
 Vulnerability in cloud computing.

Securing SOAP message using SESoap method

Hadi Razzaghi Kouchaksaraei

Submitted to the

Institute of Graduate Studies and Research

in Partial Fulfilment of the Requirements for the Degree of

Master of Science

in

Computer Engineering

Eastern Mediterranean University

July 2013

Gazimağusa, North Cyprus

Approval of the Institute of Graduate Studies and Research

 Prof. Dr. Elvan Yılmaz

 Director

I certify that this thesis satisfies the requirements as a thesis for the degree of Master

of Science in Computer Engineering.

 Assoc. Prof. Dr. Muhammed Salamah

 Chair, Department of Computer Engineering

We certify that we have read this thesis and that in our opinion it is fully adequate in

scope and quality as a thesis for the degree of Master of Science in Computer

Engineering.

 Assoc. Prof. Dr. Alexander G. Chefranov

 Supervisor

Examining Committee

1. Assoc. Prof. Dr. Zeki Bayram ________________________________

2. Assoc. Prof. Dr. Alexander G. Chefranov ________________________________

3. Asst. Prof. Dr. Gürcü Öz ________________________________

iii

ABSTRACT

Cloud computing is a concept based on Internet, which delivers large scalable

computing resources, as services over the Internet. The main benefit of this

technology is the decrease of capital and operational costs, which has caused

industrial companies and research communities pay attention to this technology,

increasingly. A typical cloud computing systems has special characteristics.

According to, five major characteristics have been considered for a typical cloud

system. Having those characteristics, there are also three major service models, for

each system, which are namely, Cloud Software as a Service (SaaS), Cloud Platform

as a Service (PaaS), Cloud Infrastructure as a Service (IaaS).

It should be added here that although there are a lot of positive features counted for

cloud systems, there are also some problems that slacken this technology’s

development. One of the most critical issues, is security, which threatens the

successfulness of cloud computing.

It is known that the exchange of information between web applications is done by

means of the SOAP protocol. Securing this protocol is obviously a vital issue for any

computer network. However, when it comes to cloud computing systems, the

sensitivity of this issue rises, as the clients of system, release their data to the cloud.

XML signature is employed to secure SOAP messages. However, there are also

some weak points that have been identified, named as XML signature wrapping

attacks, which have been categorized into four major groups; Simple Ancestry

iv

Context Attack, Optional element context attacks, Sibling Value Context Attack,

Sibling Order Context.

In this study, two existing methods, for referencing the signed part of SOAP Message

to counter the mentioned attacks, named as ID and XPath method, are analyzed and

examined. In addition, a new method is proposed and also tested, to secure the SOAP

message.

In the new method, the XML signature wrapping attack is prevented by employing

the concept of XML digital signature on the SOAP message. In this study a different

way for signing is used, which is more efficient than the current methods .The results

of conducted experiments show that the proposed method is approximately three

times faster than the best method, which is currently available.

Keywords: Cloud computing, SOAP message, XML digital signature, Wrapping

attack

v

ÖZ

Bulut bilişim internete dayanmakta olup internette geniş ölçeklenebilir programlama

veri kaynağını ve hizmetleri sunan bir konsepttir. Bu sistemin başlıca faydaları

sermayenin ve işletim maliyetinin düşürmesidir. Dolaysıyla sanayi kuruluşları ve

araştırma topluluklarının bu sisteme gösterdiği ilgi gittikçe artmaktadır. Bulut bilişim

sistemlerinin kendine özgü özellikleri vardır. Bir bulut bilişim sistemi genel olarak

beş özelliğe sahiptir. Bu özelliklerin yanı sıra, her sistemin üç ana hizmet modeli de

mevcuttur; Hizmet Olarak Yazılım (SaaS), Hizmet Olarak Platform (PaaS), Hizmet

Olarak Altyapı (IaaS).

Unutulmaması gerekir ki bu sistemin birçok faydaya sahip olmasının yanı sıra, bu

teknolojinin geliştirilmesine ilişkin bazı sorunlar da bulunmaktadır. En kritik

konulardan birisi bu sistemin başarı oranının olumsuz bir şekilde etkileyebilen

güvenliktir.

Bilindiği üzere, web uygulamaları arasında veri değişimi SOAP protokolü (Basit

Nesne Erişim Protokolü) aracılığıyla gerçekleşmektedir. Bu protokolün güvenliği her

bilişim ağı için hayati önem taşımaktadır. Fakat bulut bilişim sistemlerine

gelindiğinde, sistem müşterileri kendi verilerinin buluta sürdükleri için güvenliğin

önemi daha da artmaktadır.

XML imzası SOAP mesajlarının güvenliğinin sağlanması için kullanılır. Ancak

XML imzasının bazı zayıf yönleri da tespit edilmiştir. Bunlar XML imzası saldırı

paketi olarak adlandırılmakta olup dört kategoriye bölünür; Basit Geçmiş İçerik

Saldırısı (Simple Ancestry Context Attack), Seçimli Bileşen İçerik Saldırısı

vi

(Optional Element Context Attacks), Benzer Değer İçerik Saldırısı (Sibling Value

Context Attack), Benzer Düzen İçerik Saldırısı (Sibling Order Context).

Bu çalışmada, SOAP mesajının imzalanmış kısmına yönelik sözü gecen saldırıları

önlenmek için kullanılmakta olan URI ve XPath olmak üzere, iki kullanılmakta olan

yöntem analiz edilmiş ve değerlendirilmiştir. Ayrıca SOAP mesajlarının güvenliğinin

sağlanması için yeni bir yöntem önerilmeye ve test edilmeye çalışılmıştır.

Yeni yöntemde, XML imza sarma saldırısı SOAP mesajı uzerine XML sayısal imza

yöntemlere söre daha fahli ve daha verimli bir ımzalame yüntemi kullanılmıştır.

Deneyler göstermiştir ki öneilen yöntem varolan yüntemlere göre üç misli hızlıdır.

Anahtar Kelimeler: Bulut bilişim, SOAP mesajı, XML sayısal imza, Sarma saldırısı

vii

ACKNOWLEDGMENTS

I would like to express my gratitude to my supervisor Assoc. Prof. Dr. Alexander

Chefranov, for his precious guidance, valuable supervision and continuous

encouragement throughout this thesis work.

My deep appreciations go to my dear family, especially mother, father, my dear

brother and sister, whom without their compassionate support; this step could not be

achievable for me.

