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ABSTRACT 

In recent years, it has been argued and shown experimentally that ion channel noise in 

neurons can have profound effects on the neuron’s dynamical behavior. Most 

profoundly, ion channel noise was seen to be able to cause spontaneous firing and 

stochastic resonance. 

A physical approach for the description of neuronal dynamics under the influence of ion 

channel noise was proposed recently through the use of dissipative stochastic mechanics 

by Guler in a series of papers. He consequently introduced a computational neuron 

model incorporating channel noise. The most distinctive feature of the model is the 

presence of so-called the renormalization terms therein. This model exhibits 

experimentally compatible noise induced transitions among its dynamical states, and 

gives the rose-Hindmarash model of the neuron in the deterministic limit. 

In this thesis, statistics of coefficient of variation will be investigated using the 

dissipative stochastic mechanics based neuron model. 

 

 

Keywords: Ion Channel Noise, Stochastic Ion Channels, Neuronal Dynamic, 

Hindmarsh-Rose Model, Dissipative Stochastic Mechanism Model 
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ÖZ 

Son yıllarda, nöronlardaki ion kanal gürültüsünün nöron dinamiği üzerinde hayati etki 

yapabildiği deneysel olarak da kanıtlanmıştır. Bu kapsamda, kendi kendine ateşleme ve 

stokastik rezonans en çarpıcı bulgulardır. 

İyon kanal gürültüsü altındaki nöron dinamiği, fiziksel bir yaklaşım olan disipatif 

stokastik mekanik kullanarak Güler (2006, 2007, 2008) tarafından çalışılmış ve 

modellenmiştir. Sonsuz zar büyüklüğü limitinde Rose-Hindmarsh modeline dönüşen bu 

disipatif stokastik mekaniğe dayalı modelin en önemli özelliği renormalizasyon terimleri 

içermesidir. Bu tezde, Rose-Hindmarsh tipi zarlarda iyon kanal gürültüsü için 

geliştirilmiş olan yukarıdaki model kullanılarak ateşleme dinamiği üzerinden 

değişkenlik katsayısı hesaplamaları yapılmıştır.   

Anahtar Kelimeler: İyon kanal gürültüsü, Stokastik iyon kanalları, Nöronal Dinamik, 

Rose-Hindmarsh Modeli, Disipatif stokastik mekanik modeli 
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Chapter 1 

INTRODUCTION 

Neurons exhibit electrical action which is in nature known to be stochastic (Faisal 2008). 

The main source of stochasticity is the external noise from the synapses. Still the interior 

noise, which participates to the gating probabilistic nature of the ion channel, and also it can 

have important effects on the neuron's dynamic performance as displayed by the 

experimental studies (Kole 2006; Jacobson et al. 2005; Sakmann and Neher 1995) and 

by the numerical simulations or theoretical researches (Chow and White 1996; Fox and 

Lu 1994; Schmid et al. 2001; Schneidman et al. 1998). 

Neuronal dynamics under the effect of channel fluctuation is usually modeled with stochastic 

differential equations acquired by using some vanishing white-noise conditions into the 

fundamental deterministic equations (Fox and Lu 1994). The dissipative stochastic 

mechanics (DSM neuron) based neuron model raised by Güler (2006, 2007, 2013), is a 

special case of this. The DSM model has some forms of functionality named the 

renormalization terms, as well as some vanishing white-noise conditions in the activity 

equations. The DSM model has been studied in numerical detail for its time independent 

input current's dynamics (Güler 2008, 2013); it was established that the corrections of 

renormalization increases the changes in behavior from quiescence to spiking and from 

tonic firing to bursting. It was further established that the existence of renormalization 

corrections can result in faster temporal synchronization of the electric coupled 
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consecutive discharges of two neuronal units (Jibril and Güler 2009). In this thesis, the 

DSM model is investigated in the situation of noise fluctuating input currents and 

concentrates on what role the renormalization terms and noise could have on the spiking 

rates and the spike coherence values. 

In neural membrane patches, spontaneous activity phenomenon occurs  (in the case of 

repeating spikes or bursts) and the reason about that is the internal noise from ion 

channels; these present during numerical simulations of channel dynamics and 

theoretical investigations ( (DeFelice, 1992); (Strassberg, 1993); (Lu, 1994); (Chow, 

1996); (Rowat, 2004); (Güler, 2007); (Güler, 2008); (Güler, 2011) (Güler, 2013));  

besides ,those experiments  have shown the happening of stochastic resonance and the 

coherence of the procreated spike trains (Almassian A., 2011); (Jassim H. M., 2013) 

(Jung, 2001); (Schmid, 2001); (Özer, 2006)). Even when the numbers of ion channels 

are large, channel fluctuations might become critical near to the action potential 

threshold (Abdulmonim M. N., 2013); (Schneidman, 1998); (Rubinstein, 1995)); the 

small number of ion channels that are open at the action potential threshold assigned the 

accuracy of timing of action potential. Also it has been clarified that ion channel noise 

affects the spike generation in axons ( (Faisal A. A., 2007); (Ochab-Marcinek, 2009)). 

