main

objective of the work presented in this thesis is to improve the efficiency of search

engines when dealing with images, by eliminating repeating images.

We propose a new method for the elimination of repeated occurrences in image

search engines. We have developed software that can create an image database.

Then, it calculates hash values for the images. Finally, it compares the hash values to

find repetitions, and marks only one copy of repeating files for further use.

To make the proposed method more efficient, we allow copies of our software to

process information in parallel. In this case, the number of images in the database is

divided evenly between the parallel copies. The system administrator decides on how

many copies should be run depending on the total number of images in the database.

Then, we have developed another module, which works similar to a query by

example search engine. This module can be used for cases where the user has an

image, and is looking for its copies, or images similar to it.

The other parts of this thesis are organized as follows: Chapter 2 discusses related

studies. Chapter 3. Explains our technique for eliminating of repeated occurrences of

image. Chapter 4 outlines performance studies. Chapter 5, discusses finding similar

images by employing the query by example technique. Chapter 6, states some

conclusions and containing discusses further work.



4

Chapter 2

2 RELATED WORKS

2.1 Overview of Internet Search Engines

Search engines collect descriptive information from websites. This information

mainly contains keywords. Most search engines use the spider technique to collect

this information. After the descriptive information is collected, the next issue is to

analyze this information using special algorithms like finding the percentage of the

number of hits of the website. After that, a database, which contains the keywords,

the website address, images and information about the website, is created. One main

problem is that, on the Internet, many websites have copies of the same images,

which means an unnecessary effort will be employed when searching.

When the user executes a query as for the retrieval of a certain image, search

engines will run it, and show the user a list of images. This list will sometimes

contain thousands, or even millions of images. In such a case, it takes a lot of time

for the user to check all the images listed by the search engine. The following table,

which is the result of our own study, gives an idea on the total number of images

reachable by the Google search engine.



5

Table 2.1.Number of Images For Some Queries (Reachable By Google).
Search Keyword The number of images(reachable  by Google)

images 189,526,563

*.jpg 2,147,483,647

*. jpeg 19,991,129

*.gif 584,742,791

*.png 468,217,403

*.ico 9,005,572

Total number of images 3,418,967,105

The website which has the highest rank will show at the beginning of the list of

results. The ranking of a website depends on the number of hits, the keywords,

website Meta Tags and the content of this website [11].  In order to keep the ranking

position of websites, we do not physically delete repeating images. Instead, a flag

field is added to the database. For the first one of repeating images we set it to one,

for all others we set it to zero.

2.2 Overview of Related Work

Multimedia searching has become an important research field these days. Many

researchers are trying to improve the efficiency of getting Multimedia files through

the Internet. Initially, researchers studied the current search engine mechanisms.

Accordingly, new search mechanisms and algorithms were developed for similarity.

In this chapter, we shall first study the mechanisms of popular search engines.

2.2.1 Studies on Current Search Engine Mechanisms for Finding Images

The challenges that make using Web-scale multimedia search engines difficult

were studied by other groups of researchers [4]. The first challenge is extracting

useful features to represent multimedia files .The second challenge is the difficulty of

finding an appropriate similarity measure. For example, “images taken in different



6

lighting condition can display different features after extracting its features” [4]. The

third challenge that restricts the deployment of large scale systems is that multimedia

search engines must be able to scale well with respect to both data dimensionality

and data quantity. In addition, identifying key features in images is easy when a

human detects the key features, but it is hard when it is done automatically.

A study of the functionality of multimedia search engines was conducted by

examining 102 web search engines in [6]. There were several issues to check:

(1)Find the number of Web search engines that support multimedia searching, (2)

find the functionality and methods offered in multimedia search, such as ‘‘query by

example’’, and (3) the support for personalization or customization as advanced

search options.

The study indicates that there are 65 general purpose engines and 37 multimedia

search engines. 43 out of 65 general purpose search engines support text media

search only. All web search engines still rely on file meta data, such as file format,

size and characteristic of the web site content. Image retrieval by contents is very

limited; only 5 out of 102 web search engines support this mechanism. Even when

content-based retrieval is supported, low level features are used. Low level features

extract file properties like texture, size, or colours. Web search provides limited

multimedia search functionality, query by example is still not available for the users.

Support for personalization or customization is too limited.

One group of researchers studied searching for digital images on the web [1].

They investigated how users structure image queries, and the current image retrieval

approaches. The current image retrieval approaches are concept-based content and

content based retrieval or a concept-content combination. They compared the

existing image query classification schemes. None of the three classification schemes



7

captured the richness of web image searching. Also, they found that the main

problem was the generation of file names randomly or by using temporal character

sequences, during the creation of image databases that makes using the current image

retrieval approaches not suitable for multimedia. Moreover, they found that

multimedia search engines use same mechanisms as textual information search

engines. Metadata is often insufficient when dealing with multimedia content. Digital

images are increasing the need for more effective methods of searching, and

retrieving image data. They suggest comparisons and additional classifiers for web

image searching as a way to improve the efficiency of search engines [1].

In [16], there is a study conduct to check the current search engines and their

mechanisms, finding they are good to retrieve images or not. They divide the current

search engines into three types:

1) Search engines with a large image database.

2) Experimental search engines.

3) Meta-search engines.

Google and Yahoo are examples of first type image search engines, which have a

large image database. These databases are created by indexing the keywords and the

images.

Second type at image search engines is specific image search engines for indexing

images or multimedia like Corbis & Getty Images. These websites are often

experimental and have limited databases that are restricted by size when compared

with sites such as Google.

Finally, there are image search engines that are called Meta-Search engines, which

send users’ requests to multiple search engines and then display the ‘multiple’

results. Image Search Mechanisms were also studied in [16].



8

Most of search engines ask the user to type a keyword and then compare it with

the content of their database, using the file type that helps to detect the desired type

of files, e.g. jpg or bmp format. Then the search engine displays the result. This

method is good for large databases, but it is not suitable for multimedia files, for

example, in Google or Yahoo.

The Second Mechanism is the creation of the database by a human. The database

builder will build categories and put the images on it (e.g. cars group, flowers...).

However, as we know there are millions of images on the internet. Therefore, it is

too difficult to determine major categories and to build this type of a database. It is

more difficult to keep it updated.

The research group have performed three experiments to compare the

performance of some search engines: The first experiment uses one word size test

queries. The second experiment uses two word size test queries. The third one uses

three word size test queries. The experiments were performed on image search

engines such as Google, Yahoo, Ditto, Corbis, Web Seek, Getty Images Creative,

Picsearch, and Ithaki. The results are as follows: The average precision is 55% for

the first experiment, 50.6% for the second experiment, and 20.7% for the last

experiment.

As a conclusion of their work, they report that, most search engines are indexing

images using text and they rely on keyword based images searching. [16].

The effect of the number of query words on image search engines was studied in

[17]. “Word Tracker periodically compiles a database of over 330 million search

terms which is updated on a weekly basis. All search terms are collected from the

major meta crawlers such as Dogpile and Metacrawler “[17].This group have

performed experiments on four search engines (Google, Yahoo, Msn, and Ask). They



9

selected fourty queries from the list of Word Tracker [23], and categorized them into

four groups of queries: one word, two words, three words, and four words. Then, first

twenty results of each query were judged if they are relevant or not by two humans.

They have done the performance evaluation of image search engines in terms of

precision and normalized recall. Precision is defined as the percentage of relevant

documents to the search out of all retrieved documents. Recall is the percent of

relevant documents which are successfully retrieved [19].

They found that Google has the lowest number of relevant image items.  The

performance of Google is also the lowest for one-word queries. On the other hand,

the average ratios of performance for Ask, Yahoo, and Msn are lower than that of

Google’s for two-word, three-word, and four-word queries. Google retrieved more

relevant items than other search engines when the number of query words increases.

In short, Google appears to be the best image search engine. In general the search

engines give a good result for one word queries, and performance is decreased when

the number of words in queries increasing. [17].

2.2.2 Studies for Improving the Efficiency of Search Engines

Lately, new software was developed by researchers to improve the performance of

search engines in finding multimedia files on the Internet. Some of those studies will

be mentioned here.

2.2.2.1 Flexible and Extensible Framework for Web Image Retrieval

A flexible and extensible framework for web image retrieval (FGWIM) was

presented in [8]. FGWIM works using high level semantics and low level visual

features of images through extracting information from files. It extracts information

in several levels and images are considered as a part of the web site. So, the images



10

should not be specified only by images themselves, but also with respect to the web

contents surrounding the images. In FGWIM, special techniques and components

like relevant feedback mechanism and data mining for knowledge discovery is used.

As a result, search engine performance for multimedia content retrieval is improved

[8].

2.2.2.2 Direct Searching of Video Content (DIVAS)

A method for direct searching of video content without using metadata information

was presented in [11]. DIVAS work is based on the finger printing method and

MPEG. For video characterization, features of several classes are used. In the first

class there are features that make some sort of segmentation. Segmentation means

logical division of long video sequences into several smaller sub sequences. At the

first stage, extract key frames are used. Then, average of the colours of each I frame

are extracted. Then these properties are saved in database as finger print for that

video. After the user uploads the video file, DIVAS will extract its properties and

will try to find the same files in the database. This method can help people for

finding videos when they have a clip of that video. DIVAS can be considered as a

query by example search engine. [11].

2.2.2.3 SCENIQUE

SCENIQUE is a program for managing images by using visual features (e.g.,

colour and texture) [9]. SCENIQUE was proposed as a multifaceted image search

and browsing system. It uses both visual features and tags. SCENIQUE has tools to

manage the image collection. It, stories the feature vectors that are automatically

extracted from photos, and a Tag database which keeps the current tags in each tag

tree.



11

The Interface of SCENIQUE is as follows:

1. Facets construction: Facets construction is supported by an intuitive

interface that requires the user to set the name of the dimension.

2. Photo annotation: For annotating an image, the user selects a photo

together with a dimension of interest.

3. Search facilities: used to search the photo collection.

4. 3-D browsing: Photo collections can be explored by the user through an

intuitive browsing interface.

Using this tool gives one an opportunity to manage images more efficiently. [9].

2.2.2.4 Lazy

In [2]. Lazy program is discussed. Lazy uses a Content-Based Image Retrieval

(CBIR) system that combines dynamic, user-driven search capabilities. Lazy system

improves query-by-sketch and query-by-example by using intelligent User Interface

Agents (UIAs). The UIAs use both neural networks and an expert reasoning system

to help with relevant feedback. In addition, a new CBIR evaluation metric was

presented. Lazy has four different types of user interfaces in CBIR systems to resolve

image queries: keyword searching, category browsing query-by-example and query-

by-sketch. Also, there is a thumbnail browsing, option which works on creating

groups that contain all files related with it. For example, one can create a group

which contains all files related to cars. Then inside the cars group, you can create sup

groups with more detail like one group for each car brand [2].

2.2.2.5 Query by Example

A view- based web page retrieval system developed in [2, 3], enables a user to

search web pages using a “visual query”. This method, called “query by example”, is



12

more powerful when one wants to get files similar to what s/he already has. In this

technique, when a sample file is uploaded, search engines try to find similar files [2,

3].