viii

DEDICATION

To my dear mom, dad, brother and sister,

who have always supported and loved me

ix

TABLE OF CONTENTS

ABSTRACT .. iii

ÖZ .. v

ACKNOWLEDGMENTS ... vii

DEDICATION .. viii

LIST OF FIGURES ... xii

LIST OF TABLES .. xiii

LIST OF ABBREVIATIONS ... xiv

1 INTRODUCTION .. 1

2 LITERATURE REVIEW.. 4

2.1 Cloud Computing ... 4

2.1.1 Essential Features .. 5

2.1.2 Service Models .. 6

2.1.3 Utilization Models ... 7

2.2 SOAP ... 8

2.2.1 SOAP Building Blocks ... 9

2.2.2 Skeleton of SOAP Message .. 9

2.2.3 Syntax Rules ... 10

2.2.4 SOAP Message and Web Services .. 10

2.3 XML Signature .. 11

x

2.4 XML Signature Wrapping Attack .. 13

2.4.1 Simple Ancestry Context Attack ... 13

2.4.2 Optional Element Context Attacks.. 15

2.4.3 Sibling Value Context Attack ... 16

2.4.4 Sibling Order Context ... 19

2.5 Proposed Countermeasures .. 19

2.6 Problem Definition ... 22

3 EXPERIMENTS WITH CLOUD COMPUTING .. 24

3.1 Google App Engine .. 25

3.1.1 The Application Environment ... 25

3.1.2 The Sandbox ... 26

3.1.3 The Python Runtime Environment ... 27

3.1.4 App Engine Services ... 28

3.2 Available Methods To Refer Signed Part of SOAP Messages 29

3.3 Examination of ID and Xpath Methods ... 31

3.4 Summary .. 36

4 PROPOSED SESOAP METHOD TO COUNTER XML SIGNATURE

WRAPPING ATTACK IN SOAP MESSAGE ... 37

4.1 Simple Element Context .. 39

4.2 Optional Element Context .. 39

4.3 Sibling Value Context .. 39

4.4 Sibling Order attack ... 40

xi

4.5 Conducted Experiments ... 40

4.6 Summary .. 44

5 CONCLUSIONS ... 45

REFERENCES ... 47

APPENDICES ... 55

Appendix A .. 56

Appendix B .. 57

Appendix C .. 58

Appendix D .. 59

xii

LIST OF FIGURES

Figure ‎2.1: Skeleton of A SOAP Message .. 10

Figure ‎2.2: Structure of an XML Signature .. 12

Figure ‎2.3: Typical Simple Ancestry Context Attack ... 14

Figure ‎2.4: Typical Optional Element Context Attacks .. 16

Figure ‎2.5: Typical Sibling Value Context Attack .. 18

Figure ‎2.6: Runtime Comparison of Different Referencing Methods 22

Figure ‎3.1: Practical example of Python environment ... 28

Figure ‎3.2: Skeleton of a Soap Message .. 29

Figure ‎3.3: SOAP Message Context .. 31

Figure ‎3.4: SOAP Message Signed Using ID Method ... 33

Figure ‎3.5: SOAP Message Signed Using Xpath Method ... 34

Figure ‎3.6: Time Consumed to Detect the Signing Element 35

Figure ‎4.1: Skeleton of SESoap method .. 38

Figure ‎4.2: XML Document of SOAP Messaged Signed Using Sesoap Method 38

Figure ‎4.3: Time Durations of the Three Considered Methods 41

Figure ‎4.4: Time Durations for Hashing the Specified Element 42

xiii

LIST OF TABLES

Table 3.1: Time Durations to Detect the Signing Element Using ID Method 32

Table ‎3.2: Time Durations to Detect the Signing Element Using Xpath Method 35

Table ‎4.1: Time Durations for Finding Specified Element .. 40

Table ‎4.2: Time Durations for Hashing the Specified Element 41

Table ‎4.3: Total Times Consumed to Sign the Soap Message, in Each Method Using

Code1 ... 43

Table ‎4.4: Total Times Consumed to Sign the Soap Message, Using Code2 44

xiv

LIST OF ABBREVIATIONS

SOAP………………………………………………... Simple Object Access Protocol

SESoap………………………………………………………….Signing Entire SOAP

XML……………………………………………………Extensible Markup Language

SaaS……………………………………………………………..Software as a Service

PaaS……………………………………………………………..Platform as a Service

IaaS…………………………………………………………Infrastructure as a Service

NIST…………………………………National Institute of Standards and Technology

RPC…………………………………………………………..Remote Procedure Calls

DCOM………………………………………... Distributed Component Object Model

HTTP……………………………………………………HyperText Transfer Protocol

HTTPS………………………………………..…HyperText Transfer Protocol Secure

DTD……………………………………………………….Document Type Definition

URI………………………………………………………Uniform Resource Identifier

URL……………………………………………………….Uniform Resource Locator

XPath…………………………………………………………….XML Path Language

CAs……………………………………………………………..Certificate Authorities

DOM………………………………………………………...Document Object Model

JPEG……………………………………………….Joint Photographic Experts Group

PNG……………………………………………………….Portable Network Graphics

JAX………………………………………………………………...Java API for XML

1

Chapter 1

1. INTRODUCTION

Cloud computing is a new technology [1], which provides greatly ascendable

resources such as bandwidth, hardware and software, to be utilized as a service for

consumers, over the internet. This concept has attracted wide attention in all kind of

industries, recently [2]. One of the most significant advantages of using of this

technology is that, consumers can save the cost of hardware deployment, software

license and system maintenance. Consequently, the price of providing and using the

systems will be reduced, significantly.

There are three main layers in cloud computing [2], depending on the type of

provided resources, which are namely; Infrastructure-as-a-service (IaaS) [3],

Platform-as-a-service (PaaS) [4] and Software-as-a-service (SaaS) [5]. Very common

examples of this system are Google’s App Engine, Amazon’s EC2 and Microsoft

Azure [2].

However, besides being absolutely beneficial, there are still particular unsolved

problems [2], in order to implement this concept. It can be said that the most

important challenges in cloud computing are security and trust. Since the consumer’s

data has to be released to the cloud, the system requires high security safety over

them. The data in clouds could be very personal and sensitive and must not be

unveiled to the unauthorized person. This fact results in the problematic sensitive

2

data leakage or data loss from clouds [2]. In cloud computing, data are threatened

during the transition as well. This problem reduces the reliability of the cloud

systems [6].

A popular protocol which used to exchange the data in cloud system is Simple

Object Access Protocol (SOAP) [7]. This is a communication protocol, which has

been used in cloud systems, for transferring data, between applications over the

Internet, with the independent platform and language based on Extensible Markup

Language (XML) [8]. Securing the data in SOAP messages is one of the main

concerns related to security in cloud systems. It can be threatened by XML Signature

wrapping attack, which causes the unveiling of sensitive data [9]. This attack is based

on altering the structure of the original message from the genuine sender. So as to

counter this attack, although diverse remedies have been proposed, none of them

have been able to counter the attack completely [9].

The solution provided in this thesis, uses a new method, namely SESoap, to provide

integrity for the messages, exchanging in a cloud system by SOAP protocol. In this

technique, which is less complicated, more reliable and faster than the current

methods, the entire SOAP message is signed by XML digital signature, instead of

signing a part of that.

Due to importance of the information existing in SOAP message, finding a method in

order to counter the XML signature wrapping attack seems to be a crucial issue. As

an example to clarify the importance level of SOAP message information security, it

can be assumed that it is containing the information of a bank account’s credit card.

Obviously, achieving this information, by a third party, can be terrible for the owner.

3

Consequently, finding a safe way for transferring data can increase the level of trust

and trustworthiness of the cloud system, which is actually the aim of this study. In

other words, in the current research, it has been tried to suggest and offer a new way

to provide a more secure way to transfer data over HTTP.

Layout of this thesis covers the following outline. In chapter 2, Literature review,

some definitions and a summary of pervious works are brought. In chapter3,

Experiments with Cloud Computing, some experimental works, in the field of cloud

computing and different methods for signing a soap message have been discussed,

with their relevant analysis, as well. Proposing and describing the method of SESoap,

its analysis, and their results have been given in chapter4, entitled as Proposed

SESoap Method to Counter XML Signature Wrapping Attack in SOAP Message.

Finally the brief conclusions and achievements of this research have been given in

chapter 5, Conclusion.

4

Chapter 2

2. LITERATURE REVIEW

One of the most fascinating aims that are being sought these days is to provide

computing resources like bandwidth and storage capacity to all the online clients of a

system. This aim is tried to be achieved by a new technology called cloud

computing. In this chapter, it is mainly tried to explain about cloud computing, its

features, and some topics which are mainly related to security issues of these

systems.

To have a brief outline, the themes, which are covered in this chapter are firstly,

cloud computing, its feature, different service models and deployment models of

cloud systems. Secondly, Simple Object Access Protocol or SOAP message, its

building block, skeleton and syntax rules are explained. XML signature is the

succeeding topics of this chapter, which is followed by clarifications about XML

signature wrapping attacks and describing the four major categories of this attack.

Finally, in the last section of this chapter, some proposed countermeasures, offered to

prevent the mentioned attacks are elucidated.

2.1 Cloud Computing

Cloud computing is a technology which enables the clients to have rapidly supplied,

immediate access to a joint of computing resources conveniently, with minimum

service provider communication. These computing resources can be networks,

5

servers or even storage applications. This model of network advances the

accessibility and is consisted of five important features, three layers, and four

deployment models [1].

2.1.1 Essential Features

According to various literatures, between which, NIST (National Institute of

Standards and Technology) is one of the most trusted ones, there are some

characteristics mentioned for a typical cloud system. They can be categorized in five

points.

1) Immediate self-service; meaning that the clients are able to get access to

computing capabilities, for example server time and network storage, individually.

2) Wide network access: Features and capabilities of the cloud system should be

available over the network (system) and these features also should be accessible for

different consumer platforms like laptops and mobile phones.

3) Resource pooling: The provider’s computing capabilities are shared, in order to

serve several clients, by employing a multi-tenant model, which includes various

physical as well as virtual sources, assigned according to clients’ demands. Location

independence is a characteristic of these systems, which can be explained in a way

that the clients actually do not have any knowledge or control on the exact location

of the supplied systems’ resources, i.e. storage, network bandwidth, processing and

etc., although may only be able to identify the country or state.

In other words, the cloud system’s capabilities should be accessible for the clients

from any location, by using any compatible device.

4) Rapid elasticity: the features and capabilities of cloud systems should be delivered

rapidly and elastically, meaning that they are ought to be available unlimitedly, and

6

in certain cases, be able to scale outward and inward rapidly, depending on the

demand.

5) Measured Service: The cloud system’s resources can be controlled and monitored

and also reported, to both provider and consumer of the service, as a matter of

transparency and also resource optimization. This feature can be fulfilled by

employing an assessing capability, suitable to the type of service [1], [10].

