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ABSTRACT

In this study we give a brief introduction to the basic differential equation for zero
spin relativistic particle which is called Klein-Gordon equation. Klein-Gordon
equation, then, is presented in 1+1-dimensions where we give some exact solutions
for the equation with different potentials. The first problem is the particle inside a
potential of the form of smooth finite well. We find the exact solutions in terms of
the Heun functions. Our second example is a K-G particle inside an infinite well
whose wall is moving. This problem is solved for massless particle. Finally, we give

the remarks in our conclusion.

Keywords: Klein-Gordon equation, Heun functions, 1+1-dimensions, Particle in

infi- nite well.



Oz

Bu ¢alismada, Klein — Gordon denklemi olarak bilinen, sifir spine sahip rélativistik
parcacik igin temel diferansiyel denkleme, kisa ve 6z bir giris yapilmistir. Klein —
Gordon denklemi, farkli potansiyellere sahip bir denklem i¢in, baz1 kesin ¢ozimler
verdigimiz 1 + 1 boyutlar ile sunulmustur. ilk soru, piirizsiiz sonlu kuyunun bir
formu olan bir potansiyelin ic,indeki parc acikla ilgilidir. Kesin ¢ézimler, Heun
fonksiyonlar1 cinsinden bulunmustur. Ikinci 6rnegimiz ise duvari hareket halinde
olan sonsuz bir kuyu i¢indeki KG parcacigidir. Bu soru kiitlesiz pargacik igin

cOzllmiistiir. Son olarak, sonug¢ kisminda yorumlara yer verilmistir.

Anahtar Kelimeler: Klein - Gordon denklemi, Heun fonksiyonlari, 1+ 1 boyutlari,

sonsuz kuyu icerisindeki parcacik.
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Chapter 1

INTRODUCTION

Klein-Gordon equation is the basic equation which is used to describe relativistic
particle with zero spin, like Higgs bosonH ©. From the field theory the action for a

relativistic spinless particle under the electromagnetic field is given by

S = [J—gd*xL (1.1)

in which the Lagrangian density reads as [14, 10]

L= iKiha# _d Aﬂj;}?(—iha” —%A")¢— mzczgﬂ— F. (1.2)

2m C

Here m is the rest mass of the particle, Ap is the four electromagnetic potential with

A" =g*A,, ¢ isthe Klein-Gordon scalar field with its complex conjugate ¢ and

1 ne
F = F.F (1.3)
the Maxwell invariant with
Fyv = ayA/ _aVA,u (14)

We note that g =det(g,,) and in our study the spacetime is flat Minkowski

spacetime.



which implies g, =7, and therefore g=-1. We start with the variation of the

uv

action with respectto ¢ which yields

a#[ oL }:5_':. (1.5)

In an explicit calculation one finds

0, [ih(—iha" —EA”jgb} =(—9 Aﬂj(—iha” _4 A”j¢—m2c2¢ (1.6)
C C C

which after simplification it becomes

: q an
[—maﬂ —EAJ[—lha‘ — A”jgzﬁ: m?c’¢ (1.7)
or in more convenient form
(pu—%ij(P”—%A“)%mzczqé (1.8)
in which
p,= —iha#. (1.9)

The latter is called Klein-Gordon equation for a massive scalar field which interacts
non-minimally with the electromagnetic field. We also add that variation of the

action with respect to electromagnetic potential A,

oL oL
ay{@(évAﬂ)J 0A, (1.10)



which yields the Maxwell’s equation i.e., [14, 10]

0, F™ = j* (1.11)
in which
., oL igh |- iq ., g -
w_ = A o —— A" |p—o¢| 0¥ +— A . 1.12
J aAy 2mc{¢£ Ch ](ﬁ ¢( +ch jd ( )

Our concentration in this thesis is on the 1 + 1—dimensional Klein-Gordon equation

which implies

(—iha# —% Aﬂj(—iha” —% A”)¢(x,t) = m2c2¢(x,t) (1.13)
in which =0, 1. One may open this equation explicitly to find

