Elimination of Repeated Occurrencesin | mage
Search Engines

Saed Algaraleh

Submitted to the
Institute of Graduate Studies and Research
in partia fulfillment of the requirements for the Degree of

Master of Science
in
Computer Engineering

Eastern Mediterranean University
January 2011
Gazimagusa, North Cyprus

Approval of the Institute of Graduate Studies and Research

Prof. Dr. Elvan Yilmaz
Director (a)

| certify that this thesis satisfies the requirements as a thesis for the degree of Master
of Science in Computer Engineering.

Assoc. Prof. Dr. Muhammed Salamah
Chair, Department of Computer Engineering

We certify that we have read this thesis and that in our opinion it is fully adequate in
scope and quality as a thesis for the degree of Master of Science in Computer
Engineering.

Assoc.Prof.Dr. Isik AYBAY
Supervisor

Examining Committee

1. Assoc.Prof.Dr. Isik AYBAY

2. Assoc. Prof. Dr. Muhammed Salamah

3. Asst. Prof. Dr. Giircti OZ

ABSTRACT

We propose a new method for elimination of repeated occurrences in image search
engines. We have built software that: Compares images in a database, and marks only
one copy of repeating files using a hashing technique. Marking one of the repeating
images will lead to faster access and will eliminate the repetition of the same images
more than once. The software can work periodically, for dealing with any updates on
the image database.

We have developed another version of the software to be multipurpose, making use
of the query by example tool, and it can also find images which are similar to each other

within some percentages limits.

Keywords: Image Search Engines, Query by Example, Hash Algorithm, Information

Retrieval.

0z

Resim arama motorlarindaki tekrarlanan bulgulari gidermek igin yeni bir yontem
oneriyoruz. Gelistirdigimiz yazilim: Veritabanindaki resimleri karsilastiriyor, ve Hesaba
dayal adresleme (Hashing) teknigini kullanarak tekrarlanan dosyalarin bir kopyasini
isaretliyor. Tekrarlanan resimlerin birini isaretlemek, daha hizli erisim sagliyor ve ayni
resmin birden fazla gorintilenmesini engelliyor. Resim veritabanindaki giincellemelerle
basa ¢ikmak igin, yazilim periodik olarak calistirilabiliyor.

Ornek ile calisan sorgu aracini kullanarak yazilimin bir diger cok amagli versiyonu
da gelistirilmistir. Bu versiyonda yazilim benzer resimleri bazi yuzdelik sinirlan

kullanarak bulabiliyor.

Anahtar Kelimeler: Resim Arama Motorlari, Ornek ile calisan sorgu araci, Hesaba

Dayali Adresleme Algoritmasi, Bilgi Erigimi.

DEDICATION

To My Family
(Especialy to my Grandfather and my Grandmother Peace on their souls)

ACKNOWLEDGMENT

| would like to thank Assoc. Prof. Dr. Isik AYBAY for his guidance and continuous
support through my study. Without his appreciated supervision, | would not be in this
position.

| owe a big thank to my family. Thanks to my parents for their support through the
period of my study. I will never forget my wife’s support, as she was beside me, and
encouraging me all the time.

I would like to great my friends who were always around to support.

I know that saying thanks comparing with what they all have done is nothing. But all

of them will be always in my Heart.

vi

TABLE OF CONTENTS

ABSTRACT e e e e e e e b e e nre s i
O e iv
[0 113 7 I SRS Y
ACKNOWLEDGMENT ...ttt s e e e e et e e snnee e e snaeeeennneeeeas Vi
A o 1 L I T S 1
2RELATED WORKS......ceeie ettt ettt e e e e e stee e e s nnnee e e snneeeeenens 4
2.1 Overview of Internet Search ENQINES..........cocveeiiieiiiie e e 4
2.2 0verview Of REIAED WOIKcoeiiiiiiiiiieee e s 5
2.2.1 Studies on Current Search Engine Mechanisms for Finding Images............... 5
2.2.2 Studies for Improving the Efficiency of Search Engines...........c.cccooeveereenne 9
2.2.2.1 Flexible and Extensible Framework for Web Image Retrieval 9
2.2.2.2 Direct Searching of Video Content (DIVAS)coccvevieneenieniinniee e 10
2.2.2.3 SCENIQUEoii ittt et 10
2224 LAZY .ot et 11
2.2.2.5Query by EXaMPIe......cocuiiieieee e e 11
2.2.2.6 QUErY By SKELCN ..o e 12
2.2.2.7 Hybrid Methods..........cocoiiiiiieesis e e 12
2.2.2.8 Automatic Ranking Of WeDSITES..........ccocvriiiiiiiienieeesee e 13
2.2.29 KEY BIOCK ...veiiiiiiisiesese et s 13
2.2.2.10 DOCUMENT CIUSLENINGcenveeieeriie sttt e 14

3 ELIMINATION OF REPEATED OCCURRENCES IN IMAGE SEARCHING...... 17
3.1 Programming ENVIFONMENE...........curiiiriiiie e siee et eeesnee e e 17
3.2 ThE DAADASE.cetietieitie sttt ettt n e 17
3.3 Software MeChaNiSIMcceiiiiiieee e e e 18

vii

3.3.1 Creating the IMages Databaseceevueereerieeiie e 18

3.3.2 Computing the Hash Valuecooiiiiiiceee e e 19
3.3.3 Comparing the Hash Valuecoocuiiiiiiiiie e 20
A USEN INTEITACE.....ee it et 21
4 PERFORMANCE STUDIES..... .ottt e ee e 25
4.1 INEFOTUCTION ...ttt ettt e e b e sbeesne e ennas 25
4.2 Bit-WiSe COMPAITSONS.......eeiuietieiteesieesieesieteesteesiessteesseesssessessesessessaeessessnsesnsens 25
4.2.1 Sequential EXECULTONcc.uoiiiiiiiieeie ettt e 26
4.2.2 Parallel execution: Client - Server ArchiteCtureoccooeveeveniniee e 27
4.3 Hash COMPAITSONcoiueiiiiiieiie ettt et s snee s 31
4.4 Comparison of Hash Algorithm and Bit-wise teChniques...........ccccovcvevieeiiieennne 33
4.5 Parallel Work with Hash AlQOrithm...........cooiiioiiie e 34
4.6 Saving the Hash Valuesin the Databaseccceiveiieiieiie e 36
4.7 Mechanism of Dividing the Work between Parallel COpies...........ccoovevveieenienns 36
4.8 Comparing dynamically way versus. Saving the Hash Values earlier in the
(D= = 7= S USRS 41
5 STUDIES ON FINDING SIMILAR IMAGES........ccoie e 43
5.1 INEFOAUCTION ...ttt e 43
5.2 Query by Example MeChaniSM........cccueeiieeiiieeeie s see e ae e 43

5.3 Methodology Developed For Implementing the Query by Example Techniques 47

5.3.1 Bit- WiS2 COMPAISON ...ccuveeiieiiesiiesite sttt sieesiee et ae et stee s sanesnesneeneens 47
5.3.2 Exhaustive Template MatChing..........cooveieiiiiiieiiiiene e 48
5.3.3 Comparison between Exhaustive Template Matching and Bit- Wise Comparison
TECHNIGQUES. ...ttt et e et e e et e e ae e e b e e e sbeeeaaaee s e enreesnneeaas 50
CONCLUSION ...ttt e e s s e s b bae e s e e s s snssbaae e e e e s s s e annrees 52
APPENDICES. ...ttt e e e e st be e e e e s s s snbreee s eeeeeennans 59
Appendix A: The source code of the module.cccoviiiiiiiniiin e 59

viii

LIST OF TABLES

Table 2.1.Number of Images For Some Queries (Reachable By Google)............ccueu.... 5
Table 4.1.Results of Sequential Comparison / Deletion for Base Image............ccoc....... 26
Table 4.2.Results of Sequential Comparison / Deletion for Random Image. 27
Table 4.3.Results of the Client — Server Method for Base Images.cccccccveecveeeinne 28
Table 4.4.Result of the Client —Server Method for Random Images.ccccecceeenieenn. 30
Table 4.5.Comparison of SHA and MD5.cooiiiiiiiiiieee e 32
Table 4.6.Execution Times for Different Hash Algorithms............ccoooeiiiiieiien e, 32

Table 4.7.Execution Time of Hash Algorithms and Bit Wise Comparison Technique.. 33

Table 4.8.Execution Timefor 4 and 8 CHENLS.cccovieiieiiniinnen e 34
Table 4.9.Execution Time Versus Number of Imagesfor 8, 12, 16 Clients. 35
Table 4.10.Time for Saving the Hash Valuesin Database.ccccceevcvveecviieieeeeeee, 36
Table 4.11.Execution Time Versus. Number of Imagesfor 4, 8, 12, 16 Clients, Using

Multiple Copies Of the Program. ..o e 40
Table 4.12.Dynamic Way Versus. Saving the Hash Vauesin Database. 41
Table 5.1.Bit Wise Comparison for Similarity Using 25,100,200,500 Images. 48
Table 5.2.Exhaustive Template Matching Using 25,100,200,500 Images. 49

Table 5.3.Comparing Between Exhaustive Template Matching and Bit Wise
(00001072 1 o o XSRS 50

LIST OF FIGURES

Figure 3.1: Creating the Images Database Flow Chart.cccoveiiiiin i 18
Figure 3.2: Extracting the Hash Value Flow Chart. ... 19
Figure 3.3: Comparing the Hash Value Flow Chart.ccccoeeviieeiie e 20
Figure 3.4:Creating the Database.ccceeiiieiiiie i e 21
Figure 3.5: Extracting Hash Value.cccveiiiiiiie e 22
Figure 3.6: Specification of number of CHENtS.cooceviiiiiiie e, 23
Figure 3.7: CHENt FOMM........ooiie e e e 24
Figure 4.1: Time versus Number of Images for Sequential Comparison / Deletion for
BaASE MBI, oottt 26
Figure 4.2: Time Verses Number of Images Sequential Comparison /Deletion for
a0 (o]0 (T 1 0= PSP 27
Figure 4.3: Speed-Up versus Number of Images (Second Experiment).............cc.e....... 29
Figure 4.4: Efficiency versus Number of Images for the Second Experiment. 29
Figure 4.5: Speed- Up versus Number of Images for the Second Experiment. 30
Figure 4.6: Efficiency versus Number of Images for the Second Experiment. 30
Figure 4.7: Execution Time for Different Hash Algorithms. ..o 32
Figure 4.8: Hash Algorithms versus Bit Wise Technique. (Execution Time). 34
Figure 4.9: Execution Time Versus Number of Imagesfor 4, 8 clients.cccccuee.ee. 35
Figure 4.10: Execution Time Versus. Number of Imagesfor 8, 12, 16 Clients............. 35
Figure 4.11: Processing Of IMAJES.........cooiiiiiiiiiie ettt e 37
Figure 4.12: Execution Time Versus. Number of Imagesfor 4, 8, 12, 16 Clients, Using
CopieS Of the Program.ooeiiiiiiieieesies ettt e 40
Figure 4.13: Execution Time Versus. Number of Working Copies for 2500 and 3000
=0 PSP PPRPPR PSRN 41
Figure 4.14: Dynamic Way Versus. Saving the Hash Valuesin Database. 42
Figure 5.1: Query by EXample FOrm.ccoo i e 44

Figure 5.2: Query by Example Module FIow Chart.ccooviveiininienieseceseeeee 45

Figure 5.3: Query by Example with Options FOrm.cccoveiiiiniiniis e 46
Figure 5.4: Bit Wise Comparison for Similarity Using 25,100,200,500 Images. 48
Figure 5.5: Exhaustive Template Matching Using 25,100,200,500 Images.................. 50

Figure 5.6: Comparing Exhaustive Template Matching and Bit Wise Comparison for
FINAING SIMITAITTY. 1o e e e e enneas 51

Xi

Chapter 1

INTRODUCTION

The number of images stored and applications devel oped for accessing images on
the Internet has grown considerably in the last ten years. This causes many problems
related with information retrieval on the Internet. Among a large number of images,
it is often hard to find required images. There are three main problems that can be
mentioned:

1) The naming problem

2) The description problem

3) The redundancy problem

Firstly, search engines are still using mainly metadata or keywords to create
image databases. Metadata cannot deal with different meanings of words, and
sometimes there may be no relation between the contents of the images and their
names. For example, when one uses a camera for taking images, the camera
generates names for those images automatically, with no relation with the image
content. We call this the” naming problem”.

Secondly, when the user doesn’t know how to describe the image he/she requires,
it is hard to find out the image he/she istrying to get. Thiswill be referred to as the
“description problem”

Finally, information redundancy consumes extra time in checking the results.

Hence, there is a need for improving matching image display efficiency, thisis called

the” redundancy problem”. One way of improving display efficiency is the
elimination of repetitions, which is the topic of this study.

Many studies have been performed for solving the three main problems discussed
above. New search mechanisms and algorithms have been developed for more
efficient image retrieval.

Content image retrieval mechanism is one such method. Content image retrieval
appears as a way of solving the naming problem stated above. The content- based
retrieval method works by considering the low level features of multimediafiles.

Ontology based retrieval method is one technique for content image retrieval.
The Ontology based method uses Meta data and some keywords, Hybrid methods
can also be used, combining the two methods mentioned above.

