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ABSTRACT

In this thesis, some smoothing techniques in multivariate and functional data analysis
such as, kernel smoothing, local linear regression (LLR), spline smoothing and
smoothing together with principal components analysis through conditional expectation
(PACE) methods are considered. Their details are studied and a new smoothing method
benefiting from moving average concept and applicable under certain conditions is
proposed. Due to the steps involved in its logic, the proposed method is named Strecthed
Interpolated Moving Average (SIMA). Its application to different data sets produced
better results in terms of involved error, compared with LLR and similar results when

compared with PACE.

Keywords: Karhunen-Loéve Expansion, Stretched Interpolated Moving Average,

Principal Component Scores, Lag Interval, Weight Function.
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Bu tezde, ¢ok degiskenli ve fonksiyonel veri analizinin; ¢ekirdek piiriizsiizlestirme, yerel
lineer regresyon (LLR), spline piiriizsiizlestirme, ve kosullu beklenti ile temel bilesenler
analizi (PACE) gibi baz1 piriizsiizlestirme tekniklerine yer verilmistir. Bunlarin
ayrintilart incelenmis ve belirli kosullar altinda hareketli-ortalamadan yararlanilarak yeni
bir piiriizsiizlestirme teknigi Onerilmistir. Kendi mantig1 i¢cinde yer alan adimlar
nedeniyle onerilen yontem Gerilmis Interpolasyonlu Hareketli-Ortalama (SIMA) diye
adlandirilir. SIMA’nin farkli verilerde yapilan uygulamasinda LLR uygulamasina
kiyasla daha iyi sonuglar elde edilmis, PACE ile kiyaslandiginda ise benzer sonuglar

elde edilmistir.

Anahtar Kelimeler: Karhunen—Loéve Acilimi, Gerilmis Interpolasyonlu Hareketli-

Ortalama, Temel Bilesenler Skorlari, Gecikme Araligi, Agirlik Fonksiyonu.
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Chapter 1

INTRODUCTION

Studies in statistical data analysis gained momentum at the beginning of the 20"
century. Substantial foundation work laid during the first half, and with the advent of
computers in the second half of the same century, wide applications into all disciplines
became common ground. Today the development of statistical theory and application of
developed ideas using the continuously advancing computer technology has enabled the
testing of abstract statistics theory, previously not possible. This resulted in rapid

development of nonparametric statistical data analysis.

For the analysis of multivariate data that is considered in this study, one main issue is to
smooth the data before processing in order to eliminate the effect of extreme values.
Alternately smoothing the mean and covariance functions are commonly used in many
data analysis methods. Functional data analysis (FDA) forms the theoretical foundation
for multivariate data analysis (MDA). Theory related with MDA and FDA is
summarized in Chapter 2 and Chapter 3 respectively. One of the main concepts used in
MDA is the Principle Component Analysis (PCA) that enables dimension reduction of
multivariate data. Pioneering work on this topic was initially carried out by Hotelling
(Hotelling, 1933), who built his theory on the foundations laid out by Karl Pearson. One

main issue in FDA and MDA is the smoothing of raw data, mean and covariance



functions. There are many smoothing methods developed over the years. Amongst some
widely used ones are Kernel group of smoothers, Spline smoothers, Regression
smoothers and Moving Average smoothers. In this work, Epanechnikov kernel, and
local linear regression smoothers are used and a specific method for the moving average

smoothers is proposed.

The Epanechnikov kernel and spline smoothers are used in the PCA through conditional
expectation method (PACE) for smoothing the mean and covariance functions, Miiller
(2005). Further details on kernel smoothing is given by Hardle (1992). Structure of a
smoothing spline is explained in detail by Ramsay and Silverman (2006). Principles of
smoothing PCA is given in (Ramsay and Silverman, 2002). Local linear regression

smoothing (LLR) is explained by Loader (1999).

The main idea of estimating a trajectory from available data, through MDA is widely
studied by many different researchers. One note worthy method in this respect is PACE,

which is summarized in Section 2.3.

Smoothing a trajectory, the mean function or the covariance matrix (surface) is possible
using any of the above mentioned methods. The proposed moving average smoothing
method is named as Stretched Interpolated Moving Average (SIMA), mainly because of

the steps involved in its computation. Details are given in Chapter 4.

The proposed SIMA smoothing method is applied to two distinct data sets together with

kernel, and LLR smoothers in Chapter 5. Obtained results from SIMA are compared



with those from other methods. SIMA performed better than LLR under the condition of
weak correlation between the variables involved. Since kernel and spline smoothers are
used in the PACE method, these smoothers are sometimes referred to as PACE
smoothers. In the application to the data sets for the smoothing of mean and covariance,
SIMA performed equally well with PACE smoothers. The measure used in comparing
different smoothers is Mean Square Error (MSE) between an observed trajectory and its

smooth estimate.



