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ABSTRACT 

 

 
In this thesis, we dealt with Autonomous and non Autonomous systems of ordinary 

differential equations and the stability properties of their solutions were discussed 

with some basic results. We also discussed and analyzed methods of investigating the 

stability of nonlinear systems and classified equilibrium points (critical points) of 

linear systems with respect to their stability. Liapounov's direct method for stability 

of Autonomous and non Autonomous Equations was analyzed in detail. Some 

important Ecological applications such as Lotka-Volterra Competition Model and 

Predator-Prey Model modeled by differential Equations were discussed in details 

with relevant examples. 

 

 

 

 

Keywords : Autonomous and Non Autonomous differential equations, Stability, 

Predator-prey Model, Equilibrium points, Liapounov's Direct Method. 
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ÖZ 

Bu tezde, otonom ve otonom olmayan adi diferansiyel denklem sistemleri ve bu 

sistemlerin çözümlerinin stabilite özellikleri tartışılmıştır. Ayrıca, doğrusal olmayan 

sistemlerin stabilitesi üzerine bazı metodlar çalışılmış ve analiz edilmiş ve doğrusal 

sistemlerin stabilite özelliklerine göre denge noktaları sınıflandırılmıstır. Otonom ve 

otonom olmayan denklemlerin stabilitesi için Lyapounov Direkt metodu detaylı bir 

şekilde analiz edilmiştir. Son olarak, diferansiyel denklemlerce modellenmiş olan  

Lotka-Volterra Yarışma modeli ve Predator Prey modeli gibi bazı önemli ekolojik 

uygulamalar ayrıntılı bir şekilde incelenmiştir.  

 

 

Anahtar Kelimeler : Otonom ve otonom olmayan diferansiyel denklemler, Stabilite, 

Predator-Prey Model, Denge Noktaları, Liapounov Direkt Metod 
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Chapter 1 

INTRODUCTION 

There is a striking difference between Autonomous and non Autonomous differential 

equations. Autonomous equations are systems of ordinary differential equations that 

do not depend explicitly on the independent variable. Physically, an autonomous 

system is one in which the parameters of the system do not depend on time. 

Autonomous systems and dynamical systems are closely related, any system of 

autonomous equation can be transformed into a dynamical system and by applying  

some assumptions, we can transform a dynamical system into an autonomous one. 

Non autonomous equations depend on the independent variables and the parameters 

of the systems are time dependent. However, we do not know of a coherent and 

general theory yet. We can rely on several independent and stability theory. But we 

cannot combine these facts into a unified approach. Accordingly, perturbations and 

other subjects can be treated in a case by case analysis which will leave many 

questions open. The situation worsens if we look into asymptotic properties, because 

we cannot apply transform theory directly. The available results are usually restricted 

to problems that are "very close" to an equation with known behavior. (An 

autonomous one In particular). Any attempt to overcome these shortcomings must 

face the challenges that can be demonstrated by simple examples refuting many 

natural conjectures. Such examples concerning the asymptotic behavior and the 

stability theory are treated in detail. Stability theory deals with the stability of 
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differential equations and their solutions and also the trajectories of dynamical 

systems under tiny disturbances of original conditions. The heat equation is an 

example of a stable partial differential equation because little alterations of the 

original data lead to near same differences in the temperature at a future time. 

In general, a system is stable if infinitesimal alterations in the theory bring about near-

same changes at the end. The metric used in measuring the perturbations must be 

specified if we are to claim that a system is stable. 

Example 1.1 

The equation           is an autonomous equation because the independent 

variable, (call it  ) does not appear explicitly in the equation.  

A system of ordinary differential equation is said to be autonomous if it does not 

depend on time (it doesn't depend on the independent variable) i.e.         In 

contrast, non autonomous is when the system of ordinary differential equation 

depends on time (it depends on the independent variable) i.e.           

Let us consider two-dimensional systems of the form: 

          ̇                                                          

where        and        are unknown scalar functions, and   and   together 

with their first partial derivatives are continuous in some domain Γ of the   -plane. 

Such systems are called autonomous because   and   do not depend on  . If   

       then     is of the form  ̇       (             )  and the hypothesis 

guarantees existence and uniqueness of solution. 

http://en.wikipedia.org/wiki/Heat_equation
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Below are some reasons for discussing systems of the form (1) 

(i) A more complete theory exists than for higher-dimensional systems, and 

(ii) The geometry of the plane and that of plane curves is available to throw more light 

on the discussion. 

Furthermore, in many cases the analysis of the important second-order autonomous 

equation 

 ̈       ̇                a scalar function, 

can be extended considerably by transforming it into the system 

 ̇              ̇           

which is the form      

We start by giving some simple properties of solution of      and introducing some 

terminologies. 

Theorem 1.1  If                      , is a solution of      then for any 

real constant   the functions 

                                 

are also solutions of    . 

Proof 1.1 By the chain rule for differentiation it follows that; 

 ̇   ̇       ̇   ̇       Since  ̇   (         )  ̇   (         )  replacing 

  by     gives  
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 ̇   (             )            

 ̇   (             )            

which implies that    and    are solutions. They are clearly defined on         

    . 

Remark The above property in most cases does not hold for non autonomous 

systems; for a example, a solution of  

 ̇     ̇     is                     , and  ̇                     

   unless    . 

As   varies, a solution               of     parametrically describes a curve 

lying in Γ. This curve is called a trajectory of      

Theorem 1.2  At most one trajectory passes through any point 

Proof 1.2 Let                     and                    be distinct 

trajectories having a common point  

        (             )  (             ) 

Then      , since otherwise, the uniqueness of solutions would be contradicted. By 

the just concluded theorem, 

                                  

are solutions, and (           )          implies that      and      must agree 

respectively with       and       by uniqueness. This implies that   and    coincide. 
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Note with care the difference between solutions and trajectories of     : A trajectory 

is a curve in Γ that is parametrically represented by more than one solution. Thus  

          and                   represent distinct solutions, but they 

represent the same curve parametrically. 

For example, as   varies between   and    the functions 

             ,                    ,             , 

represent an infinite number of distinct solutions of the system   ̇     ̇    . They 

represent the same trajectory, the circle           . 

Suppose there exists a solution                            of      where 

   and    are constants. Obviously no trajectory can pass through the point        , 

because uniqueness would be violated. Furthermore, we have 

 ̇                     ̇              

Since      and      are solutions. Conversely, if there exists a point         in Γ for 

which                    , then certainly the functions              

         , are a solution of (1). 

Definition 1.1 Any point         in Γ at which   and   both vanish is called critical 

point  of      Any other point in   is called        . 

Other names for critical points are singular points, equilibrium state and points of 

equilibrium, and they may be thought of as points where the motion described by     

is in a state of rest. 
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Consider the field of vectors        (             ) with       in Γ. Then (1) 

describes the motion of a particle       whose velocity   ̇  ̇  is given by        at 

every point in Γ. Trajectories are fixed paths along which the particle moves 

independent of its starting point, and critical points are points of equilibrium. 

Definition 1.2 : A critical point         of     is said to be an isolated critical point if 

a neighborhood of         containing no other critical points exists. 

We now introduce the notion of stability of an equilibrium point or equivalently, 

stability of the solution                                  of      

(Take note that critical point and equilibrium point mean the same thing and will be 

used interchangeably). 

Definition 1.3 Let         be an isolated critical point of      Then         is said to 

be stable if given any       , ∃       such that 

(i) all trajectories of     in the δ-neighborhood of         for some       are 

defined for       , and  

(ii) if a trajectory satisfies (i) it remains in the ε-neighborhood of         for     . 

If in addition every trajectory                 satisfying (i) and (ii) also 

satisfies 

(iii)                 and                 , 

then         is said to be asymptotically stable. Finally, an isolated critical point is 

said to be unstable if it is not stable.  
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The definition of stability states roughly that         is stable if once a trajectory 

enters a small disc containing         it remains within a slightly larger disc for all 

future time. The above definition is sometimes called stability to the right; a similar 

definition can be given for stability to the left when   approaches    

Example 1.2 : The point       is the only critical point of the systems 

      ̇   ,          ̇    ,          ̇   , 

      ̇    ,            ̇    ,           ̇   . 