On the other hand, new ranking algorithms were developed to find matching
results in a short time. Those algorithms take into account the multimedia content of
the website in the ranking process .The aim of the new ranking algorithms is
improving the chance of finding multimedia files through the internet.

Query by example method was developed to solve the description problem
mentioned above. This method is efficient when the users have some images and
they want to get ssimilar images. The user uploads the image at hand and the search
engine tries to find similar images. Lately, query by sketch method was devel oped to
increase the efficiency of the query by example technique. Query by sketch works
using the same techniques as query by example, but with more options. For example,
query by sketch allows the user to employ drawing tools to describe the expected
image.

Lately, various software packages were developed using these new mechanisms,

to improve the performance of search engines. One example is the flexible and

extensible framework for web image retrieval mechanism (FGWIM) [8]. FGWIM
works using high level semantics and low level visual features of images for
extracting information from files.

Document clustering can also be used to solve the naming problem when data is
clustered, and similar web documents can be found more easily using search engines.

Considering the redundancy problem, up to our knowledge, there is no research
on eliminating the repetition of the same result in search engine outcomes. The main
objective of the work presented in this thesis is to improve the efficiency of search
engines when dealing with images, by eliminating repeating images.

We propose a new method for the elimination of repeated occurrences in image
search engines. We have developed software that can create an image database.
Then, it calculates hash values for the images. Finaly, it compares the hash values to
find repetitions, and marks only one copy of repeating files for further use.

To make the proposed method more efficient, we allow copies of our software to
process information in parallel. In this case, the number of images in the database is
divided evenly between the parallel copies. The system administrator decides on how
many copies should be run depending on the total number of images in the database.

Then, we have developed another module, which works similar to a query by
example search engine. This module can be used for cases where the user has an
image, and is looking for its copies, or images similar to it.

The other parts of this thesis are organized as follows: Chapter 2 discusses related
studies. Chapter 3. Explains our technique for eliminating of repeated occurrences of
image. Chapter 4 outlines performance studies. Chapter 5, discusses finding similar
images by employing the query by example technique. Chapter 6, states some

conclusions and containing discusses further work.

Chapter 2

RELATED WORKS

2.1 Overview of Internet Search Engines

Search engines collect descriptive information from websites. This information
mainly contains keywords. Most search engines use the spider technique to collect
this information. After the descriptive information is collected, the next issue is to
analyze this information using special algorithms like finding the percentage of the
number of hits of the website. After that, a database, which contains the keywords,
the website address, images and information about the website, is created. One main
problem is that, on the Internet, many websites have copies of the same images,
which means an unnecessary effort will be employed when searching.

When the user executes a query as for the retrieval of a certain image, search
engines will run it, and show the user a list of images. This list will sometimes
contain thousands, or even millions of images. In such a case, it takes a lot of time
for the user to check all the images listed by the search engine. The following table,
which is the result of our own study, gives an idea on the total number of images

reachable by the Google search engine.

Table 2.1.Number of Images For Some Queries (Reachable By Google).

Search Keyword The number of images(reachable by Google)
images 189,526,563
*.jpg 2,147,483,647
* . jpeg 19,991,129
*.gif 584,742,791
*.png 468,217,403
*.ico 9,005,572
Total number of images 3,418,967,105

The website which has the highest rank will show at the beginning of the list of
results. The ranking of a website depends on the number of hits, the keywords,
website Meta Tags and the content of this website [11]. In order to keep the ranking
position of websites, we do not physically delete repeating images. Instead, a flag
field is added to the database. For the first one of repeating images we set it to one,

for all otherswe set it to zero.

2.2 Overview of Related Work

Multimedia searching has become an important research field these days. Many
researchers are trying to improve the efficiency of getting Multimedia files through
the Internet. Initially, researchers studied the current search engine mechanisms.
Accordingly, new search mechanisms and algorithms were developed for similarity.

In this chapter, we shall first study the mechanisms of popular search engines.

2.2.1 Studieson Current Search Engine Mechanismsfor Finding lmages

The challenges that make using Web-scale multimedia search engines difficult
were studied by other groups of researchers [4]. The first challenge is extracting
useful features to represent multimedia files . The second challenge is the difficulty of

finding an appropriate similarity measure. For example, “images taken in different

lighting condition can display different features after extracting its features” [4]. The
third challenge that restricts the deployment of large scale systems is that multimedia
search engines must be able to scale well with respect to both data dimensionality
and data quantity. In addition, identifying key features in images is easy when a
human detects the key features, but it is hard when it is done automatically.

A study of the functionality of multimedia search engines was conducted by
examining 102 web search engines in [6]. There were severa issues to check:
(DFind the number of Web search engines that support multimedia searching, (2)
find the functionality and methods offered in multimedia search, such as “‘query by
example’’, and (3) the support for personalization or customization as advanced
search options.

The study indicates that there are 65 general purpose engines and 37 multimedia
search engines. 43 out of 65 general purpose search engines support text media
search only. All web search engines still rely on file meta data, such as file format,
size and characteristic of the web site content. Image retrieval by contents is very
limited; only 5 out of 102 web search engines support this mechanism. Even when
content-based retrieval is supported, low level features are used. Low level features
extract file properties like texture, size, or colours. Web search provides limited
multimedia search functionality, query by example is still not available for the users.
Support for personalization or customization istoo limited.

One group of researchers studied searching for digital images on the web [1].
They investigated how users structure image queries, and the current image retrieval
approaches. The current image retrieval approaches are concept-based content and
content based retrieval or a concept-content combination. They compared the

existing image query classification schemes. None of the three classification schemes

captured the richness of web image searching. Also, they found that the main
problem was the generation of file names randomly or by using temporal character
sequences, during the creation of image databases that makes using the current image
retrieval approaches not suitable for multimedia Moreover, they found that
multimedia search engines use same mechanisms as textual information search
engines. Metadata is often insufficient when dealing with multimedia content. Digital
images are increasing the need for more effective methods of searching, and
retrieving image data. They suggest comparisons and additional classifiers for web
image searching as away to improve the efficiency of search engines[1].

In [16], there is a study conduct to check the current search engines and their
mechanisms, finding they are good to retrieve images or not. They divide the current
search engines into three types:

1) Search engines with alarge image database.
2) Experimental search engines.
3) Meta-search engines.

Google and Y ahoo are examples of first type image search engines, which have a
large image database. These databases are created by indexing the keywords and the
images.

Second type at image search engines is specific image search engines for indexing
images or multimedia like Corbis & Getty Images. These websites are often
experimental and have limited databases that are restricted by size when compared
with sites such as Google.

Finally, there are image search engines that are called Meta-Search engines, which
send users’ requests to multiple search engines and then display the *multiple’

results. Image Search Mechanisms were also studied in [16].

Most of search engines ask the user to type a keyword and then compare it with
the content of their database, using the file type that helps to detect the desired type
of files, e.g. jpg or bmp format. Then the search engine displays the result. This
method is good for large databases, but it is not suitable for multimedia files, for
example, in Google or Y ahoo.

The Second Mechanism is the creation of the database by a human. The database
builder will build categories and put the images on it (e.g. cars group, flowers...).
However, as we know there are millions of images on the internet. Therefore, it is
too difficult to determine major categories and to build this type of a database. It is
more difficult to keep it updated.

The research group have performed three experiments to compare the
performance of some search engines: The first experiment uses one word size test
gueries. The second experiment uses two word size test queries. The third one uses
three word size test queries. The experiments were performed on image search
engines such as Google, Yahoo, Ditto, Corbis, Web Seek, Getty Images Creative,
Picsearch, and Ithaki. The results are as follows. The average precision is 55% for
the first experiment, 50.6% for the second experiment, and 20.7% for the last
experiment.

As a conclusion of their work, they report that, most search engines are indexing
images using text and they rely on keyword based images searching. [16].

The effect of the number of query words on image search engines was studied in
[17]. “Word Tracker periodically compiles a database of over 330 million search
terms which is updated on a weekly basis. All search terms are collected from the
major meta crawlers such as Dogpile and Metacrawler “[17].This group have

performed experiments on four search engines (Google, Y ahoo, Msn, and Ask). They

selected fourty queries from the list of Word Tracker [23], and categorized them into
four groups of queries: one word, two words, three words, and four words. Then, first
twenty results of each query were judged if they are relevant or not by two humans.
They have done the performance evaluation of image search engines in terms of
precision and normalized recall. Precision is defined as the percentage of relevant
documents to the search out of all retrieved documents. Recall is the percent of
relevant documents which are successfully retrieved [19].

They found that Google has the lowest number of relevant image items. The
performance of Google is also the lowest for one-word queries. On the other hand,
the average ratios of performance for Ask, Yahoo, and Msn are lower than that of
Google’s for two-word, three-word, and four-word queries. Google retrieved more
relevant items than other search engines when the number of query words increases.
In short, Google appears to be the best image search engine. In general the search
engines give a good result for one word queries, and performance is decreased when

the number of wordsin queriesincreasing. [17].

2.2.2 Studiesfor Improving the Efficiency of Search Engines

Lately, new software was devel oped by researchers to improve the performance of
search engines in finding multimedia files on the Internet. Some of those studies will

be mentioned here.

2.2.2.1 Flexible and Extensible Framework for Web Image Retrieval

A flexible and extensible framework for web image retrieval (FGWIM) was
presented in [8]. FGWIM works using high level semantics and low level visua
features of images through extracting information from files. It extracts information

in several levels and images are considered as a part of the web site. So, the images

should not be specified only by images themselves, but also with respect to the web
contents surrounding the images. In FGWIM, specia techniques and components
like relevant feedback mechanism and data mining for knowledge discovery is used.

As aresult, search engine performance for multimedia content retrieval is improved

[9].

2.2.2.2 Direct Searching of Video Content (DIVAYS)

A method for direct searching of video content without using metadata information
was presented in [11]. DIVAS work is based on the finger printing method and
MPEG. For video characterization, features of several classes are used. In the first
class there are features that make some sort of segmentation. Segmentation means
logical division of long video sequences into several smaller sub sequences. At the
first stage, extract key frames are used. Then, average of the colours of each | frame
are extracted. Then these properties are saved in database as finger print for that
video. After the user uploads the video file, DIVAS will extract its properties and
will try to find the same files in the database. This method can help people for
finding videos when they have a clip of that video. DIVAS can be considered as a

query by example search engine. [11].

2.2.2.3 SCENIQUE

SCENIQUE is a program for managing images by using visual features (e.g.,
colour and texture) [9]. SCENIQUE was proposed as a multifaceted image search
and browsing system. It uses both visual features and tags. SCENIQUE has tools to
manage the image collection. It, stories the feature vectors that are automatically
extracted from photos, and a Tag database which keeps the current tags in each tag

tree.

10

The Interface of SCENIQUE is asfollows:

1. Facets construction: Facets construction is supported by an intuitive
interface that requires the user to set the name of the dimension.

2. Photo annotation: For annotating an image, the user selects a photo
together with adimension of interest.

3. Searchfacilities: used to search the photo collection.

4. 3-D browsing: Photo collections can be explored by the user through an
intuitive browsing interface.

Using thistool gives one an opportunity to manage images more efficiently. [9].

2224 Lazy

In [2]. Lazy program is discussed. Lazy uses a Content-Based Image Retrieval
(CBIR) system that combines dynamic, user-driven search capabilities. Lazy system
improves query-by-sketch and query-by-example by using intelligent User Interface
Agents (UIAS). The UIAs use both neural networks and an expert reasoning system
to help with relevant feedback. In addition, a new CBIR evaluation metric was
presented. Lazy has four different types of user interfacesin CBIR systemsto resolve
image queries. keyword searching, category browsing query-by-example and query-
by-sketch. Also, there is a thumbnail browsing, option which works on creating
groups that contain all files related with it. For example, one can create a group
which contains al files related to cars. Then inside the cars group, you can create sup

groups with more detail like one group for each car brand [2].

2.2.2.5 Query by Example

A view- based web page retrieval system developed in [2, 3], enables a user to

search web pages using a “visual query”. This method, called “query by example”, is

11

more powerful when one wants to get files similar to what s/he already has. In this
technique, when a sample file is uploaded, search engines try to find similar files [2,

3.

2.2.2.6 Query by Sketch

Another method called “query by sketch” is developed to improve the
performance of the query by example method [2, 3]. Query by sketch searches web
pages using a visual query, and it mainly gives the user more options like using
drawing tools for describing exactly what is required. The system uses “query by
sketch” to give some information about what the user wants. Then it will evaluate the
similarity between web pages and the sketch, using an EM D-based method.

EMD is a matching algorithm to compute distances between the colour
histograms of two digital images. Sketch works also through drawing tools, and can

ask the user to draw what s’he wants [2, 3].

2.2.2.7 Hybrid Methods

One of the new mechanisms proposed uses a Hybrid method, which was
presented for effective searching through multimedia content (2D/3D image and
video) [7]. The search engine developed in this method uses three ways for executing
the queries. The ontology-based method, the content-based method, and the hybrid
method.

The ontology-based method uses the Meta data and the keywords. The content-
based method works by extracting the low level features from the multimedia files.
The hybrid method uses the other two methods during the query execution. One

project developed by this group is REACH, which works on hybrid retrieval. It was

12

http://en.wikipedia.org/wiki/Color_histogram
http://en.wikipedia.org/wiki/Color_histogram

tested on a museum database. Results show that a hybrid approach improves the

chance of getting the correct file by aquery [7].