(ihao +% Aoj(iha" +%A°j¢(x,t)+(ihal +%A&j(ihal+%Al)¢(x,t) = m’cp(x,t),

(1.14)

in which 60:i and 61:2 while 8°=-2 and ot =< (Note that the
cot OX cot OX

signature of the spacetime is —2, i.e. + — —). Now we suppose that A =A (x)

which implies ¢(x,t)=exp[—%)u(x) and consequently

—(E +%Aj U (x)+(ihal +%A&J(ih@1 +%A1Ju (x)=m?c?u(x) (1.15)

q

or after considering < A, =-V(x) and %Al =W (x) the latter becomes

[(ihal +W(x))2—(E—V(x))2+m2c2}u(x)=0. (1.16)

3



In another assumption we set W (x)=0 and instead we add a scalar potential

coupled minimally with the mass of the particle as

{hzczj—;jL(E—V(x))z—(mcz+S(x))2}u(x):0 (1.17)

V(X
in which E = E and V = L . In the rest of this thesis we use this equation with
c c

certain potentials and we try to find solutions for such system [13, 1, 12, 11, 7, 3,

8,4].



Chapter 2

1+1-DIMENSIONAL KLEIN-GORDON EQUATION

For a spinless relativistic quantum particle under a scalar and a vector potential S (x)

and (x), respectively, the time independent Klein-Gordon equation is given by [1]

{hzczj—;{E—V(x)]z—[mc2+s(x)]2}u(x):0 (2.1)

in which m is the mass of the particle, c is the speed of light E is the energy and
u (x) is the wavefunction of the particle. Our specific choice of the potentials are

given as follows [12]:
V(x)=0 (2.2)

and

S(x)=mc?| tanh 2 | _tanh 2 (2.3)

S(x)

=~ for
mc

in which L and a are two non-negative real constants. In Fig. (2.1) we plot

L = 1 and different values of a. As it is clear from Fig. (2.1) in the limit of a —» 0%,

the potential S(x) becomes a finite well of width L and depth 2 mc?2.



-0.5 S(X)

0.00

Figure 2.1: Scalar potential S(x) interms of x for L =1 and a = 1.00,0.50,
0.20 and 0.00. It is clear that when a goes to zero the potential approaches
tothe square well with width L and depth 2.

Now, we are looking for bound state solutions to Eq. (2.1). Tothat end, first we define

k? = (2.4)

and

a” = (2.5)



to reduce the K-G equation as

L L
., 3 3
— +k*—a®| 1+tanh —tanh u(x)=0. (2.6)
dx a a
Next we introduce
7= —exp(—ﬁj (2.7)
a
which by virtue of
izi[ﬁij:d_zzi{djjzd_z (2.8)
dx* dx\dxdz) dx®dz \dx) dz?’
L 2x—L) z
L] 1-exp|- 1-=
anhl 2 | _ p[ a_ )__ 1 (2.9)
a 1+exp(—2x_|‘j 1+ %
a. ZO
and
L 2x+L
= l—exp(— j
anhl 2 | a ) _1-2, (2.10)
a l+exp(—2x+|‘j 1+ 2,2
. . L .
in which z, :—exp[——j one finds
a
1- %
2
izzi+izzzd—2+k2—oz2 14— % 1722 u(z)=0. (2.11)
a° dz a dz 142 1+2z2
ZO

Latter equation after some manipulation becomes

L1, az(kz_az) 0{232<1—Z§)
u+=u+ —+
z 4z 22(z,+12)(1+2,2)




in which a prime stands for derivative with respect to z: Let’s introduce

az(kz—az)

, , azaz(l—zg) _
14 EE— and u = and u(z)=2z"¢(z) such that the main

equation (2.1) becomes

. 2v+l 7% B
o+ z ¢+z(zo+z)(1+zoz)¢_o' (2.12)