In     the trajectories are a family of circles                    given by 

the solutions  

                                       

Then (i) and (ii) are satisfied with        but (iii) is not; therefore       is stable. 

In     and     the trajectories are a family of straight lines      
  

  ⁄    as well as 

the lines           given by the solutions 

         
       ,                 

       , 

not the both of    and    equal to zero. Here the negative sign is used for    , the 

positive sign for    . For     we have (i), (ii), and (iii) satisfied; hence       is 

asymptotically stable. For     either      or      or both become infinite as 

  approaches infinity; hence       is unstable. 
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Chapter 2 

AUTONOMOUS SYSTEMS 

2.1 Solutions of Autonomous Systems 

Consider the two simultaneous differential equations of the form:  

  
  ⁄               

  
  

⁄                                                      

Let us assume that   and   are continuous and have continuous partial derivatives in 

some domain D in the    plane and if (      ) is a point in this domain, then there 

exists a unique solution               of the system     that satisfies the initial 

conditions: 

                                                                                

The solution is defined in some interval         that contains the point   .  

Notice that the independent variable   is not explicitly visible in equation      This 

type of system is known as an autonomous system. Autonomous systems occur 

frequently in practice; for example the motion of an un damped pendulum of length   

is governed by the differential equation  

   
   

⁄  
 

 ⁄                                                                  
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Letting                 ⁄  , we can rewrite equation     as a nonlinear non 

autonomous system of two equations 

  
  ⁄       

  
  

⁄     (
 

 ⁄ )                                                

In order to understand this better, we will consider the ecological problem of two 

competing species. 

2.2 Two Competing Species 

Suppose there are two similar species competing for a limited food supply, it is 

known as a competitive interaction, for example, two species of fish in a pond that do 

not prey on each other but compete for the available food. Let the populations of the 

two species at time   be          In the absence of species  , the growth of species   

is given by the equation below:  

  
  ⁄                                                                                  

 and in the absence of species  , the growth of species   is given by an equation of the 

form: 

  
  

⁄                                                                           , 

However, when both species are present, each will have an effect on the available 

food supply for the other. This means that they reduce the growth rate and saturation 

populations of each other. The easiest expression for decreasing the growth rate of 

species   as a result of the presence of species   is to replace the growth rate factor 

        of equation     by              , where    is a measure of the degree to 
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which species   interferes with species  . Similarly, in equation      we replace 

       by             Thus, we have ; the systems of equations : 

  
  ⁄                                                                               

  
  

⁄                                                                               

The actual values of the positive constants                     depend on the 

physical problem under consideration.  

To determine the constants of  equations      and      we set the right hand sides 

equal to zero. 

                                                                                  

                                                                                 

The solutions corresponding to either      or      are ;  

                 
  

  ⁄        
  

  ⁄ . 

Also, there is a constant solution corresponding to the intersection of the lines 

                 and              if these lines intersect. There are no 

other constant solutions of equation      Geometrically, we can represent these 

solutions as points in the    plane ; they are called critical points or equilibrium 

points. Moreover, in the same    plane, it is very helpful to visualize a solution of the 

system     as a point       moving as a function of time. At time     the initial 

populations of the two species provide an initial point         in the plane ; then we 

follow the motion of the point       representing the populations of the two species at 
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time   as it traces a curve in the plane. We can obtain considerable information about 

the behavior of solutions of equations      and      without actually solving the 

problem. 

First from equation       we observe that   increases if                , and it 

decreases if                . Similarly, from equation          increases if 

             and decreases if             . This situation is depicted 

geometrically in the figure below: 

 

 

 

 

 

Figure 2.1 : Diagram illustrating two competing species 

The critical points are indicated by the darkened dots. In order to see what is 

happening to the populations simultaneously, we must superimpose the above 

diagram to have a better understanding. 
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Figure 2.2 : Two Competing Species 

For convenience, we will assume that the initial populations    and    are each non 

zero. 

There are four possibilities as shown in Figure    . The critical points are indicated by 

the darkened dots. We will examine only case     and     in details. Cases     and 

    are similar. 
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Consider case    . If the initial populations are in the region I, then both   and   will 

increase; if the point moves into region II, then species   will continue to increase, but 

species   will start to decrease. Also, if the initial point is in region III, then both   

and   will decrease; if the points moves into region II then   will continue to decrease 

while   now starts to increase. This suggests, for populations initially reasonably 

close to    
  

  ⁄   that the point       representing the populations at time    

approaches the critical point    
  

  ⁄   as    . This is shown in Figure      for 

several different initial states. This situation corresponds to the extinction of 

population x with population y reaching an equilibrium state of size 
  

  ⁄ . 

One might ask if the point (  
  

  
⁄ )   is also a possible limiting state, since 

populations that start close to this point may seem it, as    . The answer is no. In 

region I the point       moves away from the   axis while moving upward and in 

region II, while moving towards the   axis the point       still moves upwards. 

Moreover, note that  (  
  

  
⁄ ) is not a critical point ; that is       

  
  

⁄   is not 

a solution of equation      The other critical points in figure      are       and 

 
  

  
⁄    . However, an inspection of figure     shows that shows that a solution 

      starting from nonzero values         cannot approach either of these points as 

   . 

Consider case    . An examination of figure      suggests that the population point 

      will move towards the intersection of the two straight dividing lines as    

increases. These is shown schematically in figure      for several different initial 
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states. In this case, both species can coexist with equilibrium populations given by the 

coordinates of the critical point    

 

 

 

 

 

 

Figure 2.3 : Two Competing Species 

Problem: 

Determine the critical points of the system below; 

  
  ⁄           

  
  

⁄  
 

 
  

 

 
   

 

 
    

Solution : 

We factorize the right hand side and set it to equal zero. 

            

 (
 

 
 

 

 
  

 

 
 )     

The solution corresponding to     and     are; 
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2.3 Linear Systems Constant Coefficient 

In this section we will consider the linear system 

 ̇         ̇                                                               

where       and   are real constants. Therefore we may let Γ be the entire   -plane, 

and so all solutions are uniquely defined on       . Hence we can discuss the 

behavior of trajectories in the phase plane of      

Why discuss systems of the form     ? First of all, a complete description of the 

phase plane can be given, since solutions of     can be determined explicitly. 

Secondly, many systems can be expressed in the form  

 ̇                 

 ̇                 

If    and    are sufficiently small in the neighborhood of a critical point, we would 

hope that the behavior of trajectories is local like that of      Thus we need to know 

about the linear systems. 

The point               is a critical point of    , and we will assume there are no 

other critical points. This is equivalent to assuming that        . 

The characteristic polynomial associated with     is  

             (
    

    
) 
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whose roots are given by  

      
 

 
*      √          +  

Since we are only interested in the behavior of trajectories, we will only need to know 

the nature of the roots   . 

To simplify the description of the behavior of trajectories near the critical point      , 

it will often be useful to perform a linear transformation of the form  

                         

The point             is mapped into            , and conversely. Furthermore, 

such a transformation will only result in a rotation and a magnification or shrinking of 

trajectories, but will not distort their essential behavior near      . 

Case I :       are real, distinct, and neither is zero: 

              

The transformation 

                                 

transforms (2) into the system  

 ̇       ̇      

For instance, since             and          , we have  ̇    ̇  

       ̇                        

                                      , 
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and similarly for η. 

Therefore, to simplify the discussion we may as well consider the system 

 ̇       ̇                                                                                  

where   and    are real. The solutions are of the form  

        
               

    

where   and    are arbitrary real constants. 

          have the same sign :         ; 

(i) both roots are negative :      . 

If          then, as   approaches infinity,       approaches        and 
 

 ⁄   the 

slope of the trajectories near the origin, becomes infinite. If      we have the 

rectilinear trajectory 

           
     

and similarly, if     . 

In this case, we say       is a             and the phase plane of     looks like the 

following diagram, in which the arrows denote the direction of increasing time. The 

diagram will be rotated ninety degrees if        .  

For the corresponding phase plane of    , the only essential changes in the diagram 

could consist a rotation, and possibly the rectilinear trajectories will no longer be 

perpendicular. Evidently       is                      . 

(ii) Both roots are positive :      . 