2.2.2.6 Query by Sketch

Another method called “query by sketch” is developed to improve the

performance of the query by example method [2, 3]. Query by sketch searches web

pages using a visual query, and it mainly gives the user more options like using

drawing tools for describing exactly what is required. The system uses “query by

sketch” to give some information about what the user wants. Then it will evaluate the

similarity between web pages and the sketch, using an EMD-based method.

EMD is a matching algorithm to compute distances between the colour

histograms of two digital images. Sketch works also through drawing tools, and can

ask the user to draw what s/he wants [2, 3].

2.2.2.7 Hybrid Methods

One of the new mechanisms proposed uses a Hybrid method, which was

presented for effective searching through multimedia content (2D/3D image and

video) [7]. The search engine developed in this method uses three ways for executing

the queries: The ontology-based method, the content-based method, and the hybrid

method.

The ontology-based method uses the Meta data and the keywords.  The content-

based method works by extracting the low level features from the multimedia files.

The hybrid method uses the other two methods during the query execution. One

project developed by this group is REACH, which works on hybrid retrieval. It was

http://en.wikipedia.org/wiki/Color_histogram
http://en.wikipedia.org/wiki/Color_histogram


13

tested on a museum database. Results show that a hybrid approach improves the

chance of getting the correct file by a query [7].

2.2.2.8 Automatic Ranking of Websites

Ranking websites is basically ordering the websites in the list displayed as the

result of a search query [14]. Ranking websites affects the order of results. The

ranking of a website depends on the number of hits, the keywords, website Meta

Tags and the content of this website [11]. The website with a high rank will show at

the beginning of the list of results. However, this may be unfair with multimedia

files. The images on the Web are an important part of web contents. Both text and

image content can contain useful information that should be used in retrieving web

images. A group of researchers implemented an automatic ranking process, working

on integrating the keyword and visual features for web image retrieval. The web

image retrieval system named VAST (VisuAl &SemanTic image search) was

prepared as a result of their studies. In general, after users execute a query, the

algorithm works on the result of the query by checking it and ranking it depending on

the multimedia content. Then it displays the results for the user [14].

2.2.2.9 Key Block

“Key block” is a new approach termed for content- based image retrieval [15].

Key block is a generalization of the text-based information retrieval technology in

the image domain. In this approach, methods for extracting comprehensive

geographic image features are provided, which are based on the frequency and

correlation of representative blocks that are termed “key blocks” of the geographic

image database. Features are extracted information from the images in three stages.

The first stage generates code books that contain key blocks of different resolutions



14

by dividing images into smaller blocks. Then subsets are selected. Secondly, images

are encoded. Each image in the database will be decomposed into blocks, then for

each one of these blocks the closest entry in the code book will be found and an

index will be stored (each image is considered as a matrix). The third stage is image

representation and retrieval, it extracts comprehensive image features, based on

frequency of the key blocks within the image [15].

2.2.2.10 Document Clustering

Document clustering is a technique can be used to find similar web documents out

of the documents obtained by search engines. Web documents can be organized by

using clusters, which leads to a categorization of the data. Then we can find the

relevant web documents quickly. Clustering techniques can be divided into

hierarchical and partitional methods [18].

Hierarchical methods produce a sequence of nested partitions, Hierarchical

methods can be divided to two methods, agglomerative and divisive. Agglomerative

methods start with one-document clusters, and recursively combine the most suitable

clusters. Divisive methods start with one cluster that contains all the documents, and

recursively divides it into suitable clusters. Some Clustering algorithms that belong

to hierarchical methods, are HAC (Voorhees, 1986), STC (Zamir & Etzioni, 1998),

and DIVCLUS-T (Chavent, Lechevallier, & Briant, 2007) [18].

Partitional methods work by dividing the entire document collection to a specific

number of clusters. The main aim of Partitional methods is to achieve high intra-

cluster similarity. Some clustering algorithms that belong to partitional methods, are

K-means (MacQueen, 1967), SRE (Zha, He, Ding, Simon, & Gu, 2001), and k-

Attractors (Kanellopoulos, Antonellis, Tjortjis, & Makris, 2007) [18].



15

One clustering algorithm was presented in [18], called On-The-Fly Document

Clustering (OTFDC). It generates a set of clusters from other web search results.

This method finds similar clusters using different ways. One approach is checking if

the clusters have a semantic relation. Semantic relations can be one of the following

three:

a) Equivalence: the clusters are equivalent if they are at the same level. For

example, (“home”/ “house”).

b) Hierarchy: the first cluster can be considered as a group or set, and the

second cluster as a subset or part of the group. For example, (“fruit”/

“apple”) and (“vehicle” / “car”).

c) Association: in order to be associated, clusters should not be equivalent or

hierarchical. “The clusters are semantically associated to such an extent

that the relation between them should be made explicit. For example,

(“flour” / “wheat”)” [18].

The advantages of On-The-Fly Document Clustering:

(1) It can be applied to multilingual web documents.

(2) It improves the clustering performance of any search engine. (They

simulated the combined search engines:”Google-OTFDC”, “Yahoo-

OTFDC”, and “Vivisimo-OTFDC”).

(3) OTFDC does not need any predefined information on the distribution.

(Unsupervised learning)



16

(4) Clustering results are generated on the fly, and fitted into search engines.

This means OTFDC is a recursive algorithm, and it still generates candidate

clusters on the fly, in response to a user query. [18]



17

Chapter 3

3 ELIMINATION OF REPEATED OCCURRENCES IN

IMAGE SEARCHING

In this chapter, software design issues will be discussed, including the

programming environment, the database issues, basic algorithms, and the user

interface.

3.1 Programming Environment

In this section we are going to discuss the programming environment, in which,

the software for this thesis is developed .We have built the software using “VB.NET

(2008)”. VB.NET has many advantages, like support for graphic user interface, and

support for hash algorithms. VB.NET also has the ability to create client-server

applications.

As for the hardware, we used a server PC which has a core 2 duo CPU of 1.83

GHz clock frequency and 3.00 GB of RAM. We have installed the Windows 7 OS

environment on the server.

3.2 The Database

We have created a images database as a part of our work. We used “SQL Server

(2008)” for creating the database. We saved images with their information in the

database.



18

We selected SQL Server for creating the database, as it supports VB.NET.

Secondly, SQL Server offers good security control for our database. Finally, saving

a huge number of images inside the database is possible.

3.3 Software Mechanism

The software developed for comparison / deletion of images can be described in

three stages as follows:

3.3.1 Creating the Images Database

In creating the images database, our program extracts the properties of images.

Then, it saves the images with their properties in the database.

Figure 3.1: Creating the Images Database Flow Chart.

Yes

Save the image with its
properties back in the database

Extract image properties for next
image

No

End

Last picture?

Start



19

3.3.2 Computing the Hash Value

Firstly , the hash value comparison  program will convert an image to an array of

bits. This array will be the input for the MD5 hashing algorithm which is discussed

detail in chapter  4. Sixteen unique bits will be the output of  MD5 for each image.

Then the software will save this hash value in the database togather with the image.

Figure 3.2: Extracting the Hash Value Flow Chart.

Yes

No

Convert the image to
array of bits

Save the hash value and
the image in the database

End

Start

Get next picture
from the database

Create the hash value using
MD5

Last picture in
the data base



20

3.3.3 Comparing the Hash Value

The comparison program will get the hash value for the selected image from the

data base .and compare it with the hash values for repeating images.  If repeating

images are founded, the program will keep the first image’s flag as one and set flags

for the repeating (i.e. second, third, etc.) images to zero.

Figure 3.3: Comparing the Hash Value Flow Chart.

Yes

No

End

Last picture in
database?

Compare with all other images setting
flages of repeating images to zero

Start

Read the image’s hash value from
database and set the flage to one

Get next unflaged image



21

3.4 User Interface

The Software developed in this study has an administrator interface and a (client)

user interface. The Administrator Interface allows the system administrator to create

the database. Figure (3.4). Shows the administrator interface form for creating the

database.

Figure 3.4:Creating the Database.



22

Figure 3.5: Extracting Hash Value.

The second form of Administrator Interface allows the system administrator to

compare the images using all hash algorithms mentioned in our thesis (MD5,

SHA512, SHA256), or bit ways comparison can be used. Figure 3.7 shows the

administrator second form.



23

Figure 3.6: Specification of number of clients.

The system administrator specify how copies of the client working. If copies are

to be started, the software will divide the number of images between the working

copies. Figure.20 shows the related interface.



24

The (Client) User Interface

The client uses this form for saving the client information, to read information

from the database and to start comparing the images.

Figure 3.7: Client Form.



25

Chapter 4

4 PERFORMANCE STUDIES

4.1 Introduction

We have conducted some experiments to test the performance of image

comparison using different techniques. This chapter outlines the details and the

results of performance studies.

4.2 Bit-Wise Comparisons

At the beginning, we have selected the” bit- wise” comparison technique to

compare images. Bit- wise comparison compares all the pixels of two images one by

one. If all pixels in both images are the same, only one of those images will be

considered in later searches.

To see the effect of using bit-wise comparison, we have performed some

experiments.The first experiment was conducted on an artificial database, created in

two different ways:

In the first approach, the images in the database are created by taking copies of

seven “base images”. Each one of those base images is then copied many times in

order to get a specific total number of images in the database.

In second approach, the images are created by using randomly chosen images

from internet search engines. Then, the same copying process as in the first group

was applied.



26

4.2.1 Sequential Execution

Sequential execution means only one copy of the program works at a given time.

The software will take one image and compare it with all images in the database

sequentially .In case the next image from the database is the same as the

“comparator”, it deletes this image. Table 4.1 and Table 4.2 give the results of the bit

wise comparison technique for two different database construction approaches.

Table 4.1.Results of Sequential Comparison / Deletion for Base Image.

Figure 4.1: Time versus Number of Images for Sequential Comparison / Deletion for
Base Image.

0

100

200

300

400

500

25

Ti
m

e(
se

c)

Number of images in
the original data base

# of deleted images
after executing the

algorithm

Remaining
images in the

database

Time
sequential

work(seconds)

25 18 7 19

50 43 7 40

100 93 7 83

500 493 7 475

26

4.2.1 Sequential Execution

Sequential execution means only one copy of the program works at a given time.

The software will take one image and compare it with all images in the database

sequentially .In case the next image from the database is the same as the

“comparator”, it deletes this image. Table 4.1 and Table 4.2 give the results of the bit

wise comparison technique for two different database construction approaches.

Table 4.1.Results of Sequential Comparison / Deletion for Base Image.

Figure 4.1: Time versus Number of Images for Sequential Comparison / Deletion for
Base Image.

25 50 100 200

Number of pictures

Number of images in
the original data base

# of deleted images
after executing the

algorithm

Remaining
images in the

database

Time
sequential

work(seconds)

25 18 7 19

50 43 7 40

100 93 7 83

500 493 7 475

26

4.2.1 Sequential Execution

Sequential execution means only one copy of the program works at a given time.

