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ABSTRACT 

In this study we give a brief introduction to the basic differential equation for zero 

spin relativistic particle which is called Klein-Gordon equation. Klein-Gordon 

equation, then, is presented in 1+1-dimensions where we give some exact solutions 

for the equation with different potentials. The first problem is the particle inside a 

potential of the form of smooth finite well. We find the exact solutions in terms of 

the Heun functions.  Our second example is a K-G particle inside an infinite well 

whose wall is moving. This problem is solved for massless particle. Finally, we give 

the remarks in our conclusion. 

 

Keywords: Klein-Gordon equation, Heun functions, 1+1-dimensions, Particle in 

infi- nite well. 
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ÖZ 

Bu çalışmada, Klein – Gordon denklemi olarak bilinen, sıfır spine sahip rölativistik 

parçacık için temel diferansiyel  denkleme, kısa ve öz bir giriş yapılmıştır.  Klein – 

Gordon denklemi, farklı potansiyellere sahip bir denklem için, bazı kesin çözümler 

verdiğimiz 1 + 1 boyutları ile sunulmuştur. İlk soru, pürüzsüz sonlu kuyunun bir 

formu olan bir potansiyelin ic¸indeki parc¸acıkla ilgilidir. Kesin çözümler, Heun 

fonksiyonları cinsinden bulunmuştur.  İkinci örneğimiz ise duvarı hareket halinde 

olan sonsuz bir kuyu içindeki KG parçacığıdır. Bu soru kütlesiz parçacık için 

çözülmüştür. Son olarak, sonuç kısmında yorumlara yer verilmiştir. 

 

Anahtar Kelimeler: Klein - Gordon denklemi, Heun fonksiyonları,  1 + 1 boyutları, 

sonsuz kuyu içerisindeki parçacık. 
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Chapter 1 

INTRODUCTION 

Klein-Gordon equation is the basic equation which is used to describe relativistic 

particle with zero spin, like Higgs boson   . From the field theory the action for a 

relativistic spinless particle under the electromagnetic field is given by 

                                                     4S gd x  L                                                   (1.1) 

in which  the Lagrangian  density reads as [14, 10] 

                  
2 21

.
2

q q
i A i A m c

m c c

 

    
    

           
    

L F              (1.2) 

 Here m is the rest mass of the particle, Aµ is the four electromagnetic potential with 

,A g A 

   is the Klein-Gordon  scalar field with its complex conjugate    and 

                                     
1

4
F F 

F                         (1.3) 

 the Maxwell invariant with 

                                                       F A A                                                   (1.4) 

We note that  detg g  and in our study the spacetime is flat Minkowski 

spacetime. 
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which implies g   and therefore g = -1. We start with the variation of the 

action with respect to   which yields 

                                                       
 

.

 

  
  
    

L L
                                        (1.5) 

In an explicit calculation one finds 

                           
2 2q q q

i i A A i A m c
c c c

   

   
     

              
     

 (1.6) 

which after simplification it becomes  

                                         2 2q q
i A i A m c

c c

 

   
  
        
  

                 (1.7)  

or in more convenient form 

                                               2 2q q
p A p A m c

c c

 

   
  

    
  

                        (1.8)  

in which 

                                                   .p i                                                              (1.9)  

The latter is called Klein-Gordon equation for a massive scalar field which interacts 

non-minimally with the electromagnetic field. We also add that variation of the 

action with respect to electromagnetic potential A   

  AA


 

  
  
    

L L
                                             (1.10) 



3 

 

which yields the Maxwell’s equation i.e., [14, 10] 

    F j 

        (1.11) 

in which 

.
2

iq iq iq
j A A

A mc c c

    



   
     

               

L
   (1.12) 

Our concentration in this thesis is on the 1 + 1−dimensional Klein-Gordon equation 

which implies 

   2 2, ,
q q

i A i A x t m c x t
c c

 

   
  
        
  

        (1.13) 

in which µ = 0, 1. One may open this equation explicitly to find 

     0 0 1 1 2 2

0 0 1 1, , , ,
q q q q

i A i A x t i A i A x t m c x t
c c c c

  
     

              
     

    

(1.14) 

in which 0
c t


 


   and 1

x


 


 while 0

c t


 


 and `1

x


  