18 
 

 

 

 

 

 

 

Figure 2.4 : Phase Plane of an Asymptotically Stable Critical Point 

Then, if          , the diagram is the same with the arrows reversed. In this case 

      is an              . 

(b)       have different sign :        . 

If        , then the rectilinear trajectories are 

           
     

which approaches (0, 0) as   approaches  , and  

       
         

which becomes infinite. If            then       approaches       as 

  approaches   or       approaches        as   approaches   . A similar analysis 

can be made for the other possible values of    and   . 
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In this case, we say that       is a saddle point and it is obviously unstable. The phase 

plane of the system     will resemble that below except for the possibility of a 

rotation and change of direction of the trajectories. 

 

 

 

 

 

 

 

Figure 2.5 : Phase Plane of a Saddle Point 

Example 2.3.1 

Investigate the type and stability of the systems 

     ̇      . 

        ̇       ,  

      ̇      , 

         ̇       , 

      ̇       , 

        ̇     , 
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Solution 2.3.1 

             in all cases. The equilibrium point       is a stable node for    , 

since          and        ; for    , it is an unstable node, since       

   and       . In    , we have        , so       is a saddle point. 

Case II :        are complex conjugate: 

              

We may therefore assume that         and        , 

where     are real numbers. The transformation 

                  

transforms     into the system 

 ̇         ̇         

 

Therefore we will consider the system 

 ̇         ̇         

where   and   are real.  

           are imaginary:      . 

Then                  and     becomes  

 ̇          ̇      

whose solutions are  
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and the trajectories are a family of circles 

          
   

In this case       is called a center and is stable but not asymptotically stable. The 

corresponding trajectories for the system     will be a family of ellipses. Note in     

that if     , then  ̇      which indicates that the direction of increasing time is 

clockwise if     and counterclockwise if    . 

 

Figure 2.6 : Phase Plane of a Stable Center 

          are complex :      . 

Then solutions of (4) are  

        
                    

             

and the trajectories are a family of spirals 
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The critical point       is called a              or       and is asymptotically stable 

if         , and unstable if     . As before, the direction of increasing time 

is determined by the sign of  . 

Trajectories have no limiting direction, since                has no limit as   

becomes infinite. 

Examples 2.3.2 

For the systems 

      ̇       , 

         ̇       , 

      ̇      , 

         ̇       , 

      ̇       , 

         ̇       , 

we have             . The critical point       is a center        , a 

stable spiral point        , and an unstable spiral point        , 

respectively. For     and     the direction of increasing time is clockwise      , 

whereas for     it is counterclockwise      . 

Case III : 
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This is the case of a double root        , where   
     

 ⁄    since 

       . 

    A special subcase arises when       in      which then becomes the system 

 ̇      ̇      whose solutions are of the form  

                         

The trajectories are then a family of straight lines          ⁄    as well as the lines 

    and    . 

Then       is called a             and is asymptotically stable if      , 

whereas it is unstable if      . 

     In the general case, we may assume that    . Then the transformation 

  
     

  
      

 

 
   

transforms (2) into the system 

 ̇  
   

 
         ̇  

   

 
   

(If          then     is essentially in this form.) Therefore we may as well 

consider the system 

 ̇           ̇           
    

If     , the rectilinear trajectory is the  -axis. Otherwise all trajectories are 

asymptotic to the  -axis since     becomes infinite as   approaches infinity. 
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In this case the equilibrium point (0,0) is called a node or an improper node; it is 

asymptotically stable if      . 

Examples 2.3.3 

The systems  

       ̇                        ̇      , 

         ̇                         ̇         

represent a stable proper node and an unstable node (improper node), respectively. 

Remark  Given the system 

 ̇         ̇                    

where       and   are real, then       is an isolated equilibrium point and it is said 

to be 

(i) stable if the roots of the characteristic polynomial are purely imaginary, 

(ii) asymptotically stable if the roots are negative and real, or 

(iii) unstable if the roots positive and real. 

2.4 Nonlinear Systems 

We will now apply the previous analysis given for linear systems to systems of the 

form 

 ̇                        

 ̇                        
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where we assume that  

(i)    , and their first partial derivatives are continuous in some neighborhood of 

     , 

(ii)        , and  

(iii)       
       

 
        , where   √     . 

This implies that       is a critical point of      and    , and given the systems      

and      satisfying (i),(ii), and (iii)  we will say that       is a simple critical point of 

     and     . 

Definition 2.4.1 Suppose that                  is a trajectory of      and     ; 

then we may represent it as 

                                 

where 

                                   

Assume there is a neighborhood   of the simple critical point       of        in 

which  

(i) all trajectories are defined on        or         for some    ; 

(ii)              or              . 

Then       is said to be  

    a spiral point if        |    |    or        |    |    for all trajectories in 

 , 
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    a node if               a constant, for all trajectories in  , or 

     a proper node if it is a node, and for every constant   there is a trajectory 

satisfying             . 

Definition 2.4.2 The simple equilibrium point (0,0) of          is called 

    a center if there exists a neighborhood of       containing countably many closed 

trajectories, each containing       and whose diameters tend to zero, 

    a saddle point if there are two trajectories approaching       along opposite 

directions, and all other trajectories close to either of them and to       tend away 

from them as   becomes infinite. 

Example 2.4.1 

    The motion of a simple pendulum is governed by the equation 

 ̈     ̇                      

and by the substitution      ̇     this becomes the system 

 ̇         ̇              

which can be written as 

 ̇     ̇                     

It's critical points are                   , and the term  

                 satisfies the required assumptions near      so       is a 

simple critical point. 
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We therefore consider the system 

 ̇           ̇           

which has an isolated singularity at      . If for example, we assume that     , 

then       is a stable spiral point of the linear system, and hence it is a stable spiral 

point of the given system. 

If we make the change of variable      , we arrive at the equation 

 ̈     ̇                     

and a similar analysis shows that       is a saddle point of the corresponding system. 

Therefore       is a saddle point of the original system, and the phase plane of the 

pendulum equation might look like the diagram below. 

 

 

 

 

 

 

Figure 2.7 : Phase Plane of a Pendulum Equation 

    The system 

 ̇             ̇         
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has critical points at       and      . The first is a simple critical point         

    and is a saddle point. By making a change of variable      , we obtain the 

system 

 ̇          ̇          

For the corresponding linear system, The point       is a center, a trajectory 

  passing through the positive x-axis near       must intersect the negative   axis. 

But the last system is unchanged if we replace   by    and   by   , which implies 

that   is closed. Therefore       is a center, so       is a center for the original 

system. 

 

 

 

 

Figure 2.8 : Phase Plane containing critical points, nonintersecting trajectories and 

cycles. 

Note that the phase plane of the last system contains all three ingredients: critical 

points, nonintersecting trajectories, and cycles. 
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Chapter 3 

3 STABILITY OF NON AUTONOMOUS EQUATIONS 

3.1 Stability Theory  

The theory of stability is concerned with the stability of solutions of differential 

equations and trajectories of dynamical systems subjected to infinitesimal 

disturbances of the original state. The thermal equation is an example of a stable 

partial differential equation, as slight alterations from the original data, causes small 

changes in the temperature at a later time. In general, a solution is stable when small 

changes in the hypothesis result in corresponding changes in the conclusion. Most of 

the features however of the qualitative hypothesis of dynamical systems and 

differential equations are based on the asymptotic properties of solutions, what will 

happen to the system after a very long time has elapsed. The easiest type of the 

characteristics is shown by periodic orbits and critical points. Should a said orbit be 

well comprehended, one is free to ask if a slight variation in the original state will 

bring about the same characteristic. The  theory of stability takes care of these 

questions: will a "close by" orbit remain indefinitely close to a known orbit? Or will it 

converge to the known orbit? If it will remain in position, then it is stable, but in the 

second case, it is asymptotically stable, or attracting. 

Stability implies that the solutions and trajectories change only very little as a result of 

small perturbations. caused by disturbances. In general, perturbations of the original 

form in certain paths where orbits are in the same direction, cause the trajectory to 
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attract (asymptotically approach) one another and in different directions, they tend to 

repulse each other. Trajectories can also be moving in directions that they neither 

converge or repulse each other. In this case, the theory of stability does not proffer 

enough knowledge concerning the dynamics. 