This equation is the so called Heun’s differential equation whose general form is

given by
c(r. 6 Y. api-q
X2 + =0 2.13
¢ [z z7-1 z—pj¢ z(z—l)(z—p)¢ (213)
with the conditione =a + f—y—J +1. The solution is given by
¢=C,HeunG(p,q,a,,7,6,2)+
(2.14)

szl‘VHeunG(p,q—( ps+ )(7-1),p-r+La-y+12-y,6, Z)-

Comparing these two equations one finds that with —¢ =z / z, Eq. (2.1) becomes

H
FOERG()-—S—e0)=0 e
cle-1[-5)
Whichimpliesy:2v+1,5:,:O,a:O,ﬂ:ZV,q:g—j andp:z—l2

Therefore the solution of the main equation becomes

1

2!
ZO

2
”—,o,—zv,1—2v,o,—ij.

2
¢(z)=C,HeunG [i N—Z,O, 2v,2v +1,0,—£j+C222VHeunG( .
z % 2

21
0 0 Z0

(2.16)



Herein C, and C, are two integration constants.

The first boundary condition to be considered is as follows:

limu(x)=0

X—00
this means indeed

lim z"¢(z)=0.

Z—>—0

Upon considering HeunG( p,q,«, 3,7,6,0) =1 we find

lim (2'C,+C,z")=0

Z—>—0

which by considering n > 0 it yields C,=0 : Therefore the solution becomes

2
,“—2,0,2v,2v+1,0,—ij.
Z0 ZO

¢(z):ClHeunG£

N
M|+

To consider the second boundary conditioni.e. lim u(x)=0 , we need to evaluate

X—>—00

lim z"¢(z)=0.

Z—>—©

This limit is not easy to be calculated unless we transform the HeunG to its other

forms.



Chapter 3

K-G MASSLESS PARTICLE IN AN INFINITE WELL
WITH MOVING WALL

3.1 Klein-Gordon for Relativistic Spin-0 Particle in a Box

Let’s consider a relativistic spin-zero particles in an infinite box as defined below [6,

2, 5]:

V(x)— 0, 0<x<L (3.1)
oo, elsewhere '
The K-G equation inside the box reads
mZCZ
(m 732 Jw(x,t):O(&Z)
In which
105 ¢
O==—-— 3.3
¢’ ot*  ox? 3:3)

10



and m, isthe rest mass of the particle. Our solution to Eq. (3.2) is given as

w(xt)=U (x)T (t). (3.4)

Substituting Eq. (3.4) into Eq. (3.2) we get

1. 07T o°U  mc?
—U -T +—2"UT =0. 35
¢t ot? ox* R (35)

Dividing Eqg. (3.5) by UT yields

2 2, 2.2
C

Now, one can separate the variables as

10U mi? 110T
I S ol &0

in which @ isa constant. The time part reads

1107
T 3
or equivalently
_62T T=0 3.9
pre +oT =0, (3.9)

E
where w? =a?c® and o= e

11



The general solution to Eq. (3.9) is given by

E E

i—t —i—t
T=Ae" +Be "

in which A and B are integration constants.

The space part of the KG equation (3.7) becomes

10U mic®

___+—_
Uuox> n
or consequently
2,
aali +k?U =0
X
2.2
in which K2 = o? - Do
7

The general solution to Eq. (3.12) is also given by

U =C sin(kx)+D cos (kx)

in which C and D are integration constants.

The boundary conditions concern only the space part which are given as

U (x=0)=U (x=L)=0.

12

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)



The condition at X =0 implies D=0 (3.16)

while the condition at x =L gives

C sin(kL)=0 (3.17)

which, eventually yields kKL=nx (3.18)
nz

and therefore k, = T n=123,... (3.19)

It directs to the energy spectrum of the particle as

E,=*c == c k?* +mic’ (3.20)

or

E,=tcC B +m,C (3.21)
In addition to the energy spectrum we also find
U, (x)=C, sin(nT” xj (3.22)

13



inwhich C, isthe normalization constant.

Substituting Eq. (3.22) and Eq. (3.10) in to Eq. (3.4) we get [7]

Eny -

v =he sin(K,x)+ Be "' sin(k,x).