The software will take one image and compare it with all images in the database

sequentially .In case the next image from the database is the same as the

“comparator”, it deletes this image. Table 4.1 and Table 4.2 give the results of the bit

wise comparison technique for two different database construction approaches.

Table 4.1.Results of Sequential Comparison / Deletion for Base Image.

Figure 4.1: Time versus Number of Images for Sequential Comparison / Deletion for
Base Image.

500

Number of images in
the original data base

# of deleted images
after executing the

algorithm

Remaining
images in the

database

Time
sequential

work(seconds)

25 18 7 19

50 43 7 40

100 93 7 83

500 493 7 475



27

Table 4.2.Results of Sequential Comparison / Deletion for Random Image.

Figure 4.2: Time Verses Number of Images Sequential Comparison /Deletion for
Random Image.

From these results, it is clear that bit wise comparison needs a long time to

compare even 500 images. In real life, an image database will contain millions of

images, so the efficiency of bit-wise comparison technique will be very low.

4.2.2 Parallel execution: Client - Server Architecture

After the first experiment, we have started to think about a more efficient way to

do these comparisons. One idea might be using a parallel mechanism. We prepared a

software module that uses the client- server architecture. This client- server system

works on the same database in parallel.

0
100
200
300
400
500
600
700
800
900

25

Ti
m

e(
se

c)

Number of images in the
original data base

# of deleted
images after e
the algorithm

Remaining
images in the

database

Time

sequential
work

(seconds)

25 9 16 22
50 27 23 82

100 71 29 164
500 291 209 850

27

Table 4.2.Results of Sequential Comparison / Deletion for Random Image.

Figure 4.2: Time Verses Number of Images Sequential Comparison /Deletion for
Random Image.

From these results, it is clear that bit wise comparison needs a long time to

compare even 500 images. In real life, an image database will contain millions of

images, so the efficiency of bit-wise comparison technique will be very low.

4.2.2 Parallel execution: Client - Server Architecture

After the first experiment, we have started to think about a more efficient way to

do these comparisons. One idea might be using a parallel mechanism. We prepared a

software module that uses the client- server architecture. This client- server system

works on the same database in parallel.

50 100 500

Number of pictures

Number of images in the
original data base

# of deleted
images after e
the algorithm

Remaining
images in the

database

Time

sequential
work

(seconds)

25 9 16 22
50 27 23 82

100 71 29 164
500 291 209 850

27

Table 4.2.Results of Sequential Comparison / Deletion for Random Image.

Figure 4.2: Time Verses Number of Images Sequential Comparison /Deletion for
Random Image.

From these results, it is clear that bit wise comparison needs a long time to

compare even 500 images. In real life, an image database will contain millions of

images, so the efficiency of bit-wise comparison technique will be very low.

4.2.2 Parallel execution: Client - Server Architecture

After the first experiment, we have started to think about a more efficient way to

do these comparisons. One idea might be using a parallel mechanism. We prepared a

software module that uses the client- server architecture. This client- server system

works on the same database in parallel.

Number of images in the
original data base

# of deleted
images after e
the algorithm

Remaining
images in the

database

Time

sequential
work

(seconds)

25 9 16 22
50 27 23 82

100 71 29 164
500 291 209 850



28

We performed the second experiment to see the efficiency of this client – server

method. The results of our second experiment are given in Table 3 and Table 4. The

first group of images in our second experiment is the same group of images as the

first experiment. The second group of images is the same as the second group of

images in our first experiment.

After preparing the database, we divided it into two parts. One part is checked by

the server, and the other is checked by the client. The results show the improvement

of using a parallel search, which means the server and the client will work together.

Speed- up is obtained by dividing the execution time for the sequential case, by the

execution for the client-server method. Efficiency is obtained by dividing the speed

up by the number of working processors.

Table 4.3.Results of the Client – Server Method for Base Images.

The

number of

images in

the original

data base

number

of

deleted

images

Remaining

images in

database

Time

Speedup

p
p T

T
S 1=

Efficiency

p

S
E p

p=

parallel
Work

(second)

pT

Sequential
work

(second)

1T

25 18 7 10 19 1.9 0.90

50 43 7 23 40 1.73 0.865

100 93 7 50 83 1.66 0.83

500 493 7 300 475 1.58 0.79

1000 993 7 760 1046 1.55 0.795



29

Figure 4.3: Speed-Up versus Number of Images (Second Experiment).

Figure 4.4: Efficiency versus Number of Images for the Second Experiment.



30

Table 4.4.Result of the Client –Server Method for Random Images.

The

number of

images in

the original

data base

number

of

deleted

images

Remaining

images in

database

Time

Speedup

p
p T

T
S 1=

Efficiency

p

S
E p

p=

parallel
Work

(second)

pT

Sequential
work

(second)

1T

25 9 16 15 22 1.5 0.733

50 27 23 55 82 1.49 0.735

100 71 29 113 164 1.46 0.730

500 291 209 579 850 1.4 0.734

Figure 4.5: Speed- Up versus Number of Images for the Second Experiment.

Figure 4.6: Efficiency versus Number of Images for the Second Experiment.



31

In Tables 4.3 and 4.4, we observe a slight improvement in our parallel method.

Nevertheless, it still needs a long time to compare the images in the database.

Considering the inefficiency observed in both methods, we decided to use a hash

technique for comparing images.

4.3 Hash Comparison

A hash algorithm is a cryptography function that takes any information as input

and converts it to a numeric code. The outputs of these algorithms are unique for

each file, and it is like a fingerprint. Using hash algorithms, we can compare files

with less amount of data. Each image has a unique hash value, we can compare this

hash value for images. [12, 13].

Hash algorithm types:

Various hash algorithms were considered for the study. Those are:

a) SHA: The Secure Hash Algorithm (SHA) was developed by NIST and is

specified in the Secure Hash Standard (SHS, FIPS 180). SHA-1 is a

revision to this version and was published in 1994. It is also described in

the ANSI X9.30 (part 2) standard. SHA-1 produces a 160-bit (20 byte)

message digest. [12].

b) MD5: MD5 was developed by Professor Ronald L. Rivest in 1994. Its 128

bit (16 byte) message digest makes it a faster implementation than SHA-1.

[12].

The following table shows some properties for different versions of SHA and

MD5:



32

Table 4.5.Comparison of SHA and MD5.
properties SHA 256 SHA 384 SHA 512 MD5

Message size/bit
< 264 < 2128 < 2128 ∞

Block size/bit
512 1024 1024 512

Number of steps/bit
128 192 256 64

As stated before, the outputs of hash algorithms are unique for each file. It is like

a fingerprint. This advantage gives us a chance to use hash algorithms for comparing

the images to check if they are the same or not. We conducted a number of

experiments to see the effect of various hashing technique. Table4.6 outlines a

comparison of execution times for different hash algorithms.

Table 4.6.Execution Times for Different Hash Algorithms.

Figure 4.7: Execution Time for Different Hash Algorithms.

0
20
40
60
80

100
120
140
160
180

25 50 200 500

Ti
m

e(
se

c)

Number of Images

SHA 512

SHA 384

SHA 256

MD5

Number of images
in the original

data base

Time(seconds)

SHA 256 SHA 384 SHA 512 MD5

25 19 25 26 7

50 27 33 35 15

200 68 74 75 56

500 157 163 170 145



33

Looking at the search time results in Table 4.6, we decided to chose MD5,

because of its advantages: the message size can be infinite and, the hash value is

small in size (16 bytes) compared to other hash algorithms.

4.4 Comparison of Hash Algorithm and Bit-wise techniques

In this section, we outline a comparison between the bit- wise comparison and

hash algorithms methods. Hash algorithms are more efficient than a bit wise

comparison. Using hash algorithms, we need to compare a limited number of bits

only, but in using bit- wise comparison, we compare the number of pixels in width

multiplied by number of pixels in height. Using hash algorithms, we can find only

the images which are 100% similar to each other, but using bit wise comparison, we

can find images with any percentage of similarity.

For instance, we can use the bit wise comparison program to find the images which

are similar to given image with a percentage of similarity 50% or more. Table 4.7.

Comparison of the execution time results of hash algorithms and bit wise

comparison.

Table 4.7.Execution Time of Hash Algorithms and Bit Wise Comparison Technique.

Number of image in the original

data base

Time

hash algorithm
(MD5)

(seconds)

bit wise comparison
(seconds)

25 7 19

50 15 40

200 56 83

500 145 475



34

Comparison of bit wise and hashing approaches shows that the hashing technique

is much faster than the bit wise comparison technique, especially, for large numbers

of images in the database.

Figure 4.8: Hash Algorithms versus Bit Wise Technique. (Execution Time).

4.5 Parallel Work with Hash Algorithm

We performed another experiment in using the hash algorithm technique. In this

experiment, we used more than one client. Therefore, we can divide the work on

different clients, and as a result we will save time. The execution times for 4 and 8

clients are given in Table 4.8.

Table 4.8.Execution Time for 4 and 8 Clients.

0
50

100
150
200
250
300
350
400
450
500

25 50 200 500

Ti
m

e(
se

c)

Number of Images

Hash algorithms

Bit Wise Comparison

Number of
images in the
original data

base

Execution Time-
Using four clients

(seconds)

Execution Time-
Using eight clients

(seconds)

25 7 7

50 17 15

100 22 18

200 26 20

500 33 23



35

Figure 4.9: Execution Time Versus Number of Images for 4, 8 clients.

We then extend this experiment for a database with up to 3000 images, and we

used 8, 12 and 16 clients .Table 4.9 gives the results of this experiment.

Table 4.9.Execution Time Versus Number of Images for 8, 12, 16 Clients.

Figure 4.10: Execution Time Versus. Number of Images for 8, 12, 16 Clients.

0

5

10

15

20

25

30

35

25 50 100 200 500

T
im

e(
S

ec
on

ds
)

Number of Images

(Using four clients) Using eight client

0

200

400

600

800

1000

1200

500 1000 1500 2000 2500 3000

T
im

e

Number of Images

Time
Using eight  client
(second)

Time
Using twelve  client
(second)

Time
Using sixteen client
(second)

Number of image in the
data base

Time
Using eight client

(second)

Time
Using twelve client

(second)

Time
Using sixteen client

(second)

500 23 13 10

1000 110 90 135

1500 210 180 210

2000 400 360 300

2500 660 530 480

3000 1120 1020 840



36

4.6 Saving the Hash Values in the Database

To improve the efficiency of the comparison software, during the creation of the

images database, we compute the hash value for each image, and save it in the

database. The following experiment outlines the time required using this technique.

This is like an overhead at the beginning, but it saves time during the comparison

requests that come later.

Table 4.10.Time for Saving the Hash Values in Database.

4.7 Mechanism of Dividing the Work between Parallel Copies

The server administrator decides on the number of copies. Then, the server

divides the images between the working copies evenly. Then, each client will start

comparing each image of his part with all other images in the database. (Each image

will exclude itself). The client marks only one copy of repeating files, by setting the

flag field to zero for repeating images.