 (Note that the 

signature of the spacetime is −2, i.e. + − −−). Now we suppose that  A A x   

which implies    , exp
iEt

x t u x
 

  
 

 and consequently 

     
2

1 1 2 2

0 1 1

q q q
E A u x i A i A u x m c u x

c c c

    
           
    

                   (1.15) 

or after considering  0

q
A x

c
 V  and  1

q
A W x

c
 the latter becomes 

       
2 2 2 2

1 0.i W x x m c u x      
 

E V                          (1.16) 
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In another assumption we set   0W x   and instead we add a scalar potential 

coupled minimally with the mass of the particle as 

 

       
2

222 2 2

2
0

d
c E V x mc S x u x

dx

 
     

 
         (1.17) 

 

in which 
E

E
c

  and 
 V x

V
c

   . In the rest of this thesis we use this equation with 

certain potentials and we try to find solutions for such system [13, 1, 12, 11, 7, 3, 

8,4]. 
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Chapter 2 

1+1-DIMENSIONAL KLEIN-GORDON EQUATION 

For a spinless relativistic quantum particle under a scalar and a vector potential       

and      , respectively, the time independent Klein-Gordon  equation is given by [1] 

     
2

222 2 2

2
                     0

d
c E V x mc S x u x

dx

 
          

 
                          (2.1) 

 in which m is the mass of the particle, c is the speed of light   is the energy and 

      is the wavefunction of the particle. Our specific choice of the potentials are 

given as follows [12]:         

                                                            0V x                           (2.2)     

and 

                                 2 2 2tanh tanh

L L
x x

S x mc
a a

    
     

     
     

    

                            (2.3) 

in which L and a are two non-negative real constants. In Fig. (2.1) we plot 
 

2

S x

mc
  for 

      and different values of a. As it is clear from Fig. (2.1) in the limit of         

the potential      becomes a finite well of width L and depth 2     . 
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Figure 2.1: Scalar potential S (x) in terms of x for L = 1 and a = 1.00, 0.50, 

0.20 and 0.00. It is clear that when a goes to zero the potential approaches 
to the square well with width L and depth 2. 

 
Now, we are looking for bound state solutions to Eq. (2.1). To that end, first we define 

 

                                                
2

2

2 2

E
k

c
                                            (2.4) 

and 

 

 

                                           
2 2

2

2

m c
                                                    (2.5) 
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to reduce the K-G equation as  

     

2

2
2 2

2

2 21 tanh tanh 0.

L L
x x

d
k u x

dx a a


     
      

         
            

        (2.6)  

Next we introduce 

2
exp

x
z

a

 
   

 
             (2.7)  

which by virtue of 

22 2 2

2 2 2
,

d d dz d d z d dz d

dx dx dx dz dx dz dx dz

   
     

   
              (2.8)  

       0

0

2
11 exp

2tanh
2

11 exp

zx LL
x

za

zx La

za

           
        

           (2.9)  

and 

0

0

2
1 exp

12tanh
2 1

1 exp

x LL
x

z za

x La z z

a

           
         

          (2.10)  

in which 
0 exp

L
z

a

 
   

 
 one finds 

            
2

2 2 2 0 0

2 2 2

0

0

1
14 4

1 0.
1

1

z

z z zd d
z z k u z

za dz a dz z z

z



  
  

       
    

  

        (2.11)  

Latter equation after some manipulation becomes 

   
  

2 2 2 2 2 2

0

2

0 0

11
0

4 2 1

a k a z
u u u

z z z z z z z

 
 

  
    

   
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in which a prime stands for derivative with respect to z: Let’s introduce

 2 2 2

2

4

a k 



     and 

 2 2 2

02
1

2

a z



   and    u z z z   such that the main 

equation (2.1) becomes 

  

2

0 0

2 1
0.

1z z z z z z

 
   

  
 

        (2.12)  

This equation is the so called Heun’s differential equation whose general form is 

given by 

  
0

1 1

z q

z z z p z z z p

  
     

     
    

 ٍ
       (2.13)  

with the condition 1.          The solution is given by 

                
 

   
1

1

2

, , , , , ,

, 1 , 1, 1,2 , , .