2.1.2 Service Models

According to the literatures, there are three service models, defined for a typical

cloud computing system, which are aimed to be explained in the following sections.

1) Cloud Software as a Service (SaaS): the cloud systems’ capabilities are available

to the consumers, in a way that it lets them to utilize the applications or features,

which are running on the cloud infrastructure. These applications are available to the

consumers via a thin client interface (like a web browser). The clients do not have

the access and also are not able to manage or control the substructure of the cloud

system, like network or servers. However, there can be some exceptions in the form

of some limited settings, specifically defined for users. A good example of this

model is MicroSoft Office365, which is services the clients (software services,

automatic backup, update and etc.), without any requirement to installation.

2) Cloud Platform as a Service (PaaS): in the cloud system, the provided capability to

the clients is to use and arrange in the cloud infrastructure’s developed applications

(either by clients or provider), which are created by employing programming

languages and tools that are in fact supported by provider. This means that the clients

do not control or manage the substructure of the cloud system, including network and

7

operating system. However, controlling capability has been provided over the used

applications and perhaps over the configuration settings, for the application-hosting

environments. This service is mostly used by software development companies, in

order to execute their products.

3) Cloud Infrastructure as a Service (IaaS): in this model, storage, networks and

some other essential computing resources are provided to the consumers. The

consumers are capable of running random software, possibly even operating systems

and other applications. In this model also, like the previous ones, clients do not have

the permit to control or manage the cloud system’s substructure, however,

controlling permit of operating systems, storage and utilized applications and

possibly some selected networking components (like host firewalls), have been

provided. This model of service covers a wide range of services including disk

drives, storage devices, and individual servers [1], [11].

2.1.3 Utilization Models

According to most of the publications, utilization of cloud computing systems is

mainly categorized into four main models, which will be explained comprehensively,

in the following paragraphs.

c) Public cloud: in this model, the cloud system is available to the public or a big

group organization, and is owned by a specific organization, which provides and

sells the service. Some examples of public cloud system are SunCloud, IBM Blue

Cloud, and Google App Engine [1] & [12].

8

b) Community cloud: in community clouds, the cloud system’s infrastructure is

actually shared between various users and organizations and is aimed to support the

shared issues of definite association. Issues like specific missions, security, policy

and etc. it can be managed and owned by the organizations or a third party and can

be on premise or off premise [1].

d) Hybrid cloud: The hybrid system services in composed of several cloud systems

that can be private or public. Although the systems are bound together to let data and

applications transfer easily, each of these components are remained exclusive units.

As an extra explanation, it can be said that a hybrid cloud can be a cloud system, in

which a part of resources have been provided locally (internally) and the rest have

been provided externally (public) [1], [13].

a) Private cloud: in these cloud systems, the cloud infrastructure is functioning only

for a specific organization, which may include several consumers as well. The

system can be managed and operated by the relevant institute or an intermediary.

Amazon Virtual private cloud can be named as a private cloud system [1], [14]

2.2 SOAP

SOAP, which is the abbreviation of Simple Object Access Protocol [15], is a

communication protocol, in order to communicate between various applications.

Having the platform and language, independent and XML-based respectively, it

works as a format for sending messages via internet, which also collaborates with the

firewalls [16], [17], [15].

9

Internet connection between programs is indeed an important requirement that is

fulfilled these days by means of Remote Procedure Calls (RPC) (to connect objects

such as DCOM and COBRA). However, there is another problem caused by non-

compatibility of RPC with HTTP, which is not planned for this matter. Therefore,

RPC is obviously blocked by firewalls. To overcome this problem, SOAP was

created, which can communicate between applications over HTTP. It offers a path to

communicate between applications, on different operating systems, with diverse

programming languages [17].

2.2.1 SOAP Building Blocks

As it is also mentioned above, SOAP message’s language is based on XML [16].

Moreover, it can be explained that the building block of SOAP is in fact a typical

XML document, which is consisted of these items:

1) Envelope: this element recognizes the XML document as a SOAP message.

2) Header: this element includes the header information

3) Body: this element includes the actual SOAP message

4) Fault: Errors that occurred while processing message are included in this element

[16], [18].

2.2.2 Skeleton of SOAP Message

A typical skeleton of SOAP message have been shown in Figure 2.1.

10

Figure ‎2.1: Skeleton of A SOAP Message [18]

2.2.3 Syntax Rules

Essential syntax rules of SOAP messages can be summarized in the following

guidelines. Encoding must be done by XML. SOAP encoding namespace and SOAP

envelope namespace must be used in a typical SOAP message [18]. On the other

hand, DTD reference and XML processing instructions should not be contained

within in a SOAP message [15].

2.2.4 SOAP Message and Web Services

In order to clarify the relation between simple object access protocol (SOAP) and

web service, each of them have been defined briefly separately in bellow paragraphs.

A Web service is defined as a designed software system to support interoperable

machine-to-machine communication over a network. Its interface is described in a

machine-processable format (specifically WSDL) [19].

11

Web Services Description Language (WSDL) is an XML-based language in which

an interface of a Web service is described [20].

SOAP message, which have also been defined specifically in the previous section is

in fact the communication protocol, for exchanging information between diverse

applications.

According to World Wide Web Consortium, the relation between Web service and

SOAP message can be explained as the following paragraph.

“A Web service is a software system to support interoperable machine-

to-machine interaction between computational resources over a network

using Simple Object Access Protocol (SOAP) messages.” [20]

2.3 XML Signature

Xml signature is a technique, which is used to deliver reliability, integrity and

message authentication, for various types of data [21]. By providing integrity to data,

it is meant that once the data is signed; it cannot be altered later, without invalidating

the signature. This technique is executed by employing asymmetric cryptography. It

works in two ways: it can be used by the sender of a document, as evidence that the

message is authored by the sender or also can be used by the receiver, indicating that

the receiver has authored it. In addition, the second way, can deliver non-repudiation,

in a way that, when a message is signed by a receiver, the authorization of the

document cannot be denied later on by the receiver. The roles for signing a document

are as follows [22].

]][[]][[MEDMEDM
CCCC PRRP 

12

Asymmetric encryption, uses two keys in order to encrypt and decrypt the function,

which are named private (Rc) and public (Pc) keys. XML digital signature employs

private key and public key to sign a message and validate the document, respectively.

When signing the message, signature will be attached to the original document, and

will be sent to the receiver. It should be noted that the document, is not hidden, since

hiding the message is not the aim of XML digital signature. Since asymmetric

encryption is time consuming, a hash function (f(M)) is calculated over the document

and the result, which is called digest value, is considerably smaller than the

document itself. The result of hash function is then encrypted by private key.

Consequently, the time passed for encrypting data will be reduced, significantly.

Figure 2.2 shows the structure of an XML signature.

Figure ‎2.2: Structure of an XML Signature [22]

The signing process is done according to the following stages: for each xml element,

which is ought to be signed, there is one reference element. The specified element is

first canonicalized, and then hashed. The information of canonicolaization method

13

goes to canonicolaization method element, and the result of hash function goes to

digest value element. Also, signature value has kept the result of asymmetric

cryptography of signed info element of the signature. To validate a signature, the

receiver must apply two operations. First, apply the hash function, used by sender,

over the document and compares it with the digest value of the signature, then,

decrypt the encrypted data and compare it with the signed info element of the

signature. If the results of two comparisons are true, the signature will be validated

[22].

2.4 XML Signature Wrapping Attack

XML signature wrapping attack, can threaten the document because of the fact that

the signature dose not convey any information to where the referenced element is

placed [23]. This attack was introduced for the first time, in 2005 by McIntosh and

Austel, stating different kind of this attack, including Simple Context, Optional

Element, Optional Element in security header (sibling value) and Namespace

injection (Sibling order) [24]. This attack happens in SOAP message, which transfers

the XML document, over the internet.

2.4.1 Simple Ancestry Context Attack

In Simple Ancestry Context Attack, a request’s SOAP body is signed by a signature,

which is placed in the security header of the request. The recipient of message,

checks if the signature is correct and legalizes trust in the signing credential. Lastly,

the recipient controls to realize whether the required element was actually signed, by

bringing the “id” of the soap body to the URI reference, in the signature [25].

A typical example of this attack is shown in Figure 2.3.This mechanism of this attack

can be briefly explained in this way that, the SOAP body gets swapped with a

14

malicious SOAP body. The original SOAP body is placed in a <wrapper> element,

which is situated in the SOAP header and when the signature is validated, The XML

signature confirmation algorithm, begins searching for the element, which has the id

of "CMPE", as it is stated in the <Reference> element. Finally, <soap:Header>

Element wrapped within the <wrapper> element, will be found by the algorithm.