 

 

 

 

 

 

Figure 3.1 : Stability Diagram 

 

3.2 Stability of Solutions 

Consider the general 1
st
 order differential equation: 

                                                                        

Where                       is an unknown n dimensional vector function 

and we assume that 

                         , is defined and continuous in 

  {     |        ‖ ‖      

Recall that if              then by the norm of ‖ ‖, we mean 
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‖ ‖  ∑| | 

 

   

 

A solution of     satisfying          will be denoted by                .  

Definition 3.2.1 

Let                 be a solution of (1) satisfying : 

(I)      is defined on         and 

(II) the point        belongs to Γ for      

Then      is said to be stable if : 

 (a) ∃     s.t every solution            satisfies (I) and (II) whenever ‖    ‖  

   and  

(b) given     ∃           ‖    ‖    implies  

‖                     ‖            

A solution that is not stable is said to be unstable. 

Definition 3.2.2 

The solution                 of (1) is asymptotically stable if in addition to it 

being stable, ∃                ‖     ‖    implies that 

   
   

‖                     ‖    

Examples 3.2.1 

(a) All solutions of the equation     are stable, since 
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 ‖                     ‖  ‖     ‖              , but no solution is 

asymptotically stable. 

(b) Every solution of the equation       is asymptotically stable, since; 

‖                     ‖  ‖     ‖   
 

 
   

              

(c) The solution     of the equation      is unstable, since for   ,      the 

solution  (       )     
           fails to exist at     

     . 

3.3 Stability for linear systems 
 

 ̇                                                                                

Consider the logistic equation     ⁄                       We have seen 

that the constant solutions (critical points)     and    
 ⁄  play a crucial part in 

analyzing this differential equation. In this problem, we will discuss an analytical 

method, rather than the geometric arguments of the text, for analyzing the stability of 

these solutions.  

Let    be any constant solution (critical point) of the logistic equation. Suppose that 

this equation is very slightly perturbed, what happens? We write               

where      is very small and ask what happens to   as    . 

(a) Derive the differential equation satisfied by     . 

(b) If      is very small, then at least initially,     . This is known as 

linearization. 
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(c) If        as     the constant solution is said to be linearly unstable; On the 

other hand, if        as     the constant solution is said to be linearly stable. 

(actually asymptotically stable). Show that the constant solution      is linearly 

unstable and that the constant solution     
 ⁄  is linearly stable. Note that the 

stability characteristics may be modified by the inclusion of the nonlinear term 

involving    which has been neglected. That is why the stability is referred to as 

linear stability or linear instability. 

Theorem 3.3.1 

All solutions of     are stable if and only if they are bounded. 

Proof 3.3.1  If all solutions of      are bounded, then ∃ a constant   s.t  ‖    ‖     

 Given any      , then ‖     ‖   
 ⁄  implies that: 

‖                     ‖  ‖           ‖   ‖     ‖     

and hence all solutions are stable 

Conversely;  

If all solutions are stable, the solution              is stable ;   given       

∃            ‖  ‖      implies ‖               ‖   ‖      ‖     . 

In particular, we can let    be the vector with   ⁄  in the     place and zero elsewhere. 

Then ;  

‖      ‖   ‖     ‖ 
 

 ⁄       where       is the     column of       and hence 

‖    ‖      
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Therefore, for any solution we have;  

‖           ‖    ‖      ‖      ‖  ‖  and hence all solutions are bounded.  

Definition 3.3.1 

The solution                 is said to be uniformly stable if, given     ∃     

s.t any solution       satisfying ‖            ‖    for some       exists and 

satisfies ‖          ‖    for       Note the distinction between stability and 

uniform stability. In the former, a solution remains in ε-neighborhood of            if 

it is close to the point    at time   ; other solutions may enter and leave the ε-

neighborhood at later times. In the case of uniform stability, once a solution enters the 

ε neighborhood of            it remains there. In the determination of stability, the 

number δ no longer depends on     

Example 3.3.1 Consider the equation               continuous on        

Then;                  *∫       
 

  
+ The solution        is uniformly stable if 

and only if the quantity |  |    *∫       
 

  
+  can be made uniformly small for 

sufficiently small value of | |. Therefore,        is uniformly stable if and only if 

   *∫       
 

  
+ is bounded above for       . 

3.4 Stability for Almost Linear Systems. 

We have referred to the notions of instability, stability and asymptotic stability of a 

solution of the autonomous system 

  
  ⁄         

  
  

⁄                                                                 
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We will now give mathematical meaning to these concepts and explore it's 

consequences by considering an illustrative example. 

A critical point              of the autonomous equation     is stable if, given 

any    , ∃ a δ such that every solution               of    , where     

satisfies 

{[       ]
  [       ]

    ⁄                                                          

exists and satisfies 

{[       ]
  [       ]

    ⁄                                                          

for    . This is systematically depicted in figure       and      . 

A critical point         is asymptotically stable if in addition to being stable, there 

exists a   ,          s.t if a solution               satisfies 

{[       ]
  [       ]

    ⁄                                                           

Then 

   
   

                
   

                                                                           

Trajectories that start "extremely near" to         must not just stay "near" but will at 

the end approach         as   goes to infinity. This is what happens in the trajectory 

in fig 9.21a, though not for that in fig 9.21b. Also notable is the fact that stability is a 

lesser requirement compared to asymptotic stability because a critical point needs to 

be stable for us to then decide whether it is asymptotically stable or not. However, the 

limit condition    , known to be a crucial characteristic of asymptotic stability, 

doesn't on it's own mean ordinary stability. Of course, illustrations can be made, 
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showing that all the trajectories approach         as    , but for which         is 

not a stable equilibrium point. The only requirement is a group of trajectories with 

individual trajectories that begin arbitrarily close to         ,  then fall back to an 

arbitrarily far distance prior to approaching         as   goes to infinity. Critical 

points that are not stable are termed unstable.  

 

 

 

 

 

 

Figure 3.2 : (a) Asymptotic Stability. (b) Stability 

 

Given the linear system below 

  

  
             

  

  
                                                                       

with        , the type and stability of the equilibrium point       as a function 

of the roots         of the characteristic equation 

                                                                                     

are listed in the table below : 
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Table 3.1 : Type and Stability the critical point       as a function of the roots 

        of the characteristic equation 

Roots of the Characteristic 

Equation 

Types of Critical Point Stability 

        IN Unstable 

        IN AS 

        SP Unstable 

        Proper or IN Unstable 

        Proper or IN Unstable 

           SP  

     Unstable 

     AS 

             Center Stable 

IN = Improper node; PN = Proper node; SP = Saddle point; AS = Asymptotically 

stable 

The theorem below is a summary of the stability characteristic. 

Theorem 3.4.1  The equilibrium point (0,0) of the linear system (6) is said to be 

(i) asymptotically stable if the roots       of the characteristic equation (7) are real 

and negative or have negative real parts; 

(ii) stable, but not asymptotically stable, if          are pure imaginary;  

(iii) unstable if          are real and any of them is positive, or if they have positive 

real parts. 
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To give an accurate and thorough proof, it is of great importance to show how to 

compute δ for any given ϵ for equation (3) to be satisfied, and for asymptotic stability, 

to compute    for equation (5) to be satisfied. This kind of detailed analysis will not 

be taken. Observe that if an equilibrium point of the linear system (6) is 

asymptotically stable, not only will trajectories that begin near the equilibrium point 

move close to the equilibrium point, but all trajectories will approach to the 

equilibrium point because all solutions are linear combinations of       and      . In 

such a scenario, the equilibrium point is referred to as being globally asymptotically 

stable. This property of linear systems does not hold for nonlinear systems in general. 

Most times, a relevant, real problem in taking into consideration an asymptotically 

stable equilibrium point of a nonlinear system is to approximate the original state 

(initial conditions) that made the equilibrium state to be asymptotically stable. This 

set of initial conditions is known as the region of asymptotic stability for the 

equilibrium point. As an alternative, we may want to find out if the equilibrium point 

is asymptotically stable for an already stated set of initial conditions. 

Let us now relate the solution for the linear system (6) to the nonlinear system. 