C HeunG p q z

C z HeunG p q p z

    

       

 

        ٍ
 (2.14)  

Comparing these two equations one finds that with 
0/z z   Eq. (2.1) becomes 

         
 

 

2

2

0

2

0

2 1
0

1
1

z

z




     


  

 
  

 
  

 

                  (2.15)  

which implies
2

2

0

2 1, 0, 0, 2 ,q
z


            ٍ  and

2

0

1
p

z
   

Therefore the solution of the main equation becomes 

 
2 2

2

1 22 2 2 2

0 0 0 0 0 0

1 1
, ,0, 2 , 2 1,0, , ,0, 2 ,1 2 ,0, .

z z
z C HeunG C z HeunG

z z z z z z

 
       

         
   

 

(2.16)  
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Herein 
1 2C  and C  are two integration constants. 

The first boundary condition to be considered is as follows: 

 lim 0
x

u x


   

this means indeed 

 lim 0.
z

z z


   

Upon considering  , , , , , ,0 1HeunG p q       we find 

      1 2lim 0
z

z C C z 


    

which by considering n > 0 it yields
2C =0  : Therefore the solution becomes 

 
2

1 2 2

0 0 0

1
, ,0, 2 , 2 1,0, .

z
z C HeunG

z z z


  

 
   

 
  

To consider the second boundary condition i.e.  lim 0
x

u x


  , we need to evaluate 

 lim 0.
z

z z


   

This limit is not easy to be calculated unless we transform the HeunG to its other 

forms. 
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Chapter 3 

K-G MASSLESS PARTICLE IN AN INFINITE WELL 

WITH MOVING WALL 

3.1 Klein-Gordon for Relativistic Spin-0 Particle in a Box 

Let’s consider a relativistic spin-zero particles in an infinite box as defined below [6, 

2, 5]: 

                                                
0, 0

,

x L
V x

elsewhere

 
 


                                 (3.1) 

 

 

The K-G equation inside the box reads 

 

                                                  
2 2

0

2
, 0

m c
x t

 
  

 
(3.2) 

 

In which 

                                      
2 2

2 2 2

1

c t x

 
 

 
                                   (3.3) 
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and 
0m   is the rest mass of the particle. Our solution to Eq. (3.2) is given as 

         , .x t U x T t                      (3.4) 

Substituting Eq. (3.4) into Eq. (3.2) we get 

2 22 2

0

2 2 2 2

1
0.

m cT U
U T UT

c t x

 
  

 
    (3.5) 

Dividing Eq. (3.5) by UT yields 

2 22 2

0

2 2 2 2

1 1 1
0.

m cT U

c T t U x

 
  

 
    (3.6) 

Now, one can separate the variables as 

2 22 2
20

2 2 2 2

1 1 1m cU T

U x c T t


 
    

 
    (3.7) 

in which 
2  is a constant. The time part reads 

2
2

2 2

1 1 T

c T t



 


    (3.8) 

or equivalently 

2
2

2
0,

T
T

t



 


   (3.9)  

where 2 2 2c   and .
E

    
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The general solution to Eq. (3.9) is given by 

E E
i t i t

T Ae Be


      (3.10) 

in which A and B are integration constants. 

The space part of the KG equation (3.7) becomes 

2 22
20

2 2

1 m cU

U x



  


         (3.11) 

or consequently 

                  
2

2

2
0

U
k U

x


 


              (3.12) 

in which         
2 2

2 2 0

2
.

m c
k          (3.13) 

The general solution to Eq. (3.12) is also given by 

       sin  cosU C kx D kx                 (3.14)  

in which C and D are integration constants. 

The boundary conditions concern only the space part which are given as 

    0  0 .U x U x L           (3.15) 



13 

 

The condition at 0x   implies                     0D              (3.16) 

while the condition at x L  gives       

  sin 0C kL            (3.17) 

which, eventually yields                                      kL n                                     (3.18) 

and therefore       , 1, 2,3,....n

n
k n

L


             (3.19) 

 

It directs to the energy spectrum of the particle as 

     2 2 2 2

0    n nE c c k m c                 (3.20) 

or  

   

2 2 2
2 2

02
  .n

n
E c m c

L


              (3.21) 

In addition to the energy spectrum we also find 

   sinn n

n
U x C x

L

 
  

 
             (3.22)  
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in which 
nC   is the normalization constant. 

