Vulnerability in cloud computing.
Securing SOAP message using SESoap method

Hadi Razzaghi Kouchaksaraei

Submitted to the
Institute of Graduate Studies and Research
in Partial Fulfilment of the Requirements for the Degree of

Master of Science
in
Computer Engineering

Eastern Mediterranean University
July 2013
Gazimagusa, North Cyprus

Approval of the Institute of Graduate Studies and Research

Prof. Dr. Elvan Yilmaz
Director

| certify that this thesis satisfies the requirements as a thesis for the degree of Master
of Science in Computer Engineering.

Assoc. Prof. Dr. Muhammed Salamah
Chair, Department of Computer Engineering

We certify that we have read this thesis and that in our opinion it is fully adequate in
scope and quality as a thesis for the degree of Master of Science in Computer
Engineering.

Assoc. Prof. Dr. Alexander G. Chefranov
Supervisor

Examining Committee

1. Assoc. Prof. Dr. Zeki Bayram

2. Assoc. Prof. Dr. Alexander G. Chefranov

3. Asst. Prof. Dr. Giircii Oz

ABSTRACT

Cloud computing is a concept based on Internet, which delivers large scalable
computing resources, as services over the Internet. The main benefit of this
technology is the decrease of capital and operational costs, which has caused
industrial companies and research communities pay attention to this technology,
increasingly. A typical cloud computing systems has special characteristics.
According to, five major characteristics have been considered for a typical cloud
system. Having those characteristics, there are also three major service models, for
each system, which are namely, Cloud Software as a Service (SaaS), Cloud Platform

as a Service (PaaS), Cloud Infrastructure as a Service (laaS).

It should be added here that although there are a lot of positive features counted for
cloud systems, there are also some problems that slacken this technology’s
development. One of the most critical issues, is security, which threatens the

successfulness of cloud computing.

It is known that the exchange of information between web applications is done by
means of the SOAP protocol. Securing this protocol is obviously a vital issue for any
computer network. However, when it comes to cloud computing systems, the

sensitivity of this issue rises, as the clients of system, release their data to the cloud.

XML signature is employed to secure SOAP messages. However, there are also
some weak points that have been identified, named as XML signature wrapping

attacks, which have been categorized into four major groups; Simple Ancestry

Context Attack, Optional element context attacks, Sibling Value Context Attack,

Sibling Order Context.

In this study, two existing methods, for referencing the signed part of SOAP Message
to counter the mentioned attacks, named as ID and XPath method, are analyzed and
examined. In addition, a new method is proposed and also tested, to secure the SOAP

message.

In the new method, the XML signature wrapping attack is prevented by employing
the concept of XML digital signature on the SOAP message. In this study a different
way for signing is used, which is more efficient than the current methods .The results
of conducted experiments show that the proposed method is approximately three

times faster than the best method, which is currently available.

Keywords: Cloud computing, SOAP message, XML digital signature, Wrapping

attack

Oz

Bulut bilisim internete dayanmakta olup internette genis 6l¢eklenebilir programlama
veri kaynagini ve hizmetleri sunan bir konsepttir. Bu sistemin baslica faydalari
sermayenin ve isletim maliyetinin diisiirmesidir. Dolaysiyla sanayi kuruluslar1 ve
arastirma topluluklarinin bu sisteme gosterdigi ilgi gittikce artmaktadir. Bulut bilisim
sistemlerinin kendine 6zgii 6zellikleri vardir. Bir bulut bilisim sistemi genel olarak
bes 0zellige sahiptir. Bu 6zelliklerin yani sira, her sistemin ii¢ ana hizmet modeli de
mevcuttur; Hizmet Olarak Yazilim (SaaS), Hizmet Olarak Platform (PaaS), Hizmet

Olarak Altyapi (IaaS).

Unutulmamas1 gerekir ki bu sistemin bir¢ok faydaya sahip olmasinin yani sira, bu
teknolojinin gelistirilmesine iliskin bazi sorunlar da bulunmaktadir. En kritik
konulardan birisi bu sistemin basar1 oranmnin olumsuz bir sekilde etkileyebilen

guvenliktir.

Bilindigi {izere, web uygulamalar1 arasinda veri degisimi SOAP protokolii (Basit
Nesne Erisim Protokolii) araciligiyla ger¢eklesmektedir. Bu protokoliin giivenligi her
bilisim ag1 i¢in hayati Onem tagimaktadir. Fakat bulut bilisim sistemlerine
gelindiginde, sistem miisterileri kendi verilerinin buluta siirdiikleri i¢in giivenligin

onemi daha da artmaktadir.

XML imzast SOAP mesajlarinin gilivenliginin saglanmasi i¢in kullanilir. Ancak
XML imzasmin bazi zayif yonleri da tespit edilmistir. Bunlar XML imzas1 saldir1
paketi olarak adlandirilmakta olup dért kategoriye boliiniir; Basit Gegmis Icerik

Saldiris1 (Simple Ancestry Context Attack), Se¢imli Bilesen Icerik Saldirist

(Optional Element Context Attacks), Benzer Deger Icerik Saldiris1 (Sibling Value

Context Attack), Benzer Diizen Igerik Saldiris1 (Sibling Order Context).

Bu calismada, SOAP mesajinin imzalanmis kismina yonelik sézii gecen saldirilari
Oonlenmek i¢in kullanilmakta olan URI ve XPath olmak iizere, iki kullanilmakta olan
yontem analiz edilmis ve degerlendirilmistir. Ayrica SOAP mesajlarinin giivenliginin

saglanmasi i¢in yeni bir yontem onerilmeye ve test edilmeye ¢alisilmistir.

Yeni yontemde, XML imza sarma saldirist SOAP mesaj1 uzerine XML sayisal imza
yontemlere sore daha fahli ve daha verimli bir imzalame yilintemi kullanilmistir.

Deneyler gostermistir ki 6neilen yontem varolan yilintemlere gore ti¢ misli hizlidir.

Anahtar Kelimeler: Bulut bilisim, SOAP mesaji, XML sayisal imza, Sarma saldirisi

Vi

ACKNOWLEDGMENTS

I would like to express my gratitude to my supervisor Assoc. Prof. Dr. Alexander
Chefranov, for his precious guidance, valuable supervision and continuous

encouragement throughout this thesis work.

My deep appreciations go to my dear family, especially mother, father, my dear
brother and sister, whom without their compassionate support; this step could not be

achievable for me.

vii

To my dear mom, dad, brother and sister,

who have always supported and loved me

viii

TABLE OF CONTENTS

ABSTRACT .. re e i
OZ e bbbt v
ACKNOWLEDGMENTS ... vii
DEDICATION ...ttt ettt snnas viil
LIST OF FIGURES ...ttt Xii
LIST OF TABLES ..ot Xiil
LIST OF ABBREVIATIONS ... Xiv
L INTRODUCTION ..ottt 1
2 LITERATURE REVIEW.ot 4
2.1 CloUd COMPUEING ...cuvintiietiitesie ettt bbbt 4
2.1.1 ESSeNtial FEATUIES.c.oiiiiiiiiieiieeeee e 5
2.1.2 SErviCe MOUEIS.......oeiiiiie e 6
2.1.3 Utilization MOGEIS..........coiiiiiiiieeee e 7

2.2 SOAP e 8
2.2.1 SOAP BUIldING BIOCKSccviiiiiiiiiciece e 9
2.2.2 Skeleton Of SOAP MESSAGEcveieieiiriesieiie e 9
2.2.3 SYNEAX RUIES ..o 10
2.2.4 SOAP Message and Web ServiCes.........ccccovvviiieiii i 10

2.3 XML SIQNALUIE ..oeeieeeiie sttt et st a s 11

2.4 XML Signature Wrapping AttaCKcccvrveiiiereiiie e 13

2.4.1 Simple Ancestry Context AMACK...........ccoviririiiiiciee e 13
2.4.2 Optional Element ConteXt AACKS.cccceiiriiiiieieiese e 15
2.4.3 Sibling Value Context AMACKccoovieiiiiinieseeeee e 16
2.4.4 SIibIING Order CONEXLccveiueeieiieie e 19
2.5 PropoSsed COUNTEIMEASUIESccueeveireeiieeieseesieesiesseeseesesseesseessesseesseessesneessens 19
2.6 Problem Definition..........ocooeiiiiiiiii e 22
3 EXPERIMENTS WITH CLOUD COMPUTINGcccciiiiiiiieiieeee e 24
3.1 GO0gle APP ENGINE....cuiiiiiiiiie s 25
3.1.1 The Application ENVIFONMENT..........cccooiiiiiiiiiieieee e 25
3.1.2 THE SANADOX ...ttt 26
3.1.3 The Python Runtime ENVIrONMENtccceeveiieiieie e 27
3.1.4 APP ENQINE SEIVICESvevieiiieie ettt 28
3.2 Available Methods To Refer Signed Part of SOAP Messagesccccvervenne. 29
3.3 Examination of ID and Xpath Methodsccccooiiiiiiiiineee 31
34 SUMIMAIY .ottt ettt et b e 36

4 PROPOSED SESOAP METHOD TO COUNTER XML SIGNATURE

WRAPPING ATTACK IN SOAP MESSAGE ... 37
4.1 Simple EIemMent CONTEXLccvviiieiieiie et 39
4.2 Optional Element CONEXL.........cccuiiiiriiieie s 39
4.3 SIDIING Valug CONEXT ..ot 39
4.4 SiDIING Order attaCkcccooeiiiiiiiiiieere s 40

4.5 Conducted EXPErIMENTSc.ccveiiiieiiesieeiie e e see e re et e e enes 40

4.6 SUMIMETY ..ttt ettt ettt sttt et e e ke e e st e e sae e aabeeebe e e nbe e sbeeanbeenbeeennee e 44
S5 CONCLUSIONS ...t bbbt et 45
REFERENGES...... ..ottt bbb 47
APPENDICES ...t 55
APPENTIX A .o et e et nreereanes 56
APPENTIX B .ot re s 57
APPENTIX C ottt bbbt 58
APPENIX D .t 59

Xi

Figure 2.1:
Figure 2.2:
Figure 2.3:
Figure 2.4:
Figure 2.5:
Figure 2.6:
Figure 3.1:
Figure 3.2:
Figure 3.3:
Figure 3.4:
Figure 3.5:
Figure 3.6:
Figure 4.1:
Figure 4.2:
Figure 4.3:

Figure 4.4:

LIST OF FIGURES

Skeleton of A SOAP MESSAJEccvevvveierieeiieiie e e esie e seesie e sre e 10
Structure of an XML Signaturecccccovveveeieiieie e 12
Typical Simple Ancestry Context Attackccccoevevieiiieie e 14
Typical Optional Element Context Attacksc.ccccoeevvievieivn e, 16
Typical Sibling Value Context Attackcccevevveviiicciece e 18
Runtime Comparison of Different Referencing Methods 22
Practical example of Python environment..............cccccoovevviieiecie e, 28
Skeleton of @ S0P MESSAEcivveiieiiecieeie e 29
SOAP MesSsage CONEXTccveieiiiieiiieeiieeeiiee e srre e sire e sie e seee e 31
SOAP Message Signed Using ID Method...........cccccooeiieiiiii e 33
SOAP Message Signed Using Xpath Methodc.cccceeveviiiieinenenn. 34
Time Consumed to Detect the Signing Elementcccccovevviieivenen. 35
Skeleton of SESoap Methodcocoeveiieiiiie e 38
XML Document of SOAP Messaged Signed Using Sesoap Method...... 38
Time Durations of the Three Considered Methodsccccecvrenennne, 41
Time Durations for Hashing the Specified Element..............cc.ccccovenne. 42