2.2.2.8 Automatic Ranking of Websites

Ranking websites is basically ordering the websites in the list displayed as the
result of a search query [14]. Ranking websites affects the order of results. The
ranking of a website depends on the number of hits, the keywords, website Meta
Tags and the content of this website [11]. The website with a high rank will show at
the beginning of the list of results. However, this may be unfair with multimedia
files. The images on the Web are an important part of web contents. Both text and
image content can contain useful information that should be used in retrieving web
images. A group of researchers implemented an automatic ranking process, working
on integrating the keyword and visual features for web image retrieval. The web
image retrieval system named VAST (VisuAl &SemanTic image search) was
prepared as a result of their studies. In general, after users execute a query, the
algorithm works on the result of the query by checking it and ranking it depending on

the multimedia content. Then it displays the results for the user [14].

2.2.29 Key Block

“Key block” is a new approach termed for content- based image retrieval [15].
Key block is a generalization of the text-based information retrieval technology in
the image domain. In this approach, methods for extracting comprehensive
geographic image features are provided, which are based on the frequency and
correlation of representative blocks that are termed “key blocks” of the geographic
image database. Features are extracted information from the images in three stages.

The first stage generates code books that contain key blocks of different resolutions

13

by dividing images into smaller blocks. Then subsets are selected. Secondly, images
are encoded. Each image in the database will be decomposed into blocks, then for
each one of these blocks the closest entry in the code book will be found and an
index will be stored (each image is considered as a matrix). The third stage is image
representation and retrieval, it extracts comprehensive image features, based on

frequency of the key blocks within the image [15].

2.2.2.10 Document Clustering

Document clustering is a technique can be used to find similar web documents out
of the documents obtained by search engines. Web documents can be organized by
using clusters, which leads to a categorization of the data. Then we can find the
relevant web documents quickly. Clustering techniques can be divided into
hierarchical and partitional methods [18].

Hierarchical methods produce a sequence of nested partitions, Hierarchical
methods can be divided to two methods, agglomerative and divisive. Agglomerative
methods start with one-document clusters, and recursively combine the most suitable
clusters. Divisive methods start with one cluster that contains all the documents, and
recursively divides it into suitable clusters. Some Clustering algorithms that belong
to hierarchical methods, are HAC (Voorhees, 1986), STC (Zamir & Etzioni, 1998),
and DIVCLUS-T (Chavent, Lechevallier, & Briant, 2007) [18].

Partitional methods work by dividing the entire document collection to a specific
number of clusters. The main aim of Partitional methods is to achieve high intra-
cluster similarity. Some clustering algorithms that belong to partitional methods, are
K-means (MacQueen, 1967), SRE (Zha, He, Ding, Simon, & Gu, 2001), and k-

Attractors (Kanellopoulos, Antonellis, Tjortjis, & Makris, 2007) [18].

14

One clustering algorithm was presented in [18], called On-The-Fly Document
Clustering (OTFDC). It generates a set of clusters from other web search results.
This method finds similar clusters using different ways. One approach is checking if
the clusters have a semantic relation. Semantic relations can be one of the following
three:

a) Equivalence: the clusters are equivalent if they are at the same level. For
example, (“home”/ “house™).

b) Hierarchy: the first cluster can be considered as a group or set, and the
second cluster as a subset or part of the group. For example, (“fruit”/
“apple”) and (“vehicle” / “car”).

c) Association: in order to be associated, clusters should not be equivalent or
hierarchical. “The clusters are semantically associated to such an extent
that the relation between them should be made explicit. For example,
(“flour” / “wheat”)” [18].

The advantages of On-The-Fly Document Clustering:

() It can be applied to multilingual web documents.

(2) It improves the clustering performance of any search engine. (They
simulated the combined search engines.”Google-OTFDC” , “Yahoo-
OTFDC” , and “Vivisimo-OTFDC”).

(3) OTFDC does not need any predefined information on the distribution.

(Unsupervised learning)

15

(4) Clustering results are generated on the fly, and fitted into search engines.

This means OTFDC is a recursive algorithm, and it still generates candidate

clusters on thefly, in response to a user query. [18]

16

Chapter 3

ELIMINATION OF REPEATED OCCURRENCESIN

IMAGE SEARCHING

In this chapter, software design issues will be discussed, including the
programming environment, the database issues, basic algorithms, and the user

interface.

3.1 Programming Environment

In this section we are going to discuss the programming environment, in which,
the software for this thesis is developed .We have built the software using “VB.NET
(2008)”. VB.NET has many advantages, like support for graphic user interface, and
support for hash algorithms. VB.NET also has the ability to create client-server
applications.

As for the hardware, we used a server PC which has a core 2 duo CPU of 1.83
GHz clock frequency and 3.00 GB of RAM. We have installed the Windows 7 OS

environment on the server.

3.2 TheDatabase

We have created a images database as a part of our work. We used “SQL Server
(2008)” for creating the database. We saved images with their information in the

database.

17

We selected SQL Server for creating the database, as it supports VB.NET.
Secondly, SQL Server offers good security control for our database. Finally, saving

a huge number of images inside the database is possible.

3.3 Software M echanism

The software developed for comparison / deletion of images can be described in

three stages as follows:

3.3.1 Creating the Images Database

In creating the images database, our program extracts the properties of images.

Then, it saves the images with their properties in the database.

A 4

Extract image properties for next
image

A4

Save the image with its

properties back in the database

Last picture?

Figure 3.1: Creating the Images Database Flow Chart.

18

3.3.2 Computing the Hash Value

Firstly , the hash value comparison program will convert an image to an array of
bits. This array will be the input for the MD5 hashing algorithm which is discussed
detail in chapter 4. Sixteen unique bits will be the output of MD5 for each image.

Then the software will save this hash value in the database togather with the image.

<

\ 4

Get next picture
from the database

A 4

Convert theimage to
array of bits

A 4

Create the hash value using
MD5

I

Save the hash value and

the image in the database

Last picturein
the data base

Yes

Figure 3.2: Extracting the Hash Vaue Flow Chart.

19

3.3.3 Comparingthe Hash Value

The comparison program will get the hash value for the selected image from the
data base .and compare it with the hash values for repeating images. If repeating
images are founded, the program will keep the first image’s flag as one and set flags

for the repeating (i.e. second, third, etc.) imagesto zero.

<&

A 4

Get next unflaged image

A 4

Read the image’s hash value from
database and set the flage to one

\ 4

Compare with all other images setting
flages of repeating images to zero

l

Last picture in

No

database?

Yes

Figure 3.3: Comparing the Hash Vaue Flow Chart.

20

3.4 User Interface

The Software developed in this study has an administrator interface and a (client)
user interface. The Administrator Interface allows the system administrator to create
the database. Figure (3.4). Shows the administrator interface form for creating the

database.

i saeindh

Figure 3.4:Creating the Database.

21

L LD LT il

\“connecttodatabase \

Comection Srng: - Data Source=BR.0WSER SQLEAPRESS el Catalog=Eronser, nteted Securfy=True

| sepesndise ﬂ
v L, , .
CeectFolder: d:pics Bronce,.. ‘ LR B
tmu ’ “ ,b Ty
|i i\

tpdatenewermforma i /

sla Lk vilhmds H alurlwukmthHAElZ l l sl L work il A 384 ‘ aLuerurkwthHﬁZﬁﬁ ‘

A [[T /13 }
l ‘ etart working bit vy [_hashindabbage_]
e a5 ﬂ' Tnesmula el 1%

‘W A 0 aiar W wﬂhﬁHHG |

Figure 3.5: Extracting Hash Value.

The second form of Administrator Interface allows the system administrator to
compare the images using al hash algorithms mentioned in our thesis (MD5,
SHAS512, SHA?256), or bit ways comparison can be used. Figure 3.7 shows the

administrator second form.

22

o sener ‘-E

\ “connecttodatabase \

Comection Sting ;- Dat Source=SRONSER SQLEYPRESS; it Cataog=Rrowser eyt Securty=True

| e pidersidattase | / ﬂ

\ AR | -
SelectFolder: d:pic2S Browse...

'_M=.'w a-‘- :. .' | : i
browser - ;‘[i Y
| . f Ilr/!'* " 1

b
'..\
st hrknGS| | o et o - Jetrtwrkwith A 50 ‘ (1Y
X || F \
un
- 3
WY =

Figure 3.6: Specification of number of clients.

The system administrator specify how copies of the client working. If copies are
to be started, the software will divide the number of images between the working

copies. Figure.20 shows the related interface.

23

The (Client) User Interface
The client uses this form for saving the client information, to read information

from the database and to start comparing the images.

rug client R W — [EM1

j@? [connect to data base

Comnection Sing Data Source =BROVISER \SQLENPRESS; Inifial Catalog=Browser; Integrated Security=True

-

‘ save dientinfo ‘ | read info ‘ | start work with hash

‘ update dient info ‘ ‘ start working ‘

Figure 3.7: Client Form.

24

Chapter 4

PERFORMANCE STUDIES

4.1 Introduction

We have conducted some experiments to test the performance of image
comparison using different techniques. This chapter outlines the details and the

results of performance studies.

4.2 Bit-Wise Comparisons

At the beginning, we have selected the” bit- wise” comparison technique to
compare images. Bit- wise comparison compares all the pixels of two images one by
one. If all pixels in both images are the same, only one of those images will be
considered in later searches.

To see the effect of using bit-wise comparison, we have performed some
experiments. The first experiment was conducted on an artificial database, created in
two different ways:

In the first approach, the images in the database are created by taking copies of
seven “base images”. Each one of those base images is then copied many times in
order to get a specific total number of images in the database.

In second approach, the images are created by using randomly chosen images
from internet search engines. Then, the same copying process as in the first group

was applied.

25

4.2.1 Sequential Execution

Sequential execution means only one copy of the program works at a given time.
The software will take one image and compare it with al images in the database
sequentially .In case the next image from the database is the same as the
“comparator”, it deletes thisimage. Table 4.1 and Table 4.2 give the results of the bit
wise comparison technique for two different database construction approaches.

Table 4.1.Results of Sequential Comparison / Deletion for Base Image.

Number of imagesin | *of deletedimages | Remaining Time
theoriginal da?gbase after executingthe | imagesinthe sequential
° algorithm database | work(seconds)
25 18 7 19
50 43 7 40
100 93 7 83
500 493 7 475
500 -
400 -
300 -
o
@ 200 -
H
£ 100 -
0
25 50 100 200 500
Number of pictures

Figure 4.1: Time versus Number of Images for Sequential Comparison / Deletion for
Base Image.

Table 4.2.Results of Sequential Comparison / Deletion for Random Image.

. . #of deleted Remaining Time
Number of imagesin the imagesafter € | imagesin the sequential
original data base the algorithm database work
(seconds)
25 9 16 22
50 27 23 82
100 71 29 164
500 291 209 850
900 -
800 -
700 -
600 -
500 -
¢ 400 -
< 300 -
,§ 200 -
100 -
. —
25 50 100 500
Number of pictures

Figure 4.2: Time Verses Number of Images Sequential Comparison /Deletion for

Random Image.

From these results, it is clear that bit wise comparison needs a long time to

compare even 500 images. In real life, an image database will contain millions of

images, so the efficiency of bit-wise comparison technique will be very low.

4.2.2 Parallel execution: Client - Server Architecture

After the first experiment, we have started to think about a more efficient way to
do these comparisons. One idea might be using a parallel mechanism. We prepared a

software module that uses the client- server architecture. This client- server system

works on the same database in parallel.

We performed the second experiment to see the efficiency of this client — server
method. The results of our second experiment are given in Table 3 and Table 4. The
first group of images in our second experiment is the same group of images as the
first experiment. The second group of images is the same as the second group of
images in our first experiment.

After preparing the database, we divided it into two parts. One part is checked by
the server, and the other is checked by the client. The results show the improvement
of using a parallel search, which means the server and the client will work together.
Speed- up is obtained by dividing the execution time for the sequential case, by the
execution for the client-server method. Efficiency is obtained by dividing the speed
up by the number of working processors.

Table 4.3.Results of the Client — Server Method for Base Images.

Time
The
number
number of Remaining | paralle [Sequential Speedup Efficiency
. . of . . Work work
imagesin imagesin %
deleted =
the original database (second) | - (second) %:I P
images —E
data base T, T,
25 18 7 10 19 19 0.90
50 43 7 23 40 1.73 0.865
100 93 7 50 83 1.66 0.83
500 493 7 300 475 158 0.79
1000 993 7 760 1046 155 0.795

28

2 "---.-*’----1’----1’..._-.__*’
& 15 -
)
9
o 1 -
w
0.5 -
0
25 50 100 500 1000
Number of pictures
Figure 4.3: Speed-Up versus Number of Images (Second Experiment).
0.95 ~
0.9 -
> 0.85 -
e
.E 08 I
= u
& 0.75
w 0.7

25 50 100 500 1000

Number of pictures

Figure 4.4: Efficiency versus Number of Images for the Second Experiment.

29

Table 4.4.Result of the Client —Server Method for Random Images.

Time
The
number
number of Remaining paralld [Sequential Speedup Efficiency
. . of . . Work work
imagesin imagesin %
deleted =
d
the original database (second) | - (second) %:I P
images T
data base T, T,
25 9 16 15 22 15 0.733
50 27 23 55 82 1.49 0.735
100 71 29 113 164 1.46 0.730
500 291 209 579 850 14 0.734
1.52 -
15 -
a 148 -
=] 1.146 -
o 1.44 -
& 142 -
1.4 -
1.38 -
136 -
1.34
25 50 100 500

Number of pictures

Figure 4.5: Speed- Up versus Number of Images for the Second Experiment.