Number of Image in The Database
Time spent to

save the hash values in database
(second)

500 25

1000 100

1500 470

2000 600

2500 723

3000 1003



37

Figure 4.11: Processing of Images.



38

If we have (n) images in the database, using the sequential technique, the software

should compare each image with (n-1) other images.

The total working time of software can be computed as follows:

T (sequential) = (image (1)*n-1+image (2)*n-1+image (3)*n-1+---+---

+image (n)*n-1) (1)

T (sequential) = n * (n-1) (2)

Where n=total number of images. And i= index for each image.

(Image (1)*n-1= means the first image is compared with all other images).

On the other hand, if we use the parallel technique, the total time software works

can be computed as follows:

Time for first copy = (image (1)*n-1+ image (2)*n-1+ image (3)*n-1+-----+----+--

+ image (n/c)*n-1) (3)

Time for second copy = (image (n/c+1)*n-1+ image (n/c+2)*n-1+ image

(n/c+1)*n-1+---+---+ image (n/c + n/c)*n-1)        (4)

Therefore, the total time of parallel execution time is:

T (parallel)= n*n/c (5)

Where n=total number of images. c=total number of working copies. And i=

index for each image.

Image (1)*n-1= means image (1) is compared with the other images.

It can be shown that the parallel technique is much more efficient.

Let us assume that number of images in our data base is 500.

a) With the Sequential technique:

T (sequential) == n * (n-1)=500*(500-1)=249500 Steps (comparison).



39

In our experiment, after running the software using 500 images in the database. It
takes 145 second to finish the execution.

b) With the Parallel technique: (assuming 16 copies)

n=500. c=16.

T (parallel) =n*n/c=500*500/16=15625 Steps (comparison).

After running the software using 500 images. It takes 10 seconds to finish the

execution.

If we divide the sequential time by the number of working copies, the theoretical

expected parallel execution time is = 145/16=9.06. In the experiment, it takes 10

seconds to finish using 16 copies.

The reasons of this extra time are:

1) The server needs time to count the number of images the database.

2) Communication time between the server and the client’s .We need time to

divide the images between the clients. This is added to the time needed for running

the copies.

To make the proposed method more efficient, we allow many copies of our

software to work in parallel. The number of images in the database is divided evenly

between the parallel copies. The database administrator decides on how many copies

should be run depending on the total number of images in the database (The Hash

Values is saved in the Database). The results of this experiment are listed below, in

Table 4.11.



40

Table 4.11.Execution Time Versus. Number of Images for 4, 8, 12, 16 Clients, Using
Multiple Copies of the Program.

Figure 4.12: Execution Time Versus. Number of Images for 4, 8, 12, 16 Clients,
Using Copies of the Program.

Figure 4.13 shows how search time is improved for a Windows 7 environment on

a server PC which has core 2 duo CPU 1.83 GHz and 3.00 GB RAM. The

improvement of using multiple copies is more obvious when the database has a large

number of images.

0

50

100

150

200

250

300

500 1000 1500 2000 2500 3000

Ti
m

e(
se

c)

Number of Images

using sixteen
copies

using twelve
copies

using eight copies

using four copies

Number of Image in
The Database

Using
Four Copies

(sec)
Using Eight Copies

(sec)

Using Twelve Copies
(sec)

Using Sixteen
Copies
(sec)

500 5 4 3 1

1000 26 16 13 10

1500 120 90 57 25

2000 150 109 66 33

2500 180 140 100 60

3000 270 220 150 90



41

Figure 4.13: Execution Time Versus. Number of Working Copies for 2500 and 3000
Images.

4.8 Comparing dynamically way versus. Saving the Hash Values

earlier in the Database

The aim of the next experiment was to see how saving hash values in the database

earlier effects the time spent. Table 4.12 and Figure.4.14. Outlines the comparison

between dynamic way (computing hash values when required) versus. Saving the

hash values earlier in database.

Table 4.12.Dynamic Way Versus. Saving the Hash Values in Database.

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

4 8 12 16

Ti
m

e(
se

c)

Number of working copies

2500 Iimages 3000 Iimages

Number of image in
the data base

Execution Time
Using sixteen client getting the

hash values in dynamic way
(seconds)

Execution Time
Using sixteen client saving the

hash values in database
(seconds)

500 10 1

1000 135 10

1500 210 25

2000 300 33

2500 480 60

3000 840 90



42

Figure 4.14: Dynamic Way Versus. Saving the Hash Values in Database.

Figure 4.14 Show that saving the hash values in database, lead to decrease the

used time for comparing the images. It’s clear that saving the hash values in

database more efficient than the dynamic way .The improvement is more obvious

when the database has a large number of images.

0

100

200

300

400

500

600

700

800

900

500 1000 1500 2000 2500 3000

Ti
m

e(
se

c)

Number of Images

Time Using
sixteen client
saving the hash
values in database
(second)
Time Using
sixteen client
getting the hash
values in dynamic
way (second)



43

Chapter 5

5 STUDIES ON FINDING SIMILAR IMAGES

5.1Introduction

The software developed discussed in the previous chapter is based on comparing

images for exact match. Another approach is query by example, which attempt to

find images similar to the one given by the user. To observe the effects of this

approach, we have developed a second module which employs a query by example

search technique.

In this module, a different way to get images through the Internet is proposed. The

current popular way to find images is by writing a keyword in the query text box.

The search engine will then try to get this image for the user. However, sometimes it

is hard to explain by typing just keywords what we actually want. We may have an

image and we may want to get images similar to that one. Using the query by

example module, one can upload a image and find similar images on the Internet.

5.2Query by Example Mechanism

When a user wants to find images similar to what he/she has, he/she will upload

the sample image and conduct a search (Figure 2). The software will analyze this

image using a specific algorithm, and then check all images in the database for

similarity. After finding similar images in the database, the program displays images

found and the related information.



44

Figure 5.1: Query by Example Form.

As we know there are millions of images on the Internet, so we give the user more

options to specify what he wants exactly. For this purpose, the user interface has an

options entity form (Figure 5.1).



45

Figure 5.2: Query by Example Module Flow Chart.



46

Figure 5.3: Query by Example with Options Form.

We give the user a possibility to select the size of the image if he already knows

what exactly he wants. Then, the user selects the file type extension. For instance, the

user selects *.ico if he wants to get icon images. Then he selects the color

combination, if he wishes. All the previous options help us to get the correct images

and minimize the number of searches.

The module we developed was tested using an artificial database, created by

considering randomly chosen images from Internet search engines. Inside the



47

database we have divided the images into a group of tables depending on file

extensions. For example, one table contains all images with execution (*.jpg),

another one, contains all images with extensions (*.gif).

5.3 Methodology Developed For Implementing the Query by

Example Techniques

Query by example software works using two different techniques to compare

images. The two algorithms are:

1. Bit- wise comparison.

2. Exhaustive Template Matching.

The first technique is already discussed in Chapter Three, but we shall summarize

it again, below in section 5.3.1.

5.3.1 Bit- Wise Comparison

Bit wise comparison compares all pixels one by one. Although it is an inefficient

technique for comparison, its advantage is that, bit wise comparison can find certain

given the percent of similarity between the compared images. After implementing

this technique, we have conducted some experiments to find the efficiency of our

module. Table5.1 shows us the execution time using databases with 25, 100, 200 and

500 images.



48

Table 5.1.Bit Wise Comparison for Similarity Using 25,100,200,500 Images.

percent
of

similarity

Number of images
in database(25)

Number of images
in database(100)

Number of images
in database(200)

Number of images
in database(500)

Time
(seconds)

Number
of

similar
images

Time
(seconds)

Number
of

similar
images

Time
(seconds)

Number
of

similar
images

Time
(seconds)

Number
of

similar
images

100% 1 1 4 1 8 1 15 5

75% 1 1 4 4 8 9 18 15

50% 1 7 5 33 8 39 19 56

25% 1 7 5 35 8 55 22 63

10% 1 9 6 55 8 78 24 111

1% 1 25 6 100 9 200 27 497

Figure 5.4: Bit Wise Comparison for Similarity Using 25,100,200,500 Images.

5.3.2 Exhaustive Template Matching

“Exhaustive template matching is a technique in digital image processing for

finding small parts of an image which match a template image”[21]. The images

compared must have the same size for using the exhaustive template matching

0

5

10

15

20

25

30

100% 75% 50% 25% 10% 1%

Ti
m

e(
se

c)

Percent of similarity

Number of
images in
database(25)

Number of
images in
database(100)

Number of
images in
database(200)

Number of
images in
database(500)



49

technique. Exhaustive template matching is similar to bit -wise comparison but it is

more powerful. Using this technique, we can also find any percent of similarity

between two images compared. Exhaustive template matching was developed as a

part of AForge.NET. “AForge.NET is a framework designed for developers and

researchers in the fields of Computer Vision and Artificial Intelligence - image

processing, neural networks, genetic algorithms, machine learning, robotics, etc”

[22]. We implemented exhaustive template matching for finding similarities between

images. The following table and diagram outlines the performance of similarity

comparison using exhaustive template matching.

Table 5.2.Exhaustive Template Matching Using 25,100,200,500 Images.

percent
of

similarity

Number of images
in database(25)

Number of images
in database(100)

Number of images
in database(200)

Number of images
in database(500)

Time
(seconds)

Number
of

founded
images

Time
(seconds)

Number
of

founded
images

Time
(seconds)

Number
of

founded
images

Time
(seconds)

Number
of

founded
images

100% 1 1 6 1 8 1 10 5

75% 1 1 7 8 8 15 12 15

50% 1 7 7 27 8 45 13 65

25% 1 7 7 31 9 88 13 101

10% 1 9 8 51 9 110 15 201

1% 1 25 8 100 9 200 15 350



50

Figure 5.5: Exhaustive Template Matching Using 25,100,200,500 Images.

5.3.3 Comparison between Exhaustive Template Matching and

Bit- Wise Comparison Techniques

In order to see which method is more efficient, we have compared the

performance of exhaustive template matching and bit- wise comparison methods.

The results are shown in table 5.3 and Figure5.6, below.

Table 5.3.Comparing Between Exhaustive Template Matching and Bit Wise
Comparison.

Number
of image

in the
data base

Time(seconds)

Exhaustive template
matching

Bit wise comparison

25 1 1

100 5 4

200 7 8

500 10 15

0

5

10

15

20

25

30

100% 75% 50% 25% 10% 1%

Ti
m

e(
se

c)

Percent of similarity

Number of
images in
database(25)

Number of
images in
database(100)

Number of
images in
database(200)

Number of
images in
database(500)



51

Figure 5.6: Comparing Exhaustive Template Matching and Bit Wise Comparison for
finding similarity.

0

2

4

6

8

10

12

14

16

25 100 200 500

Ti
m

e(
se

c)

Number of Images

Exhaustive Template Matching

Bit wise comparison



52

Chapter 6

CONCLUSION

The software developed in this work improves the efficiency of image searching

by eliminating repeated occurrences of images. The output of any query will not

contain repeating images, so the user does not have to go through a long list of

images with repeating occurrences of the same image many times.