Xii

LIST OF TABLES

Table 3.1: Time Durations to Detect the Signing Element Using ID Method............ 32
Table 3.2: Time Durations to Detect the Signing Element Using Xpath Method 35
Table 4.1: Time Durations for Finding Specified Element..........c...cccccevvviveiiiinnen. 40
Table 4.2: Time Durations for Hashing the Specified Element..............ccccocevvinnnen. 41

Table 4.3: Total Times Consumed to Sign the Soap Message, in Each Method Using

Xiii

LIST OF ABBREVIATIONS

SOAP. ..o, Simple Object Access Protocol
SE S 0@ . .t Signing Entire SOAP
XML Extensible Markup Language
SaaS . . Software as a Service
Paas . Platform as a Service
[aaS. Infrastructure as a Service
NIST. o National Institute of Standards and Technology
RP C . Remote Procedure Calls
DCOM...ciiii Distributed Component Object Model
HT TP HyperText Transfer Protocol
HTTPS. e HyperText Transfer Protocol Secure
DTD .. Document Type Definition
URIL . Uniform Resource Identifier
UR L. .. Uniform Resource Locator
XPath. ..o XML Path Language
A e Certificate Authorities
DOM. ..o Document Object Model
JPEG .. o Joint Photographic Experts Group
PNG . e Portable Network Graphics
T A X Java API for XML

Xiv

Chapter 1

INTRODUCTION

Cloud computing is a new technology [1], which provides greatly ascendable
resources such as bandwidth, hardware and software, to be utilized as a service for
consumers, over the internet. This concept has attracted wide attention in all kind of
industries, recently [2]. One of the most significant advantages of using of this
technology is that, consumers can save the cost of hardware deployment, software
license and system maintenance. Consequently, the price of providing and using the

systems will be reduced, significantly.

There are three main layers in cloud computing [2], depending on the type of
provided resources, which are namely; Infrastructure-as-a-service (laaS) [3],
Platform-as-a-service (PaaS) [4] and Software-as-a-service (SaaS) [5]. Very common
examples of this system are Google’s App Engine, Amazon’s EC2 and Microsoft

Azure [2].

However, besides being absolutely beneficial, there are still particular unsolved
problems [2], in order to implement this concept. It can be said that the most
important challenges in cloud computing are security and trust. Since the consumer’s
data has to be released to the cloud, the system requires high security safety over
them. The data in clouds could be very personal and sensitive and must not be

unveiled to the unauthorized person. This fact results in the problematic sensitive

data leakage or data loss from clouds [2]. In cloud computing, data are threatened
during the transition as well. This problem reduces the reliability of the cloud

systems [6].

A popular protocol which used to exchange the data in cloud system is Simple
Object Access Protocol (SOAP) [7]. This is a communication protocol, which has
been used in cloud systems, for transferring data, between applications over the
Internet, with the independent platform and language based on Extensible Markup
Language (XML) [8]. Securing the data in SOAP messages is one of the main
concerns related to security in cloud systems. It can be threatened by XML Signature
wrapping attack, which causes the unveiling of sensitive data [9]. This attack is based
on altering the structure of the original message from the genuine sender. So as to
counter this attack, although diverse remedies have been proposed, none of them

have been able to counter the attack completely [9].

The solution provided in this thesis, uses a new method, namely SESoap, to provide
integrity for the messages, exchanging in a cloud system by SOAP protocol. In this
technique, which is less complicated, more reliable and faster than the current
methods, the entire SOAP message is signed by XML digital signature, instead of

signing a part of that.

Due to importance of the information existing in SOAP message, finding a method in
order to counter the XML signature wrapping attack seems to be a crucial issue. As
an example to clarify the importance level of SOAP message information security, it
can be assumed that it is containing the information of a bank account’s credit card.

Obviously, achieving this information, by a third party, can be terrible for the owner.

Consequently, finding a safe way for transferring data can increase the level of trust
and trustworthiness of the cloud system, which is actually the aim of this study. In
other words, in the current research, it has been tried to suggest and offer a new way

to provide a more secure way to transfer data over HTTP.

Layout of this thesis covers the following outline. In chapter 2, Literature review,
some definitions and a summary of pervious works are brought. In chapter3,
Experiments with Cloud Computing, some experimental works, in the field of cloud
computing and different methods for signing a soap message have been discussed,
with their relevant analysis, as well. Proposing and describing the method of SESoap,
its analysis, and their results have been given in chapter4, entitled as Proposed
SESoap Method to Counter XML Signature Wrapping Attack in SOAP Message.
Finally the brief conclusions and achievements of this research have been given in

chapter 5, Conclusion.

Chapter 2

LITERATURE REVIEW

One of the most fascinating aims that are being sought these days is to provide
computing resources like bandwidth and storage capacity to all the online clients of a
system. This aim is tried to be achieved by a new technology called cloud
computing. In this chapter, it is mainly tried to explain about cloud computing, its
features, and some topics which are mainly related to security issues of these

systems.

To have a brief outline, the themes, which are covered in this chapter are firstly,
cloud computing, its feature, different service models and deployment models of
cloud systems. Secondly, Simple Object Access Protocol or SOAP message, its
building block, skeleton and syntax rules are explained. XML signature is the
succeeding topics of this chapter, which is followed by clarifications about XML
signature wrapping attacks and describing the four major categories of this attack.
Finally, in the last section of this chapter, some proposed countermeasures, offered to

prevent the mentioned attacks are elucidated.

2.1 Cloud Computing
Cloud computing is a technology which enables the clients to have rapidly supplied,
immediate access to a joint of computing resources conveniently, with minimum

service provider communication. These computing resources can be networks,

servers or even storage applications. This model of network advances the
accessibility and is consisted of five important features, three layers, and four

deployment models [1].

2.1.1 Essential Features

According to various literatures, between which, NIST (National Institute of
Standards and Technology) is one of the most trusted ones, there are some
characteristics mentioned for a typical cloud system. They can be categorized in five

points.

1) Immediate self-service; meaning that the clients are able to get access to
computing capabilities, for example server time and network storage, individually.

2) Wide network access: Features and capabilities of the cloud system should be
available over the network (system) and these features also should be accessible for
different consumer platforms like laptops and mobile phones.

3) Resource pooling: The provider’s computing capabilities are shared, in order to
serve several clients, by employing a multi-tenant model, which includes various
physical as well as virtual sources, assigned according to clients” demands. Location
independence is a characteristic of these systems, which can be explained in a way
that the clients actually do not have any knowledge or control on the exact location
of the supplied systems’ resources, i.e. storage, network bandwidth, processing and
etc., although may only be able to identify the country or state.

In other words, the cloud system’s capabilities should be accessible for the clients
from any location, by using any compatible device.

4) Rapid elasticity: the features and capabilities of cloud systems should be delivered

rapidly and elastically, meaning that they are ought to be available unlimitedly, and

in certain cases, be able to scale outward and inward rapidly, depending on the
demand.

5) Measured Service: The cloud system’s resources can be controlled and monitored
and also reported, to both provider and consumer of the service, as a matter of
transparency and also resource optimization. This feature can be fulfilled by

employing an assessing capability, suitable to the type of service [1], [10].

2.1.2 Service Models
According to the literatures, there are three service models, defined for a typical

cloud computing system, which are aimed to be explained in the following sections.

1) Cloud Software as a Service (SaaS): the cloud systems’ capabilities are available
to the consumers, in a way that it lets them to utilize the applications or features,
which are running on the cloud infrastructure. These applications are available to the
consumers via a thin client interface (like a web browser). The clients do not have
the access and also are not able to manage or control the substructure of the cloud
system, like network or servers. However, there can be some exceptions in the form
of some limited settings, specifically defined for users. A good example of this
model is MicroSoft Office365, which is services the clients (software services,

automatic backup, update and etc.), without any requirement to installation.

2) Cloud Platform as a Service (PaaS): in the cloud system, the provided capability to
the clients is to use and arrange in the cloud infrastructure’s developed applications
(either by clients or provider), which are created by employing programming
languages and tools that are in fact supported by provider. This means that the clients

do not control or manage the substructure of the cloud system, including network and

operating system. However, controlling capability has been provided over the used
applications and perhaps over the configuration settings, for the application-hosting
environments. This service is mostly used by software development companies, in

order to execute their products.

3) Cloud Infrastructure as a Service (laaS): in this model, storage, networks and
some other essential computing resources are provided to the consumers. The
consumers are capable of running random software, possibly even operating systems
and other applications. In this model also, like the previous ones, clients do not have
the permit to control or manage the cloud system’s substructure, however,
controlling permit of operating systems, storage and utilized applications and
possibly some selected networking components (like host firewalls), have been
provided. This model of service covers a wide range of services including disk

drives, storage devices, and individual servers [1], [11].

2.1.3 Utilization Models
According to most of the publications, utilization of cloud computing systems is
mainly categorized into four main models, which will be explained comprehensively,

in the following paragraphs.

c) Public cloud: in this model, the cloud system is available to the public or a big
group organization, and is owned by a specific organization, which provides and
sells the service. Some examples of public cloud system are SunCloud, IBM Blue

Cloud, and Google App Engine [1] & [12].

b) Community cloud: in community clouds, the cloud system’s infrastructure is
actually shared between various users and organizations and is aimed to support the
shared issues of definite association. Issues like specific missions, security, policy
and etc. it can be managed and owned by the organizations or a third party and can

be on premise or off premise [1].

d) Hybrid cloud: The hybrid system services in composed of several cloud systems
that can be private or public. Although the systems are bound together to let data and
applications transfer easily, each of these components are remained exclusive units.
As an extra explanation, it can be said that a hybrid cloud can be a cloud system, in
which a part of resources have been provided locally (internally) and the rest have

been provided externally (public) [1], [13].

a) Private cloud: in these cloud systems, the cloud infrastructure is functioning only
for a specific organization, which may include several consumers as well. The
system can be managed and operated by the relevant institute or an intermediary.

Amazon Virtual private cloud can be named as a private cloud system [1], [14]

2.2 SOAP

SOAP, which is the abbreviation of Simple Object Access Protocol [15], is a
communication protocol, in order to communicate between various applications.
Having the platform and language, independent and XML-based respectively, it
works as a format for sending messages via internet, which also collaborates with the

firewalls [16], [17], [15].

Internet connection between programs is indeed an important requirement that is
fulfilled these days by means of Remote Procedure Calls (RPC) (to connect objects
such as DCOM and COBRA). However, there is another problem caused by non-
compatibility of RPC with HTTP, which is not planned for this matter. Therefore,
RPC is obviously blocked by firewalls. To overcome this problem, SOAP was
created, which can communicate between applications over HTTP. It offers a path to
communicate between applications, on different operating systems, with diverse

programming languages [17].