Efficiency

0.95

.85 -

0.9

50

Number of pictures

100

500

Figure 4.6: Efficiency versus Number of Images for the Second Experiment.

In Tables 4.3 and 4.4, we observe a slight improvement in our parallel method.
Nevertheless, it still needs along time to compare the images in the database.
Considering the inefficiency observed in both methods, we decided to use a hash

technique for comparing images.

4.3 Hash Comparison

A hash algorithm is a cryptography function that takes any information as input
and converts it to a numeric code. The outputs of these algorithms are unique for
each file, and it is like a fingerprint. Using hash algorithms, we can compare files
with less amount of data. Each image has a unique hash value, we can compare this
hash value for images. [12, 13].

Hash algorithm types:
Various hash algorithms were considered for the study. Those are:

a) SHA: The Secure Hash Algorithm (SHA) was developed by NIST and is
specified in the Secure Hash Standard (SHS, FIPS 180). SHA-1 is a
revision to this version and was published in 1994. It is also described in
the ANSI X9.30 (part 2) standard. SHA-1 produces a 160-bit (20 byte)
message digest. [12].

b) MD5: MD5 was developed by Professor Ronald L. Rivest in 1994. Its 128
bit (16 byte) message digest makes it a faster implementation than SHA-1.
[12].

The following table shows some properties for different versions of SHA and

MD5:

31

Table 4.5.Comparison of SHA and MD5.

properties SHA 256 SHA 384 SHA 512 MD5
Message size/bit < o84 < 0128 < D128 o

Block sizefbit 512 1024 1024 512
Number of steps/bit 128 192 256 64

As stated before, the outputs of hash algorithms are unique for each file. It is like

afingerprint. This advantage gives us a chance to use hash algorithms for comparing

the images to check if they are the same or not. We conducted a number of

experiments to see the effect of various hashing technique. Table4.6 outlines a

comparison of execution times for different hash algorithms.

Table 4.6.Execution Times for Different Hash Algorithms.

Number of images _
in the original Time(seconds)
data base SHA 256 SHA 384 SHA 512 MD5
25 19 o5 6 7
50 27 33 35 1
200 68 74 75 55
500 157 163 170 145
180
160
140 -
S 120 -
», 100 A —#— SHA 512
GE) 0 | SHA 384
= 60 -
2 - —>—SHA 256
28 ! Ad: —=¥— MD5

25

50

200

Number of Images

500

Figure 4.7: Execution Time for Different Hash Algorithms.

Looking at the search time results in Table 4.6, we decided to chose MDS5,
because of its advantages: the message size can be infinite and, the hash value is

small in size (16 bytes) compared to other hash algorithms.

4.4 Comparison of Hash Algorithm and Bit-wise techniques

In this section, we outline a comparison between the bit- wise comparison and

hash algorithms methods. Hash agorithms are more efficient than a bit wise
comparison. Using hash algorithms, we need to compare a limited number of bits
only, but in using bit- wise comparison, we compare the number of pixels in width
multiplied by number of pixels in height. Using hash algorithms, we can find only
the images which are 100% similar to each other, but using bit wise comparison, we
can find images with any percentage of similarity.
For instance, we can use the bit wise comparison program to find the images which
are similar to given image with a percentage of similarity 50% or more. Table 4.7.
Comparison of the execution time results of hash algorithms and bit wise
comparison.

Table 4.7.Execution Time of Hash Algorithms and Bit Wise Comparison Technique.

Time
Number of imagein the original
data base ham(lfl/:gDOSr)ithm bit wise comparison
(seconds) (seconds)
25 7 19
50 15 40
200 56 83
500 145 475

33

Comparison of bit wise and hashing approaches shows that the hashing technique

is much faster than the bit wise comparison technique, especially, for large numbers

of images in the database.

500 ~
450
400
350
300 -+
250 -+
200 -+
150 o
100 4
50 A

Time(sec)

Figure 4.8: Hash Algorithms versus Bit Wise Technique. (Execution Time).

—&— Hash algorithms

—i— Bit Wise Comparison

—

—

25

50

200

Number of Images

45 Paralld Work with Hash Algorithm

500

We performed another experiment in using the hash algorithm technique. In this

experiment, we used more than one client. Therefore, we can divide the work on

different clients, and as a result we will save time. The execution times for 4 and 8

clientsare givenin Table 4.8.

Table 4.8.Execution Time for 4 and 8 Clients.

. Numbgr 0:] Execution Time- Execution Time-
Imagesinthe |\ g four dlients | Using eight dlients
original data
(seconds) (seconds)

base

25 7 7

50 17 15

100 22 18

200 26 20

500 33 23

34

35 4
30 —&— (Using four clients) —— Using eight client
25
20

15 A

Time(Seconds)

10

25 50 100 200

Number of Images

500

Figure 4.9: Execution Time Versus Number of Imagesfor 4, 8 clients.

We then extend this experiment for a database with up to 3000 images, and we

used 8, 12 and 16 clients .Table 4.9 gives the results of this experiment.

Table 4.9.Execution Time Versus Number of Imagesfor 8, 12, 16 Clients.

_ _ Time Time Time
Number of imageinthe | ysingeight client Using twelve client Using sixteen client
data base (second) (second) (second)
500 23 13 10
1000 110 90 135
1500 210 180 210
2000 400 360 300
2500 660 530 480
3000 1120 1020 840
1200
—o—Time —#—Time Time
1000 Using eight client Using twelve client Using sixteen client
(second) (second) (second)
800 -
E 600 -
'_
400 A
200 - 1
. /
500 1000 1500 2000 2500 3000

Number of Images

Figure 4.10: Execution Time Versus. Number of Imagesfor 8, 12, 16 Clients.

35

4.6 Saving the Hash Valuesin the Database

To improve the efficiency of the comparison software, during the creation of the
images database, we compute the hash value for each image, and save it in the
database. The following experiment outlines the time required using this technique.
This is like an overhead at the beginning, but it saves time during the comparison
reguests that come later.

Table 4.10.Time for Saving the Hash Values in Database.

Time spent to
Number of Imagein The Database savethe hash valuesin database
(second)
500 25
1000 100
1500 470
2000 600
2500 723
3000 1003

4.7 Mechanism of Dividing the Work between Parallel Copies

The server administrator decides on the number of copies. Then, the server
divides the images between the working copies evenly. Then, each client will start
comparing each image of his part with all other images in the database. (Each image
will exclude itself). The client marks only one copy of repeating files, by setting the

flag field to zero for repeating images.

36

working Images Compared with Images table
copy table 1
Copy(1) e 2
. 3
3 T 4
: A S
z .
I L
i+1 - f_;
i+ :
i+3 i3
i+4 i+
i+5 AN e N
]]
i1 i1
j_:2 \\]_2
r
. n-2
n-2 1
n-1
n n

Figure 4.11: Processing of Images.

37

If we have (n) images in the database, using the sequential technique, the software

should compare each image with (n-1) other images.

The total working time of software can be computed as follows:

T (sequential) = (image (1)* n-1+image (2)* n-1+image (3)* n-1+---+---

+image (n)*n-1) D

T (sequential) = n* (n-1) 2

Where n=total number of images. And i= index for each image.
(Image (1)* n-1= means the first image is compared with all other images).

On the other hand, if we use the parallel technique, the total time software works
can be computed as follows:

Time for first copy = (image (1)* n-1+ image (2)* n-1+ image (3)* N-1+-----+----+--
+ image (n/c)*n-1) 3

Time for second copy = (image (n/c+1)*n-1+ image (n/c+2)*n-1+ image
(n/c+1)* n-1+---+---+ image (n/c + n/c)*n-1) 4
Therefore, the total time of parallel execution timeis:

T (parallel) = n*n/c (5)

Where n=total number of images. c=total number of working copies. And i=
index for each image.
Image (1)* n-1= means image (1) is compared with the other images.
It can be shown that the parallel technique is much more efficient.
Let us assume that number of images in our data base is 500.
a) With the Sequentia technique:

T (sequential) == n * (n-1)=500* (500-1)=249500 Steps (comparison).

38

In our experiment, after running the software using 500 images in the database. It
takes 145 second to finish the execution.

b) With the Parallel technique: (assuming 16 copies)

n=500. c=16.

T (parallel) =n* n/c=500* 500/16=15625 Steps (comparison).

After running the software using 500 images. It takes 10 seconds to finish the
execution.

If we divide the sequential time by the number of working copies, the theoretical
expected parallel execution time is = 145/16=9.06. In the experiment, it takes 10
seconds to finish using 16 copies.

The reasons of this extratime are:

1) The server needs time to count the number of images the database.

2) Communication time between the server and the client’s .We need time to
divide the images between the clients. This is added to the time needed for running
the copies.

To make the proposed method more efficient, we allow many copies of our
software to work in parallel. The number of images in the database is divided evenly
between the parallel copies. The database administrator decides on how many copies
should be run depending on the total number of images in the database (The Hash
Vauesis saved in the Database). The results of this experiment are listed below, in

Table4.11.

39

Table 4.11.Execution Time Versus. Number of Imagesfor 4, 8, 12, 16 Clients, Using
Multiple Copies of the Program.

Number of Imagein FoquJSé:n(?pies Using Eight Copies e T\Evsz;l)e copies o ré%zieen
The Database (s50) (s0) (s50)
500 5 4 3 1
1000 26 16 13 10
1500 120 90 57 25
2000 150 109 66 33
2500 180 140 100 60
3000 270 220 150 90
300
250 1 —{@i— using sixteen
. 200 A copies
% 150 4 usin'g twelve
£ copies
= 100 4 —¢=using eight copies
50 -
0 B —¥— using four copies
500 1000 1500 2000 2500 3000

Number of Images

Figure 4.12: Execution Time Versus. Number of Imagesfor 4, 8, 12, 16 Clients,

Using Copies of the Program.

Figure 4.13 shows how search time is improved for a Windows 7 environment on

a server PC which has core 2 duo CPU 1.83 GHz and 3.00 GB RAM. The

improvement of using multiple copies is more obvious when the database has a large

number of images.

40

5000
4500
4000
3500
3000
2500
2000
1500
1000

500

Time(sec)

=——2500 limages —li—3000 limages

4 8

Number of working copies

12 16

Figure 4.13: Execution Time Versus. Number of Working Copies for 2500 and 3000

Images.

4.8 Comparing dynamically way versus. Saving the Hash Values

earlier in the Database

The aim of the next experiment was to see how saving hash valuesin the database

earlier effects the time spent. Table 4.12 and Figure.4.14. Outlines the comparison

between dynamic way (computing hash values when required) versus. Saving the

hash values earlier in database.

Table 4.12.Dynamic Way Versus. Saving the Hash Valuesin Database.

Number of imagein Execution Time Execution Time
the data base Using sixteen client getting the Using sixteen client saving the
hash valuesin dynamic way hash valuesin database
(seconds) (seconds)

500 10 1

1000 135 10
1500 210 25
2000 300 33
2500 480 60
3000 840 90

41

900

800 -
700 | +Time Usir!g
sixteen client
~ 600 - saving the hash
8 values in database
500 -
L (second)

1}
£ 400 - Time Using

sixteen client

= 300 -
getting the hash
200 values in dynamic
100 way (second)
0 —FF

500 1000 1500 2000 2500 3000
Number of Images

Figure 4.14: Dynamic Way Versus. Saving the Hash Valuesin Database.

Figure 4.14 Show that saving the hash values in database, lead to decrease the
used time for comparing the images. It’s clear that saving the hash values in
database more efficient than the dynamic way .The improvement is more obvious

when the database has a large number of images.

42

Chapter 5

STUDIESON FINDING SIMILAR IMAGES

5.1Introduction

The software developed discussed in the previous chapter is based on comparing
images for exact match. Another approach is query by example, which attempt to
find images similar to the one given by the user. To observe the effects of this
approach, we have developed a second module which employs a query by example
search technique.

In thismodule, a different way to get images through the Internet is proposed. The
current popular way to find images is by writing a keyword in the query text box.
The search engine will then try to get thisimage for the user. However, sometimes it
is hard to explain by typing just keywords what we actually want. We may have an
image and we may want to get images similar to that one. Using the query by

example module, one can upload aimage and find similar images on the Internet.

5.2Query by Example M echanism

When a user wantsto find images similar to what he/she has, he/she will upload
the sample image and conduct a search (Figure 2). The software will analyze this
image using a specific algorithm, and then check all images in the database for
similarity. After finding similar images in the database, the program displays images

found and the related information.

43

selrtvode - Simagasidsg] Howe .

The smierty szt | 100% A

szarch
7 7 7 7 ¢
i i i f f
¥ ¥ . ¥
f f [r f

Fael |Paged [:ges [Fagel [Pages

F@.p{&;—“-.-'!arcwserw.mnirm 'M;aec.cao a0, :Eﬂ_(,.@.ﬂgmq
Figure 5.1: Query by Example Form.

Aswe know there are millions of images on the Internet, so we give the user more
options to specify what he wants exactly. For this purpose, the user interface has an

options entity form (Figure 5.1).

44

Upload picture
[User inputs)

l

Process the picture for
properties

¥

Get next image from
database

Last picture
in databasze?