Signature verification will be implemented on the <soap:Header>, within the

<wrapper> element. The verification will be positive, because it includes the original

SOAP body, which is signed by the sender. The SOAP message will be passed to the

logic of the application. In the application logic procedure, only the SOAP body,

which is straightly positioned under the SOAP header, will be processed. In other

words, all other SOAP body elements will be just ignored [25]. Figure 2.3 shows

how this attack works.

Figure ‎2.3: Typical Simple Ancestry Context Attack [24]

15

2.4.2 Optional Element Context Attacks

In optional element context attacks, the signed data is contained in the SOAP header

and it is arbitrary. Comparing this attack to the simple context attack, which is

explained above, reveals that the main problem is not the place of the signed data in

the SOAP header [26]. In fact, the optional nature of signed data is the main issue

[24]. The <ReplyTo> element, which specifies where to send the reply to, can be

given as an example, which is shown in Figure 2.4. The mechanism of this attack can

be explained as follows; it can be seen that the element of <wsa:ReplyTo> is placed

in the <wrapper> element, while, the element of <wrapper> is also positioned

underneath the <wsse:security>. In addition, by means of soap:mustUnderstand="0",

in <wrapper>, this element has become optional and by using soap:role=".../none", it

is destined that the SOAP node (application logic) should not process this header

element. These modifications in the SOAP message, result in the <wsa:ReplyTo> to

become completely disregarded by the application’s logic. Having these attributions,

when the signature gets legalized, the verification algorithm of XML signature

begins to search for the element, which has the id of "theReplyTo" (specified in the

<Reference>) and <wsa:ReplyTo>, which is in the <wrapper> element, will be

found. At this stage, signature confirmation will be done on the <wsa:ReplyTo>, in

the <wrapper>, and because it is including the original <wsa:ReplyTo>, signature

confirmation will be positive. Consequently, SOAP message body and the

descendants, which are understood, will be handed to the application logic while the

<wrapper>, will not be passed to it. Thus, the application logic will ignore the

<wsa:ReplyTo> element and as the result, the original message sender will get the

reply [26].

16

Figure ‎2.4: Typical Optional Element Context Attacks [24]

2.4.3 Sibling Value Context Attack

Sibling value context attack covers the following scenario. In this attack, the security

header includes a signed element, which is in fact an alternative sibling of

<Signature>. A common model for this attack can be the element of <Timestamp>,

which together with <Signature>, are direct descendants of SOAP security header.

17

The difference between this attack and the previously discussed attacks is in the

signed data, which in this attack is the sibling of <Signature> [27].

According to what is also shown in the Figure 2.5, it can be seen that the element of

<wsu:Timestamp> that states the time period, during which the SOAP message is

considered to be valid, is the signed part. < wsu:Timestamp> is assumed to be an

optional element and it should be perceived that the signed data is referred through

an XPath expression. All the <wsu:Timestamp> elements, which are descendants of

<wsu:Security> will be selected by the XPath. The element of <wsu:Security> is also

a descendant of soap:Header, and the soap:Header is also a descendant of all the

elements that are called soap:Envelope [24], [27].

As it also can be seen in the Figure 2.5, this attack is performed by removing the

element of <wsu:Timestamp>, from its authentic original place and has been placed

in the second added element of <wsse:Security>. Moreover, two new characteristics

have also been added to the <wsse:Security> element. The first one is

soap:mustUnderstand="0", and the second one is soap:role=".../none". By means of

these attributes, the header element will be ignored and that is the application’s logic

should not process it [24].

And when the signature gets validate, during the process of SOAP message, in the

verification process of XML signature, the algorithm, starts to look for

<wsu:Timestamp> as it is stated in Xpath. By finding this element within the second

element of <wsse:Header>, the signature confirmation will be done on the

<wsu:Timestamp>, which is placed in the second element of <wsse:Security>.

Consequently, the signature confirmation will be positive, as the XPath finds the

original timestamp. Apart from the second element of <wsse:Security>, all the SOAP

18

message body and its descendants will be passed to the application logic.

<wsse:Security> will not be passed, because it is containing information, which

result in its negligence. In other words, the optional element of <wsu:Timestamp> is

totally ignored and an attacker will be successful by carrying out a reply attack [27].

Figure ‎2.5: Typical Sibling Value Context Attack [24]

19

2.4.4 Sibling Order Context

According to McIntoch and Austel, 2005, this attack is dealing with the protection of

the sibling elements that are individually signed.

Their semantics are related to their order relative to one another, from

reordering by an adversary. More work is required to define appropriate

countermeasures that do not prevent the addition and removal of siblings

that do not impact the ordering semantics [24].

2.5 Proposed Countermeasures

The requirements of a service-side security policy, in order to detect an attack were

shown by McIntosh and Austell, 2005 [24]. These necessities are being improved by

each attack, which is able to bypass the previous provided security policy. In

continuance, some of the improvements in the policy will be explained.

1) In the wsse:security header element, a signature “A” , XML signature, should be

placed, having a clear soap:role attribute and value of “…/ultimateReceiver”.

2) From signature “A”, The element, which are identified by

/soap:Envelope/soap:Body, must be referenced.

3) In the case of having any elements, which are matching with

/soap:envelop/soap:Header/wsse:Security[@role=”…/ultimateReceiver”]

wsu:Timestamp and /soap:Envelop/soap:Header/wsa:ReplyTo, it should be noted

that these elements must be referred through an absolute path, Xpath expression,

from signature “A”.

4) Verification key of signature “A” must be issued and provided by a trusted

Certificate Authorities (CAs) and the certificate of X.509v3, respectively [24].

The first example of XML signature wrapping attack, which was indicating that the

controls suggested by McIntosh and Austell are not satisfactory to notice XML

20

signature wrapping attack, was shown by Gruschka and Lo Iacono, in 2009 [28]. It is

also claimed in their research that the timestamp has to be referenced by an extra

XPath expression, which is not fulfilled in Figure 2.5. Although, it can be added

easily, it should be noted that the XPath references result in further problems. It is

known that XPath expressions are more difficult to be evaluated, comparing to IDs,

this issue is especially important in the context of streaming SOAP message. Another

more important issue is that employment of XPath references may indicate security

issues, so they are not suggested by basic security profile [29].

In a new method, which was proposed in 2006 and is named as inline method, a new

element called SOAP account was introduced. Some characteristic information are

gathered together and inserted in the SOAP account element [28]. Protection of some

key features of SOAP message structure is aimed in this technique. The properties,

which are aimed to be protected, are listed as below.

1) Number of header element descendants

2) Number of soap:envelop, descendent elements

3) Amount of references in every signature

4) The descendants and antecedents of every signed item

By means of this approach, with the above properties, if in an attack, each of these

properties is changed, the attack will be easily identified [30]

However, it is important to add that this method has some weak points and

disadvantages as well. As an example, two of the main disadvantages will be

explained in continuance.

21

The main problem with this method is that it does not provide a general protection,

from XML signature wrapping attack. In other words, if an attacker manages to

change the SOAP message structure in a way that the inline method structure

properties does not get changed, this technique can be easily dodged [31].

Another model for policy confirmation was developed in 2005, by Bhargavan,

Fournet and Gordon. A policy advisor checklist, for generating security policies has

been derived by them, which includes compulsory and signed elements, and a

recommendation. Mandatory elements are wsa:To, wsa:Action, soap:Body, signed

elements are all the mandatory elements plus wsa:messageID and Timestamp. It is

also suggested that the certificate of X.509, to be employed for authentication [32].

The second issue about inline method is that the newly introduced element of SOAP

account, and its verification, is not standardized [33].

Additionally, Gajek et al. proposed some solution ideas for protecting against the

signature wrapping attacks. Having the core idea of using the verification component

as a filter, this method returns the result of canonicalization and transformation step

(while in common methods, Boolean value are returned). This difference certifies

that the subsequent components, which are inside the web service framework,

function accurately on the originally signed message [31]. There are also some

problems about this method, which were already mentioned by the other authors.

One weak point is about the operation of web service on SOAP envelope. The SOAP

envelope cannot be operated as a single well-formed message document. To solve

this issue, the signed elements and their parent nodes can be passed together to the

business logic part of web service, as a spanning DOM. However, to have the

problem solved with this method, the content of elements should not be changed by

22

the signature transformations. However, this solution can also be inadequate if both

signed and unsigned parts of SOAP message are operated by the web service, which

will not allow the signature components to operate as filter [28].

In addition, fastXPath method was proposed by Gajek et al., in 2009. This method is

employed to increase the speed of XPath function, and to point to the signed subtree.