Chapter 2

MULTIVARIATE DATA ANALYSIS

2.1 Introduction to the Multivariate Data Analysis
Analyzing data where more than one variable is involved requires the use of MDA
techniques. Representing the data in matrix format is essential in the process. Let

X 1=L...,n;j=1...,p be the set of nxp observations or data set. Then each

column of the data belongs to the j" random variable X and denoted by the column

%)
vector X, =| : |;j=1...,p. Similarly the rows represent the data values belonging to
X,
Xil
each trajectory, denoted by the row vector x,=| : |; i=1...,n. In this setup the row
X.

vectors X, ,...,X represents a random sample of the trajectories while the column

n

VECLOrs X,..., X, represents the values of the random variables X;.

The vector representation of data given above forms the nx p data matrix X as given

below.



variables

Xll ces le ces X:]_p

X= objects Xq 0 X o X

When the number of variables and the trajectories are large, numerical processing
needed in analyzing such data becomes prohibitive. On the other hand it is a fact that not
every variable will have the same impact on the process under consideration. Therefore,
one main concern of MDA is to identify the variables having major influence on the
process under study. This in turn will enable the exclusion of the variables with minor or
marginal effect, hence alleviating load of data processing while maintaining high level

of accuracy (Mardia, et. al., 1979).

2.1.1 The Sample Statistics
The mean vector and covariance matrix of the multivariate data can be written by

extending the univariate case to the multivariate form. The sample mean and sample

variance of the j™ variable are given as in equations (2.1.1) and (2.1.2).

n
D%
O

] n !

(2.1.1)

% \ 1
The vector of means for p variablesis X=| : |= lin L X'1 .Here 1l =|:

o Nz n

X 1

p



SZ = I:1 i) j =1l H
= p)
The sample covariance between the j™ and the j™ variables is
i iz=1:(Xij ~X;)(X: —X..) o
SJ]*_ n_l 1 J;J - l"ﬂp
Itis evident that, s .. = s7,when j=j" .
The px p covariance matrix can be written as
1L - AT
S==> (% -X)(%-X)" .
L)
Using the centring matrix H =1 —111T , the covariance can also be denoted as
n
S= 1 XTHX .
n

(2.1.2)

(2.1.3)

(2.1.4)

Since H is symmetric and idempotent, using a p-vector v, v'Sv = 1vTXTHTHXv >0

n

can be written, meaning the covariance matrix S in equation (2.1.4) is positive semi-

definite.



2.1.2 Linear Transformation
Often in MDA linear transformation of data becomes necessary before analysis, due to
linearly transformed data results in dimension reduction, simplifying computations.

Hence, computation of statistics for linearly transformed data has to be formulated.

Letting a' = (a,...,a,) be the vector of coefficients to be used in the transformation,

transformed data will be y; :aTxij; i=1...,n, j=1..., p. Transformed data will have a

mean

and variance
g2 :Ei(y_ —)_/)2 :liaT (x; —X) (. —X)TazaTSa .
y N3 I [ ) I I

In a g dimensional linear transformation, A, being the matrix of coefficients and b,

vector of constants, then,
y, =Ax+b, i=1...n—>Y=XAT +1b’

can be written. Then, the mean vector and covariance matrix of transformation will be

y=Ax+bandS, =n"> (y,-y)(y,-y) =ASA".

i=1



It can be shown that linear combinations of a multinormal vector are univariate normal

(Mardia, et.al., 1979).

2.2 Multivariate Normal Theory
The univariate normal distribution is the most widely used distribution in many
statistical application problems. Its multivariate version distribution similarly enables the
solution of many multivariate estimation problems. Therefore, it plays a major role in
MDA. It is wholly defined by its first and second moments and the p-variate normal
distribution is given by

f(x) =[27E[ " exp(x —p) ™ (x—p)
where X >0 is the positive definite covariance matrix, x, and p, are the vectors of
random variables and their means, respectively. Then, /N '(u,X) denotes a multivariate

normal distribution with parameters p and X (Park, 2008).

In multivariate normal distribution, for pairs (X;, X;), correlation Pxx, =0,i# ]

implies independence and pairwise independence implies total independence.

Corollary 2.2: If x has a p-variate normal distribution, and if y=Ax+c is the linear
combination of the variables, with gx p dimensional matrix A and g-vector c, then y

has  g-variate normal distribution.  That is, if XxON (p,X), then

yUO N, (Ap+b,AXA"), where p is the mean vector and X is the covariance matrix

(Mardia et al., 1979).



Certain applications may require the use of partitioned matrices, due to the nature of the
process. For example in a p variate process, if it is required to show the independence of

k variables in a process from remaining t=p—k elements of the process, then the
covariance vector of variables x can be partitioned into two sub-vectors x, and x, with

k and t elements, respectively as given in the following Theorem 2.2.1.