This software can work with any search engine. It can also work periodically on

image databases. The software can create the images database. After connecting the

software to the database, the software compares the hash values for the compared

images, to finds repetitions, and marks only one copy of repeating files

It allows multiple copies to be run in parallel. After specify how copy of the client

working. The software will divide the number of images between the working

copies. Consequently, it can improve search times for images.

To make the software more efficient the administrator can make Client Interface

works automatically after the administrator specify how copy of the client working.

Client interface gets the required information from the database. Then, it compares

the hash value with the hash values of images in the database. In this case there is no

user will use the client form.

We have built two versions of our software. The first version uses parallel

computers. In the first version, the software administrator will be saved and run on

the server and each copy of the client software will be saved and run on different

computers.



53

The second version uses parallel processes. In the second version the software

administrator will be saved on the server and all running copy of the client software

will be saved on the server.

The advantage of using the first version, the work will be divided between the

working computers. In this case it is not necessary to use computers with high

specifications. The disadvantage of using the first version, we need to install

“VB.NET” and “SQLSERVER” on each working computer. Furthermore, the

communication between the computers will lead to spend extra time, which will

decrease the speed-up of the software.

The advantage of using the second version, we are using one computer as server

and a number of clients at the same time. We need to install “VB.NET” and

“SQLSERVER” on one computer only. Furthermore, the communication time

between the working copies of the software will be less than the computation time in

comparison to the first version. Hence, the peed-up is increased. The disadvantage of

using the second version, we need a computer with high properties.

The software can process a very large number of images in the database. For

example, the expected elapsed time to process a million of images in our database is

500 minute (8.2 hours) by using a server PC with core 2 duo CPU of 1.83 GHz

frequency and 3.00 GB of RAM. In the case of using a high quality server, the

elapsed time will be reduced

It is clear that, the speed-up will be increased if the number of working copy is

increased. But, if we run a number of working copies greater than the required copies

to compare the images in our database; the speed–up will be decreased, due to

exchanging information between the server and the working copies.



54

We have planned to make the software multipurpose. The second module

implements a query by example technique. In this module, a different way to get

images through the internet is proposed .Query by example module works using

three different techniques to compare the images.

Those three algorithms are: Bit wise comparison, hash comparison and exhaustive

template matching. It is also possible to find images similar to the one user upload.

Query by example software improves search efficiency.

Currently, the program works for the comparison of image files. We are planning

to improve to use it for the audio and video files. In this case, the software will work

with a multimedia database. So, the output of any multimedia query will not contain

repeating files.

As we mentioned before, the second module implements a query by example

technique. We are planning to improve query by example, by giving the user more

option. Furthermore, we will try to use parallel way during query by example

process.

Lately, content retrieval and object detection improved. We believe that using

content retrieval and object detection in creating multimedia database increase the

performance of search engines and makes getting wanted multimedia files easier.

Document clustering used to find similar web documents, and organize the web

document. In our opinion, document clustering techniques have a good chance to

improve the current mechanism.



55

REFERENCES

[1] Bernard J. Jansen, “Searching for digital images on the web”, Volume 3, Issue 4,

Page(s):   249 - 254.

[2] Vermilyer, R , “ Intelligent User Interface Agents in Content-Based Image

Retrieval ”,SoutheastCon, 2006. Proceedings of the IEEE, Publication Date:

March 31 2005-April 2 2005 , Page(s):   136-142 .

[3] Watai, Y. Yamasaki, T. Aizawa, K , “View-Based Web Page Retrieval using

Interactive Sketch Query”, Image Processing, 2007. ICIP 2007. IEEE

International Conference on , Volume 6, Sept. 16 2007-Oct. 19 2007 Page(s):

357 - 360.

[4] Edward Y. Chang, “Web-Scale Multimedia Data Management: Challenges and

Remedies ”, Image Analysis and Processing Workshops, 2007.  ICIAPW 2007.

14th International Conference on 10-13 Sept. 2007 Digital Object Identifier

10.1109/ICIAPW.2007.47, Page(s):3 – 8.

[5] Mauricio Marin, Veronica Gil-Costa, and Carolina Bonacic, “ A Search Engine

Index for Multimedia Content”, in 14th European Conference on Parallel and

Distributed Computing, 2008, Page(s): 866-875.

[6] Amanda Spink, Dian Tjondronegoro, “Web search engine multimedia

functionality”, Pergamon Press, Inc. Tarrytown, NY, USA, 2008, ISSN:0306-

4573,2008.



56

[7] Charalampos Doulaverakis, Evangelia Nidelkou, Anastasios Gounaris, Yiannis

Kompatsiaris, “A Hybrid Ontology and Content-Based Search Engine For

Multimedia Retrieval ”,CiteSeerX -Scientific Literature Digital Library and

Search Engine (United States), 2008.

[8] Hai Jin, Ruhan He,Zhensong Liao, Wenbing Tao, Qin Zhang , “A Flexible and

Extensible Framework for Web Image Retrieval System”,Telecommunications,

2006. AICT-ICIW '06. International Conference on Internet and Web

Applications and Services/Advanced International Conference on,19-25 Feb.

2006 Page(s):193 – 193.

[9] I. Bartolini , “A Multi-faceted Browsing Interface for Digital Photo Collections

Export ”, Content-Based Multimedia Indexing, 2009. CBMI '09. Seventh

International Workshop on In Content-Based Multimedia Indexing, 2009. CBMI

'09. Seventh International Workshop on (2009), Page(s): 237-242.

[10] Ruhan He, Kaiming Liu, Naixue Xiong, Yong Zhu , “Garment Image Retrieval

on the Web with Ubiquitous Camera-Phone”, Proceedings of the 2008 IEEE

Asia-Pacific Services Computing Conference, Year of Publication: 2008 ,

Page(s):  1584-1589 .

[11] Doumenis, G. Papastefanos, S. Mateevitsi, V. Andritsopoulos, F.

Achilleopoulos, N. Mikhalev, A.V, “Video index and search services based on

content identification features” ,Broadband Multimedia Systems and

Broadcasting, 2008 IEEE International Symposium on March 31 2008-April 2

2008, Page(s):1 – 4 .



57

[12] Abbas Cheddad, Joan Condell, Kevin Curran ,Paul McKevitt , “ A hash-based

image encryption algorithm”, Optics Communications, Volume 283, Issue 6, 15

March 2010, Page(s): 879-893.

[13] William Stallings, “Cryptography and Network Security: Principles and

Practice”, 3/E, Publisher: Prentice Hall Copyright: 2003, 681 pp.

[14] Yong Zhu, Naixue Xiong ,  Jong Hyuk Park  and Ruhan He , “ A Web Image

Retrieval Re-ranking Scheme with Cross-Modal Association Rules”,

International Symposium on Ubiquitous Multimedia Computing, Issue 13,15 Oct.

2008, Page(s): 83 - 86.

[15] Aidong Zhang and Lei Zhu, “ Metadata Generation and Retrieval of Geographic

Imagery”,National Conference for Digital Government Research,2001,

Page(s):21 23.

[16] Keon Stevenson and Clement Leung, “ Comparative Evaluation of Web Image

Search Engines for Multimedia Applications”, Multimedia and Expo, 2005.

ICME 2005. IEEE International Conference , Issue 6-8 July 2005 , Page(s): 4.

[17] Fuat Uluç, Erkan Emirzade, Yıltan Bitirim , “The Impact of Number of Query

Words on Image Search Engines”, Second International Conference on Internet

and Web Applications and Services (ICIW'07), Issue 13,19 May 2007, Page(s):

50 – 50.



58

[18] Lin-Chih Chen, “Using a new relational concept to improve the clustering

performance of search engines”, Information Processing and Management,

(2010).

[19] Y.Y. Yao, “ Measuring Retrieval Effectiveness Based on User Preference of

Documents”, American Society for Information Science , Volume 46, Issue 2,

March 1995 , Page(s): 81–160.

[20] YOSSI RUBNER, CARLO TOMASI AND LEONIDAS J. GUIBAS, “ The

Earth Mover’s Distance as a Metric for Image Retrieval”, International Journal of

Computer Vision, Issue 2, Nov. 2000, Volume 40, Page(s): 2000.

[21] Template matching, “http://www.answers.com/topic/template-matching”, last

visited (15/11/2010).

[22] AForge.NET Framework, “http://www.aforgenet.com/framework/features”, last

visited (22/11/2010).

[23] Word Tracker, “http://www.wordtracker.com”, last visited (15/12/2010).

http://portal.acm.org/citation.cfm?id=J821&picked=prox&cfid=4238919&cftoken=32269769


59

APPENDICES

Appendix A: The source code of the module.

'connect to the database
Private Sub connectdb_Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
connectdb.Click

Try
txtConnectionString.Text = "Data

Source=EMU\SQLEXPRESS;Initial
Catalog=ImagesStore;Integrated Security=True"

Dim CN As SqlConnection = New
SqlConnection(txtConnectionString.Text)

'Initialize SQL adapter.
Dim ADAP As SqlDataAdapter = New

SqlDataAdapter("Select * from ImagesStore ORDER BY
imageid", CN)

'Initialize Dataset.
Dim DS As DataSet = New DataSet()

'Fill dataset with ImagesStore table.
ADAP.Fill(DS, "ImagesStore")

'Fill Grid with dataset.
' dataGridView1.DataSource =

DS.Tables("ImagesStore")
Catch ex As Exception

MessageBox.Show(ex.ToString())
End Try

End Sub



60

‘spicefy the images location

Private Sub cmdBrowse_Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
cmdBrowse.Click

FolderBrowserDialog1.ShowDialog()
txtImagePath.Text

=FolderBrowserDialog1.SelectedPath.ToString()
End Sub

Private Sub savepicters_Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
savepicters.Click

Dim Files As String() =
Directory.GetFiles(FolderBrowserDialog1.SelectedPath.ToSt
ring())

Dim Dirs As String() =
Directory.GetDirectories(FolderBrowserDialog1.SelectedPat
h.ToString())

Dim Filename As String

For Each Filename In Files

If Filename.Contains(".jpg") Or
Filename.Contains(".gif") Or Filename.Contains(".JPG") Or
Filename.Contains(".GIF") Or Filename.Contains(".bmp")
Then

'MessageBox.Show(Filename)
Try

imageData = ReadAllBytes(Filename)
picturehash()
'Initialize SQL Server Connection
Dim CN As SqlConnection = New

SqlConnection(txtConnectionString.Text)
'Set insert query
Dim qry As String = "insert into

ImagesStore (OriginalPath,picturehash)
values(@OriginalPath,@picturehash)"

'Initialize SqlCommand object for
insert.

Dim SqlCom As SqlCommand = New
SqlCommand(qry, CN)

'We are passing Original Image Path
and Image byte data as sql parameters.