However, this method also could not solve the identified issues about XPath

expression [34]. A comparison between runtime of different methods, ID, fastXPath

and XPath methods, have been also done in this article. The comparison’s relevant

graph is shown in Figure 2.6.

Figure ‎2.6: Runtime Comparison of Different Referencing Methods [28]

2.6 Problem Definition

It can be easily found out from the topics, which were discussed and explained in this

chapter (especially the countermeasure section), that although there are rapid

improvements about the concept of cloud computing and especially about security

issues in these systems, there are still missing methods, that should be provided to

have better and well developed cloud systems. Specifically, as it has been also

23

explained about the proposed methods to prevent XML signature wrapping attacks,

the most advanced method is only avoiding two attacks out of total four attacks. In

other words, there is not any method to prevent Sibling Order Context and Sibling

Value Context attack.

During this investigation, going through the previous literatures has been done in the

literature review chapter. In the 3
rd

 chapter, experiments with Cloud Computing, an

example of available cloud computing systems was chosen to work and get familiar

with these systems. Finally, it has been attempted to propose a new method in order

to avoid all the mentioned attacks.

Chapter 4, Proposed SESoap Method to Counter XML Signature Wrapping Attack in

SOAP Message, includes the proposed method is also implemented and verified, to

check its efficiency. Implementation of the purposed method was done by using

C#.net programming language in Visual Studio 2010 framework. Finally, conclusion

remarks of this study have been also collected briefly in chapter 5, Conclusions.

24

Chapter 3

3. EXPERIMENTS WITH CLOUD COMPUTING

As the experimental section of this research, it was attempted to work with available

examples of cloud systems, to find out more about the positive features, negative

points and generally their features. A famous example of cloud computing system is

Google App Engine, which lets the users perform applications on the infrastructure

of Google [35]. In this investigation, it has been tried to work with this system, in

order to get familiar with the concept of cloud computing systems and their features.

Google App Engine has been used to write some programs, in Python environment,

which were later shared over the Web, again by means of this engine, to investigate

how a cloud computing system works.

Outline of this chapter covers the following headings. Firstly, Google App Engine

have been chosen as a typical cloud computing system, a few of its features and

capabilities, including the environment, sandbox, services and the Python runtime

environment (as example), have been explained. In the next step, available methods

of referring signed part of SOAP message, for securing SOAP message, have been

explained briefly and finally, the mentioned methods have been tested

experimentally, by means of Visual Studio 2010 framework and C#.net

programming language.

25

3.1 Google App Engine

As it is also mentioned above, Google App Engine is provides its users with the

amenity of building web applications, based on an ascendable system, on Google

infrastructure. Web application, can be defined as an application or service, which is

accessible over the web [36]. Usually with a web browser there is no preserving

service for this system and the size of it grows, as there is a requirement to the

growth of traffic and data storage.

This system has the ability to support applications, which are written by mean of

various programming languages, such as Java, Go, and Python. In addition, in the

free version of this system, there are limitations for the storage capacity CPU and

bandwidth [37]. In this version, all the applications can use the storage of maximum

1GB, bandwidth and CPU for an application which serves around 5 million page

views per one month. The applications can be served from the programmer’s domain

name, or also, it is possible to publish the applications by creating free accounts [35].

3.1.1 The Application Environment

The following points are some of the system’s important advantages:

 Dynamic web serving

 Persistent storage with queries, sorting and transactions

 automatic scaling and load balancing

 APIs for authenticating users and sending email using Google Accounts

 a fully featured local development environment that simulates Google

App Engine on your computer

 task queues for performing work outside of the scope of a web request

 scheduled tasks for triggering events at specified times and regular

intervals [35]

26

Three runtime environments, with standard protocols and shared technologies, have

been provided for the applications, Go, Python and Java environments.

3.1.2 The Sandbox

Sandboxing also lets App Engine run several applications on the same server,

separately, without being affected by each other [36]. A secure environment is

provided for the applications, which allows the applications to have limited access to

the original operating system. By means of these limitations, App Engine will be able

to allocate and manage the web demands of the applications, across the various

servers. Also it will be able to start and stop servers, to satisfy the traffic

requirements.

Environment of the sandbox is not dependent of hardware, operating system and of

course the location of web server [35], [36]. Some of the limitations of the secure

sandbox are explained in the below paragraphs.

1. There is a limited time interval of 60 seconds, for an application to execute and

bring the response data to a scheduled task or web request. After when a response is

sent, the request handlers are not able to run code or start a sub-process.

2. The accessibility of applications to the computers over the internet is provided via

the afforded email services and URL fetch. On the other hand, the access of other

computers to the applications have been made by making HTTP (or HTTPS)

requests, on the standard ports.

3. The applications can only read those files, which are uploaded including the

application code. Meanwhile, for any data that persists between requests, the

applications must use the provided services in the App Engine, such as memcache. It

27

should be added that in the environment of Python 2.7, the facility of reading, writing

and modifying bytecode have been provided [35], [36].

3.1.3 The Python Runtime Environment

In the Python Runtime Environment of Google App Engine, applications are

implemented by using Python programming language. The application written in

Python 2.5 (the language), are run, employing the official Python interpreter [35],

[36]. The facility to utilize and take advantages from various frameworks and

libraries of Python web application, such as web2py, has been potentially provided

[35].

Python standard Library has been made available through the Python environment,

although there are exceptions. These exceptions are such as trying to write a file or

open a socket. The elements that are not supported by the runtime environment have

been disabled and their corresponding codes, to import them, are set to raise error

[36]. In addition, webapp2, which is a simple web application framework, have been

also provided in App Engine that provides a more convenient way for application

building [35].

3.1.3.1 A Practical Example of Python Environment

As an attempt to work with Google App Engine, an application has been written,

using Paython. A screen shot of it have been shown in Figure 3.1. The clients can

chat by using this application, in two ways. They both can chat as a guest user,

having “guest” identity and also they can enter their email identity and chat by their

own username.

28

Figure ‎3.1: Practical example of Python environment

3.1.4 App Engine Services

Several services have been provided in Google App Engine, in order to enable the

users, to execute common processes, during application handling [35]. The following

items are some of the provided application programming interfaces (APIs).

3.1.4.1 URL Fetch

Google App Engine’s URL fetch have been provided as a facility to enable

applications get access to the internet resources. This service works by using Google

infrastructure, which is the same infrastructure of other Google products [35].

3.1.4.2 Memcache

The Memory cache or shortly, the Memcache service [36], is a storage service,

which besides having the advantage of being short-term and a key-value memory,

also, it has a remarkable superior property over the datastore that is being much

faster than it, which is indeed a positive point especially for simple data retrieval and

29

storing [36]. It is absolutely useful for temporary data or data copied from the

datastore, as they don’t need features of transaction or persistence [35].

3.1.4.3 Image Manipulation

This API lets the users work with or correct image files. Images in the formats of

JPEG and PNG can easily be resized, rotated, cropped or flipped by means of this

service [36].

According to Rudominer, 2011, it is possible to build a SOAP server and a SOAP

client, by means of java.xml.soap, JAX-B and JAX-WS, respectively [38]. It should

be added here that the security issue of SOAP message, which have been introduced

by McIntosh and Austel in 2005 [39], was also noticed in Google App Engine,

during the literature review and experimental analyses of the current research work.

3.2 Available Methods To Refer Signed Part of SOAP Messages

SOAP message is defined as a protocol that is utilized for conveying information

over HTTP, between the web applications [7]. The skeleton of a SOAP message is

shown in Figure 3.2.

Figure ‎3.2: Skeleton of a Soap Message

30

The major element of SOAP message is the Envelope, which includes two sub

elements, i.e. SOAP Header and SOAP Body. The element of SOAP Header is

actually an optional element that includes specific information of applications, such

as authentication. On the other hand, SOAP Body, is known as a compulsory

element, incorporating the real SOAP message, which is aimed to reach to the

ultimate endpoint [40].

In order to secure the information inside the SOAP body, XML digital signature is

utilized [41], [42]. However, vulnerable signed documents might occur, caused by

hidden alterations, done by a hacker (adversary). These vulnerabilities are caused by

a so-called wrapping attack [39]

As it is also explained comprehensively in the previous chapter, there are four major

wrapping attacks, which are called as Simple Context, Optional element, Optional

Sibling Value and Sibling Order Context [39].

Aiming to refer to the SOAP Body of a SOAP document, ID reference is being used

by XML digital signature [43].Despite the fact that it is the fastest method [44]; it is

also susceptible to XML signature wrapping attack [39]. Another method for

detecting the signing element of SOAP message is XML Path Language (XPath)

[45], which is also employed to counter optional element and simple context attack

[39]. Unfortunately, this method is time consuming [44] and is remained vulnerable

against Optional Sibling Value and Sibling Order Context attacks [9].