X
Theorem 2.2.1 (Mardia et al., 1979): Assume x:( !
X

2

JD N, (n,X) where x, el

X, e, and x,,=x,—X, X x, defined from the partitioned covariance matrix

X, X
Z:[En Z12], then, x UN,(n,X,) and Xx,, [0 N, (n,,,X,,,) are statistically
21 22

independent, i.e. Cov(x,,X,,)=0 , with p,, =p, - X, X p andX,,, =% -X ¥ ¥ .

Proof: Let x, =(I, 0)x and x,, =(—22121‘11 I[)x. By Corollary 2.2, the multivariate

normalities, x, 1 N, (., X,,) and X,, 0 N, (n, - X, X, X, — X, X% ) are clear.

Consider the covariance for the independency.

CoV(X;, X,,) = ( I O)E(_Elel_ll It)

= (_211 (221211 )T +Xo, )



= (_2‘112112‘12 +X, )
=0,
i.e. X, and x,, are statistically independent. m

This theorem paves the way to the idea of conditional relationship between two sub-

vectors of a vector of random variables. This is highlighted in the following theorem.

Theorem 2.2.2 (Mardia et al.,, 1979): From Corollary 2.2 and Theorem 2.2.1,

conditional distribution of x, for a certain value of x, is approximately normally
distributed, that is

X, X 0 N (1 + 0y T (5 - 1), i ). (2.2.)
with conditional mean

E[X, [ X,]= 1,0 + X5 Bi0X, = 1, + X0 X (X, - 1y, (2.2.2)

Proof: Since Xx,, is independent of x,, its conditional distribution for a given value of
X, is same as its marginal distribution. Now X, =X,,+X, X x, and this term is
constant when x, is given. Therefore the conditional distribution of X, |X, is normal
with conditional mean E[X, |X,]=p,, + X, X, ;x, (Mardia et al., 1979).

On the other hand, let x 0 N (u,07) and X, N(u,,05). Since, by Normal

Distribution Theory the marginal distribution of x, is,

10



exp[ -1 ((Xl"ﬁ )2 prq'/ﬁ xz'l‘z+(xz'#2)2 H _E(M)Z
e
dx, =

o 2-2p2L (712 ] Oy 0'22 2 o1
f = :
1(%) £ o e
Moreover,
E[x 1x]= [ %0 1x)dx,,
where the conditional distribution is as,
1 Xz‘(/‘z‘*’ﬂ%(ﬁ‘#ﬂ i
2 0'2@
e
F(x, %)=
’ o,\27(1- p°)
Clearly by Normal theory, the conditional expectation can be written as,
%,
E[% 1% ]= s, +p—2(% 1) (2.2.3)
1
and the general variance/covariance is as,
var[x, | x]=o3 (1-p°). (2.2.9)
Now, in terms of matrices; consider X, U N (ng, 2p) and

X,, N (n, — X, i, X, — X, X7 %,), then, substitute X, =poio; and X, =o” in

(2.2.3) and (2.2.4) we have, (2.2.2) and cov[x,|x]=X%,, - X, X X, =X, .u

This theorem will help in understanding the concept of principal component analysis

under some conditional forms.

11



2.3 Eigenvalues and Eigenvectors

The symmetric covariance matrix is extensively used in MDA by means of eigenvalues
and eigenvectors. Therefore two of the theorems pertaining to the eigenvalues and

eigenvectors are presented for information.

The theorem that establishes links between the structure of a symmetric matrix and its
eigenvalues and eigenvectors which can be found in most serious linear algebra books,

is as follows.

Theorem 2.3.1: (Spectral or Jordan Decomposition) Any symmetric px p matrix A

can be written in terms of A, the diagonal matrix of its eigenvalues and I', an

orthogonal matrix whose columns are standardized eigenvectors of A,
P
A=TAT" => 4v7; (2.3.1)
j=1
where, A=diag(4,,...,4,) and T'=(y,,7,5-7,)-

Therefore, (2.3.1) shows that a symmetric matrix is uniquely determined by its

eigenvalues and eigenvectors. If A4 are distinct and written in decreasing order, then I'is

also uniquely determined.

Another important concept used in MDA under certain circumstances, i.e. when a matrix

is not square, is the singular value decomposition theorem given below.

12



Theorem 2.3.2: (Singular Value Decomposition) Each nx p matrix A with rank r can

be decomposed by column orthonormal matrices, T (nxr) and A(pxr), satisfying

I'T'=ATA =1, and diagonal ® matrix of positive elements, so that A=TOA" .

This is the generalization of the Jordan decomposition theorem.