  

  
                                                                                          

  

  
                                                                                        

Remember that this type of system is almost linear around the origin. While 

discussing, we will not include the phrase "near the origin", because it is obvious that 

we are referring to the neighborhood of the critical (equilibrium) point (0,0).  
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Let us assume that       is a critical point of systems      and    ) and that    

    . Let us also assume that    and    have continuous partial derivatives and are 

small near the origin in the sense that             and            , where 

           ⁄ . Recall that such a system is said to be almost linear in the 

neighborhood of  the origin. In our discussion, we will not mention the phrase "near 

the origin," since it is clear that we are referring to the neighborhood of the critical 

point      . 

As an example, the system  

  

  
                                                                                                

  

  
 

 

 
  

 

 
   

 

 
                                                                                  

satisfies the given conditions. Here                         
 

 
          

        and           

 
    

 
  .  To show that             as    , let 

               . Then 

       

 
 

                   

 
                    

            

as    . The argument that             as     is similar. 

The stability and type of the critical point of the almost linear systems (8a) and (8b) 

are related closely to the stability and type of the equilibrium point of the 

corresponding linear system (6). 
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Theorem 3.4.2 Let          be roots of the characteristic equation (7) of the linear 

system (6) corresponding to the almost linear system (8). Then the type and stability 

of the equilibrium point (0,0) of the almost linear system (8) and the linear system (6) 

are given in the table below. 

Table 3.2 : Type and Stability of the Critical point (0,0) of the almost linear System 

(8) and the Linear System (6) 

      Linear System Almost Linear System 

 Type                         Stability Type                       Stability 

        IN                            Unstable IN                           Unstable 

        IN                            AS IN                            AS 

        SP                          Unstable SP                          Unstable 

        PN or IN               Unstable PN, IN or SpP        Unstable 

        PN or IN                AS PN, IN or SpP        AS 

             

    SpP                       Unstable SpP                        Unstable 

    SpP                   AS  SpP                     AS 

             C                      Stable C or SpP              

Indeterminate 

IN = Improper node; PN = Proper node; SP = Saddle point; SpP = Spiral point; C = 

Center.  

At this stage, the proof to this theorem is extremely tough to provide, and we shall 

take the result of the theorem without proof. Importantly, the theorem states that for   

and   close to zero, the nonlinear terms         and         are insignificant and 

have no effect on the nature and stability of the critical point as is determined by the 

linear terms, save in two crucial cases:   and    pure imaginary, and   and    equal 
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and real. We should note that small variations in the coefficients of the linear system 

(6), and also in the roots    and    are capable of changing the stability and nature of 

the critical point in these two crucial scenarios alone. If   and    be pure imaginary, a 

little disturbance is capable of altering the stable center into an unstable spiral point or 

asymptotically stable or have it remain as a center. If    =  , small perturbations have 

no effect on the stability of the equilibrium point, but however may alter the node into 

a spiral point. It is sensible to anticipate that the little nonlinear terms in equation (8a) 

and (8b) could bring about same results at least in the two aforementioned scenarios. 

This is true, but the actual relevance of theorem 3.4.2 is that in every other case, the 

small nonlinear terms do not change the stability or type of the equilibrium point. 

Save for the two crucial scenarios, the type and stability of the equilibrium point of 

the nonlinear system (8a) and (8b) can be found from a review of an easier linear 

system (6). 

Though the critical point and linear system have the same type, the trajectories of the 

of the almost linear and the corresponding linear system may show remarkable 

discrepancies in form. Nevertheless, it can be explained that the gradients where 

trajectories "go into" or "go out of" the equilibrium point is accurately represented by 

the linear equations.  

We will show some illustrations of these ideas by considering the motion of a damped 

pendulum and problems in ecology.  
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3.5 Damped Pendulum 

Let us examine the motion of a damped pendulum whose the damping and it's speed 

are proportional to each other (see figure below). 

 

 

 

 

 

Figure 3.3 : An Oscillating Pendulum 

The governing equation is given by 

   
   

   
   

  

  
                                                                           

where the damping constant    . Putting     and         gives the system 

  

  
        

  

  
  

 

 
     

 

  
                                                                 

The point         is an equilibrium point of the system       As a result of the 

mechanism of damping, it is expected any small motion about     to decay in 

amplitude. Hence, the critical point       should be asymptotically stable. In order to 

prove this, system      should be rewritten as  
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             as    , this means that the system (13) is an almost linear 

system; therefore theorem 3.4.2 can be applied. The roots of the characteristic 

equation of the corresponding linear system  

  

  
        

  

  
  

 

 
     

 

  
                                                                        

are  

      
      √            

 
                                                              

1. If                the roots are real, unequal and negative. The equilibrium 

point       is asymptotically stable and an improper node of the linear system    ) 

and of the almost linear system       

2. If                the roots are equal, real and negative. The equilibrium 

point       is an asymptotically stable node of the linear system       It may either be 

an asymptotically stable spiral point or asymptotically stable node of the almost linear 

system       

3. If          
  

 
    the roots are complex with real and negative parts. The 

equilibrium point       is asymptotically stable and a spiral point of the almost linear 

system      and the linear system     . 

Apart from the equilibrium points (0,0), the almost linear system (12) has the 

equilibrium points                        corresponding to   

                        We once again expect (from figure 3.2) that the points 

that corresponds to              are asymptotically stable spiral points, and the 
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points corresponding to             are unstable saddle points. Consider the 

equilibrium point          To check the stability of the point, we let  

                                                                                         

Substituting for   and    in Equation       and using the fact that            

     , we get  

  

  
           

  

  
  

 

  
  

 

 
                                                                                           

Our area of interest is in analyzing the equilibrium point       of the 

system     . The second of Equation      can be rewritten as  

  

  
 

 

 
  

 

  
  

 

 
                                                                     

Obviously the system      is the same with the first of equation      and 

equation       the only exception is that      is replaced by    . This means that it is 

an almost linear system and the roots of the characteristic equation of the 

corresponding linear system are given by  

      
      √            

 
                                                           

One of    and     is positive and the other is negative. Therefore, the equilibrium point 

        is an unstable saddle point of both the almost linear system and the 

linear system as expected. 

3.6 Ecological Applications 

We will consider two problems in ecology: Competing species and Predator-Prey. 
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3.6.1 Lotka-Volterra Competition Model 

Previously, we showed that a model for the competition between two species with 

population densities   and   leads to the differential equations: 

  
  ⁄                                                                                           

  
  

⁄                                                                                           

where the parameters             are positive. As we saw then, we can analyze these 

equations by dividing the phase plane into regions according to the sign of      ⁄   

and  
  

  
⁄   and then drawing typical trajectories. 

Let us now obtain a more precise understanding of what happens by using the theory 

of almost linear systems 

We start by considering the following specific example: 

  
  ⁄                                                                                       

  
  

⁄   (
 

 
 

 

 
  

 

 
 )                                                                    

Let us take   and   as the population densities of two bacteria competing with each 

other for the same supply of food. We ask whether there are equilibrium states that 

might be reached, or whether a periodic growth and decay will be observed, and how 

such possibilities depend on the initial state of the two cultures. 
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The equilibrium points of the system (2) are the solutions of the nonlinear algebraic 

equations 

                                                                                     

 (
 

 
 

 

 
  

 

 
 )                                                                      

Clearly, one of the solutions is        a second solution is          and a 

third solution is          Finally, if          we obtain from equation     

the system 

       

        

which has the solution   
 

 
   

 

 
. These four points in the    plane are the only 

critical points of the system (2). We will consider each separately.  

         This corresponds to a state in which both bacteria die as a result of 

their competition. From equation    , the corresponding linear system is given as 

  
  ⁄    

  
  

⁄  
 

 
                                                          

and the roots of the characteristic equation are 1 and 
 

 
. Thus the origin is an unstable 

improper node (A fixed point for which the stability solution has positive Eigen 

values). 

The solution         of the interaction problem will not occur in reality. 
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       . Clearly, this corresponds to a state in which bacteria   survives the 

competition but bacteria   does not. To examine this critical point, let       and 

       Substituting for   and   in equation     and simplifying, we obtain 

  
  ⁄                                                                           

  
  ⁄   

 

 
  

 

 
   

 

 
                                                             

Systems           are almost linear systems. The corresponding linear system is 

  
  ⁄         

  ⁄    
 ⁄  and the roots of the characteristics equation are  

 

 
 

and   . The general solution is 

   
 

 
     ⁄              ⁄   

where A and B are arbitrary. Thus         is an improper node that is 

asymptotically stable. If the initial values of   and   are sufficiently close to     ,  

    the interaction will lead finally to that state. 