2.2.1 SOAP Building Blocks
As it is also mentioned above, SOAP message’s language is based on XML [16].
Moreover, it can be explained that the building block of SOAP is in fact a typical

XML document, which is consisted of these items:

1) Envelope: this element recognizes the XML document as a SOAP message.

2) Header: this element includes the header information

3) Body: this element includes the actual SOAP message

4) Fault: Errors that occurred while processing message are included in this element

[16], [18].

2.2.2 Skeleton of SOAP Message

A typical skeleton of SOAP message have been shown in Figure 2.1.

<?xml version="1.0"7>
<zpap:Envelope

xmwlns: soap="ht
soap:encoding

-

S wd org/ 2001 /12 / s0ap-envelope”
Thttp: S Swww w3 oog/ 2001712/ 20ap-encoding™s

[F I
m
1}

<soap:Header>

«/zoap:Header:>

<s0ap:Body>
<zpap:Fault>

</soap:Fault>
</ zo0ap:Body>

</ s0ap:Enveloper

Figure 2.1: Skeleton of A SOAP Message [18]

2.2.3 Syntax Rules

Essential syntax rules of SOAP messages can be summarized in the following
guidelines. Encoding must be done by XML. SOAP encoding namespace and SOAP
envelope namespace must be used in a typical SOAP message [18]. On the other
hand, DTD reference and XML processing instructions should not be contained

within in a SOAP message [15].

2.2.4 SOAP Message and Web Services

In order to clarify the relation between simple object access protocol (SOAP) and
web service, each of them have been defined briefly separately in bellow paragraphs.
A Web service is defined as a designed software system to support interoperable
machine-to-machine communication over a network. Its interface is described in a

machine-processable format (specifically WSDL) [19].

10

Web Services Description Language (WSDL) is an XML-based language in which

an interface of a Web service is described [20].

SOAP message, which have also been defined specifically in the previous section is
in fact the communication protocol, for exchanging information between diverse

applications.

According to World Wide Web Consortium, the relation between Web service and

SOAP message can be explained as the following paragraph.

“A Web service is a software system to support interoperable machine-
to-machine interaction between computational resources over a network
using Simple Object Access Protocol (SOAP) messages.” [20]

2.3 XML Signature

Xml signature is a technique, which is used to deliver reliability, integrity and
message authentication, for various types of data [21]. By providing integrity to data,
it is meant that once the data is signed; it cannot be altered later, without invalidating
the signature. This technique is executed by employing asymmetric cryptography. It
works in two ways: it can be used by the sender of a document, as evidence that the
message is authored by the sender or also can be used by the receiver, indicating that
the receiver has authored it. In addition, the second way, can deliver non-repudiation,
in a way that, when a message is signed by a receiver, the authorization of the

document cannot be denied later on by the receiver. The roles for signing a document

are as follows [22].

M = DPC [ERC [M]]= DRC [EPC [M]]

11

Asymmetric encryption, uses two keys in order to encrypt and decrypt the function,
which are named private (Rc) and public (Pc) keys. XML digital signature employs
private key and public key to sign a message and validate the document, respectively.
When signing the message, signature will be attached to the original document, and
will be sent to the receiver. It should be noted that the document, is not hidden, since
hiding the message is not the aim of XML digital signature. Since asymmetric
encryption is time consuming, a hash function (f(M)) is calculated over the document
and the result, which is called digest value, is considerably smaller than the
document itself. The result of hash function is then encrypted by private key.
Consequently, the time passed for encrypting data will be reduced, significantly.

Figure 2.2 shows the structure of an XML signature.

<Signature>
«SignedInfo>
<CanonicalizationMethod /=
<SignatoreMethod />
<Reference>
<Transforms:>
<DigeztMethod>
<DigestValnue>
</Reference>
<Reference /> =tc.
</SignedInfo>
<SignatuoreValne />
<FeyInfo /=
<0hject /=
</Signature>

Figure 2.2: Structure of an XML Signature [22]

The signing process is done according to the following stages: for each xml element,
which is ought to be signed, there is one reference element. The specified element is

first canonicalized, and then hashed. The information of canonicolaization method

12

goes to canonicolaization method element, and the result of hash function goes to
digest value element. Also, signature value has kept the result of asymmetric
cryptography of signed info element of the signature. To validate a signature, the
receiver must apply two operations. First, apply the hash function, used by sender,
over the document and compares it with the digest value of the signature, then,
decrypt the encrypted data and compare it with the signed info element of the
signature. If the results of two comparisons are true, the signature will be validated

[22].

2.4 XML Signature Wrapping Attack

XML signature wrapping attack, can threaten the document because of the fact that
the signature dose not convey any information to where the referenced element is
placed [23]. This attack was introduced for the first time, in 2005 by Mcintosh and
Austel, stating different kind of this attack, including Simple Context, Optional
Element, Optional Element in security header (sibling value) and Namespace
injection (Sibling order) [24]. This attack happens in SOAP message, which transfers

the XML document, over the internet.

2.4.1 Simple Ancestry Context Attack

In Simple Ancestry Context Attack, a request’s SOAP body is signed by a signature,
which is placed in the security header of the request. The recipient of message,
checks if the signature is correct and legalizes trust in the signing credential. Lastly,
the recipient controls to realize whether the required element was actually signed, by
bringing the “id” of the soap body to the URI reference, in the signature [25].

A typical example of this attack is shown in Figure 2.3.This mechanism of this attack

can be briefly explained in this way that, the SOAP body gets swapped with a

13

malicious SOAP body. The original SOAP body is placed in a <wrapper> element,
which is situated in the SOAP header and when the signature is validated, The XML
signature confirmation algorithm, begins searching for the element, which has the id
of "CMPE", as it is stated in the <Reference> element. Finally, <soap:Header>
Element wrapped within the <wrapper> element, will be found by the algorithm.
Signature verification will be implemented on the <soap:Header>, within the
<wrapper> element. The verification will be positive, because it includes the original
SOAP body, which is signed by the sender. The SOAP message will be passed to the
logic of the application. In the application logic procedure, only the SOAP body,
which is straightly positioned under the SOAP header, will be processed. In other
words, all other SOAP body elements will be just ignored [25]. Figure 2.3 shows

how this attack works.

<spap:Envelope =
<spap:Header=
<wsse Securitv>

=ds:Signature>
<ds:Signednfo>

;-:-'-ds :Feference URI="2CMPE">

<//ds:F.eference>
='ds:SignedInfo=

=.'ds:Signature>
= wsse:Security>>

<Wrapper
soapmustUnderstand="0"
soaprole="__mnone" =
=spap:Bodyv wsuwId="CMPE=
=getQute Svimbol="IBM >
='soap: Bodv>
=2 Wrapper=
='soap:Header=
<soap:Bodv wsu:Id="newCMPE">
=lgetQuote Svmbol="MBI"/=
=soap:Bodv>
<'soap:Envelope=

Figure 2.3: Typical Simple Ancestry Context Attack [24]

14

2.4.2 Optional Element Context Attacks

In optional element context attacks, the signed data is contained in the SOAP header
and it is arbitrary. Comparing this attack to the simple context attack, which is
explained above, reveals that the main problem is not the place of the signed data in
the SOAP header [26]. In fact, the optional nature of signed data is the main issue
[24]. The <ReplyTo> element, which specifies where to send the reply to, can be
given as an example, which is shown in Figure 2.4. The mechanism of this attack can
be explained as follows; it can be seen that the element of <wsa:ReplyTo> is placed
in the <wrapper> element, while, the element of <wrapper> is also positioned
underneath the <wsse:security>. In addition, by means of soap:mustUnderstand="0",
in <wrapper>, this element has become optional and by using soap:role=".../none", it
is destined that the SOAP node (application logic) should not process this header
element. These modifications in the SOAP message, result in the <wsa:ReplyTo> to
become completely disregarded by the application’s logic. Having these attributions,
when the signature gets legalized, the verification algorithm of XML signature
begins to search for the element, which has the id of "theReplyTo" (specified in the
<Reference>) and <wsa:ReplyTo>, which is in the <wrapper> element, will be
found. At this stage, signature confirmation will be done on the <wsa:ReplyTo>, in
the <wrapper>, and because it is including the original <wsa:ReplyTo>, signature
confirmation will be positive. Consequently, SOAP message body and the
descendants, which are understood, will be handed to the application logic while the
<wrapper>, will not be passed to it. Thus, the application logic will ignore the

<wsa:ReplyTo> element and as the result, the original message sender will get the

reply [26].

15

<soapEnvelope >
<soap-Header>
<wsse: Security=>

<ds:Signature>
<ds:Signedlnfo>

<ds:Reference URI="2CMPE">

</dsReference=
<ds:Reference URI="#theReplyTo">

</dsReferences
</ds:SignedInfo>

</ds:Signature>
<fwsserSecurity

<Wrapper
soapmustUnderstand="0"
soaprole="___/none" >
<wsaReplyTo wsuld="theReplvTo>
<wsaAddress=hitp//cmpe. emm.edu tr/<'wsa:Address>
</wsaReplyTo>
< Wrapper=

</soapHeader>
<soapBody wsuld="CMPE"=>
<get(Juote Symbol="1BM />
</soapBodv>
</soapEnvelope>

Figure 2.4: Typical Optional Element Context Attacks [24]

2.4.3 Sibling Value Context Attack

Sibling value context attack covers the following scenario. In this attack, the security
header includes a signed element, which is in fact an alternative sibling of
<Signature>. A common model for this attack can be the element of <Timestamp>,

which together with <Signature>, are direct descendants of SOAP security header.

16

The difference between this attack and the previously discussed attacks is in the
signed data, which in this attack is the sibling of <Signature> [27].

According to what is also shown in the Figure 2.5, it can be seen that the element of
<wsu: Timestamp> that states the time period, during which the SOAP message is
considered to be valid, is the signed part. < wsu:Timestamp> is assumed to be an
optional element and it should be perceived that the signed data is referred through
an XPath expression. All the <wsu:Timestamp> elements, which are descendants of
<wsu:Security> will be selected by the XPath. The element of <wsu:Security> is also
a descendant of soap:Header, and the soap:Header is also a descendant of all the

elements that are called soap:Envelope [24], [27].

As it also can be seen in the Figure 2.5, this attack is performed by removing the
element of <wsu:Timestamp>, from its authentic original place and has been placed
in the second added element of <wsse:Security>. Moreover, two new characteristics
have also been added to the <wsse:Security> element. The first one is
soap:mustUnderstand="0", and the second one is soap:role=".../none". By means of
these attributes, the header element will be ignored and that is the application’s logic

should not process it [24].

And when the signature gets validate, during the process of SOAP message, in the
verification process of XML signature, the algorithm, starts to look for
<wsu:Timestamp> as it is stated in Xpath. By finding this element within the second
element of <wsse:Header>, the signature confirmation will be done on the
<wsu:Timestamp>, which is placed in the second element of <wsse:Security>.
Consequently, the signature confirmation will be positive, as the XPath finds the

original timestamp. Apart from the second element of <wsse:Security>, all the SOAP

17

message body and its descendants will be passed to the application logic.
<wsse:Security> will not be passed, because it is containing information, which
result in its negligence. In other words, the optional element of <wsu:Timestamp> is

totally ignored and an attacker will be successful by carrying out a reply attack [27].