The renormalization of the fluctuations in a number of open gates not only affects the 

neuron behavior, but also the attendance of a multiple number of gates in every ion 

channel. Moreover, this effect may indicates to an important act in cell activity in state 

of having coherence membrane in size (Güler, 2013). 
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Chapter 2 

NEURON STRUCTURE 

2.1 Morphology and Structure 

Neurons are a specific kind of cells found in the human brain they’re unique in 

generating electrical signals in reaction to chemical as well as other inputs. A normal 

nerve cell will be divided into three parts: the soma or cell body dendrites and axon. 

Dendrites receive inputs from other neurons cell and propagate it for the soma. The axon 

transmits the neuronal output to other cells. The dendrites structure is like a branch of a 

tree increases area cell from the branching structure which improves the capability of the 

neuron to receive a number of other cells through synapses connections. Figure1 

explains details and structure for that neuron. Axons by single neurons traverse big 

brain’s fractions or sometimes from the system. It is estimated that cortical neurons 

typically send about 40 mm of axon and also have approximately 4 mm of total dendritic 

cable into their structural dendritic trees. The axon makes an average of 180 synaptic 

connections to neurons per mm of length during the dendritic tree receives, normally 2 

synaptic inputs per   . The cell body or soma of the typical cortical neurons ranges in 

diameter from about 10 to 50    (Abbot, 2002). 
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Figure 1: Two Interconnected Cortical Pyramidal Neurons (Izhikevich, 2007) 
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2.1.1 What is a Spike?   

The communication mean among the neurons in simple a current pulse is called as 

spike. Neurons normally receive 10,000 ---from another through the synapse. If the 

signal is received on the other neurons, this signal causes modifications to the existing of 

the transmembrane. The existing coming synapse is referred to as the post synaptic 

potentials (PSPs), little PSPs are generated from tiny current, large PSPs are generated 

in time when current considerably high. The voltage sensitive channel is inserted a 

neuron, these channels are resulting to generation of action potential or spike 

(Izhikevich, 2007). 

2.1.2 Membrane Proteins 

Protein is an essential part of the cell membrane that transports molecules across it. 

These proteins play a substantial part in determining the function of neurons. Finding 

out how membrane proteins work is useful for understanding many functions of 

neurons. We describe many types of membranes proteins that help in transporting 

substances around the membrane like channels, gates, and pumps.  

2.1.2.1 Channels 

Some membranes proteins are shaped in this type of method which create channels, or 

holes, across that substance can pass. Different proteins with various sized holes permit 

different substances to go in or depart the cell. Protein molecules assist as channels for 

predominantly sodium (Na+), potassium (K+), calcium (Ca2+), and chloride (Cl−) ions. 
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2.1.2.2 Gates 

An essential feature of a little protein molecules is the skill too change shape. Some 

gates work by changing form after one more chemical binds to them. In such cases, the 

embedded protein molecule deeds like a door lock. After having a key of the appropriate 

size and form is inserted in it and turned, the locking device adjusts the shape and 

becomes activated. Other gates change shape when certain conditions in their 

environment, for example electrical or temperature, change. 

2.1.2.3 Pump 

Sometimes, a membrane protein deeds like a pump, a transporter molecule that needs 

power to move substances over the membrane. For example there is protein that adjusts 

its form to impel Na+ ions in one direction and K+ ions in the other direction. Countless 

substances are transported by protein pumps. Channels, gates, and pumps play an 

essential role in a neuron's ability to convey information. 

2.1.3 Synapse 

Synapses are shaped such as a junction amid two consecutive neurons after the axon of 

sensory neuron is related to the efferent one and supplies a method to communicate the 

information to other cell. Axons terminate at synapses whereas the voltage transient of 

the action potential opens ion channels producing an influx of Ca2+ that leads towards 

the discharge of neurotransmitter. The neurotransmitter binds to receptors at the gesture 

consenting or postsynaptic side of the synapse provoking ion-conducting channels to 
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open. Reliant on the nature of the ion flow, the synapses can have an excitatory, 

depolarizing, or an inhibitory, normally hyperpolarizing, result on the postsynaptic 

neuron (Abbot 2002).        