(3.23)

From Eqg. (3.23), we can write the eigenfunctions for the particle and the anti-particle

respectively as

E

w! = Cn*efi7nt sin(k,x)

En

W =Cern sin(k,x)

Note that the particle density r for particle and anti-particle are

p ot ot

B 2im

From Eq. (3.24) one finds

E

w = Cn*ei7nt sin(k,x),

+ -E, i
oy —C'e " sin(knx)[ &, j
ot h

and

*+ -E, -
oy —Cren sin(knx)(lE”].
ot /]

14

+ _he *+a . +a "
. ( oyt Loy j

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)



Herein a star * stands for the complex conjugate. Substituting Eq. (3.24), Eq. (3.27),

Eg. (3.28), and Eq. (3.29), into Eq. (3.26) yields

—fhe 2 . —iE iEne _iEny 2 . iE _iEny iEny
F=—2l|IC sin?(kx)| —=le"e " —|CH sin®(kx)|—1le "e " |, (3.30
= el s (k) = v () 630
or in short
_he 2 =2 _IE
=——|2|C*| sin“(k x N, 3.31
= 2feif s ) | B
and finally
C.| Ee
p= - sin” (k,x). (3.32)

Following the same steps of the particle density for anti-particle one finds

2
—:_‘Cn‘jsinz(knx). (333)

Yo,
m

The relativistic normalization condition is given by

| " ptdix = e (3.34)

where for the particle

j o d3x = +e (3.35)

15



and for the anti -particle

j pd3x =—e. (3.36)

Herein e is the charge of the particle. Substituting the value of particle density for

particle Eq. (3.32), in to Eqg. (3.35), we get

2
LCa| B
J'O - sin? (k,x)dx =1 (3.37)
or
2
[ Gl & [1-cos(2k,x)]dx =1 (3.38)
o m 2 " o '
Then
2
C.| E.ree L
. UO dx- | cos(2knx)dx}:1, (339)
and finally
c:[E
L5 s e =2 s = |2 (3.40)
m LE, LE,

Thus, the eigenfunctions and the Eigen energies can be written as

E,
v, (xt)= /f?m sin(nTﬂxj e h (3.41)

16



2 222
nN°z°h
E=c \/ﬂ—+m§c2 (3.42)

v, (x)= /f?m sin(n—f xj. (3.43)

2.5

1.5

v, (x)

0.5

0
(0) 0.2 0.4 0.6 0.8 1

X
Figure 3.1: The Klein-Gordon field w1 of a massive particle inside an
infinite well. The ground-state of the particle is taken from the equation
(3.43) with n = 1. We note that unlike the case of non-relativistic wave
function in which < Yy; >= 1, in this case i.e., K-G field the
equation of normalization becomes (3.34).

17



2
W, (x)
1
0
0.2 0.4 0.6 0.8
X
= 11
=2
Figure 3.2: The first excited state of the K-G massive particle
inside an infinite square well.
2
w5 (x)
1
o
0.2 0.4 0.6 0.8 1
-1
=2

Figure 3.3: The second excited state of the K-G massive
particle inside an infinite square well.
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3.2 K-G particle in an Infinite square-well with a moving wall

0 L x

Figure 3.4: Infinite well potential with amoving wall.
Here the left wall is fixed atx = 0 and the other wall is
moving with a constant velocity uin +x-direction.

v

Lo ut x

Figure 3.5: In this figure we show the light cone
(the lower line) and the world-line of the moving
wall. The points A and B are the corresponding
location of the moving wallatt = 0and t > 0.

19



: >
Bt X

Figure 3.6: In this figure, the new coordinate isshown. The curved
lineisa = constant and the other lineis § = constant.
Also we plot the light cone clearly.

In this section we consider the relativistic massless particle in an infinite square well
potential with a moving wall by a transformation from (x — t) coordinate to (a — )

coordinate (Hyperbolic coordinates) [6].