For this critical point, we will indicate how the trajectories of the linear system 

behave in the neighborhood of          It is clear that         as     

so that all of the trajectories enter the critical point       as    . For     we 

have              and       so one pair        and      of 

trajectories enters along the       . For A ≠0 we can compute the slope at any point 

on a trajectory by taking noting that 

  

  
 

  
  ⁄

      
  

⁄
 

 
 
      ⁄

 
      ⁄      

 
 
 
  

 
         ⁄
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Particularly, as we approach the critical point       along any trajectory with 

      we see that 
  

  
⁄   

 

 
. Thus all the trajectories except one pair enter the 

critical point along a line with slope  
 

 
 

       . The analysis is exactly similar to that for the critical point       

 . The critical point         is also an improper node that is asymptotically 

stable. In this case, bacteria   survives, but bacteria   does not. 

   
 ⁄     

 ⁄ . This critical point corresponds to a mixed equilibrium state or 

coexistence in the competition between the two bacteria cultures. To check the type of 

this equilibrium point, we let   
 

 
     

 

 
  . Substituting for   and    in 

equation     we obtain: 

  
  ⁄  

 

 
  

 

 
                                                                      

  
  ⁄   

 

 
  

 

 
  

 

 
   

 

 
                                                       

The system (6) is an almost linear system, and the roots of the characteristic equation 

of the corresponding linear system are     √      . Since these roots are of 

opposite sign and are real, the critical point   
 
  

 
  is an unstable saddle point. (Two 

distinct real Eigen values with opposite sign). One pair of trajectories enters the 

critical point; the other recedes from it. 
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It can be shown by considering the general solution of the corresponding linear 

system that the slope of the pair entering the trajectories as         
 
  

 
  is 

 √     
 

⁄      .  

An illustrative sketch of what the trajectories might look like in the neighborhood of 

each critical point is shown in figure 9.27a. We are only interested in   and   positive. 

Since trajectories cannot cross other trajectories and since the   and   axis are 

trajectories, it follows that a trajectory that starts in the first quadrant must stay in the 

first quadrant, and a trajectory that starts in other quadrant cannot enter the first 

quadrant. Also, we accept without proof two facts that follow from advanced theory: 

(i) The system (2) does not have any periodic solutions, that is, it does not have 

trajectories that are closed curves; and (ii) a trajectory that is not a closed curve must 

either enter a critical point or go off to infinity as t→∞. But consider what is 

happening for   and   large. The nonlinear terms          and   

 
         in the 

first and second of equations         , respectively, outweigh the linear terms. Since 

they are negative,     ⁄  and 
  

  
⁄  are negative for   and   large. Thus for large   

and  , the direction of motion on any trajectory is inward. The trajectories cannot 

escape to infinity. Eventually they must head toward one of the two stable nodes. In 

figure 9.27b, if the initial values of   and   are in region I, then    wins the 

competition; if the initial values are in region II, then   wins. "Peaceful coexistence" 

is not possible unless the initial point lies exactly on the dividing trajectory. Of 

particular interest would be the determination of the dividing trajectories that enter the 

saddle point ( 
 
  

 
) which separate regions I and II. 
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3.6.2 Lotka -Volterra Predator-Prey 

As a second example, let us consider the predator-prey problem. Here, we study an 

ecological situation involving two species, one of which preys on the other (does not 

compete with it for food but preys on it), while the other lives on a different source of 

food. An example is foxes and rabbits in a closed forest; the foxes prey on the rabbits, 

the rabbits live on vegetation in the forest. Other examples are bass in a lake as 

predators and sunfish as prey, and lady bugs as predators and aphids (insects that suck 

the juice of plants) as prey. Let      and      be the populations of prey and predator 

respectively, at time  . 

Let us build a simple model of interaction and make the following assumptions: 

1. The prey grows without bound in the absence of the predator. Thus      ⁄     

    for    . 

2. The predator dies out in the absence of the prey. Thus  
  

  
⁄           for 

   . 

3. The increase in the number of predators dependents wholly on the food supply (the 

prey) and the prey are consumed at a rate proportional to the number of encounters 

between predators and prey. For example, if the number of prey is doubled, the 

number of encounters is doubled. Encounters increase the number of predators and 

decrease the number of prey. A fixed proportion of prey is killed in each encounter, 

and the rate at which the population of the predator grows is enhanced by a factor 

proportional to the amount of prey consumed. 

As a consequence, we have the following equations 
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  ⁄                                                                                

  
  

⁄                                                                          

The constants        and   are positive;   and   are the growth rate of the prey and 

the death rate of the predator, respectively, and   and   are the measures of the effect 

of the interaction between the two species. Equations          are known as the 

Lokta-Volterra equations. They were developed in papers by Lokta in 1925 and 

Volterra in 1926. Although these equations are simple, they characterize a wide class 

of problems. 

What happens for given initial values of     and      ? Will the predators eat all 

of their prey and in turn die out, will the predators die out because of a too low level 

of prey and then the prey grow without bound ? Will an equilibrium state be reached, 

or will a cyclic fluctuation of prey and predator occur ?  

The equilibrium points of the equations (7a&b) are the solutions of 

                                                                                                    

                                                                                                 

These solutions are  

           and     
 ⁄     

 ⁄                                                                 

We will examine the predator-prey model (7a&b) in the neighborhood of each critical 

point. The stability of the critical points tells us how the two species interact. The 



52 
 

system is nonlinear, so we will linearize it to determine the stability of each 

equilibrium point.   

The Jacobian matrix is given by 

  [

   
  

⁄      ⁄

     ⁄
   

        ⁄

]   [
       
       

] 

where                 and                  

For        

  [
       
       

]
     

   *
         
        

+  

The linearized system is 

[
 
 ̇
̇
]  *

  
   

+ *
 
 + 

with characteristic equation                The eigenvalues are        

and          The critical point       is a unstable saddle point. This case is not 

important since the critical solution               corresponds to the extinction 

of both species.  

The important case here is the coexistence of the two species, this depends on the 

stability of the nonzero critical point          . So let us check the stability of the 

critical point          . We have 
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  [
       
       

]
         

  [
  

  

 
  

 
 

] 

Using the substitution  

    
 

 
   

    
 

 
   

we obtain a corresponding critical point       for            Hence the linearized 

system is  

[

 
 
 
 ̇

̇

]      [
  

  

 
  

 
 

] [

 
 
 
 

] 

The characteristic equation is        , i.e., the eigenvalues are         √  . 

Since the roots of the characteristic equation are pure imaginary, the critical point is a 

stable center of the linear system. The trajectories of the linear system are closed 

curves corresponding to the solutions that are periodic in time. They do not approach 

or recede from the critical point. The trajectories can be shown in the following way: 

Divide equation      by      we get 

  

  
 

        

       
  

By separating the variable we obtain 

∫
    

 
   ∫
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so we have 

                     

where   is the constant of integration. We cannot solve the equation explicitly for   in 

terms of   or for   in terms of  . The equation defines closed curve around the 

equilibrium point          . This means that the critical point is a stable center. 

Therefore the critical solution      
 

 
 and      

 

 
 shows that both populations (the 

predator and the prey) coexist in the same environment without extinction. 

One criticism of the Volterra-Lotka predator-prey model is that the prey will grow 

without bound in the absence of the predator. This can be corrected by allowing the 

natural inhibiting effect that an increasing population has on the growth rate of the 

population; for example, by modifying equation (7a) so that when    , it reduces to 

a logistic equation for  . The models of predator-prey and two competing species 

discussed here can be modified to allow for the effect of time delays; statistical and 

probabilistic effects can also be included. Finally, we mention that there are discrete 

analogs of each of the problems we have discussed corresponding to species that 

breed only at certain times. The mathematics of the discrete problems are often 

interesting and some of the results are unexpected. 