Substituting Eq. (3.22) and Eq. (3.10) in to Eq. (3.4) we get [7] 

        sin sin .
n nE E

i t i t

n n nAe k x Be k x


      (3.23) 

 

From Eq. (3.23), we can write the eigenfunctions for the particle and the anti-particle 

respectively as 

 sin
nE

i t

n n nC e k x


             (3.24)  

 sin
nE

i t

n n nC e k x             (3.25) 

Note that the particle density r for particle and anti-particle are 

.
2

e

im t t

 
  

 
     
  

  
          (3.26) 

From Eq. (3.24) one finds 

     sin ,
nE

i t

n nC e k x               (3.27) 

   sin ,
nE

i t
n

n n

iE
C e k x

t

 


   
  

  
          (3.28) 

and      

             sin .
nE

i t
n

n n

iE
C e k x

t

 
  

  
  

               (3.29) 
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Herein a star    stands for the complex conjugate. Substituting Eq. (3.24), Eq. (3.27), 

Eq. (3.28), and Eq. (3.29), into Eq. (3.26) yields 

   
2 2

2 2sin sin ,
2

n n n nE E E E
i t i t i t i t

n n
n n n n

iE iEe
C k x e e C k x e e

im


 
  

     
     

    
 (3.30) 

or in short   

  
2

22 sin ,
2

n
n n

iEe
C k x

im
      

   
  

                    (3.31) 

and finally 

 

2

2sin .
n n

n

C E e
k x

m




            (3.32) 

Following the same steps of the particle density for anti-particle one finds 

 

2

2sin .
n n

n

C E e
k x

m




                        (3.33) 

 

The relativistic normalization condition is given by 

3d x e





              (3.34) 

where for the particle 

          3d x e              (3.35) 
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and for the anti -particle 

3 .d x e          (3.36) 

Herein e is the charge of the particle. Substituting the value of particle density for 

particle Eq. (3.32), in to Eq. (3.35), we get 

 

2

2

0
sin 1

L n n

n

C E
k x dx

m



      (3.37) 

or 

 

2

0

1
1 cos 2 1.

2

L n n

n

C E
k x dx

m



        (3.38) 

Then 

 

2

0 0
cos 2 1,

L Ln n

n

C E
dx k x dx

m



  
        (3.39) 

and finally 

 

2

2 2 2
1 .

n n

n n

n n

C E m m
L C C

m LE LE



       (3.40) 

Thus, the eigenfunctions and the Eigen energies can be written as 

 

 
2

, sin
nE

i t

n

n

m n
x t x e

LE L





  

  
 

            (3.41)                                           
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2 2 2
2 2

02
  n

n
E c m c

L


                                 (3.42) 

 

 
2  

    .n

n

m n
x sin x

LE L


   

  
 

                         (3.43) 

 

 
 

Figure 3.1: The Klein-Gordon field ψ1 of a massive particle inside an 

infinite well. The ground-state of the particle is taken from the equation 

(3.43) with    . We note that unlike  the case of non-relativistic wave 

function in which               , in this case i.e., K-G field the 

equation of normalization becomes (3.34). 
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Figure 3.2: The first excited state of the K-G massive particle 
inside an infinite  square well. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.3: The second excited state of the K-G massive 

particle inside an infinite square well. 
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3.2 K-G particle in an Infinite square-well with a moving wall 

 
Figure 3.4: Infinite well potential with a moving wall. 

Here the left wall is fixed at     and the other wall is  

moving with a constant velocity  u in +x-direction. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3.5: In this figure we show the light cone  

(the lower line) and the world-line  of the moving 

wall. The points A and B are the corresponding 

location of the moving wall at                
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 Figure 3.6: In this figure, the new coordinate is shown. The curved 

 line is             and the other line is             . 

 Also we plot the light cone clearly. 

 

 

In this section we consider the relativistic  massless particle  in an infinite square well 

potential with a moving  wall by a transformation  from         coordinate to           

coordinate (Hyperbolic  coordinates) [6]. 