<soapEnvelope >
<soapHeader>
<wsse:Security>

<ds:Signature>
<ds:SignedInfo>

<ds:Reference URI="#theBody">

</dsReference>
<dsReference URI="">
<ds:Transforms>
<ds:Transform Algorithm=".. /REC-xpath-19991116">
<ds: ¥ Path ._»
/soap:Envelope/soapHeader/'wsse:Secunty/wsu Tinestamp

</ds X Path>
</ds: Transform>

</ds:Transforms>

</ds:Reference>
</ds:SignedInfo>

</ds:Signature>
<fwsseSecurity>
<1 2nd SOAP Security Header added by attacker—>
<wsse:Security
soap:mustUnderstand="0""
soaprole="___/none”>
<wsi Timestamp wsuId="theTimestamp">
<wsuCreated>2005-05-29T08:45:.00Z</wsu:Created>
<waiExpires>2005-05-29T09:00:00Z</wsuExpires>
<fwsu Timestamp>
<fwsseSecurity>
</soapHeader>
<soapBody wsuld="theBody">
<get(Quote Symbol="IBM"/>
</soapBody>
</soapEnvelope>

Figure 2.5: Typical Sibling Value Context Attack [24]

18

2.4.4 Sibling Order Context
According to Mclntoch and Austel, 2005, this attack is dealing with the protection of
the sibling elements that are individually signed.
Their semantics are related to their order relative to one another, from
reordering by an adversary. More work is required to define appropriate

countermeasures that do not prevent the addition and removal of siblings
that do not impact the ordering semantics [24].

2.5 Proposed Countermeasures

The requirements of a service-side security policy, in order to detect an attack were
shown by Mclntosh and Austell, 2005 [24]. These necessities are being improved by
each attack, which is able to bypass the previous provided security policy. In
continuance, some of the improvements in the policy will be explained.

1) In the wsse:security header element, a signature “A” , XML signature, should be
placed, having a clear soap:role attribute and value of “.../ultimateReceiver”.

2) From signature “A”, The eclement, which are identified by
/soap:Envelope/soap:Body, must be referenced.

3)In the case of having any elements, which are matching with
/soap:envelop/soap:Header/wsse:Security[@role=".../ultimateReceiver”]
wsu:Timestamp and /soap:Envelop/soap:Header/wsa:ReplyTo, it should be noted
that these elements must be referred through an absolute path, Xpath expression,
from signature “A”.

4) Verification key of signature “A” must be issued and provided by a trusted

Certificate Authorities (CAs) and the certificate of X.509v3, respectively [24].

The first example of XML signature wrapping attack, which was indicating that the

controls suggested by Mclntosh and Austell are not satisfactory to notice XML

19

signature wrapping attack, was shown by Gruschka and Lo lacono, in 2009 [28]. It is
also claimed in their research that the timestamp has to be referenced by an extra
XPath expression, which is not fulfilled in Figure 2.5. Although, it can be added
easily, it should be noted that the XPath references result in further problems. It is
known that XPath expressions are more difficult to be evaluated, comparing to IDs,
this issue is especially important in the context of streaming SOAP message. Another
more important issue is that employment of XPath references may indicate security

issues, so they are not suggested by basic security profile [29].

In a new method, which was proposed in 2006 and is named as inline method, a new
element called SOAP account was introduced. Some characteristic information are
gathered together and inserted in the SOAP account element [28]. Protection of some
key features of SOAP message structure is aimed in this technique. The properties,

which are aimed to be protected, are listed as below.

1) Number of header element descendants
2) Number of soap:envelop, descendent elements
3) Amount of references in every signature

4) The descendants and antecedents of every signed item

By means of this approach, with the above properties, if in an attack, each of these

properties is changed, the attack will be easily identified [30]

However, it is important to add that this method has some weak points and
disadvantages as well. As an example, two of the main disadvantages will be

explained in continuance.

20

The main problem with this method is that it does not provide a general protection,
from XML signature wrapping attack. In other words, if an attacker manages to
change the SOAP message structure in a way that the inline method structure

properties does not get changed, this technique can be easily dodged [31].

Another model for policy confirmation was developed in 2005, by Bhargavan,
Fournet and Gordon. A policy advisor checklist, for generating security policies has
been derived by them, which includes compulsory and signed elements, and a
recommendation. Mandatory elements are wsa:To, wsa:Action, soap:Body, signed
elements are all the mandatory elements plus wsa:messagelD and Timestamp. It is
also suggested that the certificate of X.509, to be employed for authentication [32].
The second issue about inline method is that the newly introduced element of SOAP

account, and its verification, is not standardized [33].

Additionally, Gajek et al. proposed some solution ideas for protecting against the
signature wrapping attacks. Having the core idea of using the verification component
as a filter, this method returns the result of canonicalization and transformation step
(while in common methods, Boolean value are returned). This difference certifies
that the subsequent components, which are inside the web service framework,
function accurately on the originally signed message [31]. There are also some
problems about this method, which were already mentioned by the other authors.
One weak point is about the operation of web service on SOAP envelope. The SOAP
envelope cannot be operated as a single well-formed message document. To solve
this issue, the signed elements and their parent nodes can be passed together to the
business logic part of web service, as a spanning DOM. However, to have the

problem solved with this method, the content of elements should not be changed by

21

the signature transformations. However, this solution can also be inadequate if both
signed and unsigned parts of SOAP message are operated by the web service, which

will not allow the signature components to operate as filter [28].

In addition, fastXPath method was proposed by Gajek et al., in 2009. This method is
employed to increase the speed of XPath function, and to point to the signed subtree.
However, this method also could not solve the identified issues about XPath
expression [34]. A comparison between runtime of different methods, ID, fastXPath
and XPath methods, have been also done in this article. The comparison’s relevant

graph is shown in Figure 2.6.

10

FastXPath

FastXPath with Position
XPath

XPath with Position
XPath with ID value

<4 POOLX

40

Runime (inms)

20

e

-

2 2 2 2
50 100 150 200 250
Document Size (in KB)

Figure 2.6: Runtime Comparison of Different Referencing Methods [28]

2.6 Problem Definition

It can be easily found out from the topics, which were discussed and explained in this
chapter (especially the countermeasure section), that although there are rapid
improvements about the concept of cloud computing and especially about security
issues in these systems, there are still missing methods, that should be provided to

have better and well developed cloud systems. Specifically, as it has been also

22

explained about the proposed methods to prevent XML signature wrapping attacks,
the most advanced method is only avoiding two attacks out of total four attacks. In
other words, there is not any method to prevent Sibling Order Context and Sibling
Value Context attack.

During this investigation, going through the previous literatures has been done in the
literature review chapter. In the 3™ chapter, experiments with Cloud Computing, an
example of available cloud computing systems was chosen to work and get familiar
with these systems. Finally, it has been attempted to propose a new method in order

to avoid all the mentioned attacks.

Chapter 4, Proposed SESoap Method to Counter XML Signature Wrapping Attack in
SOAP Message, includes the proposed method is also implemented and verified, to
check its efficiency. Implementation of the purposed method was done by using
C#.net programming language in Visual Studio 2010 framework. Finally, conclusion

remarks of this study have been also collected briefly in chapter 5, Conclusions.

23

Chapter 3

EXPERIMENTS WITH CLOUD COMPUTING

As the experimental section of this research, it was attempted to work with available
examples of cloud systems, to find out more about the positive features, negative
points and generally their features. A famous example of cloud computing system is
Google App Engine, which lets the users perform applications on the infrastructure
of Google [35]. In this investigation, it has been tried to work with this system, in
order to get familiar with the concept of cloud computing systems and their features.
Google App Engine has been used to write some programs, in Python environment,
which were later shared over the Web, again by means of this engine, to investigate

how a cloud computing system works.

Outline of this chapter covers the following headings. Firstly, Google App Engine
have been chosen as a typical cloud computing system, a few of its features and
capabilities, including the environment, sandbox, services and the Python runtime
environment (as example), have been explained. In the next step, available methods
of referring signed part of SOAP message, for securing SOAP message, have been
explained briefly and finally, the mentioned methods have been tested
experimentally, by means of Visual Studio 2010 framework and C#.net

programming language.

24

3.1 Google App Engine

As it is also mentioned above, Google App Engine is provides its users with the
amenity of building web applications, based on an ascendable system, on Google
infrastructure. Web application, can be defined as an application or service, which is
accessible over the web [36]. Usually with a web browser there is no preserving
service for this system and the size of it grows, as there is a requirement to the

growth of traffic and data storage.

This system has the ability to support applications, which are written by mean of
various programming languages, such as Java, Go, and Python. In addition, in the
free version of this system, there are limitations for the storage capacity CPU and
bandwidth [37]. In this version, all the applications can use the storage of maximum
1GB, bandwidth and CPU for an application which serves around 5 million page
views per one month. The applications can be served from the programmer’s domain

name, or also, it is possible to publish the applications by creating free accounts [35].

3.1.1 The Application Environment
The following points are some of the system’s important advantages:

« Dynamic web serving

« Persistent storage with queries, sorting and transactions

« automatic scaling and load balancing

 APIs for authenticating users and sending email using Google Accounts
« a fully featured local development environment that simulates Google
App Engine on your computer

« task queues for performing work outside of the scope of a web request

e scheduled tasks for triggering events at specified times and regular
intervals [35]

25

Three runtime environments, with standard protocols and shared technologies, have

been provided for the applications, Go, Python and Java environments.

3.1.2 The Sandbox

Sandboxing also lets App Engine run several applications on the same server,
separately, without being affected by each other [36]. A secure environment is
provided for the applications, which allows the applications to have limited access to
the original operating system. By means of these limitations, App Engine will be able
to allocate and manage the web demands of the applications, across the various
servers. Also it will be able to start and stop servers, to satisfy the traffic
requirements.

Environment of the sandbox is not dependent of hardware, operating system and of
course the location of web server [35], [36]. Some of the limitations of the secure

sandbox are explained in the below paragraphs.

1. There is a limited time interval of 60 seconds, for an application to execute and
bring the response data to a scheduled task or web request. After when a response is
sent, the request handlers are not able to run code or start a sub-process.

2. The accessibility of applications to the computers over the internet is provided via
the afforded email services and URL fetch. On the other hand, the access of other
computers to the applications have been made by making HTTP (or HTTPS)
requests, on the standard ports.

3. The applications can only read those files, which are uploaded including the
application code. Meanwhile, for any data that persists between requests, the

applications must use the provided services in the App Engine, such as memcache. It

26

should be added that in the environment of Python 2.7, the facility of reading, writing

and modifying bytecode have been provided [35], [36].

3.1.3 The Python Runtime Environment

In the Python Runtime Environment of Google App Engine, applications are
implemented by using Python programming language. The application written in
Python 2.5 (the language), are run, employing the official Python interpreter [35],
[36]. The facility to utilize and take advantages from various frameworks and
libraries of Python web application, such as web2py, has been potentially provided
[35].