Mo . Proceed to next
L picture

Picture
zimilar?

Show the wuser
results

Figure 5.2: Query by Example Module Flow Chart.

45

e gfiesene I BT ., 20 WL TE W -oEs

Shrt R GlimagesiCopy (2) of 45,309 Browse...

The sivdarty percent The siniarty parcant B

Size - Eticntion « Color v

SEaCh

Figure 5.3: Query by Example with Options Form.

We give the user a possibility to select the size of the image if he already knows
what exactly he wants. Then, the user selects the file type extension. For instance, the
user selects *.ico if he wants to get icon images. Then he selects the color
combination, if he wishes. All the previous options help us to get the correct images
and minimize the number of searches.

The module we developed was tested using an artificial database, created by

considering randomly chosen images from Internet search engines. Inside the

46

database we have divided the images into a group of tables depending on file
extensions. For example, one table contains all images with execution (*.jpg),

another one, contains all images with extensions (*.gif).

5.3 Methodology Developed For | mplementing the Query by

Example Techniques

Query by example software works using two different techniques to compare
images. The two algorithms are:

1. Bit- wise comparison.

2. Exhaustive Template Matching.

The first technique is already discussed in Chapter Three, but we shall summarize

it again, below in section 5.3.1.

5.3.1 Bit- Wise Comparison

Bit wise comparison compares all pixels one by one. Although it is an inefficient
technique for comparison, its advantage is that, bit wise comparison can find certain
given the percent of similarity between the compared images. After implementing
this technique, we have conducted some experiments to find the efficiency of our
module. Table5.1 shows us the execution time using databases with 25, 100, 200 and

500 images.

47

Table 5.1.Bit Wise Comparison for Similarity Using 25,100,200,500 Images.

Number of images | Number of images | Number of images | Number of images
in database(25) in database(100) in database(200) in database(500)
ercent
P : Number Number Number Number
o Time of Time of Time of Time of
smilarity | (seconds) | similar | (seconds) | similar | (seconds) | similar | (seconds) | similar
images images images images
100% 1 1 4 1 8 1 15 5
75% 1 1 4 4 8 9 18 15
50% 1 7 5 33 8 39 19 56
25% 1 7 5 35 8 55 22 63
10% 1 9 6 55 8 78 24 111
1% 1 25 6 100 9 200 27 497
30 -+
—— Number of
=] =,
g] / .Numberof
g database(100
0 | |
5 database(200)
0 it ! L il il —— Number of

100% 75%

50% 25%

Percent of similarity

10% 1%

images in
database(500)

5.3.2 Exhaustive Template M atching

Figure 5.4: Bit Wise Comparison for Similarity Using 25,100,200,500 Images.

“Exhaustive template matching is a technique in digital image processing for

finding small parts of an image which match a template image”[21]. The images

compared must have the same size for using the exhaustive template matching

48

technique. Exhaustive template matching is similar to bit -wise comparison but it is

more powerful. Using this technique, we can also find any percent of similarity

between two images compared. Exhaustive template matching was developed as a

part of AForgeNET. “AForge.NET is a framework designed for developers and

researchers in the fields of Computer Vision and Artificial Intelligence - image

processing, neural networks, genetic algorithms, machine learning, robotics, etc”

[22]. We implemented exhaustive template matching for finding similarities between

images. The following table and diagram outlines the performance of similarity

comparison using exhaustive template matching.

Table 5.2.Exhaustive Template Matching Using 25,100,200,500 Images.

Number of images

Number of images

Number of images

Number of images

in database(25) in database(100) in database(200) in database(500)
ercent
P ¢ Number Number Number Number
o Time of Time of Time of Time of
similarity | seconds) | founded | (seconds) | founded | (seconds) | founded | (seconds) | founded
images images images images
100% 1 1 6 1 8 1 10 5
75% 1 1 7 8 8 15 12 15
50% 1 7 7 27 8 45 13 65
25% 1 7 7 31 9 83 13 101
10% 1 9 8 51 9 110 15 201
1% 1 25 8 100 9 200 15 350

49

30 4

25

20 A

15 4

Time(sec)

10 4

—#— Number of
// images in

Percent of similarity

e He—
0 filk il il «
100% 75% 50% 25% 10% 1%

database(25)

Number of
images in
database(100)

Number of
images in
database(200)

Number of
images in
database(500)

Figure 5.5: Exhaustive Template Matching Using 25,100,200,500 Images.

5.3.3 Comparison between Exhaustive Template M atching and

Bit- Wise Comparison Techniques

In order to see which method is more efficient, we have compared the

performance of exhaustive template matching and bit- wise comparison methods.

The results are shown in table 5.3 and Figure5.6, below.

Table 5.3.Comparing Between Exhaustive Template Matching and Bit Wise

Comparison.
Time(seconds)

Number
of image .

inthe Exhaustive f[empl ae Bit wise comparison
data base matching

25 1 1

100 5 4

200 7 8

500 10 15

50

16

14

12

10

Time(sec)
[oc]

—— Exhaustive Template Matching

~#— Bit wise comparison

25 100 200 500

Number of Images

Figure 5.6: Comparing Exhaustive Template Matching and Bit Wise Comparison for

finding similarity.

51

Chapter 6

CONCLUSION

The software developed in this work improves the efficiency of image searching
by eliminating repeated occurrences of images. The output of any query will not
contain repeating images, so the user does not have to go through a long list of
Images with repeating occurrences of the same image many times.

This software can work with any search engine. It can also work periodically on
image databases. The software can create the images database. After connecting the
software to the database, the software compares the hash values for the compared
images, to finds repetitions, and marks only one copy of repeating files

It allows multiple copiesto be run in parallel. After specify how copy of the client
working. The software will divide the number of images between the working
copies. Consequently, it can improve search times for images.

To make the software more efficient the administrator can make Client Interface
works automatically after the administrator specify how copy of the client working.
Client interface gets the required information from the database. Then, it compares
the hash value with the hash values of images in the database. In this case there is no
user will use the client form.

We have built two versions of our software. The first version uses paralel
computers. In the first version, the software administrator will be saved and run on
the server and each copy of the client software will be saved and run on different

computers.

52

The second version uses paralel processes. In the second version the software
administrator will be saved on the server and all running copy of the client software
will be saved on the server.

The advantage of using the first version, the work will be divided between the
working computers. In this case it is not necessary to use computers with high
specifications. The disadvantage of using the first version, we need to install
“VB.NET” and “SQLSERVER” on each working computer. Furthermore, the
communication between the computers will lead to spend extra time, which will
decrease the speed-up of the software.

The advantage of using the second version, we are using one computer as server
and a number of clients at the same time. We need to install “VB.NET” and
“SQLSERVER” on one computer only. Furthermore, the communication time
between the working copies of the software will be less than the computation time in
comparison to the first version. Hence, the peed-up is increased. The disadvantage of
using the second version, we need a computer with high properties.

The software can process a very large number of images in the database. For
example, the expected elapsed time to process a million of images in our database is
500 minute (8.2 hours) by using a server PC with core 2 duo CPU of 1.83 GHz
frequency and 3.00 GB of RAM. In the case of using a high quality server, the
elapsed time will be reduced

It is clear that, the speed-up will be increased if the number of working copy is
increased. But, if we run a number of working copies greater than the required copies
to compare the images in our database; the speed-up will be decreased, due to

exchanging information between the server and the working copies.

53

We have planned to make the software multipurpose. The second module
implements a query by example technique. In this module, a different way to get
images through the internet is proposed .Query by example module works using
three different techniques to compare the images.

Those three algorithms are: Bit wise comparison, hash comparison and exhaustive
template matching. It is also possible to find images similar to the one user upload.
Query by example software improves search efficiency.

Currently, the program works for the comparison of image files. We are planning
to improve to use it for the audio and video files. In this case, the software will work
with a multimedia database. So, the output of any multimedia query will not contain
repeating files.

As we mentioned before, the second module implements a query by example
technique. We are planning to improve query by example, by giving the user more
option. Furthermore, we will try to use parallel way during query by example
process.

Lately, content retrieval and object detection improved. We believe that using
content retrieval and object detection in creating multimedia database increase the
performance of search engines and makes getting wanted multimedia files easier.

Document clustering used to find similar web documents, and organize the web
document. In our opinion, document clustering techniques have a good chance to

improve the current mechanism.

54

REFERENCES

[1] Bernard J. Jansen, “Searching for digital images on the web”, Volume 3, Issue 4,

Page(s): 249 - 254.

[2] Vermilyer, R , “ Intelligent User Interface Agents in Content-Based Image
Retrieval ”,SoutheastCon, 2006. Proceedings of the IEEE, Publication Date:

March 31 2005-April 2 2005 , Page(s): 136-142.

[3] Watai, Y. Yamasaki, T. Aizawa, K , “View-Based Web Page Retrieval using
Interactive Sketch Query”, Image Processing, 2007. ICIP 2007. |EEE
International Conference on , Volume 6, Sept. 16 2007-Oct. 19 2007 Page(s):

357 - 360.

[4] Edward Y. Chang, “Web-Scale Multimedia Data Management: Challenges and
Remedies ”, Image Analysis and Processing Workshops, 2007. ICIAPW 2007.
14th International Conference on 10-13 Sept. 2007 Digital Object Identifier

10.1109/ICIAPW.2007.47, Page(s):3 - 8.

[5] Mauricio Marin, Veronica Gil-Costa, and Carolina Bonacic, “ A Search Engine
Index for Multimedia Content”, in 14th European Conference on Paralel and

Distributed Computing, 2008, Page(s): 866-875.

[6] Amanda Spink, Dian Tjondronegoro, “Web search engine multimedia
functionality”, Pergamon Press, Inc. Tarrytown, NY, USA, 2008, 1SSN:0306-

4573,2008.

55

[7] Charalampos Doulaverakis, Evangelia Nidelkou, Anastasios Gounaris, Yiannis
Kompatsiaris, “A Hybrid Ontology and Content-Based Search Engine For
Multimedia Retrieval ”,CiteSeerX -Scientific Literature Digital Library and

Search Engine (United States), 2008.

[8] Hai Jin, Ruhan He,Zhensong Liao, Wenbing Tao, Qin Zhang , “A Flexible and
Extensible Framework for Web Image Retrieval System”,Telecommunications,
2006. AICT-ICIW '06. International Conference on Internet and Web
Applications and ServicesAdvanced International Conference on,19-25 Feb.

2006 Page(s):193 — 193.

[9] I. Bartolini , “A Multi-faceted Browsing Interface for Digital Photo Collections
Export 7, Content-Based Multimedia Indexing, 2009. CBMI '09. Seventh
International Workshop on In Content-Based Multimedia Indexing, 2009. CBMI

'09. Seventh International Workshop on (2009), Page(s): 237-242.

[10] Ruhan He, Kaiming Liu, Naixue Xiong, Yong Zhu , “Garment Image Retrieval
on the Web with Ubiquitous Camera-Phone”, Proceedings of the 2008 IEEE
Asia-Pacific Services Computing Conference, Year of Publication: 2008 |,

Page(s): 1584-1589 .

[11] Doumenis, G. Papastefanos, S. Mateevitsi, V. Andritsopoulos, F.
Achilleopoulos, N. Mikhalev, A.V, “Video index and search services based on
content identification features” ,Broadband Multimedia Systems and
Broadcasting, 2008 IEEE International Symposium on March 31 2008-April 2

2008, Page(s):1 - 4 .

56

[12] Abbas Cheddad, Joan Condell, Kevin Curran ,Paul McKevitt , “ A hash-based
image encryption algorithm”, Optics Communications, Volume 283, Issue 6, 15

March 2010, Page(s): 879-893.

[13] William Stallings, “Cryptography and Network Security: Principles and

Practice”, 3/E, Publisher: Prentice Hall Copyright: 2003, 681 pp.

[14] Yong Zhu, Naixue Xiong, Jong Hyuk Park and Ruhan He , “ A Web Image
Retrieval Re-ranking Scheme with Cross-Modal Association Rules”,
International Symposium on Ubiquitous Multimedia Computing, Issue 13,15 Oct.

2008, Page(s): 83 - 86.

[15] Aidong Zhang and Lei Zhu, “ Metadata Generation and Retrieval of Geographic

Imagery”,National Conference for Digital Government Research,2001,

Page(s):21 23.

[16] Keon Stevenson and Clement Leung, “ Comparative Evaluation of Web Image
Search Engines for Multimedia Applications”, Multimedia and Expo, 2005.

ICME 2005. |IEEE International Conference, Issue 6-8 July 2005 , Page(s): 4.

[17] Fuat Ulug, Erkan Emirzade, Yiltan Bitirim , “The Impact of Number of Query
Words on Image Search Engines”, Second International Conference on Internet
and Web Applications and Services (ICIW'07), Issue 13,19 May 2007, Page(s):

50 - 50.

57

[18] Lin-Chih Chen, “Using a new relational concept to improve the clustering
performance of search engines’, Information Processing and Management,

(2010).

[19] Y.Y. Yao, “ Measuring Retrieval Effectiveness Based on User Preference of
Documents”, American Society for Information Science , Volume 46, Issue 2,

March 1995 , Page(s): 81-160.

[20] YOSSI RUBNER, CARLO TOMASI AND LEONIDAS J. GUIBAS, “ The
Earth Mover’s Distance as a Metric for Image Retrieval”, International Journal of

Computer Vision, Issue 2, Nov. 2000, Volume 40, Page(s): 2000.