Synapses are not randomly distributed above the dendritic surface. In finish, inhibitory 

synapses are more proximal than excitatory synapses, although they are additionally 

present at distal dendritic spans and, after being present, on some  spines in combination 

alongside an excitatory input (Segev in Bower and Beeman 2003). In countless systems 

(e.g., pyramidal hippocampal cells and cerebellar Purkinje cells), provided input basis is 

preferentially mapped onto a given lifetime of the dendritic tree, rather being randomly 

distributed above the dendritic surface. Electron micrographic pictures of synapses in 

real neurons are shown in figure 2. 
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Figure 2: Synapses Examples: (A) Electron Micrograph of Excitatory Spiny Synapses 

(s) Shaped on the Dendrites of a Rodent Hippocampal Pyramidal Cell. (B) An Electron 

Micrographic Figure Captured the Synapse Formed Where The Terminal Bottom of One 

Neuron Meets a Dendritic Spine on a Dendrite of Another Neuron (Kolb and Whishaw 

2009).                                                    

2.2 Membrane Potential and Neuron Electrical Activity 

Membrane potential is described as difference in electrical potential between the inside 

of a neuron and the surrounding ECF. Under resting conditions, the possibility inside the 

cell membrane of a neuron is around -70    relative to that of the encompassing bath. 

This voltage, however, is conventionally assumed to become 0    for convenience and 

the cell is claimed to be polarized in this state. This potential is in cell matches that out 

from the cell. This membrane potential difference is sustained by ion pumps based in the 

cell membrane by maintaining concentration gradients. For example, Na+ is much more 

concentrated outside a neuron than inside it and also the concentration of K+ is 

significantly higher inside neuron in comparison to the extracellular fluid. Therefore, 

ions flow into and out of the cell because of both voltage and concentration gradients 
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during the entire state transition of cell. Current, in the form of electropositive ions 

flowing out of the cell (or electronegative ions flowing into the cell) through open 

channels helps make the membrane potential more negative, a process called 

hyperpolarization. Current flowing into the cell changes the membrane possibility to less 

negative and even positive values. This is known as depolarization. When a neuron is 

depolarized sufficiently large to increase the membrane potential above a threshold 

level, an optimistic feedback process is began and the neuron generates an action 

potential. An action potential is usually roughly 100    fluctuations in the electrical 

potential across the cell membrane that takes about 1ms. Once an action potential occurs 

it can be impossible to initiate another spike following the previous one and this is 

known as the total refractory period. The importance of action potential in the fact that 

unlike subthreshold fluctuations that attenuate over distance of at most 1 millimeter they 

are able to propagate over large distances without attenuation along axon processes 

(Dayan and Abbot 2002). Figure 3 depicts the voltage dynamic of a neuron during an 

action potential even though it is synthesized by corresponding ion channel activities 

throughout an action potential. Therein figure the resting potential is in its real value -70 

  . 
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Figure 3: Phases of an Action Potential Initiated by Changes in Voltage Sensitive 

Sodium and Potassium Channels, an Action Potential Begins with a Depolarization (gate 

1 of the Sodium Channel Opens and then Gate 2 Closes). The Slower-opening 

Potassium Channel Contributes on Re-polarization and Hyper-polarization until the 

Resting Membrane Potential is Restored (Kolb and Whishaw 2009). 
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Chapter 3 

HODGKIN - HUXLEY EQUATIONS 

Over the years, many neurons model have been located and developed according to the 

purpose they used for. Furthermore, the diversity of the models found is determined by 

the actual biophysical model with regard to structure. Hodgkin – Huxley (HH) is the 

more applicable model up to now, also one of the simplified models utilized in the 

experiments with this thesis: the Hindmarsh-Rose model (HR). However, modeling 

technic of neural excitability has been influenced by the monument work of Hodgkin-

Huxley (1952). In this part, Hodgkin – Huxley model and also the Hindmarsh-Rose 

model (HR) are going to be briefly explained. 

In this chapter we briefly handles the two Hodgkin-Huxley model and Hindmarsh-Rose 

model (HR), after that we will concentrate on the most recent dissipative stochastic 

mechanics (DSM) set up from the neuron model that accomplishes the deterministic 

condition of the dynamics of HR model and it can be focused and experimented in  this 

section . 
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3.1 The Hodgkin-Huxley Model 

Depending on experimental research done on an axon of giant squid using space clamp 

and voltage clamp techniques, Hodgkin and Huxley (HH) (1952) explained that the 

current passing through the axon of a squid has only two major ionic elements,     and 

   (sodium and potassium channel equivalent elements). The membrane potential    has 

influence on these currents significantly. Accordingly, they developed from their 

observation a mathematical model to create a model that is still one of the most 

important model and depending on it, scientists developed lots of realistic neural models 

(Hodgkin and Huxley 1952). 

According to the style of Hodgkin – Huxley that they explain the characteristics of 

electrical nerve patch membrane, as a possible equivalent circuit. In this patch all of the 

current across is manufactured of two basic sections: charging membrane capacitance 

may be the first one and the second is come with transport a particular type of ions via 

the membrane. Moreover the currents of ion are made of three unique elements, the 

potassium, sodium, and also the chloride. The current of sodium    , the current of 

potassium    and  the current of leakage    which can be related to chloride. 