31

3.3 Examination of ID and Xpath Methods

In order to examine the mentioned attacks, C#.net programing language, was

employed. The figure below (Figure 3.3) shows the SOAP message context of this

study.

Figure ‎3.3: SOAP Message Context

After signing the Soap message, by using ID (shown in Figure 3.4), for referring the

SOAP Body element, the result indicated susceptibility to XML wrapping attack

(See also Appendix A). However, in this method, signing and verification were

implemented very rapidly. The consumed time for finding the specified element by

using ID method is shown in Table 3.1.

32

Table ‎3.1: Time Durations to Detect the Signing Element Using ID Method

Size (Kb)
Time consumed by ID

(ms)

50 0

100 0

150 1.0003

250 1.0006

750 3.002

1050 4.0003

1350 5.0003

1650 6.0004

1950 7.0003

2250 8.0004

3150 11.0034

In the evaluation, the location of the reference element was always kept exactly at the

middle of the document. The process of evaluation and running the program was

done by using Laptop, with 2.00 GHz Core2Duo CPU and 1.00 GB memory. The

results are given out in the Figure 3.4.

33

Figure ‎3.4: SOAP Message Signed Using ID Method

Another method, examined in this investigation was XPath, which according to

McIntosh and Austel, 2005, could counter simple context and optional context [39].

In the analysis of XPath method, the signed part of message was placed in first,

middle and at the end of the file and the results of all of them were the same, because

of the fact that, XPath method is searching for all passible occurrences of the

specified expressions. After finding one specified element, the function does not stop

and it will continue to find another occurrence of the expression, inside the file. The

result is shown as follows (see Figure 3.5 and Appendix B).

34

Figure ‎3.5: SOAP Message Signed Using Xpath Method

35

Although this method (XPath) is so far, the best proposed method, but this method is

very time consuming. The results of determination of time for finding the element for

files with size between 750 Kb to 2250 Kb were as follows, in Table 3.2.

Table ‎3.2: Time Durations to Detect the Signing Element Using Xpath Method

Size (Kb)
Time consumed by

XPath (ms)

50 6.0004

100 7.0003

150 8.003

250 10.0002

750 14.0008

1050 17.0004

1350 20.0006

1650 23.0014

1950 26.0016

2250 29.0016

3150 37.0013

The graph, shown in Figure 3.6, is showing the trend of above measured time

durations.

Figure ‎3.6: Time Consumed to Detect the Signing Element

0.0000

5.0000

10.0000

15.0000

20.0000

25.0000

30.0000

35.0000

40.0000

50 100 150 250 750 1050 1350 1650 1950 2250 3150

T
im

e
(m

s)

Size (Kb)

Xpath

36

As a conclusion to this evaluation and time determination, it can be said that

although XPath is time consuming and still vulnerable to sibling optional context, so

far it is the most sufficient method for countering XML Wrapping attack. On the

other hand, although ID is a fast method, it is untrustworthy.

It should be added here that in the next chapter, it has been tried to explain about a

new method, which is aimed to counter all the aforementioned vulnerabilities.

Besides explaining, verifications have been done, to see the performance of the

method.

3.4 Summary

In this chapter, firstly, after knowing about a typical available cloud system service,

called Google App Engine and explaining its features, two of the available methods

of referencing the signed part of SOAP Message to secure XML signature called ID

and XPath referencing method, were explained and examined on a SOAP message.

It was observed that although both of the methods are being utilized to counter the

XML signature wrapping attacks, they are not completely satisfying. XPath method

is secure but it is also time consuming and it is not preventing Optional Sibling Value

and Sibling Order Context attacks. On the other hand, ID method is fast but it is not

completely safe and secure.

37

Chapter 4

4. PROPOSED SESOAP METHOD TO COUNTER XML

SIGNATURE WRAPPING ATTACK IN SOAP

MESSAGE

In this chapter, the new method, which is developed to counter what is so-called

XML signature wrapping attack, will be explained comprehensively. In the first step,

the logic behind the method and its structure is explained. This section is followed by

explaining the performance of this method against different categories of wrapping

attacks. In the last section, conducted experiments, to find verify the implementation

of this method, are given out, which are done by using Visual Studio 2010

framework and C#.net programming language.

Since most of the XML signature wrapping attacks are done through changing the

structure of the original SOAP message, sent by the genuine sender [28], it is logical

to propose a protecting method, which aims to protect the structure of the sent

message, from attacker. To fulfill this aim, the digital signature can be used to

guarantee the integrity of message.

The method of this thesis, i.e. Signing Entire SOAP (SESoap) method, is to apply the

digital signature structure over entire Soap envelop element, which results in

securing the whole document. Consequently, an attacker will not be able to change

the location of elements or remove or add any element to the original document. In

38

the case of modification in any part of the document, the signature cannot be

verified.

In the coming sections, the SESoap method will be examined in all types of attacks.

The relevant results of each examination will be given in details, and discussions will

be tried to be done about them. Skeleton of SESoap method and the XML document

of SOAP message that is signed by SESoap method is shown in the following figures

(Figure 4.1 and 4.2).

Figure ‎4.1: Skeleton of SESoap method

Figure ‎4.2: XML Document of SOAP Messaged Signed Using Sesoap Method

39

It should be noted that the element of Soap:signature, is the resulted by signing the

entire content of soap:envelop, except the element of soap:signature itself. To explain

better, the structure of SOAP after applying the SESoap method, have been shown in

Figure 4.2.

4.1 Simple Element Context

In simple Context attack, a wrapper alters the location of the Soap body and adds a

new Soap body to threaten the SOAP document [39]. It is quite clear that by using

digital signature over entire document, any alteration or adding any element to the

signed document will be totally prevented.

4.2 Optional Element Context

In optional Element context, a wrapper adds some information to optional element to

application logic of a program could not pars that element [39]. Again, the same as

the previous attack, when a wrapper tends to add something to the document, the

attack is prevented by SESoap.

4.3 Sibling Value Context

The two previous types of attacks are possible to be prevented by means of XPath

method [39]; however XPath is susceptible against this attack [29]. As it has been

explained in the previous chapter, Time stamp element, which is an optional sibling

element of signature element, can be threatened by wrapper. But for wrapping on this

element, the wrapper again must modify some parts of document [39]. Consequently,

as modifications are prevented in SESoap method, Sibling value Context will not be

allowed to occur.

40

4.4 Sibling Order attack

This attack relies on changing the order of individual sibling elements [39].

Therefore, since reordering is also not possible in SESoap, again no wrapper can be

successful in implementation of this attack.

4.5 Conducted Experiments

SESoap method has been implemented by using C#.net, in order to determine how

fast it is, comparing to the previous methods of ID and XPath. These examinations

have also been performed by means of Laptop, having 2.00 GHz Core2Duo CPU,

and 1.00 GB memory in Windows 7. The time duration for finding specified element

inside the SOAP body element of the document, in three methods as it is shown in

Table 4.1.

Table ‎4.1: Time Durations for Finding Specified Element

Size of

files

(Kb)

Time of finding an element (ms)

ID Xpath SESoap

50 0 6.0004 0

100 0 7.0003 0

150 1.0003 8.003 0

250 1.0006 10.0002 0

750 3.0002 14.0008 0

1050 4.0003 17.0004 0

1350 5.0003 20.0006 0

1650 6.0004 23.0014 0

1950 7.0003 26.0016 0

2250 8.0004 29.0016 0

3150 11.0034 37.0013 0

The time durations for finding the element in SESoap are 0, because this technique

does not search for any specified element inside the SOAP document. The graph for

comparing these time durations, have been shown in Figure 4.3.

41

Figure ‎4.3: Time Durations of the Three Considered Methods

In the next step, the time durations for hashing the specified element inside the

SOAP document, have been estimated. The results are shown in Table 4.2.

Table ‎4.2: Time Durations for Hashing the Specified Element

Size of

files (Kb)

Time of Hash function (ms)

ID Xpath SESoap

50 0 0 0

100 0 0 0

150 0 0 1.0001

250 0 0 1.0012

750 1.0001 1.0001 3.0001

1050 1.0001 1.0001 4.0002

1350 1.0001 1.0001 5.0003

1650 1.0001 1.0001 6.0004

1950 1.0001 1.0001 7.0005

2250 1.0001 1.0001 8.0005

3150 1.0001 1.0001 11.0087

0

5

10

15

20

25

30

35

40

50 100 150 250 750 1050 1350 1650 1950 2250 3150

T
im

e
(m

s)

Size (kb)

ID

XPath

SESoap

42

The graph below (Figure 4.4) is showing the trend of the evaluated numbers.