[21] Template matching, “http://www.answers.com/topic/template-matching”, last

visited (15/11/2010).

[22] AForge.NET Framework, “http://www.aforgenet.com/framework/features”, |ast

visited (22/11/2010).

[23] Word Tracker, “http://www.wordtracker.com”, last visited (15/12/2010).

58

http://portal.acm.org/citation.cfm?id=J821&picked=prox&cfid=4238919&cftoken=32269769

APPENDICES

Appendix A: The source code of the module.

'connect to the database
Private Sub connectdb _Cick(ByVal sender As
System (bj ect, ByVal e As System Event Args) Handl es
connectdb. dick
Try

t xt ConnectionString. Text = "Data
Sour ce=EM\ SQLEXPRESS; I niti al
Cat al og=I nagesStore; I ntegrated Security=True"

Dim CN As Sgl Connection = New
Sqgl Connecti on(txt Connecti onString. Text)

"Initialize SQ. adapter.
Di m ADAP As Sql Dat aAdapter = New
Sql Dat aAdapter ("Sel ect * from | nagesSt ore ORDER BY

i magei d", CN)

"Initialize Dataset.
Dim DS As Dat aSet = New Dat aSet ()

"Fill dataset with I nmagesStore table.
ADAP. Fil | (DS, "l nmagesStore")

"Fill Gid wth dataset.
dat aG i dVi ewl. Dat aSour ce =
DS. Tabl es("1 magesSt ore")
Catch ex As Exception
MessageBox. Show(ex. ToString())
End Try
End Sub

59

“spicefy the i nages | ocation

Private Sub cmdBrowse Click(ByVal sender As
System Obj ect, ByVal e As System Event Args) Handl es
cndBr owse. C i ck
Fol der Browser Di al ogl. ShowDi al og()
t xt | magePat h. Text
=Fol der Browser Di al ogl. Sel ect edPat h. ToStri ng()
End Sub

Private Sub savepicters_Cick(ByVal sender As
System (bj ect, ByVal e As System Event Args) Handl es
savepi cters. dick

DmFiles As String() =
Directory. Get Fil es(Fol der Browser Di al ogl. Sel ect edPat h. ToSt
ring())

DmDrs As String() =
Directory. Get Directori es(Fol der Browser Di al ogl. Sel ect edPat
h. ToString())

Dim Fil ename As String

For Each Filenane In Files

If Filenane. Contains(".jpg") O
Fil ename. Contains(".gif") O Filenanme. Contains(".JPG") O
Fi | enane. Contains(".d F') O Filenane. Contains(". bnp")
Then

' MessageBox. Show(Fi | enane)
Try
i mageDat a = ReadAl | Byt es(Fi | enane)
pi ct urehash()
"Initialize SQL Server Connection
Dim CN As Sgl Connection = New
Sql Connecti on(txt ConnectionString. Text)
"Set insert query
Dmqgry As String = "insert into
| mgesStore (Oigi nal Pat h, pi cturehash)
val ues(@i gi nal Pat h, @i ct urehash)"
"Initialize Sql Command object for
I nsert.
Di m Sgl Com As Sql Command = New
Sql Command(qry, CN)
"We are passing Oiginal Inmage Path
and | mage byte data as sqgl paraneters.
Sqgl Com Par amet er s. Add(New
Sql Paraneter (" @i gi nal Pat h", CType(Fil enane, Object)))

60

' Sgl Com Par anet er s. Add(New

Sql Paranet er (" @ mageDat a", CType(i nageData, Cbject)))
Sql Com Par anet er s. Add(New

Sql Par anet er (" @i cturehash", all))
" Open connection and execute insert

query.

If CN. State = ConnectionState. Cl osed Then
CN. Open()

End |f

Sql Com Execut eNonQuer y()
If CN. State = ConnectionState. Qpen

Then
CN. d ose()
End If
"Close formand return to list or
I mages.
Me. d ose()
Catch ex As Exception
MessageBox. Show(ex. ToString())
End Try
End If
Next
MessageBox. Show " pi ctures is added")
End Sub

Private Sub updateserverinformtion()
Try 'serverinfo

Dim CN As Sqgl Connection = New
Sql Connecti on(t xt ConnectionString. Text)

Di m nunof conput er As | nteger = |nputBox("how many
client will work")
"Set insert query
Dmqgry As String = "Update serverinfo SET nunofpic=" &

i & ", nunofconput er=" & nunofconputer & " , nunforeach=" &
i [/ nunmofconputer & " ,startnunme" & fnum & ", endnuns" &
| num

"Initialize Sql Conmand obj ect for insert.
Di m Sgl Com As Sqgl Command = New

Sql Command(qry, CN)
Sql Com Par anet er s. Add(New

Sql Par anet er (" @ndnuni, | num)

' Qpen connection and execute insert query.
If CN. State = ConnectionState. Cl osed Then

61

CN. Open()
End |f

Sql Com Execut eNonQuer y()
If CN. State = ConnectionState. Qpen Then
CN. d ose()
End If
"Close formand return to list or inmages.
Me. Cl ose()
Catch ex As Exception
MessageBox. Show(ex. ToString())
End Try

' conpar e using hash val ues

Private Sub Button2_Cick_1(ByVal sender As
System (bj ect, ByVal e As System Event Args) Handl es
md5. C i ck

D mindex1, index2 As I|Integer
D m pat hl, path2 As String
Dmstinme As Date

Dimetinme As Date

stime = Now. Ti meOf Day. ToStri ng
Text Box3. Text = "start tinme=" + stine
Di m bnpl, bnp2 As Bitmap

Dim pic As |nteger

' dat abase

Dim CN As Sgl Connection
Dmqgry As String

Di m Sgl Com As Sqgl Comand

Di m pi cnum As | nt eger

Dim dr As Sgl Dat aReader
Dimcnl As Sgl Connecti on
Dimaqgryl As String

Di m Sql ComL As Sqgl Command
Dimdrl As Sql Dat aReader

Di m converter As New | nageConverter ()
DimingBytesl As Byte() = New Byte(0) {}
DimingBytes2 As Byte()

Try
CN = New
Sql Connecti on(txt ConnectionString. Text)

62

qry = "Select * from I mgesStore”

"Initialize Sql Command object for insert.
Sql Com = New Sqgl Command(qry, CN)

"Initialize SQ. adapter.

CN. Open()

dr = Sgl Com Execut eReader

If dr.HasRows = True Then
Wi | e dr. Read

bmpl =
System Dr awi ng. | mage. FronFi l e(dr ("Ori gi nal Pat h"))

pi cnum = dr ("l magel d")
i ndex1 =
dr("Original Path"). ToString. | ndexOr(". ")
pat hl =
dr ("Original Path"). ToString. Substring(indexl1l, 4).ToUpper

i mgBytesl =
Di rect Cast (converter. Convert To(bnpl,
i mgBytesl. [Get Type] ()), Byte())

Try
cnl = New
Sgl Connect i on(t xt Connecti onStri ng. Text)
qryl = "Select * fromlnmagesStore

where | mageld <>" & picnum

Sql Conl = New Sql Command(qryl,
cnl)
"Initialize SQL adapter.

If cnl.State =
Connecti onSt ate. Cl osed Then
cnl. Open()
dr1l = Sqgl Coml. Execut eReader
| f drl. Ha.sRows = True Then
If cnl. State =
ConnectionState. Cl osed Then
cnl. Open()
End |f
Whi |l e dr 1. Read

bnp2 = System Drawi ng. | nage. FronFi | e(dr1("Oi gi nal Pat h"))
pic = dr1("Imageld")

63

i ndex2
pat h2
4) . ToUpper

dr1("Original Path"). ToString. | ndexOF(".")
dr1("Original Path"). ToString. Substring(index2,

If bmpl. Size <> bnmp2.Size O pathl <> path2 Then
Text Box1. Text =

Text Box1l. Text + " "+
"Conpar eResul t.ci Si zeM smat ch". ToStri ng
El se
i mgBytes2 = New
Byte(0) {}

‘convert inmages
to byte array

i ngBytes2 =
Di rect Cast (converter. Convert To(bnp2,
i ngByt es2. [Get Type] ()), Byte())

Di m MD5csp As New

MD5Cr ypt oSer vi cePr ovi der
Di m i ngHash1() As

Byt e MD5csp. Comput eHash(i ngByt es1)
Di mi mgHash2() As

MD5csp. Conput eHash(i ngByt es2)

Byte

"now let's
conpare the hashes

Di m count As
Integer = 0

Dmj As |nteger
=0

Wil e count <
i mgHashl. Lengt h

(i mgHash1l(count) = inmgHash2(count)) Then

Whi | e
End | f

count += 1
End Wil e

64

i mgHashl. Lengt h Then

Text Box2. Text = Text Box2. Text + " "+ "ok"
Try

CN. d ose()

cnl. d ose()

del et el magesFr onDat abase(pi c)

cnl. Open()

drl =
Sqgl Conmil. Execut eReader
Catch ex As
Exception
MsgBox(ex. Message)
End Try
El se
' MessageBox. Show(" no")
End If
End If
End Wile
End If
If cnl. State =
Connecti onSt at e. OQpen Then
cnl. d ose()
End If
If CN State =
ConnectionSt ate. G osed Then
CN. Open()
dr = Sgl Com Execut eReader
End If
End If

Catch ex As Exception

65

MsgBox(ex. Message)

End Try

End Wile
End If
If CN State = ConnectionState. Qpen Then
CN. d ose()
End If
Catch ex As Exception
MsgBox(ex. Message)

End Try

etime = Now. Ti mef Day. ToStri ng
Text Box3. Text = Text Box3. Text + "end tinme=" +

etinme
MsgBox("ok finish")
Cet | magesFr onDat abase()
End Sub

‘conpare using bit way

Private Sub conpare_Cick(ByVal sender As System bject,
ByVal e As System Event Args) Handl es conpare. dick
Dimstinme As Date
stime = Now. Ti meCf Day. ToStri ng
Text Box3. Text = "start tinme=" + stine
Dim bml, bn2 As Bitnap
Dmwd, hgt, widl, hgtl As Integer
Dimeqg_color As Color = Color.Wite
Di m ne_col or As Color = Col or. Red
Dim are_identical As Bool ean = True
Dmmatch As Integer = 0

LRI R Sk R kb e S S R R ke b kb A S b R R I S S i

Dimtextness As String = cpicturessever. Text

L R I b b S S S R I b

Dimpic As Integer
Try

Dim CN As Sgl Connection = New
Sql Connecti on(txt ConnectionString. Text)

Dmaqry As String

"If message = W ndows. Forns. Di al ogResul t. Yes
Then

66

gry = "Select * from | magesStore where
| mageld <=" & start
" El se
gry = "Select * fromlmgesStore"
"Fornil. Cl ose()

"End |f

"Initialize Sql Coommand object for insert.
Di m Sql Com As Sqgl Conmand = New

Sqgl Conmand(qgry, CN)
Di m pi cnum As | nt eger

"Initialize SQL adapter.

Dimdr As Sgl Dat aReader

CN. Open()

dr = Sgl Com Execut eReader

I f dr.HasRows = True Then

Wi | e dr. Read
bnl =
System Drawi ng. | mage. FronFi l e(dr ("Ori gi nal Pat h"))

pi cnum = dr ("I magel d")
wid = bml. Wdth
hgt = bmil. Hei ght

Try

Dimcnl As Sqgl Connection = New
Sqgl Connecti on(txt Connecti onString. Text)

Dmqgryl As String = "Select *
from |l mgesStore where | mageld <>" & picnum

"Initialize Sql Command object for
i nsert.
Di m Sql ComL As Sgl Command = New
Sql Conmand(gryl1, cnl)
"Initialize SQL adapter.
Dimdrl As Sql Dat aReader
If cnl. State =
Connecti onState. C osed Then
cnl. Open()
dr1 = Sql Conll. Execut eReader
| f drl. HasRows = True Then

If cnl. State =
ConnectionState. Cl osed Then
cnl. Open()
End |f
Whil e dr 1. Read
bn2 =

System Drawi ng. | mage. FronFi |l e(dr1(" Ori gi nal Pat h"))

67

pic = dr1("Imagel d")

MessageBox. Show(pi ¢)
Dim b8 As New
Bi t map(bn2. Wdt h, bnR2. Wdt h)

If bml. Size =

bnR. Si ze Then
For x As Integer
=0 Towdl - 1
For y As
Integer = 0 To hgtl - 1
| f

brml. Get Pi xel (x, y).Equal s(bnR. Get Pi xel (x, y)) Then

mat ch
+= 1
bn8. Set Pi xel (x, y, eq_color)
El se
bn8. Set Pi xel (x, y, ne_color)
are_identical = Fal se
End If
Next vy
Next X
If are_identical
Then
MessageBox. Show(" The i nages are identical")
Try
CN. d ose()
cnl. d ose()
del et el magesFr onDat abase(pi c)
cnl. Open()
drl =
Sqgl Comil. Execut eReader
Catch ex As

Exception

68

MsgBox(ex. Message)

End Try
El se
MessageBox. Show("The i nages are different")
End If

El se

' MessageBox. Show(" The inages are different")
End |f

MessageBox. Show mat ch)

Me. Cursor =
Cursors. Defaul t

brmR. Di spose()

If cnl. State =
ConnectionSt ate. Cl osed Then
cnl. Open()
End |f
End Whil e
End |f
If cnl. State =
Connecti onSt at e. Open Then
cnl. d ose()
End |f
End I|f
brml. Di spose()
If CN State =
Connecti onSt ate. Cl osed Then
CN. Open()
dr = Sgl Com Execut eReader
End I|f

Catch ex As Exception
MsgBox(ex. Message)

End Try
End Wile
End If
If CN. State = ConnectionState. Qpen Then
CN. d ose()
End If

Catch ex As Exception
MsgBox(ex. Message)

69

End Try

Dmetinme As Date

etime = Now. Ti meCf Day. ToStri ng

Text Box3. Text = Text Box3. Text + "end tine=" +

etine
MsgBox (" ok")
Cet | magesFr onDat abase()
End Sub

‘conpare using save the hash values in the database

Private Sub Button5 Cick(ByVal sender As System (bject,
ByVal e As System Event Args) Handl es Button5.dick

Di mindex1, index2 As I|nteger

Dim pat hl, path2 As String

Dmstinme As Date

Dmetinme As Date

stime = Now. Ti meOf Day. ToStri ng

Text Box3. Text = "start tinme=" + stine

Dim bnmpl, bnp2 As Bitmap

Dim pic As Integer

' dat abase

Dim CN As Sqgl Connecti on

Dmaqgry As String

Di m Sql Com As Sqgl Conmand

Di m pi cnum As | nt eger

Dimdr As Sql Dat aReader

Dimcnl As Sgl Connection

Dmaqgryl As String

Di m Sql ComL As Sqgl Comrmand

Dimdrl As Sql Dat aReader

Try
CN = New
Sql Connecti on(txt ConnectionString. Text)

gqry = "Select * from Il mgesStore”

"Initialize Sgl Conmand object for insert.
Sgl Com = New Sgl Conmand(qry, CN)

"Initialize SQ. adapter.