As it is shown in the figure (3.4), the right wall of the well is moving with a constant

speed. A transformation of the form

aff =t+X (3.44)
and

=t—x (3.45)

20



Maps our problem from X-t coordinate to o —/ coordinate. Both space time are
1+1-dimensional and flat which after we setc =1 , the line element in X-t coordinate
is given by

ds® = dt* —dx’ (3.46)

The K-G equation for massless particle reads as

in which
0?  o?
=4 3.48
8t2+8x2 (3.48)

Derivative of Eq. (3.44), and Eq. (3.45), yield

aff =t+x=daf+adf =dt+dx (3.49)
and

g=t—x:>d—a—d—fa=dt—dx. (3.50)

B p

Next, using above one finds

2

(daﬂmdﬂ)(%"‘—dﬁ—ﬂaj ~ (dt + d)(dt —dx) = daz—Z—Zdﬂz _ (dt* —de?)

(3.51)

21



Therefore the line element transforms as

2

ds® = da? —%d Jic (3.52)
whose metric tensor is given by
1
9, = o? (3.53)
DR
and its inverse becomes
1 0
9" = B (3.54)
M

Next, we transform the K-G equation from X-t space time to & —/ space time. The

standard form of the K-G equation for a massless particle reads

U y(a,p)=0 (3.55)
in which
D:Laﬂ( g aﬂ) (3.56)
J-9
and

22



Finally one finds

aa(% a“j+ﬁaﬂ(ﬁ aﬂj, (3.57)

which after lowering the indices

Bfas \ B, |af_B
D_aaa[ﬂaaj+aaﬂ[ﬁ( azjaﬁ} (3.58)

we get

1
D:Zaa(a aa)—?aﬁ(ﬁ 0,). (3.59)

Equation (3.59) is the d’Alembert operator in & — f coordinates. The K-G equation

becomes

1
;Ga(a aa);//—%aﬂ(ﬁ 0,)w =0 (3.60)

or more clear

23



The solution of the Eq. (3.61) can be written as
v =R(a)¢(p)

which after substituting Eq. (3.62) into Eq. (3.61), we get

8.0, 0) B2 (s00)
a oa\ O« a® op\" op

Dividing Eq. (3.63) by R¢, and multiply by o yields

in whichk® isa separation constant. The o part reads

ai(aﬁ—Rj+ k’R=0
oa\ Oa

while the £ part of the equation (3.65) becomes

g

Fap 0B

B

24

(3.62)

(3.63)

(3.64)

(3.65)

(3.66)

(3.67)



Now from equation (3.66)

2
2 9R R kR0 (3.68)
da da

has a solution of the formR =a™ , which implies .

dR

= ™ (3.69)
da

and
o°R =m(m-1)a"’ (3.70)
da?

Substituting in Eqg. (3.68), one gets

a’m(m-1)a"? +ama™ +k*a" =0= m(m-1)a" +ma" +k’a" =0 (3.71)

dividing Eq. (3.71) by a™ to obtain

m(m-1)+m+k’=0=>m*+k*=0=>m=4ik.  (3.72)

Then the solution of R(a) becomes

R=Aa“+Ba™ (3.73)

25



or simply

R=Aglkn® | B gtk (3.74)
The inverse transformation
g =X (3.75)
t—X

For the left wall, at point t=t, andXx =0 ; Eq. (3.75) implies

=X g b g g (3.76)
t—x t,

For right wall, x=ut andx=L=L,+u(t—t,). Then Eq. (3.75) also implies

, t+l+u (t-t))
'BR_t—LO—u =5} (3.77)

Substituting the value of L,=ut, in Eq. (3.77), we get

, t+ut t(1+u) 1+u
= = = . 3.78
T (1-u) 1-u 3.78)

26



Therefore the boundary conditions, simply reads ¢(,) = #(;) =0.

,d% . dg o
Yij dﬁ’2+'8dﬂ+k ¢=0.

Has a solution of the form ¢(B) = #° which yields

and

07 =q(q-1)p8*".