SqlCom.Parameters.Add(New
SqlParameter("@OriginalPath", CType(Filename, Object)))



61

'SqlCom.Parameters.Add(New
SqlParameter("@ImageData", CType(imageData, Object)))

SqlCom.Parameters.Add(New
SqlParameter("@picturehash", all))

'Open connection and execute insert
query.
If CN.State = ConnectionState.Closed Then

CN.Open()
End If

SqlCom.ExecuteNonQuery()
If CN.State = ConnectionState.Open

Then
CN.Close()

End If
'Close form and return to list or

images.
' Me.Close()

Catch ex As Exception
MessageBox.Show(ex.ToString())

End Try
End If

Next
MessageBox.Show("pictures is added")

End Sub

Private Sub updateserverinformation()
Try 'serverinfo

Dim CN As SqlConnection = New
SqlConnection(txtConnectionString.Text)

Dim numofcomputer As Integer = InputBox("how many
client will work")

'Set insert query
Dim qry As String = "Update  serverinfo SET numofpic=" &
i & ",numofcomputer=" & numofcomputer & " ,numforeach=" &
i / numofcomputer & " ,startnum=" & fnum & ",endnum=" &
lnum

'Initialize SqlCommand object for insert.
Dim SqlCom As SqlCommand = New

SqlCommand(qry, CN)
SqlCom.Parameters.Add(New

SqlParameter("@endnum", lnum))

'Open connection and execute insert query.
If CN.State = ConnectionState.Closed Then



62

CN.Open()
End If

SqlCom.ExecuteNonQuery()
If CN.State = ConnectionState.Open Then

CN.Close()
End If
'Close form and return to list or images.
' Me.Close()

Catch ex As Exception
MessageBox.Show(ex.ToString())

End Try

'compare using hash values

Private Sub Button2_Click_1(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
md5.Click

Dim index1, index2 As Integer
Dim path1, path2 As String
Dim stime As Date
Dim etime As Date
stime = Now.TimeOfDay.ToString
TextBox3.Text = "start time=" + stime
Dim bmp1, bmp2 As Bitmap
Dim pic As Integer
'database
Dim CN As SqlConnection
Dim qry As String
Dim SqlCom As SqlCommand
Dim picnum As Integer
Dim dr As SqlDataReader
Dim cn1 As SqlConnection
Dim qry1 As String
Dim SqlCom1 As SqlCommand
Dim dr1 As SqlDataReader

'====================
Dim converter As New ImageConverter()
Dim imgBytes1 As Byte() = New Byte(0) {}
Dim imgBytes2 As Byte()

Try
CN = New

SqlConnection(txtConnectionString.Text)



63

qry = "Select * from ImagesStore"

'Initialize SqlCommand object for insert.
SqlCom = New SqlCommand(qry, CN)

'Initialize SQL adapter.
CN.Open()
dr = SqlCom.ExecuteReader
If dr.HasRows = True Then

While dr.Read

bmp1 =
System.Drawing.Image.FromFile(dr("OriginalPath"))

picnum = dr("ImageId")
index1 =

dr("OriginalPath").ToString.IndexOf(".")
path1 =

dr("OriginalPath").ToString.Substring(index1, 4).ToUpper

imgBytes1 =
DirectCast(converter.ConvertTo(bmp1,
imgBytes1.[GetType]()), Byte())

Try
cn1 = New

SqlConnection(txtConnectionString.Text)
qry1 = "Select * from ImagesStore

where ImageId <>" & picnum

SqlCom1 = New SqlCommand(qry1,
cn1)

'Initialize SQL adapter.

If cn1.State =
ConnectionState.Closed Then

cn1.Open()
dr1 = SqlCom1.ExecuteReader
If dr1.HasRows = True Then

If cn1.State =
ConnectionState.Closed Then

cn1.Open()
End If
While dr1.Read

bmp2 = System.Drawing.Image.FromFile(dr1("OriginalPath"))
pic = dr1("ImageId")



64

index2 = dr1("OriginalPath").ToString.IndexOf(".")
path2 = dr1("OriginalPath").ToString.Substring(index2,

4).ToUpper

If bmp1.Size <> bmp2.Size Or path1 <> path2 Then
TextBox1.Text =

TextBox1.Text + "     " +
"CompareResult.ciSizeMismatch".ToString

Else

imgBytes2 = New
Byte(0) {}

'convert images
to byte array

imgBytes2 =
DirectCast(converter.ConvertTo(bmp2,
imgBytes2.[GetType]()), Byte())

Dim MD5csp As New
MD5CryptoServiceProvider

Dim imgHash1() As
Byte = MD5csp.ComputeHash(imgBytes1)

Dim imgHash2() As
Byte = MD5csp.ComputeHash(imgBytes2)

'now let's
compare the hashes

Dim count As
Integer = 0

Dim j As Integer
= 0

While count <
imgHash1.Length

If
(imgHash1(count) = imgHash2(count)) Then

j = j + 1
Else

Exit
While

End If
count += 1

End While



65

If j =
imgHash1.Length Then
TextBox2.Text = TextBox2.Text + "     " + "ok"

Try

CN.Close()

cn1.Close()

deleteImagesFromDatabase(pic)

cn1.Open()
dr1 =

SqlCom1.ExecuteReader

Catch ex As
Exception

MsgBox(ex.Message)
End Try

Else

'MessageBox.Show("no")

End If
End If

End While
End If
If cn1.State =

ConnectionState.Open Then
cn1.Close()

End If
If CN.State =

ConnectionState.Closed Then
CN.Open()
dr = SqlCom.ExecuteReader

End If

End If

Catch ex As Exception



66

MsgBox(ex.Message)

End Try

End While
End If
If CN.State = ConnectionState.Open Then

CN.Close()
End If

Catch ex As Exception
MsgBox(ex.Message)

End Try

etime = Now.TimeOfDay.ToString
TextBox3.Text = TextBox3.Text + "end time=" +

etime

MsgBox("ok finish")

GetImagesFromDatabase()
End Sub

'compare using bit way

Private Sub compare_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles compare.Click

Dim stime As Date
stime = Now.TimeOfDay.ToString
TextBox3.Text = "start time=" + stime
Dim bm1, bm2 As Bitmap
Dim wid, hgt, wid1, hgt1 As Integer
Dim eq_color As Color = Color.White
Dim ne_color As Color = Color.Red
Dim are_identical As Boolean = True
Dim match As Integer = 0
'********************************
' Dim textmess As String = cpicturessever.Text
'**********************
Dim pic As Integer
Try

Dim CN As SqlConnection = New
SqlConnection(txtConnectionString.Text)

Dim qry As String
'If message = Windows.Forms.DialogResult.Yes

Then



67

'    qry = "Select * from ImagesStore where
ImageId <=" & start

'Else
qry = "Select * from ImagesStore"
'Form1.Close()

'End If

'Initialize SqlCommand object for insert.
Dim SqlCom As SqlCommand = New

SqlCommand(qry, CN)
Dim picnum As Integer

'Initialize SQL adapter.
Dim dr As SqlDataReader
CN.Open()
dr = SqlCom.ExecuteReader
If dr.HasRows = True Then

While dr.Read
bm1 =

System.Drawing.Image.FromFile(dr("OriginalPath"))
picnum = dr("ImageId")
wid = bm1.Width
hgt = bm1.Height

Try

Dim cn1 As SqlConnection = New
SqlConnection(txtConnectionString.Text)

Dim qry1 As String = "Select *
from ImagesStore where ImageId <>" & picnum

'Initialize SqlCommand object for
insert.

Dim SqlCom1 As SqlCommand = New
SqlCommand(qry1, cn1)

'Initialize SQL adapter.
Dim dr1 As SqlDataReader
If cn1.State =

ConnectionState.Closed Then
cn1.Open()
dr1 = SqlCom1.ExecuteReader
If dr1.HasRows = True Then

If cn1.State =
ConnectionState.Closed Then

cn1.Open()
End If
While dr1.Read

bm2 =
System.Drawing.Image.FromFile(dr1("OriginalPath"))



68

pic = dr1("ImageId")
'

MessageBox.Show(pic)
Dim bm3 As New

Bitmap(bm2.Width, bm2.Width)

If bm1.Size =
bm2.Size Then

For x As Integer
= 0 To wid1 - 1

For y As
Integer = 0 To hgt1 - 1

If
bm1.GetPixel(x, y).Equals(bm2.GetPixel(x, y)) Then

match
+= 1

bm3.SetPixel(x, y, eq_color)

Else

bm3.SetPixel(x, y, ne_color)

are_identical = False
End If

Next y
Next x

If are_identical
Then

'
MessageBox.Show("The images are identical")

Try

CN.Close()

cn1.Close()

deleteImagesFromDatabase(pic)

cn1.Open()
dr1 =

SqlCom1.ExecuteReader

Catch ex As
Exception



69

MsgBox(ex.Message)
End Try

Else
'

MessageBox.Show("The images are different")
End If

Else

'MessageBox.Show("The images are different")
End If
'

MessageBox.Show(match)

Me.Cursor =
Cursors.Default

bm2.Dispose()
If cn1.State =

ConnectionState.Closed Then
cn1.Open()

End If

End While
End If
If cn1.State =

ConnectionState.Open Then
cn1.Close()

End If
End If
bm1.Dispose()
If CN.State =

ConnectionState.Closed Then
CN.Open()
dr = SqlCom.ExecuteReader

End If
Catch ex As Exception

' MsgBox(ex.Message)

End Try
End While

End If
If CN.State = ConnectionState.Open Then

CN.Close()
End If

Catch ex As Exception
MsgBox(ex.Message)



70

End Try
Dim etime As Date
etime = Now.TimeOfDay.ToString
TextBox3.Text = TextBox3.Text + "end time=" +

etime

MsgBox("ok")

GetImagesFromDatabase()
End Sub

'compare using save the hash values in the database

Private Sub Button5_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button5.Click

Dim index1, index2 As Integer
Dim path1, path2 As String
Dim stime As Date
Dim etime As Date
stime = Now.TimeOfDay.ToString
TextBox3.Text = "start time=" + stime
Dim bmp1, bmp2 As Bitmap
Dim pic As Integer
'database
Dim CN As SqlConnection
Dim qry As String
Dim SqlCom As SqlCommand
Dim picnum As Integer
Dim dr As SqlDataReader
Dim cn1 As SqlConnection
Dim qry1 As String
Dim SqlCom1 As SqlCommand
Dim dr1 As SqlDataReader

Try
CN = New

SqlConnection(txtConnectionString.Text)

qry = "Select * from ImagesStore"

'Initialize SqlCommand object for insert.
SqlCom = New SqlCommand(qry, CN)

'Initialize SQL adapter.
CN.Open()
dr = SqlCom.ExecuteReader
If dr.HasRows = True Then



71

Dim hash As String
While dr.Read

'bmp1 =
Image.FromFile(dr("OriginalPath"))

picnum = dr("ImageId")
hash = dr("picturehash")

Try
cn1 = New

SqlConnection(txtConnectionString.Text)
qry1 = "Select * from ImagesStore

where ImageId <>" & picnum

SqlCom1 = New SqlCommand(qry1,
cn1)

'Initialize SQL adapter.