Figure ‎4.4: Time Durations for Hashing the Specified Element

In addition, the consumed time for encrypting data, in all the three methods are

equal, because in the digital signature, encryption function applies on the signed info

element of signature. The sizes of the signed info element in all the methods are

equal. As the result, the consumed times for encrypting the signed info elements are

the same. In this study RSA key is used to encrypt the signed info element of the

signature and the time consumed for all three methods was 3.0004 in milliseconds. In

this study two types of codes are used to estimate the total time of signing the

message. These codes are named as Code1 and Code2. In Code1 the whole

operations are done as one component and in Code2 each function (finding element,

hashing and encryption) is done separately [46]. The total consumed times to sign the

SOAP message, in each of the three methods by Code 1 are as Table 4.3 (See also

appendix D).

0

2

4

6

8

10

12

50 100 150 250 750 1050 1350 1650 1950 2250 3150

T
im

e
(m

s)

Size (kb)

ID

Xpath

SESoap

43

Table ‎4.3: Total Times Consumed to Sign the Soap Message, in Each Method Using

Code2

Size of

files (Kb)

Total time (ms)

ID XPath SESoap

50 3.0004 9.0008 3.0004

100 3.0004 10.0007 3.0004

150 4.0007 11.0034 4.0005

250 4.0012 14.0006 4.0016

750 7.0027 18.0031 6.0024

1050 8.0028 21.0027 7.0025

1350 9.0028 24.0029 8.0026

1650 10.0029 27.0037 9.0027

1950 11.0028 30.0039 10.0030

2250 12.0029 33.0039 12.0030

3150 15.0003 40.0037 15.0009

According to these results, as the numbers show, the total consumed time to sign a

SOAP document by SESoap method is almost three times as much as XPath method

and approximately equal to ID. Consequently, it can be claimed that, the SESoap

method is operating more sufficiently, than the other two methods, considering both

aspects of security and time.

The results of running code 1 to sign the specified element [46] are as the Table 4.4

(See also Appendix D).

44

Table ‎4.4: Total Times Consumed to Sign the Soap Message, Using Code1

Size of

files (Kb)

Total time (ms)

ID XPath SESoap

50 3.0012 10.0011 4.0023

100 4.0005 13.0012 7.0003

150 6.0006 33.0003 11.0012

250 8.0009 48.0004 15.0023

750 15.0007 148.0014 28.0001

1050 21.0007 207.0234 40.0012

1350 36.0014 269.0002 53.0013

1650 42.0003 329.0019 64.0015

1950 53.0012 341.0015 76.0245

2250 68.0023 401.0023 98.0001

3150 113.0003 590.0145 134.0231

These results are more complying with the previous research [28], but as it can be

obviously noticed, the results of that research are less efficient than what is done in

this study.

4.6 Summary

In this chapter, a new method for securing the SOAP message is proposed, in which

the concept of digital signature to fix the location of elements and avoid of entering

new malicious elements inside the SOAP message is used. Analyzing of the method

and comparing it to the other available methods are also conducted in this chapter.

The results illustrated that the new method is faster and more secure than the other

available methods.

45

Chapter 5

5. CONCLUSIONS

The primary goal of this study was to secure SOAP message, which is employed to

exchange information between web applications of cloud computing systems.

Having this aim, a new method –SESoap– has been proposed. The concept of this

method is using Digital Signature technique to immune the information inside a

SOAP message from modification by an adversary.

Google App engine has been investigated to get familiar with cloud computing

systems. It is an example of cloud computing systems that provides infrastructure, to

build web applications.

ID and XPath methods for signing SOAP message have been analyzed and compared

from two viewpoints, i.e. security and the consumed time to find the signing element.

The result of these investigations illustrated that, the ID method is a fast method with

significant security concerns and in contrast, XPath is a safer method, but slow.

SESoap method, which is proposed in this investigation, signs the SOAP message in

a different way. In the current countermeasures, such as XPath and ID, just one part

of SOAP document, which specified by these methods, is signed, while in SESoap

method, the entire information inside the SOAP envelope is used as an input of

signing function. In this case, modification of the SOAP message will be impossible.

46

The results obtained from implementation of SESoap method indicate that, this

method is slower than the other examined methods, for hashing the information. The

reason of this observation is that, comparing to the other examined methods, in this

method, the hash function is applied over a greater size of data. On the other hand,

for finding element in SOAP message, SESoap method does not consume any time.

In this study a more efficient way is utilized to sign the SOAP message, and the total

time duration to sign the message is approximately one third of the total time

consumed in XPath method.

47

REFERENCES

[1] P. Mell and T. Grance, "COMPUTER SECURITY," September 2011.

[Online]. Available: http://csrc.nist.gov/publications/nistpubs/800-145/SP800-

145.pdf. [Accessed 30 April 2013].

[2] S. Bhayal, "A study of security in cloud computing," ProQuest Dissertation

Publishing, 2011.

[3] Small Business Technology, "Infrastructure as a service.," 2012. [Online].

Available: http://www.biztechmagazine.com/sites/default/files/cloud-

iaas_2.pdf. [Accessed 28 April 2013].

[4] K. L. Jackson and C. Landis, "Platform as a Service (PaaS)," January 2012.

[Online]. Available: http://appdeployer.com/home/wp-

content/uploads/2012/12/NJVC-Virtual-Global-PaaS-White-Paper.pdf.

[Accessed 20 April 2013].

[5] J. Brown, "What is SaaS?," [Online]. Available:

http://www.powerdms.com/downloads/ebook/Moving-Toward-the-Cloud-

What-is-SaaS.pdf. [Accessed 20 April 2013].

[6] D. Jamil and H. Zaki, "Security Issues in Cloud Computing and

Countermeasures," International Journal of Engineering Science and

48

Technology, vol. 3, no. 4, pp. 2672-2676, 2011.

[7] W3C, "SOAP Specifications," W3C, 2007. [Online]. Available:

http://www.w3.org/TR/soap/. [Accessed 28 April 2013].

[8] W3C, "Extensible Markup Language (XML)," W3C, 2012. [Online].

Available: http://www.w3.org/XML/. [Accessed 25 April 2013].

[9] N. Gruschka and L. Lo Iacono, "Vulnerable Cloud: SOAP message security

validation revisited," in 2009 IEEE International Conference on Web Services,

Los Angeles, 2009.

[10] A. Milroy, "16 Key Attributes of Cloud Computing," January 2011. [Online].

Available: http://www.andymilroy.com/2011/01/16-key-attributes-of-cloud-

computing.html. [Accessed 30 April 2013].

[11] Perspectives on Cloud Computing & Training from Learning Tree

International, "Cloud Service Models: Comparing SaaS PaaS and IaaS |

Perspectives on Cloud Computing & Training from Learning Tree

International," November 2011. [Online]. Available: http://cloud-

computing.learningtree.com/2011/11/09/cloud-service-models-comparing-

saas-paas-and-iaas/. [Accessed 27 April 2013].

[12] M. Rouse, "What is public cloud? - Definition from WhatIs.com," Cloud

computing information, news and tips, May 2009. [Online]. Available:

http://searchcloudcomputing.techtarget.com/definition/public-cloud.

49

[Accessed 29 April 2013].

[13] M. Rouse, "What is hybrid cloud?," June 2010. [Online]. Available:

http://searchcloudcomputing.techtarget.com/definition/hybrid-cloud.

[Accessed 30 April 2013].

[14] Amazon Web Services, "Amazon Virtual Private Cloud," 2013. [Online].

Available: http://aws.amazon.com/vpc/. [Accessed 14 May 2013].

[15] "SOAP – Simple Object Access Protocol for Message Negotiating and

Transmission," The Two Way Web, [Online]. Available:

http://www.thetwowayweb.com/soapmeetsrss. [Accessed 15 May 2013].

[16] "SOAP (Simple Object Access Protocol) Definition," 2013. [Online].

Available: http://www.techterms.com/definition/soap. [Accessed 17 May

2013].

[17] W3Schools, "SOAP Introduction," W3Schools, [Online]. Available:

http://www.w3schools.com/soap/soap_intro.asp. [Accessed 17 May 2013].

[18] w3schools, "SOAP Syntax- SOAP Building Blocks," 2013. [Online].

Available: http://www.w3schools.com/soap/soap_syntax.asp. [Accessed 6

May 2013].

[19] World Wide Web Consortium, "Web Services Glossary," 2004. [Online].

Available: http://www.w3.org/TR/2004/NOTE-ws-gloss-

50

20040211/#webservice. [Accessed 2 May 2013].