Depending on Hodgkin-Huxley electrical circuit the equation are going to be: 

   
   

  
                                       (1) 
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The currents of ions through the membrane could be found using equation as follow 

              ∑                               (2) 

             (     )                   (3) 

The currents from the equation number (3) each one is related with a conductance 

   with reactive potential    depending on H-H the currents of ion that over the 

membrane inside the      squid giant axon is actually three:     (current of sodium),    

(current of potassium) and also a current of leakage  , as display in the following  

equations . 

                                 (4) 

       (      )                (5) 

      (     )                     (6) 

      (     )                      (7) 

The conductance     (         ) are created from the mixed impact of a big amount of 

tiny ion channels. The meaning      is basically such as the amount of open up physical 
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gates. These types of gates usually control the passage of ions through the channel. The 

ions can transfer through the channel to the time that the channel is open; this channel is 

assumed to be open only when the entire gates of this channel has been permissive 

condition. 

3.1.1 The Ionic Conductance 

Ions can pass through the channel and it is open when all of the gates for a particular 

channel are in the permissive state. The formal assumptions used to describe the 

potassium and sodium conductance empirically achieved by voltage clamp experiments. 

    ̅  
                              (8) 

     ̅   
                        (9) 

where n, m and h are variable's dynamics of the ion channel gate that will be shown later 

on,  ̅  is a constant with the scales of conductance per     (remember that n is between 

0 and 1, consequently, the maximum conductance value is needed ( ̅ ) to normalize the 

result).The dynamic of n, m, and h are listed below: 

  
  

  
   (   )                             (10) 

  
  

  
   (   )                        (11)                                  

   
  

  
   (   )                            (12) 

where    and    are rate constants, that fluctuate with voltage but not with time, n is a 

non-dimensional variable that can fluctuate between 0 and 1 and shows the individual 

gate probability of being in the permissive state. 
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The potential of membrane    (in voltage clamp test) starts usually from the resting 

period (   = 0) and followed by immediate arise to achieve   . In order to find equation 

(11) over the following the following exponential may be used. 

 ( )     (  )  (  (  )    ( ))    (     )                      (13) 

  ( )     ( )    ( )       (0)                                           (14) 

 

  (  )     (  )    (  )       (  )                                       (15) 

 

  (  )  [   (  )     (  )]
                                                  (16) 

 

In these equations x stands for the time which depends on all the n, m and h (gate 

variable), as a result the formula becomes simpler, all of the values of the gate 

variable    ( )     at the resting condition and   (  )    ). Although    here stands 

for the time needed to let    reach the steady state in the event the voltage of 

    achieve    . 

The rate constant        measured in H-H as function with V as follows: 

   
  ( )

  ( )
                       (17) 

    
    ( )

  ( )
                   (18) 

 As pointed previous to inside the, i is for n, m, and h. These below equations are for that 

rate constant       , and could be determined from the following: 



16 

  ( )  
    (    )

   (
    

  
)  

                               (19) 

  ( )          ( 
 

  
)                    (20) 

  ( )  
   (    )

   (
    

  
)  

                              (21) 

  ( )      ( 
 

  
)                           (22) 

  ( )         ( 
 

  
)                      (23) 

  ( )  
 

   (
    

  
)  

                               (24) 

All of ( ) and  ( ) describe the transition rates between open and closed states of the   

channels. 
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3.2 The Hindmarsh Rose Model  

Although Hodgkin-Huxley (HH) model can depict the neural dynamics of spiking 

neuron to a substantial range, in large models the Hodgkin-Huxley (HH) bursting model 

might be difficult. The axon of squid neuron have been researched by Hodgkin-Huxley 

who find out it have both of them Na and K conductance, although there are other 

conductance types contribute inside the (HH) bursting model that will increase the 

complexity inside the model. 

FitzHugh and Nagumo (1961) observed separately in HH equations, that the 

improvements both in membrane potential  ( ) and sodium activation  ( ) happened 

in similar time scales during an action potential, whereas the change in sodium 

inactivation  ( ) and also potassium activation  ( ) are similar, although slower time 

scales. It can display the simulation of the model spiking behavior in the following 

equations: 

  ̇   (    ( )   )                         (25) 

  ̇   (  ( )   )                                (26) 

Where x stands for membrane potential and y indicates the recovery parameter.   ( ) is 

represented with cubic function,   (x) with linear function, variables   and   are time 

constants and that  ( ) is the external current used or clamping while time function t. 