Substituting in Eg. (3.79), one gets

(3.79)

(3.80)

(3.81)

Ba (q-1) B3+ Bap ™) +k*B*=0=q (q—-1) 8 +qB* +k’B° =0 (3.82)

dividing Eq. (3.82) by g , we obtain

q (q-1)+q+k?*=0=>q? +k* =0=>q =ik,

Then the solution of ¢(f) becomes

#(B)=Cp"* +Dp™

27

(3.83)

(3.84)



thus

#(B) =C ™ ") 4 p el A, (3.85)

Hence, the general solution yields

v(a, ) = R(a) §(5) (3.86)

The first boundary condition for #= 4, =1, y(a,8=1)=0 ,R(a)¢(B=1)=0,

then, ¢(8=1)=0 . Then Eq. (3.85) becomes

C+D=0=C=-D (3.87)

putting Eq. (3.87) in to Eq. (3.85) we get

¢(,B) _C ( e(iklnﬂ) _e(—iklnﬁ)) (3.88)

¢(B) =2iC sin(kln g) (3.89)

where C = 2iC, then
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¢(B) =Csin(kin B3).

Second boundary condition when g = 3, , y/(a,ﬂ =,HR) =0,

R(a)¢(B:)=0=¢(B:)=0. Then Eq. (3.90) reads

kKIng,=nz=Kk, = .
In

Substituting k, = I 7
n

R

~ .| nx
o(p)=C Sm{lnﬁ Inﬂ}

where f; = T—u :
-u

Thus, R(ex) = Aexp[ik Ina]+ Bexp[-ikIne], ¢(8)=C sinL

C sin[kIn B;]=0

Nz

R

into Eq. (3.90), we get

R

Putting R(«) and ¢() ) into Eq. (3.62) .

Then the general solution becomes

1V/4

w, = Ae™" sin L

where A=AC,B=BC.

R

0 Inﬂ}r Be'"”"sinL
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nz

nz

R

0 g Inﬁ}

~ Inﬂ]

(3.90)

(3.91)

(3.92)

(3.93)

(3.94)



Let’s look at Eq. (3.44) and Eq. (3.45). Dividing Eq. (3.44), by Eq. (3.45), yields

g =X (3.95)
=X

substituting Eq. (3.95), in to Eq. (3.44),we get

a’ =t*—x° (3.96)

putting Eq. (3.95), and Eg. (3.96), in to Eq. (3.94), we get

1 1

w. = A" sin| k. In(r—sz +Be ™" P gin| k. In(r—x]z . (3.97)
_X J—
or
iKn 1 (122 LT
u,y(t,x):,&e7I (#4) sin ﬁIn trx +Be? () sin ﬁIn il (3.98)
2 t—X 2 t—

The continuity equation is given by (note that we set from the beginningc=1)

%P .v.3=0 (3.99)
ot
in which
hie( .0y oy’
_mep,ov_,ov | 3.100
p2m£watwﬁtj (3.100)
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and

hi( .oy oy’
g tif, 0w, v
2m["’ x 7 axJ

By integrating both sides we get

or
0 3 oA
ajpol x=—[]]J.AdA=0.
For J =0 the normalization condition becomes
.[pd x=+e.

The eigenfunction with respectto « and £ is givenas

wi=A e "sin (k,Ing).

Then, the eigenfunction with respecttot and X is given as

Ko (2
v, =A eP?I(t ) sin{k?” In

(3.101)

(3.102)

(3.103)

(3.104)

(3.105)

(3.106)

We know that for non-relativistic quantum particle the orthogonality implies

(VW) = G
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or
[vaw.d°x=5,,

but for a relativistic K-G quantum particle it becomes (7A=c=m=1)

[ Loy oy,
[ - L1dB =06,
| [v/n Ve ] B =5

in which e =1. Therefore

Iff% dB (v; 0.Wn —Vn 0y )= 00
With
v = A, exp[tik, Ina]sin[k, In 5]
v, = A, exp[-ik, Ina]sin[k, In B].
Taking conjugate of Eq. (3.110), we find
w7 = A exp[ik, Ina]sin[k, In 5]

and a derivative of Eq. (3.111) implies

W _ A, exp[-ik, Ina]sin[k, In 3] (_ikm j

oa a
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(3.108)

(3.109)

(3.110)

(3.111)

(3.112)

(3.113)



Also, derivative of Eq. (3.112) yields

*(7) .
alg—(‘;: A, exp[ik, Ina]sin [k, Inﬂ](%j. (3.114)

Therefore by using Eqg. (3.109) one can find the normalization constant A.