As it is shown in the figure (3.4), the right wall of the well is moving with a constant 

speed. A transformation of the form 

                                                      t x                                                          (3.44) 

and                                                

  t x



                        (3.45) 
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Maps our problem from x-t   coordinate to    coordinate. Both space time are 

1+1-dimensional and flat which after we set c =1  , the line element in x-t   coordinate 

is given by 

2 2 2ds dt dx      (3.46) 

 

The K-G equation for massless particle reads as 

0       (3.47) 

in which 

2 2

2 2
. 

t x

 
  

 
    (3.48) 

Derivative of Eq. (3.44), and Eq. (3.45), yield 

t x d d dt dx            (3.49) 

and 

2
.

d d
t x dt dx

  


  
         (3.50) 

Next, using above one finds 

    
2

2 2 2 2

2 2
    ( )

d d
d d dt dx dt dx d d dt dx

  
     

  

 
         

 
      

(3.51) 
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Therefore the line element transforms as 

2
2 2 2

2
ds d d


 


      (3.52) 

whose metric tensor is given by 

2

2

1 0

 
0

g 



 
 
 
  

     (3.53) 

and its inverse becomes 

2

2

1 0

.
0

g 




 
 
 
  

     (3.54) 

Next, we transform the K-G equation from x-t   space time to    space time. The 

standard form of the K-G equation for a massless particle reads 

 

  , 0        (3.55) 

in which 

 1
 g

g



   


   (3.56) 

and 

 

2

2
.g g




     
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Finally one finds 

      , 

 

   

   

   
        

   
  (3.57) 

which after  lowering the indices 

        
2

2   

    

    

   
         

    
   (3.58) 

 

we get 

   2

1
  .   


 

 
         (3.59) 

Equation (3.59) is the d’Alembert operator in    coordinates. The K-G equation 

becomes 

   2

1
  0   


   

 
         (3.60) 

or more clear 

2

1
0.


   

     

     
    

      
  (3.61) 
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The solution of the Eq. (3.61) can be written as 

   R       (3.62) 

which after substituting Eq. (3.62) into Eq. (3.61), we get 

2
 0.

R R  
 

     

     
    

      
  (3.63) 

Dividing Eq. (3.63) by ,R  and  multiply by 
2  yields 

 0.
R

R

  
 

    

     
    

      
   (3.64) 

Next, one can separate the variable as 

2 
R

k
R

  
 

    

     
     

      
  (3.65) 

in which
2k   is a separation constant. The   part reads 

2 0
R

k R 
 

  
  

  
    (3.66) 

while the   part of the equation (3.65) becomes 

2 0.k


  
 

  
  

  
    (3.67) 
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Now from equation (3.66) 

2
2 2

2
0

d R dR
k R

d d
 

 
       (3.68) 

has a solution of the form
mR   , which implies . 

1mdR
m

d




      (3.69) 

and 

 
2

2

2
1 .md R

m m
d




     (3.70) 

Substituting in Eq. (3.68), one gets 

   2 2 1 2 21 0  1 0m m m m m mm m m k m m m k                    (3.71) 

dividing Eq. (3.71) by 
m  to obtain 

  2 2 21 0 0 .m m m k m k m ik            (3.72) 

Then the solution of ( )R   becomes 

 

ik ikR A B           (3.73) 
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or simply 

   ln ln
.

ik ik
R A e B e

 
     (3.74) 

 

The inverse transformation 

2 .
t x

t x






     (3.75) 

 

For the left wall, at point 
0t = t  and 0x   ; Eq. (3.75) implies 

    2 2 0

0

1 1.L L L

tt x

t x t
  


     


     (3.76) 

 

For right wall,  x ut  and  0 0 .x L L u t t      Then Eq. (3.75) also implies 

 

 
0 02

0 0

 
.

 
R

t L u t t

t L u t t


  


  
   (3.77) 

 

Substituting the value of 
0 0L = ut  in Eq. (3.77), we get 

 

 
2

 1 1
.