Hindmarsh-Rose taken advantage of the FitzHugh-Nagumo model to improve their 

model, that was a simple version of the (H-H) equations and substituted the linear 

function g(x) with a quadratic function so the model long interspaces interval can 
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achieve rapid firing. Figure (4) shows the diagram of null-cline of the Hindmarsh-Rose 

model (Hindmarsh J.L. and Rose R.M 1982). 

 
Figure 4: The 1982 HR model phase plane representation. Null-clines  ̇= 0,  ̇= 0 (thin 

lines) and firing limit-cycle (thick line). Design for one equilibrium node (Steur 2006). 

HR model needs several equilibrium points to generate burst firing reaction. Generally 

the condition of sub-threshold stable resting can have one point then one point in the 

cycle of firing limit. To make the null-clines meet and bring additional points of 

equilibrium, a small deformation was necessary. The controlling equations were altered 

to satisfy the requirements as proven in the following equations:  

 ̇     ( )                         (27) 

 ̇   ( )                               (28) 

where the  ( )          inside the simple form of  ( )  in HR design, ,  ( )  

      . The phase plane analysis of the given equations is shown in Figure 5. 
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Figure 5: Description for Hindmarsh-Rose model phase plane. The equilibrium points A, 

B, and C can be a stable node, an unstable saddle, and an unstable spiral, 

correspondingly, a humble form of f(x) can be used in equation as is pointed out  ̇  
  null-cline shows (Steur 2006). 

The steady point in the figure (5) is the node A that corresponds to the neuron resting 

state. By using current pulse de-polarizing that is large enough,  ̇    null-cline going 

to be lowered so that the nodes A and B meets and vanishes. Still, the fire ending is 

impossible by just terminating the stimulus and the state will get out of the limit cycle 

only after applying a suitable hyper-polarizing pulse. Therefore, to terminate the firing 

state of the model the term z was inserted. The variable that’s been additive stands for a 

slowly changed current, changing the inserted current I to the effective input I - z. When 

the neuron in a firing state the z value is requires to be raised. After this modification, 

the general set of equations for HR model is as shown next: 

 ̇                                     (29) 

 ̇                                                 (30) 
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 ̇   ( ( )   )                                        (31) 

Notes that the f(x) and g(x) are removed and been substituted by their equivalents. 

Where x indicates potential of membrane, y denotes the recovery parameter, and z 

stands for the current adaptation with time constant r. Parameter z rises up through fire 

state and goes down through the non-fire state. What made the model able to show 

bursting, chaotic bursting and post-inhibitory rebound are variables h and r. (Hindmarsh 

and Rose 1984; Steur 2006). Figure (6) displays analysis of phase plane of the equation 

(29) applying more complex form of f(x) as suggested in (Hindmarsh and Rose 1984). 

 

                                    
Figure 6: Rose Hind marsh Model about Phase plane representation by using a complex 

form of f(x). The equilibrium points A, B and C is a static node, an unstable saddle, and 

an unstable spiral, respectively. Unstable limit cycle is specified here (Rose and 

Hindmarsh 1984). 
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3.3 The (DSM) Neuron Model 

The Dissipative Stochastic Mechanics based (DSM) neuron has a distinctive formulation 

that comes from a point of view that conformational changes in ion channels are exposed 

two different types of noise. Both of these types of noise were coined as the intrinsic 

noise and topological noise. The intrinsic noise comes from voltage dependent 

movement of gating particles between the inner and also the outer faces of the 

membrane which is stochastic; therefore, gates open and close in a probabilistic fashion, 

that is, it's the average number, not the precise number, of open gates over the membrane 

which can be specified by the voltage. The topological noise however stems from the 

existence of a multiple number of the gates inside the channels and is assigned to the 

fluctuations in the topology of open gates, instead of the fluctuations in the number of 

open gates. 

The next one is the topological noise that originates from multiple numbers of gates 

existences within the channels and plays a role in the open gates topology, rather than 

the changes in the open gates number. 

Curiously, as gating particles throughout the dynamics usually do not follow a specific 

order for that occupation of the available closed gates, and also the open gates, the 

membrane at two distinct times might have an equivalent number of gates being open 

but two various conductance values. The topological noise is contributed towards the 

suspicion in the open channels numbers occurring even when open gates numbers are 

precisely known. Therefore, in defining the dynamics of the voltage, all permits from the 

gates open topologies that ought to be thought of. DSM neuron formula was created 



22 

depending on Hindmarsh-Rose model (Hindmarsh and Rose 1984) and utilizes the 

Nelson’s stochastic mechanics (Nelson 1966 and 1967), within the dissipation existence, 

to model the ion channel noise impacts about the membrane voltage dynamics. The 

topological noise influence on the neuron dynamics gets to be more crucial in 

membranes which are small in size. Accordingly, the DSM neuron functions like the 

Hindmarsh-Rose model if the membrane size is large. 