Now, by substituting of Egs. (3.111), (3.112), (3.113), to Eq. (3.109) one finds

R AdB ] ) kg -(—ik j ik Ina o
| —— e "sin{k In B|x — (e "%sinlk In
[ 2 A sl g (2 ko]
—{A:(‘)eikm'”“ sin[k, In 8] x A" (ﬁ]e‘”‘“ "“sin[k, In [5’]} =5, (3.115)
(04
Here there exist two cases:
1. The firstcase: For m=n.
In this case Eq. (3.115) becomes
. /Rdpy (21K, ) ., B
af, A ( - jsm [k,In 8] =1 (3.116)
or

2k,

Al jZRsinz[kn In /3]%/3:1, (3.117)
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we know that

Nz 14
k = Ing, =—, 3.118
Y R (3.118)

R n
and let’s change the variable according to

rll—”=§, then InB=¢ and d7ﬂ=d§- (3.119)

n

Therefore the limit of integral becomes f=1=¢=0, for #=0, then &= T(—”
which given

2, |A[ [ sin?[k,&]dé =1 (3.120)
or consequently

el

2k, |AL] [ E[1—<:os,(2kn§)]d§=1. (3.121)

The latter equation yields
W 1 . kl
ko | A {g—ism(ang)} =1 (3.122)
n 0
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and finally

kn

Aqf(rl'(—’j:l =|A[ =%. (3.123)

Thus, the normalization constant for particle

A|=— (3.124)

-1 (3.125)
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2. The second case: Form=n .

Now, we show that the wave functions of Eq. (3.115) are orthonormal i.e.

Pry . . dg
jﬁL (sin[k, In B]sin[k, Inﬂ])?zo. (3.126)
To show that let’s use same change of variables.

Nz
kK =
In

n

, then InﬂR:rll—”,Iet;?(—ﬂzgelnﬁzg,thend%:dé

R n n

In Br . Nz . ms B
J-'“ﬁLO{Sm[m,BR gjsm(lnﬂR §ﬂd§ - 0. (3.127)

Using the relation sin(8)sin(y)= %[COS(@—]/)—COS(6’+7/)]

kil &, y= mz & one finds

In S, In 3,

LLnZR_O%I:COS(%fj—COS(%f}}dg (3.128)

which after some manipulation

and 6 =

2| (n-m)z In A3, n+m)z
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Figure 3.7: The K-G field inside an infinite well with moving
wall Eq. (3.106). In this figure we have set n=10.
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Figure 3.8: The K-G fieldinside aninfinite well with
moving wall Eq. (3.106). In this figure we have setn = 20.
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Figure 3.9: The K-G fieldinside aninfinite well with
moving wall Eq. (3.106). In this figure we have set n=30.
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Chapter 4

CONCLUSION

1 + 1 —dimensional K-G equation attracted intensive attentions in the literature [4].
This is due to its application in understanding the nature of the relativistic particle via
the possible exact solutions which may not be available in higher dimensions.
Although it is always possible to find 1+1-dimensional K-G equation from its
general form which can be extracted using the Lagrange density, an explicit
derivation has not been given by the authors of those papers. Our first aim in this
thesis was to fill this gap and introduce a straight way through this equation. After
we introduced the mentioned equation we tried to find some exact solutions for that
which helps to understand it better i.e., the relativistic zero-spin quantum particle
under certain potentials has been studied. We found analytical solution for the K-G
equation. Our first example was about a particle inside one-dimensional smooth
finite well whose bounded solutions are given in terms of Heun functions [9]. Our
second example is about a relativistic massless particle inside an infinite well with its
wall moving. This problem was studied before and we only revisited it due to its

interesting features. We finally concluded this thesis.
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