Python standard Library has been made available through the Python environment,
although there are exceptions. These exceptions are such as trying to write a file or
open a socket. The elements that are not supported by the runtime environment have
been disabled and their corresponding codes, to import them, are set to raise error
[36]. In addition, webapp2, which is a simple web application framework, have been
also provided in App Engine that provides a more convenient way for application

building [35].

3.1.3.1 A Practical Example of Python Environment

As an attempt to work with Google App Engine, an application has been written,
using Paython. A screen shot of it have been shown in Figure 3.1. The clients can
chat by using this application, in two ways. They both can chat as a guest user,
having “guest” identity and also they can enter their email identity and chat by their

own username.

27

& C B .appspot.com/?guestbook_name=
(7 Positions CMPE 418 Inernet Pr... ("] Conferance (*] Journals (T Thesis

hadi.razzaghi87 wrote:

this is a place to chat with your friends
hadi.razzaghi87 wrote:

welcome to my application
hadi.razzaghi87 wrote:

hello

| Sign Guestbook |

Logout

Figure 3.1: Practical example of Python environment

3.1.4 App Engine Services
Several services have been provided in Google App Engine, in order to enable the
users, to execute common processes, during application handling [35]. The following

items are some of the provided application programming interfaces (APIS).

3.1.4.1 URL Fetch
Google App Engine’s URL fetch have been provided as a facility to enable
applications get access to the internet resources. This service works by using Google

infrastructure, which is the same infrastructure of other Google products [35].

3.1.4.2 Memcache

The Memory cache or shortly, the Memcache service [36], is a storage service,
which besides having the advantage of being short-term and a key-value memory,
also, it has a remarkable superior property over the datastore that is being much

faster than it, which is indeed a positive point especially for simple data retrieval and

28

storing [36]. It is absolutely useful for temporary data or data copied from the

datastore, as they don’t need features of transaction or persistence [35].

3.1.4.3 Image Manipulation

This API lets the users work with or correct image files. Images in the formats of
JPEG and PNG can easily be resized, rotated, cropped or flipped by means of this
service [36].

According to Rudominer, 2011, it is possible to build a SOAP server and a SOAP
client, by means of java.xml.soap, JAX-B and JAX-WS, respectively [38]. It should
be added here that the security issue of SOAP message, which have been introduced
by Mcintosh and Austel in 2005 [39], was also noticed in Google App Engine,

during the literature review and experimental analyses of the current research work.

3.2 Available Methods To Refer Signed Part of SOAP Messages
SOAP message is defined as a protocol that is utilized for conveying information
over HTTP, between the web applications [7]. The skeleton of a SOAP message is

shown in Figure 3.2.

Figure 3.2: Skeleton of a Soap Message

29

The major element of SOAP message is the Envelope, which includes two sub
elements, i.e. SOAP Header and SOAP Body. The element of SOAP Header is
actually an optional element that includes specific information of applications, such
as authentication. On the other hand, SOAP Body, is known as a compulsory
element, incorporating the real SOAP message, which is aimed to reach to the

ultimate endpoint [40].

In order to secure the information inside the SOAP body, XML digital signature is
utilized [41], [42]. However, vulnerable signed documents might occur, caused by
hidden alterations, done by a hacker (adversary). These vulnerabilities are caused by

a so-called wrapping attack [39]

As it is also explained comprehensively in the previous chapter, there are four major
wrapping attacks, which are called as Simple Context, Optional element, Optional

Sibling Value and Sibling Order Context [39].

Aiming to refer to the SOAP Body of a SOAP document, ID reference is being used
by XML digital signature [43].Despite the fact that it is the fastest method [44]; it is
also susceptible to XML signature wrapping attack [39]. Another method for
detecting the signing element of SOAP message is XML Path Language (XPath)
[45], which is also employed to counter optional element and simple context attack
[39]. Unfortunately, this method is time consuming [44] and is remained vulnerable

against Optional Sibling Value and Sibling Order Context attacks [9].

30

3.3 Examination of ID and Xpath Methods

In order to examine the mentioned attacks, C#.net programing language, was

employed. The figure below (Figure 3.3) shows the SOAP message context of this

study.
<Envelop>
=Header=
=/Header=
<Body=
=CreditCard=
=CreditCard id=""tr"">=
=<CCNumber=1234 5678 9012 3456</CCNumber=
<Amount=3000</Amount>
<FirstName=John</FirstName>
<LastName=Smith</LastName>
<City=Famagusta</City=
=ZipCode=1234</ZipCode=
=/CreditCard=
=/Body=
=/Envelop=

Figure 3.3: SOAP Message Context

After signing the Soap message, by using ID (shown in Figure 3.4), for referring the
SOAP Body element, the result indicated susceptibility to XML wrapping attack
(See also Appendix A). However, in this method, signing and verification were
implemented very rapidly. The consumed time for finding the specified element by

using ID method is shown in Table 3.1.

31

Table 3.1: Time Durations to Detect the Signing Element Using ID Method

Size (Kb) Time consumed by 1D
(ms)
50 0
100 0
150 1.0003
250 1.0006
750 3.002
1050 4.0003
1350 5.0003
1650 6.0004
1950 7.0003
2250 8.0004
3150 11.0034

In the evaluation, the location of the reference element was always kept exactly at the
middle of the document. The process of evaluation and running the program was
done by using Laptop, with 2.00 GHz Core2Duo CPU and 1.00 GB memory. The

results are given out in the Figure 3.4.

32

<Envalop>
<Headzr>
<Signatura xmins="http:/www.w3.0r22000/09/ xmldsigz">
<Signedinfo>
<CanonicalizationMathod Alsosnthn="http:/www.w org TR/2001 REC-xml-
¢14n-20010315" />
<SignaturalMzthod Alsorithm="http:/ w32 .0r22000/09 xmldsigsrsa-shal”
=
<Rafzrenca URI="2t">
<Digasthlathod
Algorithm="http:/wvrw.w3.0rg2000/09/ xmldsigzshal” />
<DigzstValua>Nj+SIZNOOwIP6 62U Y bwvhdxge=<DigastValua>
</Refzranca>
</Signadinfo>
<SignaturaValuz>qSHVICoLnY 3lvwEf1z1aVhiivS8aulrvx BiHQEFOUOs4TCTbJBCa
GzUQIVuoQNIjsGC2BZ 2EQoo dKww gKHPTvuZ PoFUUAUS 6 VufGql 67Thx+z78RaRip
x0jJGMSLknAB5SYF0Sschbo 3w YxDQmx/rIOkBDqdBBMnS C8D 24X 8q SQ=<'Signatur
aValue>
<KayInfo>
<KavValua>
<RSAKavValus>
<Modulus>02uOmzXxRRtl o (u7ZEh7XN/0w23pNGz3riszGOGIHKcZy
KDKfwWSBWIpTaGO3 TmkSMoUOleSHzNjPAGcjk6, QAWOIxK1t3+
mZjGDvesDCZZQ+KumlP=G7ERaDhmpXvFwqlEK4FxnfP4pxJzFu
/8XD4 CcWOPS 1 ZY XuqwtWVsVgk=<Modulus>
<Exponant>AQAB</Exponent>
</RSAKayValua>
<KavValua>
<Keylnfo>
</Signatura>
<Hazadar>
<Body>
<CraditCard id="tc">
<CCNumbar>1234 5678 9012 3456</CCNumbar>
<Amount>3000</Amount>
<FirstNama>John<FirstNama>
<LastName>Smith</LastNama>
<Citv>Famagusta</Citv>
<ZipCode>1234</ZipCoda>
</CraditCard>
</Body>
</Envalop>

Figure 3.4: SOAP Message Signed Using ID Method

Another method, examined in this investigation was XPath, which according to
Mclintosh and Austel, 2005, could counter simple context and optional context [39].
In the analysis of XPath method, the signed part of message was placed in first,
middle and at the end of the file and the results of all of them were the same, because
of the fact that, XPath method is searching for all passible occurrences of the
specified expressions. After finding one specified element, the function does not stop
and it will continue to find another occurrence of the expression, inside the file. The

result is shown as follows (see Figure 3.5 and Appendix B).

33

<Envelop>

<Header>
<Signature xmins="http://www.w3.0rg/2000/09/xmidsig&">
<SignedInfo=
<CanonicalizationMethod
Algorithm="http://www.w3.0rg/ TR/2001/REC-xml-c14n-20010315" />
<SignatureMethod Algorithm="http://www.w3.0org/2000/09/xmidsig?rsa-
shal” /=
<Reference URI="">
<Transforms>
<Transform Algorithm="http://www. w3_org/TR'1999/REC-xpath-
19901116">
<XPath>ancestor-or-self::CreditCard[@id="tr </ XPath>
</Transform=
</Transforms>
<DigestMethod Algorithm="http://www.w3.0rg/2000/09/xmldsig#shal"
/>
<DigestValue>Nj=SIZIuNOOwSP 66eU Ybyvh4xge=</DigestValue>
</Reference>
</SignedInfo>

<SignatureValue>vKka68 YHgCkWopn9HTupgBcGyggWkTvOXKDcMSi8ymO!
uPTYTITWAMAREVWOCo6Ak+Vx1t1 - RntAGS2GILOmM39xwrL1JTAKINAK+G
fLgJIsxT3511cUqG/BLkxbuZjviOKCGAVoMtrUCtvx0Mefbdmv7XyS6yMZ7h2
hmLYw2Ww=<'SignatureValue>

<KeyInfo>

<KeyValue>

<RSAKeyValue>

<Modulus>p93LjAYKR-T72NViS+taNb2dnSg8 WCDb{j9qwuMdqCalL.CC7Ndg

KCxNS9LILIQihkQzgHENq71iR8tObuO0eqQUhtgdizi Ve ZNtOK 3vddx

TRZZbWizmk2Jdj6Pbpd+0e 1 W4TKA1LwWNOZKcKKkIRm1swl 1H/Ac/'SUdnxCxE
OfNInGO=</Modulus>

<Exponent=AQAB</Exponent>

</RSAKevValue>

<KeyValue=
<Keylnfo=
</Signature>

< Header>
<Body>
<CreditCard 1d="tr">
<CCNumber>1234 5678 9012 3456</CCNumber=>
<Amount>3000</Amount>
<FirstName>John<FirstName>
<LastName>Smith</TastName=>
<City>Famagusta</City=>
<ZipCode>1234</ZipCode>
</CreditCard>
</Body>
</Envelop>

Figure 3.5: SOAP Message Signed Using Xpath Method

34

Although this method (XPath) is so far, the best proposed method, but this method is

very time consuming. The results of determination of time for finding the element for

files with size between 750 Kb to 2250 Kb were as follows, in Table 3.2.

Table 3.2: Time Durations to Detect the Signing Element Using Xpath Method

suey | e el
50 6.0004
100 7.0003
150 8.003
250 10.0002
750 14.0008
1050 17.0004
1350 20.0006
1650 23.0014
1950 26.0016
2250 29.0016
3150 37.0013

The graph, shown in Figure 3.6, is showing the trend of above measured time

durations.