The motion equations for both variables cumulants are resulted through the formalism 

from the DSM neuron. The second cumulants that depict the neuron's diffusive manners 

usually do not concern us within this thesis. The first cumulants develop harmoniously 

using the dynamics below: 
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where X indicates the membrane voltage value expected, and Π matches towards the 

arithmetic mean of the momentum-like operator. Variables y and z describe the short 

and also the slower ion dynamics, respectively. I represent the outside current inserted in 

to the neuron, and m represents the capacitance on the membrane. The variables a, b, c, 

d, r, and h are constants. K is really a mixing coefficient presented by k = 1/(1+r). S_i 

are constants as shown next: 
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Eq. (36) defines   value at the beginning time    in terms of the beginning values of the 

other dynamical parameters X, y and z, and the current I. Xeq(I) bows to the equation: 

    
  (   )   

   (      )                             (45) 

Where    is a constant.    and    in Eqs. (34) and (35) are noises from the Gaussian 

white kinds with zero means and mean squares presented by: 

   ( )  (  )       (    )                                           (46) 

 

And 

   ( )  (  )        (    )                                         (47) 

 

are obtained by the fluctuation-dissipation classical theorem.   Indicates a temperature 

like value. The renormalization terms are the conditions with the correction coefficients 

  
 

 ,  
 

,   
  and   

  that occur in the equations above, all the parameters in this model 

are in dimensionless unit.  
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When the epsilon values reaches values that are larger than (ε_m^y=0.3, ε_u^y=1.5, 

ε_m^Z=0.003, and ε_u^Z=0.015) that is when the neuron reach the saturation states. 

When the noise parameters    and    are neglected and setting all of the correction 

coefficients to zero, the dynamics from the DSM works such as dynamics of Hindmarsh-

Rose. All of the model parameters, even time, have been in dimensionless units. The 

initial voltage time number of the membrane for Hindmarsh-Rose’s original model is 

shown within the Figure (7) for many different constant current inputs. Hindmarsh-Rose 

model dynamical states are quiescence, bursting (rhythmic using a periodicity in high 

degree, or chaotic), and tonic firing. 

It was shown that the representation of intrinsic noise will get to be more important in 

small size membranes and it’s the same in case of fewer channels in DSM Neuron 

(Güler 2008). The intrinsic noise can be the source of spiking activity in quiet 

deterministic model and in large input current values bursting can be caused. In figure 

(8) the DSM Neuron dynamics in a small size membrane is demonstrated. Notice that 

renormalization corrections are equal to zero so that the result is studied regardless of 

the topological noise influence. 
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Figure 7: Membrane voltage time series of the deterministic Hindmarsh-Rose model 

applying the parameter values m = 1, a = 1, b = 3, c = 1, d = 5, h = 4, r = 0.004 and   

  =-1.6; for different constant inputs current values I, indicated in a parenthesis on the 

left of each plot (Güler 2008). 
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Figure 8: Time series of X when the DSM neuron is exposed just to the intrinsic noise 

applying the Hindmarsh-Rose m = 0.25, a = 0.25, b = 0.75, c = 0.25, d = 1.25, h = 1,    

r = 0.004 and   =-1.6 with the temperature T = 0.008. Schemes for different constant 

inputs current values 4I (scaled by the factor of four) (Güler 2008).  

Renormalization corrections are caused by the interaction between the topological and 

intrinsic noises. The existence of correction's parameters further increases the shift in 

behavior from quiescence to spiking and from tonic firing to bursting to a significant 

degree and with evidence to this; it causes the bursting activity to occur in a wider 

domain of input currents. Hence, in the existence of the correction terms, the spiking 

activity begins to occur at smaller input current values and the bursting activity is 

extended for higher input current values. The DSM neuron manner under the effect of 

corrections is displayed next page in figure (9). 
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Figure 9: Time series of X using the correction coefficients   

 
     ,   

 
    , 

  
        and   

        with the temperature T = 0.008. The Hindmarsh-Rose 

parameter are m = 1, a = 1, b = 3, c = 1, d = 5, h = 4, r = 0.004 and   =-1.6 (Güler 

2008). 

3.4.1 Noise in neuronal information processing 

Noise can enhance neuronal systems from signal transmission properties point of view 

under certain conditions. Sub-threshold oscillations in a neuron may have an important 

effect on the data coding in neurons when magnified by noise (Braun 1998). The perfect 

noise amount existence in the neuron system may have association with the input signal 

to enhance signal observation (Gerstner and Kistler 2002).  

There are two types of noise; the internal and external which have been explained within 

the DSM neuron approach model in the third chapter. In this study the noise is a white 
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Gaussian noise and considered to be one variable containing both the internal and the 

external noise.  