CN. Open()
dr = Sgl Com Execut eReader
If dr.HasRows = True Then

70

Di m hash As String
Wi | e dr. Read

"bmpl =
| mage. FronFil e(dr ("Origi nal Path"))

pi cnum = dr ("l magel d")
hash = dr (" pi cturehash")

Try
cnl = New
Sqgl Connecti on(txt Connecti onString. Text)
gryl = "Select * fromImagesStore

where | mageld <>" & picnum

Sql Conilt = New Sql Conmand(qry1,
cnl)
"Initialize SQL adapter.

If cnl. State =
Connecti onSt ate. Cl osed Then
cnl. Open()
dr1l = Sgl Coml. Execut eReader
| f drl. Ha.sRows = True Then

If cnl. State =
ConnectionState. Cl osed Then
cnl. Qpen()
End |f

Di m hashl As String
Wil e drl. Read
hashl =
dr1(" pi cturehash")
pic = dr1("Inmagel d")
If hash = hashl Then

Try

CN. d ose()

cnl. d ose()
del et el magesFr onDat abase(pi c)

cnl. Open()

"If CN State
= ConnectionState. Cl osed Then
CN. Open()

tdr =

Sql Com Execut eReader

"End I f

drl =

Sqgl Coml. Execut eReader

71

Catch ex As

Exception
MsgBox(ex. Message)
End Try
End If
End Wile
End If
If cnl. State =
Connecti onSt at e. OQpen Then
cnl. d ose()
End If
If CN State =
ConnectionSt ate. Cl osed Then
CN. Open()
dr = Sgl Com Execut eReader
End If
End | f

Catch ex As Exception
MsgBox(ex. Message)

End Try

End Wile
End If
If CN State = ConnectionState. Qpen Then
CN. d ose()
End If
Catch ex As Exception
MsgBox(ex. Message)
End Try
etime = Now. Ti meOf Day. ToStri ng
Text Box3. Text = Text Box3. Text + "end tinme=" +

etime
MsgBox(" ok finish")
CGet | magesFr onDat abase()
End Sub

72

'conpare using exhaustive tenplate matching

Private Sub Button6_Click(ByVal sender As System (bject,
ByVal e As System Event Args) Handl es Button6.dick

D mindex1, index2 As I|nteger

Di m pat hl, path2 As String

Dimstinme As Date

Dimetinme As Date

stinme = Now. Ti meCf Day. ToStri ng

Text Box3. Text = "start tinme=" + stine

Di m bnpl, bnp2 As Bitmap

Dim pic As Integer

' dat abase

Dim CN As Sqgl Connecti on

Dmaqry As String

D m Sgl Com As Sqgl Command

Di m pi cnum As | nt eger

Dimdr As Sql Dat aReader

Dimcnl As Sgl Connection

Dimqgryl As String

D m Sgl ComL As Sql Conmand

Dimdrl As Sql Dat aReader

Try
CN = New
Sql Connecti on(t xt Connecti onString. Text)

gry = "Select * from Il magesStore"

"Initialize Sqgl Command obj ect for insert.
Sgl Com = New Sgl Conmand(qry, CN)

"Initialize SQ. adapter.

CN. Open()

dr = Sgl Com Execut eReader

If dr.HasRows = True Then
Wi | e dr. Read

bmpl =
System Drawi ng. | mage. FronFi |l e(dr (" Original Path"))
pi cnum = dr ("l magel d")
i ndex1l =
dr ("Original Path"). ToString. | ndexOF (". ")
pat hl =
dr ("Original Path"). ToString. Substring(indexl, 4).ToUpper

Try

cnl = New
Sgl Connection(t xt Connecti onString. Text)

73

qryl = "Select * fromlnmagesStore
where | nmageld <>" & picnum

Sql Conll = New Sql Conmand(gry1,
cnl)

"Initialize SQL adapter.

If cnl. State =
ConnectionState. Cl osed Then
cnl. Qpen()
dr1 = Sqgl Conil. Execut eReader
| f drl. HosRows = True Then

If cnl. State =
Connecti onSt ate. Cl osed Then
cnl. Open()
End |f
Whil e dr 1. Read
brmp2 =

System Drawi ng. | mage. FronFi |l e(dr1(" Origi nal Path"))
pic = dr1("Ilmageld")
i ndex2 =
dr1("Original Path"). ToString. I ndexOF(". ")
pat h2 =
dr1("Oiginal Pat h"). ToString. Substring(i ndex2, 4). ToUpper
If bmpl. Size <>
bnmp2. Size O pathl <> path2 Then
Text Box1. Text =
Text Box1. Text + " "+
"Conpar eResul t.ci Si zeM smat ch". ToStri ng
El se
Dmtm As New
Exhaust i veTenpl at eMat chi ng(0)
D m mat chi ngs As
Tenpl ateMat ch() = tm Processl mage(bnpl, bnp2)

Di m val ue As
String = matchings(0).Simlarity * 100
If value < 100

Then
val ue =
Val (val ue. Substring(0, 2) + 1)
El se
val ue = val ue
End |f
If value > 90
Then
Text Box2. Text
= Text Box2. Text + " "+ "ok"

74

Try

CN. d ose()
cnl. d ose()

del et el nagesFr onDat abase(pi ¢)

cnl. Open()
drl =
Sqgl Conmil. Execut eReader
Catch ex As
Exception
MsgBox(ex. Message)
End Try
El se
Text Box1. Text
= Text Box1l. Text + " "+ "no"
End If
End If
End Wile
End If
If cnl. State =
Connecti onSt at e. OQpen Then
cnl. d ose()
End If
If CN State =
Connecti onState. C osed Then
CN. Open()
dr = Sgl Com Execut eReader
End If
End | f

Catch ex As Exception
MsgBox(ex. Message)

End Try

End Wil e
End |f

75

If CN. State = ConnectionState. Qpen Then
CN. d ose()
End If
Catch ex As Exception
MsgBox(ex. Message)

End Try

etime = Now. Ti meOf Day. ToString

Text Box3. Text = Text Box3. Text + "end tinme=" +
etine

MsgBox("ok finish")

CGet | magesFr omDat abase()
End Sub

“‘resize all imges

Private Sub resizei mges()

Fol der Browser Di al ogl. ShowDi al og()

DmFiles As String() =
Directory. Get Fi |l es(Fol der Browser Di al ogl. Sel ect edPat h. ToSt
ring())

DmDirs As String() =
Directory. GetDirectori es(Fol der Browser Di al ogl. Sel ect edPat
h. ToString())

DimFilename As String

Try
Dimimgel As New Bitmap("C: \25\1.]pg")
For Each Filenane In Files
If Filenanme.Contains(".jpg") O
Fi |l enane. Contains(".gif") O Filenane.Contains(".JPG') O
Fi |l enane. Contains(". A F') O Filenane. Contains(". bnp")
Then
Dim bm As New Bi t map(Fi | enane)
Dimw dth As Integer =
Val (i magel. Wdth) 'inmage w dth.
Di m hei ght As Integer =
Val (i magel. Hei ght) 'inage hei ght
Dim thunmb As New Bitmap(w dt h,
hei ght)

Dimg As Graphics =
G aphi cs. Fronl mage(t hunb)

g. I nterpol ati onMbde =
Dr awi ng2D. I nt er pol ati onMbde. Hi ghQual i t yBi cubi c

g. Drawi mage(bm New Rect angl e(0, O,
wi dt h, height), New Rectangle(0, 0, bm Wdth, bm Height),
G aphi csUnit. Pi xel)

g. Di spose()

76

DmPath As String = Fil enane
Pat h = Pat h. Subst ri ng(10)
' MessageBox. Show(Pat h)

Dimpathl As String = "C:\25\" + Path

' MessageBox. Show(pat hl)
t hunb. Save(pat h1,

Syst em Dr awi ng. | magi ng. | mageFor nat . Jpeg) 'can use any

i mge fornmat
End If
Next
MessageBox. Show("pictures is fixed")

Catch ex As Exception
MessageBox. Show(ex. Message)
End Try

End Sub

“query by example

Private Sub savepicters_Cick(ByVal sender As
System Obj ect, ByVal e As System Event Args) Handl es
savepicters. dick

Dim bnpl As System Draw ng. | nage
Dim bnmp2 As System Draw ng. | mage
Di m Tabpage As Integer =1
Dimcount As Integer = 0
Dimstinme As Date
Dmetinme As Date
stime = Now. Ti meOf Day. ToStri ng
Text Box3. Text = "start tinme=" + stine
Dmmatch As Integer = 0
Dmmsmatch As Integer = 0
Dim pic As Integer
Try
brmpl =
I mage. FronFi | e(OpenFi | eDi al ogl. Fi |l eNanme. ToString())
Try
Di m t xt ConnectionString As String =
Sour ce=EMJ_CMPE\ SQLSERVER; I ni ti al
Cat al og=br owser ;I ntegrated Security=True"

Dimcnl As Sqgl Connection = New
Sgl Connecti on(txt ConnectionString)

Dmqryl As String = "Select * from
| ragesStore "

"Dat a

"Initialize Sgql Command object for insert.

77

Di m Sgl ComL As Sqgl Conmmand = New
Sql Command(qryl, cnl)
"Initialize SQuL adapter.
Dimdrl As Sql Dat aReader
If cnl. State = ConnectionState. C osed
Then
cnl. Open()
dr1 = Sql Coml. Execut eReader
If drl. HasRows = True Then

If cnl. State =
Connecti onSt ate. Cl osed Then
cnl. Open()
End |f
VWhil e dr 1. Read
match = 0O
m smatch = 0
bmp2 =

| mage. FronFil e(dr1("Ori gi nal Path"))
pic = dr1("I magel d")
I f bnpl. Size <> bnp2. Si ze
Then
Text Box1. Text =
Text Box1l. Text + "ConpareResult.ci SizeM smatch". ToString

' MessageBox. Show(" Conpar eResul t. ci Si zeM smat ch")
El se

'create instance or
Syst em Drawi ng. | mrageConverter to convert

"each image to a byte
array

Di m converter As New
| mgeConverter()

'create 2 byte arrays,
one for each image

DimingBytesl As Byte()
New Byt e(0) {}

DimingBytes2 As Byte()
New Byt e(0) {}

‘convert images to byte
array

i ngBytesl
Di rect Cast (converter. Convert To(bnpl,
i mgBytesl. [Get Type]()), Byte())

i ngByt es2
Di rect Cast (converter. Convert To(bnp2,
i ngBytes2. [Get Type] ()), Byte())

"now conpute a hash for each inmage fromthe byte arrays
Dim md5 As New
MD5Cr ypt oSer vi cePr ovi der

78

Di m i nmgHashl As Byt e()
nmd5. Conput eHash(i ngByt esl)
Di m i nmgHash2 As Byt e()

md5. Conput eHash(i ngByt es2)

Di m condution As | nteger
= Val (ConmboBox1. Text. Substri ng(0,
ConmboBox1. Sel ectedltem Length - 1))

"now let's conpare the
hashes
Dmi As Integer =0
While i < ingHashl. Length
AndAl so i < inmgHash2. Length
If (imgHashl(i) <>
i mgHash2(i)) Then
m smatch =
m smatch + 1
[f msmatch >
(100 - condution) * ingHashl.Length / 100 Then

Exit Wiile
End | f
El se
match += 1
End |f

If match >= conduti on
* inmgHashl. Length / 100 Then

count = count + 1
If count Md 10
<> 0 Then

Me. Controls.Iten("TabControl 1"). Control s. I tenm(" TabPage" &
Tabpage) . Control s. Item("Pi ct ureBox" &

count) . Backgroundl mage =

| mage. FronFil e(dr1("Oi gi nal Pat h"))

Me. Controls.Iten("TabControl 1"). Control s. Itenm(" TabPage" &
Tabpage) . Control s. Item("Li nkLabel " & count). Text =
dr1("Oigi nal Pat h")
Exit Wiile

El se
Me. Control s.Item(" TabControl 1"). Control s. Itenm " TabPage" &
Tabpage) . Control s. Item("Pi ctureBox" &
count) . Backgroundl mage =
| mge. FronFil e(dr1("Ori gi nal Pat h"))

Me. Controls.Iten("TabControl 1"). Control s. I tenm(" TabPage" &

79

Tabpage) . Control s. Item("Li nkLabel " & count). Text =
dr1("Ori gi nal Pat h)

Tabpage =
Tabpage + 1
Exit Wiile
End | f
End If
bnp2. Di spose()
i +=1
End While
End | f
End Wil e
Me. Cursor = Cursors. Defaul t
End | f
End | f
If cnl. State = ConnectionState. OQpen Then
cnl. d ose()
End |f
brnpl. Di spose()
Text Box2. Text = Text Box2. Text + " "+

count. ToString

Catch ex As Exception
MsgBox(ex. Message)
End Try

Catch ex As Exception
MsgBox(ex. Message)

End Try

etime = Now. Ti meOf Day. ToStri ng
Text Box3. Text = Text Box3. Text + "end tine=" +
etine
End Sub

“client part
"saveclientinfo()
Private Sub saveclientinfo()
Try

Dimcnl As Sqgl Connection = New
Sqgl Connecti on(txt Connecti onString. Text)

Dmaqgryl As String = "Select * from" &
t abl ename

"Initialize Sgl Conmand object for insert.