40.0000
35.0000
30.0000

= 25.0000

E

> 20.0000

£

F 15.0000
10.0000

5.0000

0.0000

=

/ =¢=Xpath

o

50 100 150 250 750 1050 1350 1650 1950 2250 3150

Size (Kb)

Figure 3.6: Time Consumed to Detect the Signing Element

35

As a conclusion to this evaluation and time determination, it can be said that
although XPath is time consuming and still vulnerable to sibling optional context, so
far it is the most sufficient method for countering XML Wrapping attack. On the

other hand, although ID is a fast method, it is untrustworthy.

It should be added here that in the next chapter, it has been tried to explain about a
new method, which is aimed to counter all the aforementioned vulnerabilities.
Besides explaining, verifications have been done, to see the performance of the

method.

3.4 Summary

In this chapter, firstly, after knowing about a typical available cloud system service,
called Google App Engine and explaining its features, two of the available methods
of referencing the signed part of SOAP Message to secure XML signature called ID
and XPath referencing method, were explained and examined on a SOAP message.

It was observed that although both of the methods are being utilized to counter the
XML signature wrapping attacks, they are not completely satisfying. XPath method
IS secure but it is also time consuming and it is not preventing Optional Sibling Value
and Sibling Order Context attacks. On the other hand, ID method is fast but it is not

completely safe and secure.

36

Chapter 4

PROPOSED SESOAP METHOD TO COUNTER XML
SIGNATURE WRAPPING ATTACK IN SOAP

MESSAGE

In this chapter, the new method, which is developed to counter what is so-called
XML signature wrapping attack, will be explained comprehensively. In the first step,
the logic behind the method and its structure is explained. This section is followed by
explaining the performance of this method against different categories of wrapping
attacks. In the last section, conducted experiments, to find verify the implementation
of this method, are given out, which are done by using Visual Studio 2010

framework and C#.net programming language.

Since most of the XML signature wrapping attacks are done through changing the
structure of the original SOAP message, sent by the genuine sender [28], it is logical
to propose a protecting method, which aims to protect the structure of the sent
message, from attacker. To fulfill this aim, the digital signature can be used to

guarantee the integrity of message.

The method of this thesis, i.e. Signing Entire SOAP (SESoap) method, is to apply the
digital signature structure over entire Soap envelop element, which results in
securing the whole document. Consequently, an attacker will not be able to change

the location of elements or remove or add any element to the original document. In

37

the case of modification in any part of the document, the signature cannot be

verified.

In the coming sections, the SESoap method will be examined in all types of attacks.
The relevant results of each examination will be given in details, and discussions will
be tried to be done about them. Skeleton of SESoap method and the XML document
of SOAP message that is signed by SESoap method is shown in the following figures

(Figure 4.1 and 4.2).

SOAP Envelope

SOAP Signature

SOAP Header

SOAP Body

Figure 4.1: Skeleton of SESoap method

<soap:envelope>
<soap:header>
</soap:header>

<soap:body>
</soap:body>

<soap:signature>
</soap:signature>
</soap:envelope>

Figure 4.2: XML Document of SOAP Messaged Signed Using Sesoap Method

38

It should be noted that the element of Soap:signature, is the resulted by signing the
entire content of soap:envelop, except the element of soap:signature itself. To explain
better, the structure of SOAP after applying the SESoap method, have been shown in

Figure 4.2.

4.1 Simple Element Context

In simple Context attack, a wrapper alters the location of the Soap body and adds a
new Soap body to threaten the SOAP document [39]. It is quite clear that by using
digital signature over entire document, any alteration or adding any element to the

signed document will be totally prevented.

4.2 Optional Element Context

In optional Element context, a wrapper adds some information to optional element to
application logic of a program could not pars that element [39]. Again, the same as
the previous attack, when a wrapper tends to add something to the document, the

attack is prevented by SESoap.

4.3 Sibling Value Context

The two previous types of attacks are possible to be prevented by means of XPath
method [39]; however XPath is susceptible against this attack [29]. As it has been
explained in the previous chapter, Time stamp element, which is an optional sibling
element of signature element, can be threatened by wrapper. But for wrapping on this
element, the wrapper again must modify some parts of document [39]. Consequently,
as modifications are prevented in SESoap method, Sibling value Context will not be

allowed to occur.

39

4.4 Sibling Order attack

This attack relies on changing the order of individual sibling elements [39].

Therefore, since reordering is also not possible in SESoap, again no wrapper can be

successful in implementation of this attack.

4.5 Conducted Experiments

SESoap method has been implemented by using C#.net, in order to determine how

fast it is, comparing to the previous methods of ID and XPath. These examinations

have also been performed by means of Laptop, having 2.00 GHz Core2Duo CPU,

and 1.00 GB memory in Windows 7. The time duration for finding specified element

inside the SOAP body element of the document, in three methods as it is shown in

Table 4.1.
Table 4.1: Time Durations for Finding Specified Element
Size of Time of finding an element (ms)

{:l%‘; ID Xpath SESoap
50 0 6.0004 0

100 0 7.0003 0

150 1.0003 8.003 0

250 1.0006 | 10.0002 0

750 3.0002 | 14.0008 0

1050 4.0003 | 17.0004 0

1350 5.0003 | 20.0006 0

1650 6.0004 | 23.0014 0

1950 7.0003 | 26.0016 0

2250 8.0004 | 29.0016 0

3150 |[11.0034 | 37.0013 0

The time durations for finding the element in SESoap are 0, because this technique

does not search for any specified element inside the SOAP document. The graph for

comparing these time durations, have been shown in Figure 4.3.

40

N
o

.

w
o

N
(¢,

Time (ms)
N
o

/ —ID
—i— XPath
SESoap
. ././-/./r S
5 4)f,"‘/
O 1l o V

50 100 150 250 750 1050 1350 1650 1950 2250 3150
Size (kb)

[EEN
S

Figure 4.3: Time Durations of the Three Considered Methods

In the next step, the time durations for hashing the specified element inside the

SOAP document, have been estimated. The results are shown in Table 4.2.

Table 4.2: Time Durations for Hashing the Specified Element

Size of Time of Hash function (ms)
files (Kb) ID Xpath SESoap
50 0 0 0
100 0 0 0
150 0 0 1.0001
250 0 0 1.0012
750 1.0001 | 1.0001 3.0001
1050 1.0001 | 1.0001 4.0002
1350 1.0001 | 1.0001 5.0003
1650 1.0001 | 1.0001 6.0004
1950 1.0001 | 1.0001 7.0005
2250 1.0001 | 1.0001 8.0005
3150 1.0001 | 1.0001 11.0087

41

The graph below (Figure 4.4) is showing the trend of the evaluated numbers.

12

10

Time (ms)
(o]
L 4
O

== Xpath
SESoap

./I i——ll—3l—_al—z1:_
0 —I——i

50 100 150 250 750 1050 1350 1650 1950 2250 3150
Size (kb)

Figure 4.4: Time Durations for Hashing the Specified Element

In addition, the consumed time for encrypting data, in all the three methods are
equal, because in the digital signature, encryption function applies on the signed info
element of signature. The sizes of the signed info element in all the methods are
equal. As the result, the consumed times for encrypting the signed info elements are
the same. In this study RSA key is used to encrypt the signed info element of the
signature and the time consumed for all three methods was 3.0004 in milliseconds. In
this study two types of codes are used to estimate the total time of signing the
message. These codes are named as Codel and Code2. In Codel the whole
operations are done as one component and in Code2 each function (finding element,
hashing and encryption) is done separately [46]. The total consumed times to sign the
SOAP message, in each of the three methods by Code 1 are as Table 4.3 (See also

appendix D).

42

Table 4.3: Total Times Consumed to Sign the Soap Message, in Each Method Using
Code2

Size of Total time (ms)
files (Kb) ID XPath SESoap
50 3.0004 | 9.0008 3.0004

100 3.0004 | 10.0007 3.0004
150 4.0007 | 11.0034 4.0005
250 4.0012 | 14.0006 4.0016
750 7.0027 | 18.0031 6.0024
1050 8.0028 | 21.0027 7.0025
1350 9.0028 | 24.0029 8.0026
1650 10.0029 | 27.0037 9.0027
1950 11.0028 | 30.0039 | 10.0030
2250 12.0029 | 33.0039 | 12.0030
3150 15.0003 | 40.0037 | 15.0009

According to these results, as the numbers show, the total consumed time to sign a
SOAP document by SESoap method is almost three times as much as XPath method
and approximately equal to ID. Consequently, it can be claimed that, the SESoap
method is operating more sufficiently, than the other two methods, considering both

aspects of security and time.

The results of running code 1 to sign the specified element [46] are as the Table 4.4

(See also Appendix D).

43

Table 4.4: Total Times Consumed to Sign the Soap Message, Using Codel
Size of Total time (ms)
files (Kb) ID XPath SESoap
50 3.0012 | 10.0011 4.0023
100 4.0005 | 13.0012 7.0003
150 6.0006 | 33.0003 | 11.0012
250 8.0009 | 48.0004 | 15.0023
750 15.0007 | 148.0014 | 28.0001
1050 21.0007 | 207.0234 | 40.0012
1350 36.0014 | 269.0002 | 53.0013
1650 42.0003 | 329.0019 | 64.0015
1950 53.0012 | 341.0015| 76.0245
2250 68.0023 | 401.0023 | 98.0001
3150 113.0003 | 590.0145 | 134.0231

These results are more complying with the previous research [28], but as it can be
obviously noticed, the results of that research are less efficient than what is done in

this study.

4.6 Summary

In this chapter, a new method for securing the SOAP message is proposed, in which
the concept of digital signature to fix the location of elements and avoid of entering
new malicious elements inside the SOAP message is used. Analyzing of the method
and comparing it to the other available methods are also conducted in this chapter.
The results illustrated that the new method is faster and more secure than the other

available methods.

44

Chapter 5

CONCLUSIONS

The primary goal of this study was to secure SOAP message, which is employed to
exchange information between web applications of cloud computing systems.
Having this aim, a new method —SESoap— has been proposed. The concept of this
method is using Digital Signature technique to immune the information inside a

SOAP message from modification by an adversary.

Google App engine has been investigated to get familiar with cloud computing
systems. It is an example of cloud computing systems that provides infrastructure, to

build web applications.

ID and XPath methods for signing SOAP message have been analyzed and compared
from two viewpoints, i.e. security and the consumed time to find the signing element.
The result of these investigations illustrated that, the ID method is a fast method with

significant security concerns and in contrast, XPath is a safer method, but slow.

SESoap method, which is proposed in this investigation, signs the SOAP message in
a different way. In the current countermeasures, such as XPath and ID, just one part
of SOAP document, which specified by these methods, is signed, while in SESoap
method, the entire information inside the SOAP envelope is used as an input of

signing function. In this case, modification of the SOAP message will be impossible.

45

The results obtained from implementation of SESoap method indicate that, this
method is slower than the other examined methods, for hashing the information. The
reason of this observation is that, comparing to the other examined methods, in this
method, the hash function is applied over a greater size of data. On the other hand,
for finding element in SOAP message, SESoap method does not consume any time.
In this study a more efficient way is utilized to sign the SOAP message, and the total
time duration to sign the message is approximately one third of the total time

consumed in XPath method.