 1 1
R

t ut ut u

t ut t u u


 
  

  
  (3.78) 
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Therefore the boundary conditions, simply reads ( ) ( ) 0.L R       

2
2 2

2
0.

d d
k

d d

 
  

 
      (3.79) 

Has a solution of the form ( ) q    which yields 

1 
,qd

q
d






     (3.80) 

and   

 
2

2

2
1 .qd

q q
d






     (3.81) 

 

Substituting in Eq. (3.79), one gets 

   2 2 1 2 2{  1 } ( ) 0  1 0q q q q q qq q q k q q q k                  (3.82) 

 

dividing Eq. (3.82) by q  , we obtain 

  2 2 2 1 0 0 .q q q k q k q ik             (3.83) 

 

Then the solution of ( )   becomes 

 ( ) ik ikC D                            (3.84)  
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thus             

   ln ln
( ) .

ik ik
C e D e

 
 


       (3.85) 

Hence, the general solution yields 

( , ) ( ) ( )R           (3.86) 

The first boundary condition for  1 , , 1 0L         ,    1 0,R        

 then,  1 0     . Then Eq. (3.85) becomes 

 

0C D C D          (3.87) 

putting Eq. (3.87) in to Eq. (3.85) we get 

 

    ln ln
( )  

ik ik
C e e

 
 


     (3.88) 

  ( ) 2  sin lniC k       (3.89) 

 

where C = 2iC , then 
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    ( ) sin ln .C k               (3.90) 

Second boundary condition when  , , 0,R R         

     0 0R RR        .  Then Eq. (3.90) reads 

 

  sin ln 0RC k              (3.91) 

ln , 1,2,3,.......
ln

R n

R

n
k n k n


 


           (3.92) 

Substituting 
ln

n

R

n
k




  into Eq. (3.90), we get 

( )  sin ln
ln R

n
C


  



 
  

 
          (3.93) 

where 
1

1
R

u

u






 . 

 

Thus,    ( ) exp ln exp ln ,R A ik B ik      ( ) sin ln
ln R

n
C


  



 
  

 
. 

 Putting    R and    ) into Eq. (3.62) .  

Then the general solution becomes 

 

ln ln
sin ln sin ln

ln ln
n nik ik

n

R R

n n
Ae Be

  
  

 

   
    

   
         (3.94) 

 

where A = A C , B = B C . 
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Let’s look at Eq. (3.44) and Eq. (3.45). Dividing Eq. (3.44), by Eq. (3.45), yields 

2 t x

t x






            (3.95) 

substituting Eq. (3.95), in to Eq. (3.44),we get 

2 2 2t x               (3.96) 

putting Eq. (3.95), and Eq. (3.96), in to Eq. (3.94), we get 

  
   

1 1
2 2 2 22 2

1 1

2 2ln ln
sin  ln sin  ln ,

n nik t x ik t x

n n n

t x t x
Ae k Be k

t x t x


  
   

           
       
   

        (3.97) 

or 

 
   2 2 2 2ln ln

2 2,   sin ln   sin ln .
2 2

n nik ik
t x t x

n nk kt x t x
t x A e B e

t x t x



         

              
      (3.98) 

The continuity equation is given by (note that we set from the beginning 1c   ) 

. 0J
t


 


           (3.99) 

in which 

,
2

i e

m t t

 
  


  

  
  

        (3.100) 
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and 

.
2

i
J

m x x

 
 


  

  
  

     (3.101) 

By integrating both sides we get 

3 3.d x J d x
t


  

       (3.102) 

or 

3 ˆ. 0.d x J ndA
t




  
       (3.103) 

For 0J   the normalization condition becomes 

3 .d x e         (3.104) 

The eigenfunction with respect to    and    is given as 

   ln
sin  ln .nik

n n nA e k


 
      (3.105) 

Then, the eigenfunction with respect to t   and x  is given as 

 2 2 ln
2 sin  ln ,

2

nk
i t x

n
n n

k t x
A e

t x


 
    

   
     

     (3.106) 

We know that for non-relativistic quantum particle the orthogonality implies 

,n m nm     
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or 

3

n m nmd x            (3.107) 

but for a relativistic K-G quantum particle it becomes ( 1c m    ) 

 ,m n
n m nmi d

t t

 
   


  

  
  

      (3.108) 

in which e = 1. Therefore 

         
R

L
n m m n nmi d



 



     



            (3.109) 