[20] J. Hwang, "Web services SOAP message validation," IBM, 2010. [Online].

Available: http://www.ibm.com/developerworks/webservices/library/ws-

soapvalid/#N10078. [Accessed 15 May 2013].

[21] R. Salz, "Understanding XML Digital Signature," July 2003. [Online].

Available: http://msdn.microsoft.com/en-us/library/ms996502.aspx. [Accessed

19 May 2013].

[22] M. Bartel, J. Boyer, B. Fox, B. LaMacchia and E. Simon, "XML Signature

Syntax and Processing Version 1.1," World Wide Web Consortium (W3C),

April 2013. [Online]. Available: http://www.w3.org/TR/2013/REC-xmldsig-

core1-20130411/. [Accessed 29 April 2013].

[23] C. O. h. Eigeartaigh, "Open Source Security: XML Signature Wrapping

attacks on Web Services," October 2012. [Online]. Available:

http://coheigea.blogspot.com/2012/10/xml-signature-wrapping-attacks-on-

web.html. [Accessed 20 May 2013].

[24] M. McIntosh and P. Austel, "XML Signature Element Wrapping Attacks and

Countermeasures," IBM Research Report, NewYork, 2005.

[25] "XML Signature Wrapping - Simple Context -," WS-Attacks.org, 2011.

[Online]. Available:

http://clawslab.nds.rub.de/wiki/index.php/XML_Signature_Wrapping_-

51

_Simple_Context. [Accessed 4 April 2013].

[26] "XML Signature Wrapping - Optional Element," WS-Attacks.org, April 2011.

[Online]. Available:

http://clawslab.nds.rub.de/wiki/index.php/XML_Signature_Wrapping_-

_Optional_Element. [Accessed 4 May 2013].

[27] "XML Signature Wrapping - Optional Element in Security Header -," WS-

Attacks.org, 2010. [Online]. Available:

http://clawslab.nds.rub.de/wiki/index.php/XML_Signature_Wrapping_-

_Optional_Element_in_Security_Header. [Accessed 4 May 2013].

[28] C. Mainka, M. Jensen, L. I. Luigi and J. Schwenk, "XSPRES: ROBUST AND

EFFECTIVE XML SIGNATURES FOR WEB SERVICES," in 2nd Interna-

tional Conference on Cloud Computing and Services Science, Porto, 2012.

[29] N. Gruschka and L. Lo Iacono, "Vulnerable Cloud: SOAP Message Security

Validation Revisited," in 2009 IEEE International Conference on Web

Services, Maimi, 2009.

[30] M. A. Rahaman, A. Schaad and M. Rits, "Towards secure SOAP message

exchange in a SOA," in 3rd ACM workshop on Secure web services, New

York, 2006 .

[31] S. Gajek, L. Liao and J. Schwenk, "Breaking and fixing the inline approach,"

52

in ACM workshop on Secure web services, New York, 2007 .

[32] K. Bhargavan, C. Fournet, A. D. Gordon and G. O'Shea, "An advisor for web

services security policies," in 2005 workshop on Secure web services, New

York, 2005 .

[33] K. Lawrence and C. Kaler, "WS-Trust 1.3," Advancing open standards for the

information society, March 2007. [Online]. Available: http://docs.oasis-

open.org/ws-sx/ws-trust/200512/ws-trust-1.3-os.html. [Accessed 29 May

2013].

[34] S. Gajek, M. Jensen, L. Liao and J. Schwenk, "Analysis of Signature

Wrapping Attacks and Countermeasures," in ICWS 2009. IEEE International

Conference on Web Services, Bochum, 2009 .

[35] Google Developers, "What Is Google App Engine?," Google, April 2013.

[Online]. Available:

https://developers.google.com/appengine/docs/whatisgoogleappengine.

[Accessed 8 May 2013].

[36] D. Sanderson, "Introducing Google App Engine," in Programming Google

App Engine, Sebastopol, O’Reilly Media, 2009, pp. 1-15.

[37] Google Developers, "Quotas," Google, April 2013. [Online]. Available:

https://developers.google.com/appengine/docs/quotas. [Accessed 28 April

53

2013].

[38] M. Rudominer, "HOW TO: Build a SOAP Server and a SOAP Client on

Google App Engine," Google, February 2011. [Online]. Available:

https://developers.google.com/appengine/articles/soap. [Accessed 12 May

2013].

[39] M. McIntosh and P. Austel, "XML signature element wrapping attacks and

countermeasures," IBM research division, 2005.

[40] W3Schools, "SOAP Tutorial," 2013. [Online]. Available:

http://www.w3schools.com/soap/default.asp. [Accessed 30 April 2013].

[41] W3C, "SOAP Security Extensions: Digital Signature," W3C, 2013. [Online].

Available: http://www.w3.org/TR/SOAP-dsig/. [Accessed 28 April 2013].

[42] W3C, "XML Signature Syntax and Processing (Second Edition)," W3C, 2013.

[Online]. Available: http://www.w3.org/TR/xmldsig-core/. [Accessed 29 April

2013].

[43] T. Berners-Lee, R. Fielding and L. Masinter, "Uniform Resource Identifiers

(URI): Generic Syntax," August 1998. [Online]. Available:

http://www.ietf.org/rfc/rfc2396.txt. [Accessed 24 April 2013].

[44] S. Gajek, M. Jensen, L. Liao and J. Schwenk, "Analysis of Signature

Wrapping Attacks and Countermeasures," [Online]. Available:

54

http://datenschutz.web-schell.de/tl_files/web-datenschutz-schell/Website-

Dateien/PDF/wrapping-attacks_and_countermeasures.pdf. [Accessed 28 April

2013].

[45] W3C, "XML Path Language (XPath)," W3C, [Online]. Available:

http://www.w3.org/TR/xpath/. [Accessed 30 April 2013].

[46] Microsoft, "XmlDsigXPathTransform Class

(System.Security.Cryptography.Xml)," Microsoft, 2013. [Online]. Available:

http://msdn.microsoft.com/en-

us/library/system.security.cryptography.xml.xmldsigxpathtransform(v=vs.85).

aspx. [Accessed 30 June 2013].

[47] M. Jensen, J. Schwenk, N. Gruschka and L. Lo Iacono, "On Technical

Security Issues in Cloud Computing," in 2009 IEEE International Conference

on Cloud Computing, 2009.

[48] IBM, "WebSphere Application Server Version 6.1," 2013. [Online].

Available:

http://pic.dhe.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topic=%2Fcom.ibm.

websphere.base.doc%2Finfo%2Faes%2Fae%2Fcwbs_wssmessage.html.

[Accessed 6 May 2013].

[49] B. Peng, B. Cui and X. Li, "Implementation Issues of a Cloud Computing

Platform," Bulletin of the IEEE Computer Society Technical Committee on

Data Engineering, pp. 59-67, 2009.

55

APPENDICES

Appendix A: Code Used to Sign SOAP Message by Means of ID

Referencig Method

Appendix B: Code Used to Sing SOAP Message by Means of Xpath

Appendix C: Code Used to Sign the SOAP Message by Means of

SESoap Message

Appendix D: Snap shot of the codes used to analyze time

In the snap shots below of the analyzing the time, an XML file with 150 kb size is

used as an input of the two codes. The name of the input file is CreditCardinfo.xml.

The result shows that the time consumed for signing by Code1 is 3.0004

milliseconds. Figure D.1 shows how the code1 is working.

Figure D.1. Code1

The result of Code1 is as the Figure D.2. The File is consisting of A. Xpath

expression, B. Digest value and C. Signature value.

Figure D.2. Result of Code1

In code 2, three functions which are finding element, Hash function and encryption

function are operating separately. First one is Xpath function which is shown in

Figure D.3. The time consumed for this function is 8.003 milliseconds.

Figure D.3. XPath function of Code2

The Xpath expression in the code is equal to the section A of the Figure D.2. The

result of Xpath function is as shown in Figure D.4.

Figure D.4 Result of Xpath Function

Figure D.5 is shown the code used for hash function. The time consumed for this

function is 0 milliseconds.

Figure D.5 Hash Function of Code2

The result of the hash function is equal to section B of the Figure D.2 which is shown

in Figure D.6.

Figure D.6. Reslut of Hash Function

And the last one is Encryption function. The time consumed for this function is

3.0004 milliseconds. The code of this function can be seen in Figure D.7.

Figure D.7 Encryption Function of the Code2

Figure D.8 contains the result of encryption function. This result is as the same as

section C of Figure D.2.

Figure D.8 Result of Encryption Function

The comparison of the results produced by Code1 and Code2 shows that the outputs

of code1 and code2 are identical.