46

[1]

[2]

[3]

[4]

[5]

[6]

REFERENCES

P. Mell and T. Grance, "COMPUTER SECURITY," September 2011.
[Online]. Available: http://csrc.nist.gov/publications/nistpubs/800-145/SP800-

145.pdf. [Accessed 30 April 2013].

S. Bhayal, "A study of security in cloud computing,” ProQuest Dissertation

Publishing, 2011.

Small Business Technology, "Infrastructure as a service.,” 2012. [Online].
Available: http://www.biztechmagazine.com/sites/default/files/cloud-

iaas_2.pdf. [Accessed 28 April 2013].

K. L. Jackson and C. Landis, "Platform as a Service (PaaS)," January 2012.
[Online]. Available: http://appdeployer.com/home/wp-
content/uploads/2012/12/NJVC-Virtual-Global-PaaS-White-Paper.pdf.

[Accessed 20 April 2013].

J. Brown, "What is SaaS?," [Online]. Available:
http://www.powerdms.com/downloads/ebook/Moving-Toward-the-Cloud-

What-is-SaaS.pdf. [Accessed 20 April 2013].

D. Jamil and H. Zaki, "Security Issues in Cloud Computing and

Countermeasures,” International Journal of Engineering Science and

47

[7]

[8]

[9]

[10]

[11]

[12]

Technology, vol. 3, no. 4, pp. 2672-2676, 2011.

W3C, "SOAP Specifications,” W3C, 2007. [Online]. Available:

http://www.w3.0rg/TR/soap/. [Accessed 28 April 2013].

W3C, "Extensible Markup Language (XML),” W3C, 2012. [Online].

Available: http://www.w3.org/XML/. [Accessed 25 April 2013].

N. Gruschka and L. Lo lacono, "Vulnerable Cloud: SOAP message security
validation revisited," in 2009 IEEE International Conference on Web Services,

Los Angeles, 20009.

A. Milroy, "16 Key Attributes of Cloud Computing,” January 2011. [Online].
Available: http://www.andymilroy.com/2011/01/16-key-attributes-of-cloud-

computing.html. [Accessed 30 April 2013].

Perspectives on Cloud Computing & Training from Learning Tree
International, "Cloud Service Models: Comparing SaaS PaaS and laaS |
Perspectives on Cloud Computing & Training from Learning Tree
International,” November 2011. [Online]. Available: http://cloud-
computing.learningtree.com/2011/11/09/cloud-service-models-comparing-

saas-paas-and-iaas/. [Accessed 27 April 2013].

M. Rouse, "What is public cloud? - Definition from Whatls.com," Cloud
computing information, news and tips, May 2009. [Online]. Available:

http://searchcloudcomputing.techtarget.com/definition/public-cloud.

48

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[Accessed 29 April 2013].

M. Rouse, "What is hybrid cloud?,” June 2010. [Online]. Available:
http://searchcloudcomputing.techtarget.com/definition/hybrid-cloud.

[Accessed 30 April 2013].

Amazon Web Services, "Amazon Virtual Private Cloud,"” 2013. [Online].

Available: http://aws.amazon.com/vpc/. [Accessed 14 May 2013].

"SOAP - Simple Object Access Protocol for Message Negotiating and
Transmission,” The Two Way Web, [Online]. Available:

http://www.thetwowayweb.com/soapmeetsrss. [Accessed 15 May 2013].

"SOAP (Simple Object Access Protocol) Definition,” 2013. [Online].
Available: http://www.techterms.com/definition/soap. [Accessed 17 May

2013].

W3Schools, "SOAP Introduction,” W3Schools, [Online]. Available:

http://www.w3schools.com/soap/soap_intro.asp. [Accessed 17 May 2013].

w3schools, "SOAP Syntax- SOAP Building Blocks,” 2013. [Online].
Available: http://www.w3schools.com/soap/soap_syntax.asp. [Accessed 6

May 2013].

World Wide Web Consortium, "Web Services Glossary," 2004. [Online].

Available: http://www.w3.0rg/TR/2004/NOTE-ws-gloss-

49

[20]

[21]

[22]

[23]

[24]

[25]

2004021 1/#webservice. [Accessed 2 May 2013].

J. Hwang, "Web services SOAP message validation,” IBM, 2010. [Online].
Available: http://www.ibm.com/developerworks/webservices/library/ws-

soapvalid/#N10078. [Accessed 15 May 2013].

R. Salz, "Understanding XML Digital Signature,” July 2003. [Online].
Available: http://msdn.microsoft.com/en-us/library/ms996502.aspx. [Accessed

19 May 2013].

M. Bartel, J. Boyer, B. Fox, B. LaMacchia and E. Simon, "XML Signature
Syntax and Processing Version 1.1," World Wide Web Consortium (W3C),
April 2013. [Online]. Available: http://www.w3.0rg/TR/2013/REC-xmldsig-

corel-20130411/. [Accessed 29 April 2013].

C. O. h. Eigeartaigh, "Open Source Security: XML Signature Wrapping
attacks on Web Services,” October 2012. [Online]. Available:
http://coheigea.blogspot.com/2012/10/xml-signature-wrapping-attacks-on-

web.html. [Accessed 20 May 2013].

M. Mclntosh and P. Austel, "XML Signature Element Wrapping Attacks and

Countermeasures,” IBM Research Report, NewYork, 2005.

"XML Signature Wrapping - Simple Context -," WS-Attacks.org, 2011.
[Online]. Available:

http://clawslab.nds.rub.de/wiki/index.php/XML_Signature_Wrapping_-

50

[26]

[27]

[28]

[29]

[30]

[31]

_Simple_Context. [Accessed 4 April 2013].

"XML Signature Wrapping - Optional Element,” WS-Attacks.org, April 2011.
[Online]. Available:
http://clawslab.nds.rub.de/wiki/index.php/XML_Signature_Wrapping_-

_Optional_Element. [Accessed 4 May 2013].

"XML Signature Wrapping - Optional Element in Security Header -," WS-
Attacks.org, 2010. [Online]. Available:
http://clawslab.nds.rub.de/wiki/index.php/XML_Signature_Wrapping_-

_Optional_Element_in_Security Header. [Accessed 4 May 2013].

C. Mainka, M. Jensen, L. I. Luigi and J. Schwenk, "XSPRES: ROBUST AND
EFFECTIVE XML SIGNATURES FOR WEB SERVICES," in 2nd Interna-

tional Conference on Cloud Computing and Services Science, Porto, 2012.

N. Gruschka and L. Lo lacono, "Vulnerable Cloud: SOAP Message Security
Validation Revisited,” in 2009 IEEE International Conference on Web

Services, Maimi, 2009.

M. A. Rahaman, A. Schaad and M. Rits, "Towards secure SOAP message
exchange in a SOA," in 3rd ACM workshop on Secure web services, New

York, 2006 .

S. Gajek, L. Liao and J. Schwenk, "Breaking and fixing the inline approach,”

o1

[32]

[33]

[34]

[35]

[36]

[37]

in ACM workshop on Secure web services, New York, 2007 .

K. Bhargavan, C. Fournet, A. D. Gordon and G. O'Shea, "An advisor for web
services security policies,” in 2005 workshop on Secure web services, New

York, 2005 .

K. Lawrence and C. Kaler, "WS-Trust 1.3," Advancing open standards for the
information society, March 2007. [Online]. Available: http://docs.oasis-
open.org/ws-sx/ws-trust/200512/ws-trust-1.3-0s.html. [Accessed 29 May

2013].

S. Gajek, M. Jensen, L. Liao and J. Schwenk, "Analysis of Signature
Wrapping Attacks and Countermeasures,” in ICWS 2009. IEEE International

Conference on Web Services, Bochum, 2009 .

Google Developers, "What Is Google App Engine?,” Google, April 2013.
[Online]. Available:
https://developers.google.com/appengine/docs/whatisgoogleappengine.

[Accessed 8 May 2013].

D. Sanderson, "Introducing Google App Engine,"” in Programming Google

App Engine, Sebastopol, O’Reilly Media, 2009, pp. 1-15.

Google Developers, "Quotas,” Google, April 2013. [Online]. Available:

https://developers.google.com/appengine/docs/quotas. [Accessed 28 April

52

[38]

[39]

[40]

[41]

[42]

[43]

[44]

2013].

M. Rudominer, "HOW TO: Build a SOAP Server and a SOAP Client on
Google App Engine,” Google, February 2011. [Online]. Available:
https://developers.google.com/appengine/articles/soap. [Accessed 12 May

2013].

M. Mclntosh and P. Austel, "XML signature element wrapping attacks and

countermeasures,” IBM research division, 2005.

W3Schools, "SOAP Tutorial,” 2013. [Online]. Available:

http://www.w3schools.com/soap/default.asp. [Accessed 30 April 2013].

W3C, "SOAP Security Extensions: Digital Signature,” W3C, 2013. [Online].

Available: http://www.w3.0rg/TR/SOAP-dsig/. [Accessed 28 April 2013].

W3C, "XML Signature Syntax and Processing (Second Edition)," W3C, 2013.
[Online]. Available: http://www.w3.org/TR/xmldsig-core/. [Accessed 29 April

2013].

T. Berners-Lee, R. Fielding and L. Masinter, "Uniform Resource Identifiers
(URI): Generic Syntax,” August 1998. [Online]. Available:

http://www.ietf.org/rfc/rfc2396.txt. [Accessed 24 April 2013].

S. Gajek, M. Jensen, L. Liao and J. Schwenk, "Analysis of Signature

Wrapping Attacks and Countermeasures,” [Online]. Available:

53

[45]

[46]

[47]

[48]

[49]

http://datenschutz.web-schell.de/tl_files/web-datenschutz-schell/Website-
Dateien/PDF/wrapping-attacks_and_countermeasures.pdf. [Accessed 28 April

2013].

W3C, "XML Path Language (XPath),” W3C, [Online]. Available:

http://www.w3.0rg/TR/xpath/. [Accessed 30 April 2013].

Microsoft, "XmIDsigXPathTransform Class
(System.Security.Cryptography.Xml)," Microsoft, 2013. [Online]. Available:
http://msdn.microsoft.com/en-

us/library/system.security.cryptography.xml.xmldsigxpathtransform(v=vs.85).

aspXx. [Accessed 30 June 2013].

M. Jensen, J. Schwenk, N. Gruschka and L. Lo lacono, "On Technical
Security Issues in Cloud Computing," in 2009 IEEE International Conference

on Cloud Computing, 2009.

IBM, "WebSphere Application Server Version 6.1," 2013. [Online].
Available:
http://pic.dhe.ibm.com/infocenter/wasinfo/v6rl/index.jsp?topic=%2Fcom.ibm.
websphere.base.doc%2Finfo%2Faes%2Fae%2Fcwbs_wssmessage.html.

[Accessed 6 May 2013].

B. Peng, B. Cui and X. Li, "Implementation Issues of a Cloud Computing
Platform,” Bulletin of the IEEE Computer Society Technical Committee on

Data Engineering, pp. 59-67, 20009.