We conclude with a warning. Using only elementary phase theory for one and two 

nonlinear ordinary differential equations, we have been able to illustrate several of the 

fundamental principles of simple ecological systems. But one should avoid being 

misled, ecology is not this simple. 
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Example 3.6.1 Discuss the predator - prey system that is modeled by the equations 

below 

  

  
                                                                           

  

  
                                                                                       

Solution 3.6.1 By equating the right hand side of the equation to zero, 

                                                                                     

                                                                                         

we obtain fixed points             and      . We linearize the given system to obtain 

the Jacobian matrix 

  [

   
  

⁄      ⁄

     ⁄
   

        ⁄

]  [
        

    
] 

For      , the linearized system is  

[
 
 ̇
̇
]         *

 
 +  

that is, 

[
 
 ̇
̇
]  *

  
   

+ *
 
 +  

The characteristic equation is              , i.e.,        and        

   

Hence,     ) is an unstable saddle point. 
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For      , we use the following substitution  

        

      

to get a linearized system with the equilibrium point      , 

[
 ̇ 

 ̇ 
]        *

  

  
+  

so that 

[
 ̇ 

 ̇ 
]  *

  
   

+ *
  

  
+  

The characteristic equation is                The roots are         and 

        i.e.,       is an unstable saddle point. 

For        the suitable solution is  

        

        

Then       is the equilibrium point for      , and the corresponding system is 

[
 ̇ 
 ̇ 

]         *
  
  

+  

that is, 

[
 ̇ 
 ̇ 

]  *
    
  

+ *
  
  

+ 
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The characteristic equation is           with the complex roots       

 √  and        √   Since           the critical point       is a spiral point 

and it is asymptotically stable. 

We can successfully come to the conclusion that for any given pair of initial values 

       the two species coexist with the population densities approaching the constant 

values        and          

3.7 Liapounov's Direct Method for Non Autonomous Systems 

In this section, we discuss another approach known as                    

method or              . We refer to the method as direct method because no 

prior knowledge of the solution of the system of differential equations is required. 

Rather, conclusions about the stability or instability of a critical point are obtained by 

constructing a suitable auxiliary function. For example, an estimate of the extent of 

the region of asymptotic stability of a critical point. We showed how the stability of a 

critical point of an almost linear system can usually be determined from a study of the 

corresponding linear system. However, we cannot draw a conclusion when the 

equilibrium point is a center of the corresponding linear system. Examples of this 

situation are the predator-prey problem and the undamped pendulum discussed 

earlier. Also, it may be important to check the region of asymptotic stability for an 

asymptotically stable critical point; that is, the domain such that all solutions starting 

within that domain approach the critical point. In addition, Liapounov's direct method 

can also be used to study systems of equations that are not almost linear. 

Liapounov's direct method is basically a generalization of the physical principles that 

for a conservative system (i) If the potential energy is a local minimum, then the rest 
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position is stable otherwise it is unstable, and (ii) During any motion, the total energy 

is a constant. For the illustration of these concepts, we again consider the undamped 

pendulum (a conservative mechanical system), which is governed by the equation 

   

   
 

 

 
                                                                                              

The corresponding system of first order equations is  

  

  
   

  

  
  

 

 
                                                                        

where     and     
   ⁄  Omitting an arbitrary constant, the potential energy   is 

the work done in lifting the pendulum above its lower position, namely       

     . Hence 

                                                                                      

The critical points of the system (2) are                        

corresponding to           ⁄     Physically, we expect that the points 

                       corresponding to           for which the 

pendulum bob is vertical with the weight down will be stable; and that the points  

                  for which the pendulum bob is vertical with the weight 

up will be unstable. This agrees with the statement (i), for at the former points   is a 

minimum equal to zero, and at the latter points   is a maximum equal to     . 

Next we consider the total energy  , which is the sum of the potential energy   and 

the kinetic energy 
 

 
        ⁄     In terms of   and   
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On a trajectory corresponding to a solution               of Eqs. (2),   can be 

considered as a function of  . The derivative of  [         ] is called the rate of 

change of   following the trajectory. By the chain rule 

  [         ]

  
   [         ]

     

  
   [         ]

     

  
 

          
  

  
     

  

  
                                                                             

where it is understood that              . But       can be obtained in terms 

of   and   from Eqs. (2). Substituting in Eqs. (5) for       and      , we find that 

       . Hence   is a constant along any trajectory of the system (2), which 

agrees with earlier remark (ii) that the total energy is constant during any motion of a 

conservative system. 

It is necessary to note that at any point       the rate of change of   along the 

trajectory was computed without                  the system (2). It is this fact 

precisely that allows us to use Liapounov's direct method for systems whose solutions 

we do not know, and hence makes it such an important technique. 

At the stable critical points,                       the energy   is zero. If 

the initial state, say        , of the pendulum is sufficiently near a stable critical 

point, then the energy          is small, and the motion (trajectory) associated with 

this energy stays sufficiently close to the critical point. It can be shown that if 

         is sufficiently small, then the trajectory is closed and contains the critical 
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point. For example, suppose that         is near       and that          is 

sufficiently small, the equation of the trajectory with energy          is 

                   
 

 
                

For   small we have          (    

  ⁄    )    

  ⁄  Thus the equation 

of the trajectory is approximately  

 

 
      

 

 
               

or 

  

             
 

  

             
    

This is an ellipse enclosing the critical point (0,0); the smaller         is, the smaller 

are the major and minor axes of the ellipse. Physically, the closed trajectory 

corresponds to a solution that is periodic in time. 

If damping is present, however, it is natural to expect that the amplitude of the motion 

decays in time and that the stable critical point (center) becomes an asymptotically 

stable critical point (spiral point). This can almost be argued from a consideration of 

     . For the damped pendulum, the total energy is still given by equation (4), but 

now from equation (12)   

        and        (
 

 
)             . Substituting for       and       

in Eq. (5) gives     ⁄           Thus the energy is non increasing along any 

trajectory and, except for the line    , the motion is such that the energy decreases, 
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and hence each trajectory must approach a point of minimum energy, a stable 

equilibrium point. If         instead of        , it is reasonable to expect that 

this would be true for all trajectories that start sufficiently close to the origin. 

To pursue this idea further, consider the autonomous system  

  

  
               

  

  
                                                                          

and suppose that the point         is an asymptotically stable critical point. 

Then there exist some domain   containing       such that every trajectory that starts 

in   must approach the origin as    . Suppose that there exist an energy function 

  such that          for       in   with     only at the origin. Since each 

trajectory in   approaches the origin as    , then following any particular 

trajectory,   decreases to zero as t approaches infinity. The type  of result we want to 

prove is essentially the converse: if, on every trajectory,   decreases to zero as    

increases, then the trajectories must approach the origin as    , and hence the 

origin is asymptotically stable. First, however, it is necessary to make some 

definitions. 

Let   be defined on some domain   that contains the origin. Then   is said to be 

                  on   if           and          for all other points in  . 

Similarly,   is said to be                   on   if          and          for 

all other points in  . If the inequalities   and < are replaced by   and  , then   is 

said to be                       and                       respectively. 
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We emphasize that in speaking of a positive definite, (negative definite, . . . ) function 

a domain   containing the origin, the function must be zero at the origin in addition to 

satisfying the proper inequality at all other points in   

Example 3.7.1 The function  

                  

is positive definite on           since          and          for 

            .  However, the function  

              

is only positive semidefinite since          on the line       

Let us also consider the function  

 ̇                                                                                           

We choose this notion because  ̇      can be identified as the rate of change of   

along the trajectory of the system     that passes through the point     ). That is, if 

              is a solution of the system (6), then  

  [         ]

  
   [         ]

     

  
   [         ]

     

  
 

                             

 ̇       

The function  ̇  is sometimes referred to as the derivative of   with respect to the 

system (6). 
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We now state two Liapounov theorems, the first dealing with stability, and the second 

with instability. 

Theorem 3.7.1 Suppose that the autonomous system (6) has an isolated critical point 

at the origin. If there exists a function   that is continuous and has first partial 

derivatives, is positive definite, and for which the function  ̇ , given by        is 

negative definite on some domain   in the    plane containing         then the origin 

is asymptotically stable critical point. If  ̇, is negative semidefinite, then the origin is 

a stable critical point. 