80

Di m Sgl ComL As Sqgl Conmand = New
Sql Command(qryl, cnl)
"Initialize SQ adapter.
Dimdrl As Sql Dat aReader
If cnl. State = ConnectionState.d osed Then
cnl. Open()
drl1 = Sql Coml. Execut eReader
If drl. HasRows = True Then
Wil e drl. Read
| num = dr1("id")
End Wil e
conmputerid = I num+ 1

[f dr1("id") = conputerid Then
conputerid = conputerid + 1

End | f
End If
If cnl. State = ConnectionState. Qpen Then
cnl. d ose()
End |f
End I f
Catch ex As Exception
MsgBox(ex. Message)

End Try
Try "saving client info
DimgrySave As String = "insert into " &
tablename & " (id,ip) values ('" & conputerid & "','" &

nyip. ToString & "')"

Dim CN As Sgl Connection = New
Sql Connecti on(txt ConnectionString. Text)

'Set insert query

"Initialize Sql Command object for insert.

D m Sgl Com As Sqgl Command = New
Sgl Conmand(gr ySave, CN)

"W are passing Oiginal Inmage Path and | nage
byte data as sql paraneters.

Sql Com Par anet er s. Add(New Sql Par aneter (" @ p",
nyi p. ToString))

' Open connection and execute insert query.

If CN. State = ConnectionState.C osed Then

CN. Open()

End |f

Sgl Com Execut eNonQuery()

If CN State = ConnectionState. Qpen Then

CN. d ose()
End If
Catch ex As Exception
MessageBox. Show(ex. ToString())
End Try

81

End Sub
"readclientinfo()
Private Sub readinfo()
Try 'read from server nunof pic

Dimcnl As Sgl Connection = New
Sgl Connection(txt Connecti onString. Text)

Dimqgryl As String = "Select * from
serverinfo"
"where ip ="" & nyip.ToString & """
"Initialize Sgl Command obj ect for insert.
Di m Sql ComL As Sql Command = New
Sqgl Conmand(qryl1, cnl)
"Initialize SQL adapter.
Dimdrl As Sql Dat aReader
If cnl. State = ConnectionState. Cl osed Then
cnl. Open()
dr1 = Sql Conll. Execut eReader
[f drl. HasRows = True Then
If cnl. State = ConnectionState. C osed
Then
cnl. Open()
End If
dr 1. Read()
nunof pi ¢ = dr 1(" nunof pi c")
nunf or eachone = dr 1(" nunf oreach")
startnum = dr1("startnumn)
nunber of conputer =
dr 1(" nunof conput er ")

End |f
If cnl. State = ConnectionState. Open Then
cnl. d ose()
End If
End If

Catch ex As Exception
MsgBox(ex. Message)

End Try

Try 'read fromclient id
Dimcnl As Sgl Connection = New
Sql Connecti on(txt Connecti onString. Text)

Dimqgryl As String = "Select * from" &
tabl enane & " where id ='" & conputerid & """

Di m Sql ComL As Sql Command = New
Sgl Conmand(gryl, cnl)

"Initialize SQ. adapter.

Dimdrl As Sql Dat aReader

If cnl. State = ConnectionState.C osed Then

82

cnl. Open()
dr1 = Sql Conl. Execut eReader

[f drl. HasRows = True Then
If cnl. State = ConnectionState. C osed
Then
cnl. Open()
End If
dr 1. Read()
nyid = dr1("id")
' MessageBox. Show(nyi d. ToStri ng)
End If
If cnl. State = ConnectionState. Open Then
cnl. d ose()
End If
End If
Catch ex As Exception
MsgBox(ex. Message)

End Try

Try 'calculate fromwhere to start

If nyid = 1 Then
startfrom=1
endwhen = nunf or eachone

El se
startfrom = endwhen + 1
endwhen = startfrom + nunf oreachone
I f endwhen > nunofpic Then

endwhen = nunof pi c

End | f

End | f

Catch ex As Exception
MsgBox(ex. Message)
End Try

End Sub

Private Sub readid()
Try
Dimcnl As Sgl Connection = New
Sql Connecti on(txt Connecti onString. Text)
Dmqryl As String = "Select * from" &
t abl ename

"Initialize Sqgl Command obj ect for insert.
Di m Sql ComL As Sql Command = New
Sql Conmand(gryl1, cnl)
"Initialize SQ. adapter.
Dimdrl As Sql Dat aReader

83

If cnl. State = Connecti onState. Cl osed Then
cnl. Open()
dr1l = Sql Conl. Execut eReader
If drl. HosRows = True Then
Whil e drl. Read
| num = dr1("id")

End Wil e
End If
If cnl. State = ConnectionState. Cpen Then
cnl. C ose()
End If
End If
computerid = I num+ 1

Catch ex As Exception
MsgBox(ex. Message)
End Try
End Sub

"updateclientinfo()

Private Sub updateclientinfo(ByVal x As String, ByVal y
As String)

Try
Dim CN As Sqgl Connection = New
Sgl Connect i on(t xt Connecti onStri ng. Text)
Dmqry As String = "Update " &
tabl enanme & " SET starttinme ='" &x & "'" & ",endtine
=" &y &"'" &" whereid="" &nyid & """

"Initialize Sql Command object for insert.
D m Sgl Com As Sqgl Command = New
Sql Command(qry, CN)

" Open connection and execute insert query.
If CN. State = ConnectionState.C osed Then

CN. Open()
End If

Sql Com Execut eNonQuer y()
If CN. State = ConnectionState. Qpen Then
CN. d ose()
End |f
"Close formand return to list or inmages.
Me. Cl ose()
Catch ex As Exception
MessageBox. Show(ex. ToString())
End Try

End Sub

84

“start comparing

Private Sub Button5 Cick(ByVal sender As System (bject,

ByVal e As System Event Args) Handl es conpare. dick
stime = DateTi me. Now. ToLongTi neString. ToString()

Text Box3. Text = "start tinme=" + stine
Dim bml, bnm2 As Bitnap

Dmw d, hgt, widl, hgtl As Integer
Dimeqg _color As Color = Color.Wite
Di m ne_color As Color = Color.Red
Dimare_identical As Boolean = True
Dmmatch As Integer = 0

LR I S I b I R R R I S R I I

Dimtextness As String = cpicturessever. Text

LRI R kI R ke Sk b S R R e b S

Dim pic As |nteger
Try

Dim CN As Sgl Connection = New
Sqgl Connecti on(txt Connecti onString. Text)
Dmqry As String
gry = "Select * from | magesStore where
I mageld >=" & startfrom & "and | mageld <=" & endwhen

"Initialize Sql Conmand object for insert.
Di m Sgl Com As Sqgl Conmand = New

Sqgl Command(gry, CN)
Di m pi cnum As | nt eger

"Initialize SQ. adapter.
Dimdr As Sgl Dat aReader

CN. Open()

dr = Sgl Com Execut eReader

If dr.HasRows = True Then

Wi | e dr. Read
bml =
| mage. FronFil e(dr (" Origi nal Path"))
pi cnum = dr ("l nagel d")

wd = bml. Wdth
hgt = bmil. Hei ght
Try

Dimcnl As Sgl Connection = New
Sgl Connection(txt Connecti onString. Text)

Dimqryl As String

gryl = "Select * fromInmagesStore
where | mageld <>" & picnum

"Initialize Sgl Command obj ect for
I nsert.

85

Dim Sgl Coml As Sgl Command = New
Sql Command(qryl, cnl)
"Initialize SQ. adapter.
Dimdrl As Sql Dat aReader
If cnl. State =
Connecti onState. C osed Then
cnl. Qpen()
drl = Sgl Coml. Execut eReader
I f drl. HasRows = True Then

If cnl. State =
Connecti onSt ate. Cl osed Then
cnl. Open()
End |f
Whil e dr 1. Read
bn2 =

| mage. FronFi |l e(dr1(" Ori gi nal Pat h"))

pic = dr1("Imagel d")
MessageBox. Show(pi c)

widl = bnR. Wdth

hgt 1 = bnR. Hei ght

Dimw d3 As | nteger
Mat h. M n(bnil. Wdt h, bnR. W dt h)

Dim hgt3 As | nteger
Mat h. M n(bml. Hei ght, bn®2. Hei ght)

Di m bnB As New
Bi t map(wi d3, hgt3)

I f brl. Size =

bnR. Si ze Then
For x As Integer
=0 Towdl - 1
For y As
Integer = 0 To hgtl - 1
| f

bml. Get Pi xel (x, y).Equal s(bnR. Get Pi xel (x, y)) Then

mat ch

+= 1
bnB. Set Pi xel (x, y, eg_color)

El se
bnB. Set Pi xel (x, y, ne_color)
are_identical = Fal se

End If

Next vy

Next X

86

If are_identical
Then

MessageBox. Show(" The i nages are identical")
Try
CN. d ose()
cnl. d ose()
del et el magesFr onDat abase(pi ¢)

cnl. Open()

Sql Conil. Execut eReader

drl =

Catch ex As
Exception

MsgBox(ex. Message)
End Try
El se

MessageBox. Show("The i nages are different")
End If
El se

' MessageBox. Show(" The i nages are different")
End If

MessageBox. Show(mat ch)

Me. Cur sor =
Cur sors. Def aul t

brm2. Di spose()

End Wile
End | f
If cnl. State =
Connecti onSt at e. Open Then
cnl. Cl ose()
End | f
End | f
bml. Di spose()

Catch ex As Exception

87

MsgBox(ex. Message)

End Try
If CN State =
Connecti onState. C osed Then
CN. Open()
dr = Sgl Com Execut eReader
End If
End Wile
End If
If CN. State = ConnectionState. Qpen Then
CN. d ose()
End If

Catch ex As Exception
MsgBox(ex. Message)
End Try
etime = DateTi me. Now. ToLongTi neString. ToString()
Text Box3. Text = TextBox3. Text + "end tine=" +

etime
updat ecli enti nfo(stinme, etine)
' MsgBox("ok finish")
Cet | magesFr onDat abase()
End Sub

88

	ABSTRACT
	ÖZ
	DEDICATION
	ACKNOWLEDGMENT
	INTRODUCTION
	RELATED WORKS
	Overview of Internet Search Engines
	Overview of Related Work
	Studies on Current Search Engine Mechanisms for Finding Images
	Studies for Improving the Efficiency of Search Engines
	Flexible and Extensible Framework for Web Image Retrieval
	Direct Searching of Video Content (DIVAS)
	 SCENIQUE
	Lazy
	Query by Example
	Query by Sketch
	Hybrid Methods
	Automatic Ranking of Websites
	Key Block
	Document Clustering

	ELIMINATION OF REPEATED OCCURRENCES IN
	IMAGE SEARCHING
	Programming Environment
	The Database
	Software Mechanism
	Creating the Images Database
	Computing the Hash Value
	Comparing the Hash Value

	User Interface

	 PERFORMANCE STUDIES
	Introduction
	 Bit-Wise Comparisons
	Sequential Execution
	Parallel execution: Client - Server Architecture
	 Hash Comparison
	 Comparison of Hash Algorithm and Bit-wise techniques
	 Parallel Work with Hash Algorithm
	Saving the Hash Values in the Database
	 Mechanism of Dividing the Work between Parallel Copies
	 Comparing dynamically way versus. Saving the Hash Values
	earlier in the Database

	STUDIES ON FINDING SIMILAR IMAGES
	Introduction
	Query by Example Mechanism
	 Methodology Developed For Implementing the Query by
	Example Techniques
	Bit- Wise Comparison
	Exhaustive Template Matching
	Comparison between Exhaustive Template Matching and
	Bit- Wise Comparison Techniques

	CONCLUSION
	APPENDICES
	Appendix A: The source code of the module.