Gaussian noise is statistical noise that has its probability density function equal to that of 

the normal distribution, which is also known as the Gaussian distribution. In other 

words, the values that the noise can take on are Gaussian-distributed. A special case 

is white Gaussian noise, in which the values at any pairs of times are statistically 

independent (and uncorrelated). In applications, Gaussian noise is most commonly used 

as additive white noise to yield additive white Gaussian noise. 
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Chapter 4 

NUMERICAL EXPERIMENTS 

4.1 The Role Played by the Renormalization Terms in neurons 

In our investigation we examine the role played by the renormalization terms and to be 

exact the effect of the epsilons value on the neuron. We change the epsilons values many 

times and compare between them to see the epsilons values on the neuron. 

The model’s behavior is studied within the following ranges of the parameters: We used  

input current values between (1-7) and the other experiments the input current was      

(7-11). In the first experiment the default epsilons values as in Label (A) in Table (1) is 

used and by changing the input current from (1-7) we get the first set of result, after that 

we used the epsilons values as in Label (B) in Table (1) and did the experiment again to 

get the second set of result and finally we make the epsilons values equal to zero as in 

Label (K) in Table (1) and did the experiments again so we can get the third set of result 

to draw the result that in the figure (10) below. 

 After that we change the default epsilons values and take four new epsilons values that 

will replace the default epsilon value in the first experiment. The first two epsilon values 

are smaller than the default epsilon values and there values are multiplied be 0.5  and 0.8 

as in Table (1) (Label C and E respectively), we draw the three result while changing the 



30 

input current, the first set when the epsilon values are zero as in Label (K) in Table 

(1),the second set when the default epsilon value are multiplied by 0.5 and 0.8 as in 

Table (1) (Label C and E respectively) and the last set when we used epsilon values as in 

Label (C) in Table (1) and we collected the result as in the figures (12) and the figure 

(14) for  the default epsilon value as in Label (E) in Table (1).  

Now the second two epsilon values which are larger than the default epsilon values and 

there values are calculated by multiplied the default epsilon value be 1.3 and 1.5 and 

there values are in Table (1) (Label G, I respectively), the first set of result is calculated 

when the epsilons values are zero as in Label (K) in Table (1), the second set when the 

default epsilon value are multiplied by 1.3 and 1.5 as in Table (1) (Label G, I 

respectively), the last set of result when we used the epsilons values as in Label (H) in 

Table (1) the results are drown in the figure (16) and figure (18) for the default epsilon 

value when we used it as in Label (J) in Table (1). 
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Table 1: Parameter sets of the epsilon values used in the thesis. 

LABEL 

Multiply the 

default by 

 

  
 

 

 

  
 

 

 

  
  

 

  
  

A Default (0.1) 0.1 0.5 0.0001 0.0005 

B Double (0.1) 0.2 1 0.0002 0.001 

C 0.5                         

D Double (0.5) 0.1 0.5 0.001 0.005 

E 0.8                       

F Double (0.8) 0.16 0.8 0.0016 0.008 

G 1.3                         

H Double (1.3) 0.26 1.3 0.0026 0.013 

I 1.5                         

J Double (1.5) 0.3 1.5 0.003 0.015 

K Zero 0 0 0 0 
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Figure 10: The Coefficient of Variation against the Input Current. The Three Plots are 

Shown the Labels (A), (B), and (k) Parameters as in the Table (1). 
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Figure 11: The Coefficient of Variation against the Input Current. The Three Plots are 

Shown the Labels (A), (B), and (k) Parameters as in the Table (1). 
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Figure 12: The Coefficient of Variation against the Input Current. The Three Plots are 

Shown the Labels (C), (D), and (k) Parameters as in the Table (1). 
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Figure 13: The Coefficient of Variation against the Input Current. The Three Plots are 

Shown the Labels (C), (D), and (k) Parameters as in the Table (1). 
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Figure 14: The Coefficient of Variation against the Input Current. The Three Plots are 

Shown the Labels (E), (F), and (k) Parameters as in the Table (1). 
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Figure 15: The Coefficient of Variation against the Input Current. The Three Plots are 

Shown the Labels (E), (F), and (k) Parameters as in the Table (1). 
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Figure 16: The Coefficient of Variation against the Input Current. The Three Plots are 

Shown the Labels (G), (H), and (k) Parameters as in the Table (1). 
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Figure 17: The Coefficient of Variation against the Input Current. The Three Plots are 

Shown the Labels (G), (H), and (k) Parameters as in the Table (1). 
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Figure 18: The Coefficient of Variation against the Input Current. The Three Plots are 

Shown the Labels (I), (J), and (k) Parameters as in the Table (1). 
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Figure 19: The Coefficient of Variation against the Input Current. The Three Plots are 

Shown the Labels (I), (J), and (k) Parameters as in the Table (1). 
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Figure 20: The Coefficient of Variation against the Input Current. The Three Plots are 

Shown the Labels (A), (B), and (k) Parameters as in the Table (1). 
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Figure 21: The Coefficient of Variation against the Input Current. The Three Plots are 

Shown the Labels (C), (D), and (k) Parameters as in the Table (1). 
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Figure 22: The Coefficient of Variation against the Input Current. The Three Plots are 

Shown the Labels (E), (F), and (k) Parameters as in the Table (1). 
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Figure 23: The Coefficient of Variation against the Input Current. The Three Plots are 

Shown the Labels (G), (H), and (k) Parameters as in the Table (1). 
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Figure 24: The Coefficient of Variation against the Input Current. The Three Plots are 

Shown the Labels (I), (J), and (k) Parameters as in the Table (1). 