54

APPENDICES

55

Appendix A: Code Used to Sign SOAP Message by Means of ID
Referencig Method

protected void Buttonl_Click{object sender, Eventhrgs e)
1
XmlDocument doc = new XmlDocument();
doc.Preservelhitespace = false;
doc.Lead("CreditCardInfo.xml"™);

RSACryptoServiceProvider key = new RSACryptoServiceProvider();

S5igned¥ml signer = new SignedXml{doc);
signer.5igningkey = key;

Reference orderRef = new Reference("");
orderRef.Uri = "#tr";
signer.AddReference(orderRef);

KeyInfo keyinft = new KeyInfo();
keyinf.AddClause(new RSAKeyValue({(R5A)key));
signer.KeyInfo = keyinf;

signer.ComputeSignature();
doc.GetElementsByTagName(“"Header") [@].InsertAfter(signer.GetXml(),
null};

doc.5ave("CreditCardInfo-signed@l.xml"™);

Appendix B: Code Used to Sing SOAP Message by Means of Xpath

protected void Button2_Click(cbject sender, Ewventirgs e)

1

¥

XmlDocument doc = new XmlDocument();
doc.PreservelWhitespace = false;
doc.Load("CreditCardInfo.xml");

RSACryptoServiceProvider key = new RSACryptoServiceProvider();

Signed¥ml signer = new SignedxXml{doc);
signer.SigningkKey = key;

Reference orderRef = new Reference(™™);

orderRef.Uri = "";

AmlDsigiPathTransform Xpathtransform = CreateXPathTransform({“ancestor-
or-self: :CreditCard[@id="tr"']");
orderRef.AddTransform(Xpathtransform);

signer.AddReference(orderRef);

KeyInfo keyinf = new KeyInfof);
keyinf.AddClause(new RSAKeyWalus((RSA)key));
signer.KeyInfo = keyinf;

signer.Computesignature();
doc .GetElementsByTagMame("Header™)[@].InsertAfter(signer.GetXml(),
nullly;

doc.Save("CreditCardInfo-signed.xml™);

private static XmlDsigkPathTransform CreateXPathTransform(string XPathString)

1

// Create a new XMLDocument object.
AmlDocument doc = new XmlDocument();

// Create a new XmlElement.
AmlElement xPathElem = doc.CreateElement("XPath");

/! set the element text to the walue
/! of the XPath string.
x¥PathElem.InnerText = XPathString;

/{ Create a new XmlDsigXPathTransform object.
AmlDsigkPathTransform xForm = new XmlDsigXPathTransform();

// Load the XPath XML from the element.
xForm. LoadInnerXml (xPathElem.SelectNodes("."));

// Return the XML that represents the transform.
return xForm;

Appendix C: Code Used to Sign the SOAP Message by Means of
SESoap Message

protected woid Button3_Click(ocbject sender, Eventhrgs e)
{
XmlDocument doc = new XmlDocument();
doc.Preservellhitespace = false;
doc.Load("CreditCardInfo.xml"};

RSACryptoServiceProvider key = new RSACryptoServiceProvider();

Signed¥ml signer = new Signediml{doc);
signer.5igningkey = key;

Reference orderRef = new Reference(™™);
orderRef.AddTransform{new XmlDsigEnvelopedSignatureTransform());
signer.AddReference(orderRef);

KeyInfo keyinf = new KeyInfo();
keyinf.AddClause(new RSAKeyValue((RSA)key));
signer.KeyInfo = keyinf;

signer.KeyInfo = keyinf;
signer.ComputeSignature();

doc.DocumentElement. AppendChild(signer.Get¥ml{));
doc.Save("CreditCardInfo-signed.xml");

Appendix D: Snap shot of the codes used to analyze time

In the snap shots below of the analyzing the time, an XML file with 150 kb size is

used as an input of the two codes. The name of the input file is CreditCardinfo.xml.

The result shows that the time consumed for signing by Codel is 3.0004

milliseconds. Figure D.1 shows how the codel is working.

orderRef.Uri =

DateTime begin = DateTime.UtcNow;

SignedXml signer = new SignedXml(doc);

signer.SigningKey = key;

Reference orderRef = new Reference("");

XmlDsigkPathTransform Xpathtransform = CreateXPathTransform("/Envelop/Body/CreditCard[@id="tr']");
orderRef.AddTransform(Xpathtransform);

signer.AddReference(orderRef);

signer.ComputeSignature();

doc.GetElementsByTaghame("Header")[@]. InsertAfter(signer.GetXml(), null);

DateTime end = DateTime.UtcNow;

TextBox2.Text = (end - begin).TotalMilliseconds.ToString();
doc. Save("C:\ % TedBod Text| Q v "33.0003" =

5\\XMLSignature\\CreditCardInfo-signedd2.xml");

Figure D.1. Codel

The result of Codel is as the Figure D.2. The File is consisting of A. Xpath

expression, B. Digest value and C. Signature value.

. App_Data
, Files
10 Scripts
1 Styles
2] CreditCardInfoxml
2] CreditCardInfo-signed0.xml
&) CreditCardInfo-signed02.xml

]| Default.aspx

] Default.asp.cs

] Global asax

. New Text Document.bt
) Private-key.xml

2] Public-keyxml

] Site.master

) CreditCardInfo-signed03xml |

File Edit Format View Help

<Signature xmIns="http://www.w3.0rg/2000/09/xm1dsig#">
<Signedinfo>
<CanonicalizationMethod Algorithm="http://www.w3.org/TR/2001/REC-xm]-c14n-20010315" />
<Si(f1naturenethod Algorithm="http://www.w3.0rg/2000/09/xmldsig#rsa-shal" />
<Reference URI=""»
<Transforms>
5 xpath-19991116">
ath>/envelop/Body/creditcard[@id="tr ']k/xPath>

A

‘ <
</Transforms>
i ig#shal” />

Digestvalue>Nj+S1ZIuNoOWSP66euYbyvhdxqc=</Digestvalue>g

oo

<

<Signaturevalue>FimnsGLyogrft30NGHWSXnYUfLbbr tAuwgTs+9rPhii+
btx402NDENGvzg8zazhPEVjOYcMcOnM250/33Df 1Tmth
WVIWJZ+XLmMNU1094 JxwItgLw7 Ftosbniv/z5uwololt
Q6ABZUIFEIwkuqctE116GF8/KPVACYZVSE3h9vM=
</Signaturevalue>

(g

Figure D.2. Result of Codel

In code 2, three functions which are finding element, Hash function and encryption
function are operating separately. First one is Xpath function which is shown in

Figure D.3. The time consumed for this function is 8.003 milliseconds.

DateTing al = DateTine. Utchow;
XPathDocunent docunent@l = new XPathDocunent("C: \\Users\\HADT' \Desktop\\Thesis\ WHLSignaturel \\CreditCardInfo, al");
\Pathllavigator navigator = doc.CreateNavigator);

WPathExpression exp = XPathExpression. Conpile("/Envelop/Body/CreditCand[fid="tr"]');
XPathodeterator nodes = navigator. Select (exp);

nodes. Movellext();

string elenen = nodes. Current Quterkal;

DateTine a2 = DateTine. Utchow;

TextBox2. Text = (a2 - al). TotalMilliseconds, ToString);

File.iriteALL!™ TedBod Tet & » 803" & ftop\\Thesds\ WiLSignaturet \DiL.yal", elenen);

Vel oimeed doaimand wors Ve Newmenel Vs

Figure D.3. XPath function of Code2

The Xpath expression in the code is equal to the section A of the Figure D.2. The

result of Xpath function is as shown in Figure D.4.

) Dixml | DiLml - Notepad

=) Dilxml S -
: || File Edit Format View Help
= Dilxml - —
. kCreditcard id="tr">
=) Dil3axml <CCNumber>1234 5678 9012 3456</CCNumber>
) Digectxm| <Amount>3000</Amount>
=] FIgesk <FirstName>John</FirstName>
& encdataxml <LastName>Smith</LastName>
- <Address>Famagusta</Address>
=] Bxamplexm| <City>magusa</City>
&l Globalasax || <ZipCode>1234</ZipCode>

Figure D.4 Result of Xpath Function

Figure D.5 is shown the code used for hash function. The time consumed for this

function is 0 milliseconds.

DateTime bl = DateTime.UtcNow;

XmlDocument document = new XmlDocument();

document.PreserveWhitespace = false;

document. Load("C:\\Users\\HADI\\Desktop\\Thesis\\XMLSignaturel\\Dil.xm1");
Xm1DsigC14NTransform trans = new XmlDsigCl4NTransform(false);
trans.LoadInput(document);

MemoryStream ms = (MemoryStream)trans.GetOutput(typeof(Stream));

SHAL sha = new SHA1CryptoServiceProvider();

byte[] temps = sha.ComputeHash(ms);

DateTime b2 = DateTime.UtcNow;

TextBox5.Text = (b2 - bl).TotalMilliseconds.ToString();

string fha = [TextBoxS.Text| Q » "0" & femps);
File.WriteAllText("C:\\Users\\AADI\ \Desktop\\Thesis\\XMLSignaturel\\Dil9.xnl", fha);|

Figure D.5 Hash Function of Code2

The result of the hash function is equal to section B of the Figure D.2 which is shown

in Figure D.6.

) Dix LR N°tep""_

File Edit Format View Help
Nj+51ZIuN0OW5P66eUYbyvhaxqc=

1< Ny
=] Dixml

2 Dilxml
“ Dil9.xml
| Diaestxml

Figure D.6. Reslut of Hash Function

And the last one is Encryption function. The time consumed for this function is

3.0004 milliseconds. The code of this function can be seen in Figure D.7.

DateTime b21 = DateTime.UtcNow;

XnlNodeList encdl = doc.GetElementsByTagName("SignedInfo");
XmlDsigCl4NTransform transl = new XmlDsigC14NTransform(false);
transl.LoadInput(encdl);

MemoryStream msl = (MemoryStream)transl.GetOutput(typeof (Stream));
SHAL shal = new SHALCryptoServiceProvider();

byte[] tempsl = shal.ComputeHash(ms1);

byte[] result = rsakey.Encrypt(tempsl,false);

DateTime b1l = DateTime,UtcNow;

string encdata = Convert.ToBase64String(result);

TextBox5.Text = (b1l - b21).TotalMilliseconds.ToString();
File.WriteAll ™ TedBoS.Tet 4 v "30004" = fop\\Thesis\\KiLSignaturel\\encdata.xnl", encdata);

Figure D.7 Encryption Function of the Code2

Figure D.8 contains the result of encryption function. This result is as the same as

section C of Figure D.2.

o) 7 -

2 il
Fle dt Fomat View Hep

. FimnSGLyOgrft30NG|M5XnYUbebrtAquTs+9rPhi1'+btx4oZNDENszngathEvjOYchOmZSO/aBDfmnth
£ 0%ml | v awjZ+XLAMAUL094 XM tgLATF0sbiv/ Z5UNoLoLtQ6ABZUIFEOwkuqctE 1166GF /KpVACYZVSE 3N9vM=

& Diggtaml

))
2 Dilam

2 encdataaml
& Eamplenl
a] Clobalasax

Figure D.8 Result of Encryption Function

The comparison of the results produced by Codel and Code2 shows that the outputs

of codel and code?2 are identical.