Theorem 3.7.2 Let the origin be an isolated critical point of the autonomous system 

     Let   be a function that is continuous and has continuous first partial derivatives. 

Suppose that          and that in every neighborhood of the origin there is at least 

one point at which   is positive (negative). Then if there exists a domain   containing 

the origin such that the function  ̇ as given by        is positive definite (negative 

definite) on  , then the origin is an unstable critical point. 

The function   is called a Liapounov function. It is important to note that the 

difficulty in using these theorems is that they tell us nothing about how to construct a 

Liapounov function, assuming that one exists. In cases where the autonomous system 

(6) represents a physical problem, it is natural first to consider the actual total energy 

function of the system as a possible Liapounov function. However, we emphasize that 

the two theorems above are applicable in cases where the concept of physical energy 

is not pertinent. In such cases, a judicious trial-and-error approach may be necessary. 
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Now consider the second part of theorem 5.1, that is, the case  ̇         Let     

be a constant and consider the curve in the    plane given by the equation        

 . For     the curve reduces to the single point        . However, for     

and sufficiently small, it can be shown by using the continuity of   that we will obtain 

a closed curve containing the origin as illustrated in the diagram below. 

 

 

 

 

Figure 3.4 :  Geometrical Interpretation of Liapounov's Method 

There may, of course, be other curves in the    plane corresponding to the same value 

of  , but they are not of interest. Further, again by continuity, as   gets smaller and 

smaller, the closed curves          enclosing the origin shrink to the origin. We 

will show that a trajectory starting inside of a closed curve          cannot cross 

to the outside. Thus, given a circle of radius ϵ about the origin, by taking   sufficiently 

small, we can ensure that every trajectory starting inside of the closed curve 

         stays within the circle of radius ϵ  indeed it will stay within the closed 

curve          itself. Therefore the origin will be a stable critical point. 

A geometric proof of Theorem 3.7.2 follows by somewhat similar arguments. Briefly, 

suppose that  ̇ is positive definite, and suppose that given any circle about the origin, 

there is an interior point         at which           . Consider a trajectory that 



65 
 

starts at        . Along this trajectory it follows from equation (8) that   must 

increase, since  ̇       ; furthermore, since            the trajectory cannot 

approach the origin because         . This shows that the origin cannot be 

asymptotically stable. By exploiting further the fact  ̇       , it is possible to 

show that the origin is an unstable point; however, we will not pursue this argument. 

To illustrate the use of Theorem 3.7.1, we consider the question of the stability of the 

critical point (0,0) of the undamped pendulum Equation (2). While the system (2) is 

almost linear, the point(0,0) is a center of the corresponding linear system, so no 

conclusion can be drawn from Theorem 5.0. Since the mechanical system is 

conservative, it is natural to suspect that the total energy function V given by Eq. (4) 

will be a Liapounov function. For example, if we take D to be the domain      

            , then V is positive definite. As we have seen  ̇       , so 

it follows from the second part of theorem 5.1 that the critical point (0,0) of Equation 

(2) is a stable critical point. 

From a practical point of view one is more interested in asymptotic stability.  The 

theorem below gives the simplest result in dealing with this. 

Theorem 3.7.3  Let the origin be an isolated critical point of the autonomous system 

     Let the function   be continuous and have continuous first partial derivatives. If 

there is a bounded domain    containing the origin where         ,   is positive 

definite, and  ̇ is negative definite, then every solution of equation     that starts at a 

point in    approaches the origin as   approaches infinity. 
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In other words, the theorem says that if               is the solution of equation 

    for initial data lying in    then       approaches the critical point       as 

     Thus    gives a region of asymptotic stability : of course, it may not be the 

entire region of asymptotic stability. This theorem is proved by showing that (i) there 

are no periodic solutions of the system     in    , and (ii) there are no other critical 

points in    . It then follows that trajectories starting in    cannot escape and, hence, 

must tend to the origin as   tends to infinity. 

Theorems       and       gives sufficient conditions for stability and instability 

respectively. However, these conditions are not necessary, nor does our failure to 

determine a suitable Liapounov function mean that there is not one. Unfortunately, 

there are no general methods for the construction of Liapounov function for special 

classes of equations. One simple result from elementary algebra, which is often useful 

in constructing positive definite or negative definite functions, is stated without proof 

in the theorem below. 

Theorem 3.7.4  The function  

                                                                                       

is positive definite if, and only if , 

                                                                                           

and is negative definite if, and only if, 

                                                                                       

The theorem is illustrated in the example below. 
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Example 3.7.2  Show that the critical point (0,0) of the autonomous system  

  

  
                                                                                       

is asymptotically stable. 

Solution : We try to construct a Liapounov function of the form (10). 

Then                                   so 

 ̇                                        

  [                                      ]  

If we choose    , and   and   to be any positive numbers, then  ̇  is negative 

definite and   is positive definite by the above theorem. Thus by Theorem 5.1, the 

origin is an asymptotically stable critical point. 

3.8 Stability Analysis by Liapounov Method 

For autonomous systems, we can use Liapounov's method to determine the stability of 

the zero solution. We will investigate a general autonomous system 

 ̇          

 ̇          

with the equilibrium points      . 

Definition3.8.1 (Topographical system). Define a family of curves  

                 

with the following properties : 
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i.        is continuous on a connected neighborhood of   of the origin and 
  

  
 
  

  
 are 

continuous on   except possibly at the origin. 

ii.          and          for all          

iii. There exists     such that for all            

                       

uniquely determines a simple closed curve    around the origin.  

These curves are known as a topographic system. 

point in    

Theorem 3.8.2 Consider the topographic curve τ defined by  

                 

in  . Suppose that 

 ̇        

in this domain. If   is a half-path starting at a point P inside τ, then   can never 

escape from this closed region determined by τ. 

Here, 

 ̇      
  

  
 ̇  

  

  
 ̇   
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Chapter 4 

 

CONCLUSION 

In this thesis, we dealt with autonomous and non autonomous systems of ordinary 

differential equations. We gave examples of these systems of equations and explained 

in detail, their differences. We also discussed methods of investigating the stability of 

non linear systems and gave the various types of stabilities, like asymptotic stability, 

uniform stability, etc, and also gave examples of stable solutions and unstable 

solutions.  

We saw how ecological applications such as Lotka-Volterra Competition Model and 

Predator-Prey Model can be modeled by differential equations, we gave examples of 

competition model and predator-prey models and we saw what happens to the species 

as a result of the presence or absence of the other species. 

We also studied and analyzed Liapounov's direct method for stability of autonomous 

and non autonomous differential equations. We showed how the stability of a critical 

point of an almost linear system can be determined from a study of the corresponding 

linear system. We are unable to draw a conclusion when the equilibrium point is a 

center of the corresponding linear system. Examples of this situation are the predator-

prey problem and the undamped pendulum that was discussed exhaustively in Chapter 

3. 
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Let us give some results on the behavior of a Predator-Prey System. 

Given the system 

 ̇               

 ̇                             

where   is the density of the prey population and   is the density of the predator 

population. We assume that 

i. α is smooth with             and                      

ii.   and   are nonnegative and increasing,            . 

Consider the model 

 ̇                                                                                    

 ̇                                                                                   

where 

          (  
 

 
)  

   

    
              

    
       

   
 

   

    
               

        are the rate of growth the prey population in the absence of the 

predators and environmental limitations (i.e. the prey grows without bound in the 

absence of the predators). On the other hand, in the absence of the prey, the 

population of predator reduces. The death rate of the predator depends on   and can 

be expressed by the formula  
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where γ  . 

This model is different from other predator-prey systems by the predator mortality 

rate since mortality is not an unbounded or constant function. It increases with the 

predator population. 

The system         can be written in polar coordinates using the transformations 

              and              . 

Then we notice that       (  
   ) for         Hence the solution   exists and is 

unique.  

If we consider    and    in the form  

                  [ (  
 

 
)  

  

    
]  

                  [ 
      

   
 

  

    
]  

The following can be derived easily. 

i.    and    are smooth functions so the positive quadrant is an invariant region. 

ii.  
   

  
  

  

       
   and 

   

  
 

   

       
     where      . That is, it is a 

predator-prey system with predator   and prey  . 
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