In the experiments in figures (10 to 19) the input current was from (1-7) and because of 

that the effect of the epsilon values makes the double epsilon values to go under the 

defualt epsilon values. When we compare the default epsilon values in figure (10) with 

the two epsilon values that are smaller than the defualt epsilon values that we got the 

first epsilon values as in Label (C) in Table (1) and the second epsilon values as in Label 

(E) in Table (1) the epsilon values effect will start reducing. However, when we 

compare the default epsilon values as in figure (10) with the two epsilon values larger 

than the default epsilon values will be in the first one as in the Label (G) in table (1) as 

in figure (16) and the second one will be as in Label (I) in Table (1) as in the figure (18) 

the effect of the epsilon values will start to increase as the epsilon values increase. 
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After that we change the input current from (1-7) to (7-11) and compare the default 

epsilon value in figure (20) with the two epsilon values smaller than the default epsilon 

value as in Label (C , E) in Table (1) for figure (21) and figure (22) respectivly we found 

out that the influence of the epsilons values was reduced compere with default value. 

After that when we compare the default epsilon value in figure (20) with the other two 

epsilons values that are larger than the default epsilon value which we have them from 

the Label (G , I) in Table (1) for figure (23) and figure (24) respectivly and the input 

current from (7-11) we realized that the impact of the epsilons values start to increase 

and that makes the neuron lose its  properties and after a while when the  increase the 

epsilon values higher the neuron starts to become ineffective until the increase passes the 

value (  
 
     ,   

 
     ,   

        , and   
         ) when its double reaches 

values that are larger than (  
 
    ,   

 
    ,   

       , and   
       ) when the 

neuron reachs the saturation states. 

Our result shows that we the default epsilon value is much better to be use when dealing 

with the DSM neuron. 

4.2 Technologies Used in this Thesis  

The DSM neuron model has been developed by Prof. Marifi Güler in C++ and some 

code has been changed like the main equation in the models in order to make it possible 

to do the experiments of this thesis. The model has been written by the C++ language. 

The GnuPlot program was used to plot the results and voltage time series. 
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Chapter 5 

CONCLUSION 

In this thesis, the DSM neuron model was investigated from a numerical point of view 

when exposed to renormalization terms. The impacts of the epsilon values on the neuron 

were checked. Correction coefficients were used as an effective measure of 

renormalization corrections to the model. It should be considered that these 

renormalization corrections appear from the dilemma of being in doubt of how many 

open ion-channel numbers there are, even if we know the exact number of open gates. 

DSM model neurons appear to be more complex than other models. It shows quicker 

synchronizing between two DSM neurons (Jibril and Güler 2009), dynamics of the 

models under constant input currents (Güler 2008) and in addition, its ability in 

detecting signals under noise varying and periodic input currents, that have been 

inspected during this study, are all the model benefits that deserve tolerating the 

complexity of it. Furthermore, it should be taken into consideration that this model is 

extremely capable of handling the small membrane sizes of the neurons. 

The experiment show that the renormalization terms effects play a role on the value of 

coefficient of variation for a small input current but for large input current there is no 

effect. 
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The epsilon values shown when the input current are large, there is no effect because the 

spike increasing high, so between two spike events the renormalization effect do not 

have time to show themselves because before the time show the effect, another spike 

start. But when the input current is small the spike low, so there is a stabile time for 

renormalization to show the effect. 

The experiments show that the epsilon values plays important role. The absence of the 

epsilon values makes the neuron generate spikes in slow manner and makes it have the 

lowest coefficient of variation.  

The existence of the epsilon values when the input current is higher than ( 7 ) makes the 

neuron react better and have higher coefficient of variation compare to the case when the 

epsilon value equal to 0 as in figures (20 to 24). 

(10 to 19) show that when the input current is lower than ( 7 ) the neuron react the same 

as before however it defer only when we double the epsilon values it result will goes 

under the result of the default  value because of the effect of the epsilon values. 

The results reveal that the neurons are extremely able to make a complicated and 

advantageous use of the channel noise in handling signals. From a technological point of 

view, the study shows that the DSM model has promising potential for signal detection. 
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