If cn1.State =
ConnectionState.Closed Then

cn1.Open()
dr1 = SqlCom1.ExecuteReader
If dr1.HasRows = True Then

If cn1.State =
ConnectionState.Closed Then

cn1.Open()
End If
Dim hash1 As String
While dr1.Read

hash1 =
dr1("picturehash")

pic = dr1("ImageId")
If hash = hash1 Then

Try

CN.Close()
cn1.Close()

deleteImagesFromDatabase(pic)
cn1.Open()
'If CN.State

= ConnectionState.Closed Then
'

CN.Open()
'    'dr =

SqlCom.ExecuteReader
'End If
dr1 =

SqlCom1.ExecuteReader



72

Catch ex As
Exception

MsgBox(ex.Message)
End Try

End If

End While
End If
If cn1.State =

ConnectionState.Open Then
cn1.Close()

End If
If CN.State =

ConnectionState.Closed Then
CN.Open()
dr = SqlCom.ExecuteReader

End If

End If
Catch ex As Exception

MsgBox(ex.Message)

End Try

End While
End If
If CN.State = ConnectionState.Open Then

CN.Close()
End If

Catch ex As Exception
MsgBox(ex.Message)

End Try
etime = Now.TimeOfDay.ToString
TextBox3.Text = TextBox3.Text + "end time=" +

etime
MsgBox("ok finish")
GetImagesFromDatabase()

End Sub



73

'compare using exhaustive template matching

Private Sub Button6_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button6.Click

Dim index1, index2 As Integer
Dim path1, path2 As String
Dim stime As Date
Dim etime As Date
stime = Now.TimeOfDay.ToString
TextBox3.Text = "start time=" + stime
Dim bmp1, bmp2 As Bitmap
Dim pic As Integer
'database
Dim CN As SqlConnection
Dim qry As String
Dim SqlCom As SqlCommand
Dim picnum As Integer
Dim dr As SqlDataReader
Dim cn1 As SqlConnection
Dim qry1 As String
Dim SqlCom1 As SqlCommand
Dim dr1 As SqlDataReader

Try
CN = New

SqlConnection(txtConnectionString.Text)

qry = "Select * from ImagesStore"

'Initialize SqlCommand object for insert.
SqlCom = New SqlCommand(qry, CN)

'Initialize SQL adapter.
CN.Open()
dr = SqlCom.ExecuteReader
If dr.HasRows = True Then

While dr.Read

bmp1 =
System.Drawing.Image.FromFile(dr("OriginalPath"))

picnum = dr("ImageId")
index1 =

dr("OriginalPath").ToString.IndexOf(".")
path1 =

dr("OriginalPath").ToString.Substring(index1, 4).ToUpper

Try
cn1 = New

SqlConnection(txtConnectionString.Text)



74

qry1 = "Select * from ImagesStore
where ImageId <>" & picnum

SqlCom1 = New SqlCommand(qry1,
cn1)

'Initialize SQL adapter.

If cn1.State =
ConnectionState.Closed Then

cn1.Open()
dr1 = SqlCom1.ExecuteReader
If dr1.HasRows = True Then

If cn1.State =
ConnectionState.Closed Then

cn1.Open()
End If
While dr1.Read

bmp2 =
System.Drawing.Image.FromFile(dr1("OriginalPath"))

pic = dr1("ImageId")
index2 =

dr1("OriginalPath").ToString.IndexOf(".")
path2 =

dr1("OriginalPath").ToString.Substring(index2, 4).ToUpper
If bmp1.Size <>

bmp2.Size Or path1 <> path2 Then
TextBox1.Text =

TextBox1.Text + "     " +
"CompareResult.ciSizeMismatch".ToString

Else
Dim tm As New

ExhaustiveTemplateMatching(0)
Dim matchings As

TemplateMatch() = tm.ProcessImage(bmp1, bmp2)

'''''''''''''''''''''
Dim value As

String = matchings(0).Similarity * 100
If value < 100

Then
value =

Val(value.Substring(0, 2) + 1)
Else

value = value
End If

If value > 90
Then

TextBox2.Text
= TextBox2.Text + "     " + "ok"



75

Try

CN.Close()

cn1.Close()

deleteImagesFromDatabase(pic)

cn1.Open()
dr1 =

SqlCom1.ExecuteReader

Catch ex As
Exception

MsgBox(ex.Message)
End Try

Else
TextBox1.Text

= TextBox1.Text + "     " + "no"

End If
End If

End While
End If
If cn1.State =

ConnectionState.Open Then
cn1.Close()

End If
If CN.State =

ConnectionState.Closed Then
CN.Open()
dr = SqlCom.ExecuteReader

End If

End If

Catch ex As Exception
MsgBox(ex.Message)

End Try

End While
End If



76

If CN.State = ConnectionState.Open Then
CN.Close()

End If
Catch ex As Exception

MsgBox(ex.Message)

End Try
etime = Now.TimeOfDay.ToString
TextBox3.Text = TextBox3.Text + "end time=" +

etime
MsgBox("ok finish")

GetImagesFromDatabase()
End Sub

‘resize all images

Private Sub resizeimages()
FolderBrowserDialog1.ShowDialog()
Dim Files As String() =

Directory.GetFiles(FolderBrowserDialog1.SelectedPath.ToSt
ring())

Dim Dirs As String() =
Directory.GetDirectories(FolderBrowserDialog1.SelectedPat
h.ToString())

Dim Filename As String

Try
Dim image1 As New Bitmap("C:\25\1.jpg")
For Each Filename In Files

If Filename.Contains(".jpg") Or
Filename.Contains(".gif") Or Filename.Contains(".JPG") Or
Filename.Contains(".GIF") Or Filename.Contains(".bmp")
Then

Dim bm As New Bitmap(Filename)
Dim width As Integer =

Val(image1.Width) 'image width.
Dim height As Integer =

Val(image1.Height) 'image height
Dim thumb As New Bitmap(width,

height)

Dim g As Graphics =
Graphics.FromImage(thumb)

g.InterpolationMode =
Drawing2D.InterpolationMode.HighQualityBicubic

g.DrawImage(bm, New Rectangle(0, 0,
width, height), New Rectangle(0, 0, bm.Width, bm.Height),
GraphicsUnit.Pixel)

g.Dispose()



77

Dim Path As String = Filename
Path = Path.Substring(10)
'MessageBox.Show(Path)
Dim path1 As String = "C:\25\" + Path
'MessageBox.Show(path1)
thumb.Save(path1,

System.Drawing.Imaging.ImageFormat.Jpeg) 'can use any
image format

End If
Next
MessageBox.Show("pictures is fixed")

Catch ex As Exception
MessageBox.Show(ex.Message)

End Try

End Sub

‘query by example

Private Sub savepicters_Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
savepicters.Click

Dim bmp1 As System.Drawing.Image
Dim bmp2 As System.Drawing.Image
Dim Tabpage As Integer = 1
Dim count As Integer = 0
Dim stime As Date
Dim etime As Date
stime = Now.TimeOfDay.ToString
TextBox3.Text = "start time=" + stime
Dim match As Integer = 0
Dim mismatch As Integer = 0
Dim pic As Integer
Try

bmp1 =
Image.FromFile(OpenFileDialog1.FileName.ToString())

Try
Dim txtConnectionString As String = "Data

Source=EMU_CMPE\SQLSERVER;Initial
Catalog=browser;Integrated Security=True"

Dim cn1 As SqlConnection = New
SqlConnection(txtConnectionString)

Dim qry1 As String = "Select * from
ImagesStore "

'Initialize SqlCommand object for insert.



78

Dim SqlCom1 As SqlCommand = New
SqlCommand(qry1, cn1)

'Initialize SQL adapter.
Dim dr1 As SqlDataReader
If cn1.State = ConnectionState.Closed

Then
cn1.Open()
dr1 = SqlCom1.ExecuteReader
If dr1.HasRows = True Then

If cn1.State =
ConnectionState.Closed Then

cn1.Open()
End If
While dr1.Read

match = 0
mismatch = 0
bmp2 =

Image.FromFile(dr1("OriginalPath"))
pic = dr1("ImageId")
If bmp1.Size <> bmp2.Size

Then
TextBox1.Text =

TextBox1.Text + "CompareResult.ciSizeMismatch".ToString

'MessageBox.Show("CompareResult.ciSizeMismatch")
Else

'create instance or
System.Drawing.ImageConverter to convert

'each image to a byte
array

Dim converter As New
ImageConverter()

'create 2 byte arrays,
one for each image

Dim imgBytes1 As Byte() =
New Byte(0) {}

Dim imgBytes2 As Byte() =
New Byte(0) {}

'convert images to byte
array

imgBytes1 =
DirectCast(converter.ConvertTo(bmp1,
imgBytes1.[GetType]()), Byte())

imgBytes2 =
DirectCast(converter.ConvertTo(bmp2,
imgBytes2.[GetType]()), Byte())

'now compute a hash for each image from the byte arrays
Dim md5 As New

MD5CryptoServiceProvider



79

Dim imgHash1 As Byte() =
md5.ComputeHash(imgBytes1)

Dim imgHash2 As Byte() =
md5.ComputeHash(imgBytes2)

Dim condution As Integer
= Val(ComboBox1.Text.Substring(0,
ComboBox1.SelectedItem.Length - 1))

'now let's compare the
hashes

Dim i As Integer = 0
While i < imgHash1.Length

AndAlso i < imgHash2.Length
If (imgHash1(i) <>

imgHash2(i)) Then
mismatch =

mismatch + 1
If mismatch >

(100 - condution) * imgHash1.Length / 100 Then
Exit While

End If

Else
match += 1

End If

If match >= condution
* imgHash1.Length / 100 Then

count = count + 1
If count Mod 10

<> 0 Then

Me.Controls.Item("TabControl1").Controls.Item("TabPage" &
Tabpage).Controls.Item("PictureBox" &
count).BackgroundImage =
Image.FromFile(dr1("OriginalPath"))

Me.Controls.Item("TabControl1").Controls.Item("TabPage" &
Tabpage).Controls.Item("LinkLabel" & count).Text =
dr1("OriginalPath")

Exit While
Else

Me.Controls.Item("TabControl1").Controls.Item("TabPage" &
Tabpage).Controls.Item("PictureBox" &
count).BackgroundImage =
Image.FromFile(dr1("OriginalPath"))

Me.Controls.Item("TabControl1").Controls.Item("TabPage" &



80

Tabpage).Controls.Item("LinkLabel" & count).Text =
dr1("OriginalPath")

Tabpage =
Tabpage + 1

Exit While
End If

End If

bmp2.Dispose()
i += 1

End While
End If

End While
Me.Cursor = Cursors.Default

End If
End If
If cn1.State = ConnectionState.Open Then

cn1.Close()
End If
bmp1.Dispose()
TextBox2.Text = TextBox2.Text + "    " +

count.ToString

Catch ex As Exception
MsgBox(ex.Message)

End Try

Catch ex As Exception
MsgBox(ex.Message)

End Try

etime = Now.TimeOfDay.ToString
TextBox3.Text = TextBox3.Text + "end time=" +

etime
End Sub

‘client part
'saveclientinfo()
Private Sub saveclientinfo()

Try
Dim cn1 As SqlConnection = New

SqlConnection(txtConnectionString.Text)
Dim qry1 As String = "Select * from " &

tablename
'Initialize SqlCommand object for insert.