With 

   exp ln sin lnm m m mA ik k           (3.110) 

   exp ln sin ln .m m m mA ik k             (3.111) 

Taking conjugate of Eq. (3.110), we find 

     exp ln sin lnn n n nA ik k  
           (3.112) 

and a derivative of Eq. (3.111) implies 

 

   exp ln sin ln  .m m
m m m

ik
A ik k


 

 


  

   
  

  (3.113) 
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Also, derivative of Eq. (3.112) yields 

 

   exp ln sin ln .n n
n n n

ik
A ik k


 

 

 

  
  

  
   (3.114) 

Therefore by using Eq. (3.109) one can find the normalization constant A. 

Now, by substituting of Eqs.  (3.111), (3.112), (3.113), to Eq. (3.109) one finds 

     ln ln
sin ln  sin ln

R
n m

L

ik ikm
n n m m

ikd
i A e k A e k


 




  

 

     
  

  
  

 
       ln ln

sin ln  sin lnm nik ikn
m m n n nm

ik
A e k A e k

   


     
    

  
     (3.115) 

Here there exist two cases: 

1. The first case: For m n . 

In this case Eq. (3.115) becomes 

 
2

22
sin ln 1

R

L

n
n n

ikd
i A k






 

 

  
 

 
    (3.116) 

or 

 
2

22 sin ln 1,
R

L
n n n

d
k A k










      (3.117) 
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we know that 

ln ,
ln

n R

R n

n n
k

k

 



       (3.118) 

and let’s change the variable according to 

, then ln and .
n

n d
d

k

 
   


       (3.119) 

Therefore the limit of integral becomes 1 0,     for 0,   then 
n

n

k


    

which given  

 
2

2

0
2 sin 1n

n

k
n n nk A k d



         (3.120) 

or consequently 

 
2

0

1
2 1 cos 2 1.

2
n

n

k
n n nk A k d



              (3.121) 

 

The latter equation yields 

 
2

0

1
sin 2 1

2

n

n

k

n n n

n

k A k
k



   
  
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35 

 

and finally 

2 2 1
1 .n n n

n

n
k A A

k n





  
   

 
       (3.123) 

Thus, the normalization constant for particle 

    
1

nA
n

           (3.124) 

while the normalization constant for anti-particle is 

    
1

.nA
n

 
                     (3.125) 
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2. The second case: For m n  . 

Now, we show that the wave functions of Eq. (3.115) are orthonormal i.e. 

    sin ln sin ln 0.
R

L
n m

d
k k






 


    (3.126) 

To show that let’s use same change of variables. 
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Using the relation         
1
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    (3.128) 

which after some manipulation 

    
 

 

 

 
ln

0

ln ln1
sin sin 0.

2 ln ln

R

R R

R R

n m n m

n m n m



  
 

   

     
     

      
  (3.129) 
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Figure 3.7: The K-G field inside an infinite well with moving     

wall Eq. (3.106). In this figure we have set n=10. 
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Figure 3.8: The K-G field inside an infinite well with 

                                        moving wall Eq. (3.106). In this figure we have set     . 

 
 

 
 

Figure 3.9: The K-G field inside an infinite well with 

 moving wall Eq. (3.106). In this figure we have set n=30. 
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Chapter 4 

CONCLUSION 

      dimensional K-G equation attracted intensive attentions in the literature [4]. 

This is due to its application in understanding the nature of the relativistic particle via 

the possible exact solutions which may not be available in higher dimensions. 

Although it is always possible to find 1+1-dimensional K-G equation from its 

general form which can be extracted using the Lagrange density, an explicit 

derivation has not been given by the authors of those papers. Our first aim in this 

thesis was to fill this gap and introduce a straight way through this equation. After 

we introduced the mentioned equation we tried to find some exact solutions for that 

which helps to understand it better i.e., the relativistic zero-spin quantum particle 

under certain potentials has been studied. We found analytical solution for the K-G 

equation.  Our first example was about a particle inside one-dimensional smooth 

finite well whose bounded solutions are given in terms of Heun functions [9]. Our 

second example is about a relativistic massless particle inside an infinite well with its 

wall moving. This problem was studied before and we only revisited it due to its 

interesting features. We finally concluded this thesis.  
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