81

Dim SqlCom1 As SqlCommand = New
SqlCommand(qry1, cn1)

'Initialize SQL adapter.
Dim dr1 As SqlDataReader
If cn1.State = ConnectionState.Closed Then

cn1.Open()
dr1 = SqlCom1.ExecuteReader
If dr1.HasRows = True Then

While dr1.Read
lnum = dr1("id")

End While
computerid = lnum + 1

If dr1("id") = computerid Then
computerid = computerid + 1

End If
End If
If cn1.State = ConnectionState.Open Then

cn1.Close()
End If

End If
Catch ex As Exception

MsgBox(ex.Message)
End Try
Try 'saving client info

Dim qrySave As String = "insert into " &
tablename & " (id,ip) values ('" & computerid & "','" &
myip.ToString & "')"

Dim CN As SqlConnection = New
SqlConnection(txtConnectionString.Text)

'Set insert query
'Initialize SqlCommand object for insert.
Dim SqlCom As SqlCommand = New

SqlCommand(qrySave, CN)
'We are passing Original Image Path and Image

byte data as sql parameters.
SqlCom.Parameters.Add(New SqlParameter("@ip",

myip.ToString))
'Open connection and execute insert query.
If CN.State = ConnectionState.Closed Then

CN.Open()
End If
SqlCom.ExecuteNonQuery()
If CN.State = ConnectionState.Open Then

CN.Close()
End If

Catch ex As Exception
MessageBox.Show(ex.ToString())

End Try



82

End Sub
'readclientinfo()
Private Sub readinfo()

Try 'read from server numof pic

Dim cn1 As SqlConnection = New
SqlConnection(txtConnectionString.Text)

Dim qry1 As String = "Select * from
serverinfo"

'where ip = '" & myip.ToString & "'"
'Initialize SqlCommand object for insert.
Dim SqlCom1 As SqlCommand = New

SqlCommand(qry1, cn1)
'Initialize SQL adapter.
Dim dr1 As SqlDataReader
If cn1.State = ConnectionState.Closed Then

cn1.Open()
dr1 = SqlCom1.ExecuteReader
If dr1.HasRows = True Then

If cn1.State = ConnectionState.Closed
Then

cn1.Open()
End If
dr1.Read()
numofpic = dr1("numofpic")
numforeachone = dr1("numforeach")
startnum = dr1("startnum")
numberofcomputer =

dr1("numofcomputer")
End If
If cn1.State = ConnectionState.Open Then

cn1.Close()
End If

End If
Catch ex As Exception

MsgBox(ex.Message)

End Try

Try 'read from client id
Dim cn1 As SqlConnection = New

SqlConnection(txtConnectionString.Text)

Dim qry1 As String = "Select * from " &
tablename & " where id = '" & computerid & "'"

Dim SqlCom1 As SqlCommand = New
SqlCommand(qry1, cn1)

'Initialize SQL adapter.
Dim dr1 As SqlDataReader
If cn1.State = ConnectionState.Closed Then



83

cn1.Open()
dr1 = SqlCom1.ExecuteReader
If dr1.HasRows = True Then

If cn1.State = ConnectionState.Closed
Then

cn1.Open()
End If
dr1.Read()
myid = dr1("id")
'MessageBox.Show(myid.ToString)

End If
If cn1.State = ConnectionState.Open Then

cn1.Close()
End If

End If
Catch ex As Exception

MsgBox(ex.Message)

End Try

Try 'calculate from where to start
If myid = 1 Then

startfrom = 1
endwhen = numforeachone

Else
startfrom = endwhen + 1
endwhen = startfrom + numforeachone
If endwhen > numofpic Then

endwhen = numofpic
End If

End If

Catch ex As Exception
MsgBox(ex.Message)

End Try

End Sub

Private Sub readid()
Try

Dim cn1 As SqlConnection = New
SqlConnection(txtConnectionString.Text)

Dim qry1 As String = "Select * from " &
tablename

'Initialize SqlCommand object for insert.
Dim SqlCom1 As SqlCommand = New

SqlCommand(qry1, cn1)
'Initialize SQL adapter.
Dim dr1 As SqlDataReader



84

If cn1.State = ConnectionState.Closed Then
cn1.Open()
dr1 = SqlCom1.ExecuteReader
If dr1.HasRows = True Then

While dr1.Read
lnum = dr1("id")

End While
End If
If cn1.State = ConnectionState.Open Then

cn1.Close()
End If

End If
computerid = lnum + 1

Catch ex As Exception
MsgBox(ex.Message)

End Try
End Sub

'updateclientinfo()

Private Sub updateclientinfo(ByVal x As String, ByVal y
As String)

Try
Dim CN As SqlConnection = New

SqlConnection(txtConnectionString.Text)
Dim qry As String = "Update " &

tablename & " SET starttime = '" & x & "'" & ",endtime
='" & y & "'" & " where id = '" & myid & "'"

'Initialize SqlCommand object for insert.
Dim SqlCom As SqlCommand = New

SqlCommand(qry, CN)

'Open connection and execute insert query.
If CN.State = ConnectionState.Closed Then

CN.Open()
End If

SqlCom.ExecuteNonQuery()
If CN.State = ConnectionState.Open Then

CN.Close()
End If
'Close form and return to list or images.
' Me.Close()

Catch ex As Exception
MessageBox.Show(ex.ToString())

End Try

End Sub



85

‘start comparing
Private Sub Button5_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles compare.Click

stime = DateTime.Now.ToLongTimeString.ToString()

TextBox3.Text = "start time=" + stime
Dim bm1, bm2 As Bitmap
Dim wid, hgt, wid1, hgt1 As Integer
Dim eq_color As Color = Color.White
Dim ne_color As Color = Color.Red
Dim are_identical As Boolean = True
Dim match As Integer = 0
'********************************
' Dim textmess As String = cpicturessever.Text
'**********************
Dim pic As Integer
Try

Dim CN As SqlConnection = New
SqlConnection(txtConnectionString.Text)

Dim qry As String
qry = "Select * from ImagesStore where

ImageId >=" & startfrom & "and ImageId <=" & endwhen

'Initialize SqlCommand object for insert.
Dim SqlCom As SqlCommand = New

SqlCommand(qry, CN)
Dim picnum As Integer

'Initialize SQL adapter.
Dim dr As SqlDataReader
CN.Open()
dr = SqlCom.ExecuteReader
If dr.HasRows = True Then

While dr.Read
bm1 =

Image.FromFile(dr("OriginalPath"))
picnum = dr("ImageId")
wid = bm1.Width
hgt = bm1.Height

Try

Dim cn1 As SqlConnection = New
SqlConnection(txtConnectionString.Text)

Dim qry1 As String
qry1 = "Select * from ImagesStore

where ImageId <>" & picnum
'Initialize SqlCommand object for

insert.



86

Dim SqlCom1 As SqlCommand = New
SqlCommand(qry1, cn1)

'Initialize SQL adapter.
Dim dr1 As SqlDataReader
If cn1.State =

ConnectionState.Closed Then
cn1.Open()
dr1 = SqlCom1.ExecuteReader
If dr1.HasRows = True Then

If cn1.State =
ConnectionState.Closed Then

cn1.Open()
End If
While dr1.Read

bm2 =
Image.FromFile(dr1("OriginalPath"))

pic = dr1("ImageId")
'

MessageBox.Show(pic)
wid1 = bm2.Width
hgt1 = bm2.Height
Dim wid3 As Integer =

Math.Min(bm1.Width, bm2.Width)
Dim hgt3 As Integer =

Math.Min(bm1.Height, bm2.Height)
Dim bm3 As New

Bitmap(wid3, hgt3)

If bm1.Size =
bm2.Size Then

For x As Integer
= 0 To wid1 - 1

For y As
Integer = 0 To hgt1 - 1

If
bm1.GetPixel(x, y).Equals(bm2.GetPixel(x, y)) Then

match
+= 1

bm3.SetPixel(x, y, eq_color)

Else

bm3.SetPixel(x, y, ne_color)

are_identical = False
End If

Next y
Next x



87

If are_identical
Then

'
MessageBox.Show("The images are identical")

Try

CN.Close()

cn1.Close()

deleteImagesFromDatabase(pic)

cn1.Open()
dr1 =

SqlCom1.ExecuteReader

Catch ex As
Exception

MsgBox(ex.Message)
End Try

Else
'

MessageBox.Show("The images are different")
End If

Else

'MessageBox.Show("The images are different")
End If
'

MessageBox.Show(match)

Me.Cursor =
Cursors.Default

bm2.Dispose()

End While
End If
If cn1.State =

ConnectionState.Open Then
cn1.Close()

End If
End If
bm1.Dispose()

Catch ex As Exception



88

' MsgBox(ex.Message)

End Try
If CN.State =

ConnectionState.Closed Then
CN.Open()
dr = SqlCom.ExecuteReader

End If
End While

End If
If CN.State = ConnectionState.Open Then

CN.Close()
End If

Catch ex As Exception
MsgBox(ex.Message)

End Try
etime = DateTime.Now.ToLongTimeString.ToString()
TextBox3.Text = TextBox3.Text + "end time=" +

etime
updateclientinfo(stime, etime)

'MsgBox("ok finish")

GetImagesFromDatabase()

End Sub


	ABSTRACT
	ÖZ
	DEDICATION
	ACKNOWLEDGMENT
	INTRODUCTION 
	RELATED WORKS
	Overview of Internet Search Engines
	Overview of Related Work
	Studies on Current Search Engine Mechanisms for Finding Images
	Studies for Improving the Efficiency of Search Engines
	Flexible and Extensible Framework for Web Image Retrieval
	Direct Searching of Video Content (DIVAS)
	 SCENIQUE
	Lazy
	Query by Example
	Query by Sketch
	Hybrid Methods
	Automatic Ranking of Websites
	Key Block
	Document Clustering 



	ELIMINATION OF REPEATED OCCURRENCES IN 
	IMAGE SEARCHING
	Programming Environment
	The Database
	Software Mechanism
	Creating the Images Database
	Computing the Hash Value
	Comparing the Hash Value 

	User Interface

	   PERFORMANCE STUDIES
	Introduction
	  Bit-Wise Comparisons 
	Sequential Execution 
	Parallel execution: Client - Server Architecture
	 Hash Comparison
	 Comparison of Hash Algorithm and Bit-wise techniques
	  Parallel Work with Hash Algorithm 
	Saving the Hash Values in the Database
	  Mechanism of Dividing the Work between Parallel Copies 
	  Comparing dynamically way versus. Saving the Hash Values 
	earlier in the Database

	STUDIES ON FINDING SIMILAR IMAGES
	Introduction
	Query by Example Mechanism
	 Methodology Developed For Implementing the Query by 
	Example Techniques
	Bit- Wise Comparison
	Exhaustive Template Matching
	Comparison between Exhaustive Template Matching and 
	Bit- Wise Comparison Techniques

	CONCLUSION
	APPENDICES 
	Appendix A:  The source code of the module.