2.4 Factoring the Data Matrices

In this section factoring data matrices is reviewed, since principal component analysis
depends on the concepts developed here. The aim is to reduce the dimension of the data
matrix by means of geometric approach with respect to a least-squares criterion. As a
result, low dimensional graphical pictures of the data matrix area obtained. This is the
process of decomposing the data matrix into factors, a concept used in many
multivariate techniques. Dimension reduction facilitates the easy interpretation of the

process estimated by the data.

2.4.1 Projecting Data from Higher to Lower Dimensional Space

Representing a multivariate data set in matrix format X = was introduced in Section

2.1. Projection of data values can be performed row or columnwise. In other words the
column space C(X) or the row space C(X") can be approximated by smaller subspaces.

An important point in dimension reduction is not to lose much from the variation and

structure of the data.

13



2.4.1.1 Projecting Data onto (19 from [ °

Procedure for projecting the p-dimensional n data points onto a subspace [19, (q< p) is

explained. For simplicity details of projection from [J° onto O will be given.

Projection onto (1% becomes an extension of the procedure undertaken for the one

dimensional subspace.

Let F, be the line that passes through the origin, onto which data is to be projected.
Direction of the line F, is determined by the unit vector u,. Projection is achieved by

projecting the i" individual x e ® onto u,. Hence, the projection point p, will have

the coordinate p, =X/ Dul = x{u, on F,. On the other hand F, has to be located such
1 ul

n
that u,el1? and Z:Dxi—pxiD2 IS minimum. This is equivalent to maximizing
i=1

> [p, [*, reducing the problem to finding u, e[ ® such that » [ p, [? is maximum

i=1 i=1

subject to the constraint [Ju, [=1. Then projection is written as

px1 XIU1
y Xiu
p.z =| 2 =Xy, . (2.4.1)
px X:ul

and can also be expressed in quadratic form as

14



max u; (X" X)u, (2.4.2)

u; up =1
(Hérdle and Simar, 2003). For details see Appendix A.

The vector u, is the eigenvector of X" X corresponding to the largest eigenvalue 4, of

X"X. u, minimizes, > [1x - p, [F . When the data is centered (X =0) and S=n"X"X

i=1

is the covariance matrix, then the quadratic form (2.4.2) is maximized with respect to S.

Representation of n trajectories on F, are given by Xu, which is the first factorial

variable z,=Xu, and u, is the first factorial axis. Then, z, =u;X, +---+U,X

@ (p)

represents a linear combination of trajectories with coefficients being the elements of u,

(Hérdle and Simar, 2003).

Projection of data on [19 from [ * where q< p, is the extension of the above explained

process from [1° to [J , except minimization of ZD X — P, ? will produce the best
i=1

subspace Uu,,...,u, which are the orthonormal eigenvectors of X"X. Corresponding
eigenvalues of X'X are 4 >4, >---> 4,. Then the coordinates of n trajectories on the
k" factorial axis u, are given by z, = Xu,; k=1,...,q. The linear combination of the

original variables X,,...x,, Whose coefficients are given by the k™ vector

15



p
u,: z, :inmumk forms the factorial variables z, =(z,,...,Z, )" (Hirdle and Simar,
=1

2003).

2.4.1.2 Projecting Data onto [J % from [ "

The columns of nx p data matrix X represents the data as p points in [1". That is each
column or variable is a vector X, :(><1J.,...,xnj)T ell". Projecting the n-dimensional p
data points onto a subspace [1 % (g<n) is sought. A similar approach used in Section

2.4.1.1 will be followed. Starting with projection onto a one dimensional space or a

straight line G, defined by the unit vector v, 1" that will best fit for the n dimensional

p points. It means finding v, such that ZLD Py, [? is maximized. In other words the

unit vector v, should maximize, (XTvl)T (Xv;)=v{ (XX")v,. Then, the coordinates of

p variables on G, are given by w,=X"v,. Hence, W, =V;;X; +---+V, X,; j=1...,p,

can be written (Hérdle and Simar, 2003).

Extending to projection onto [19 g<n means generating a subspace through the

orthonormal eigenvectors v,,...,v, corresponding to the eigenvalues /¢, >--->/

q q

obtained from XX'. Coordinates of the p variables on the k™ factorial axis are

W, =X"v,; k=1...,p and W, =(W,q,...,W,) . Then, w, =D v, X...
m=1

16



2.4.1.3 Relationship Between the Projection of Data from [ " onto 1% and [J"

onto ] ¢

The g (g < p) dimensional (column) subspace onto which data points are projected, is
generated by the orthonormal eigenvectors u,...,u, of X" X . Respective eigenvalues

are A,..., 4.

Projection of data from " onto g (g<n), the row subspace is generated by the

orthonormal eigenvectors v,,...,v, of XXT, ly,...,£, being the respective eigenvalues.

Taking into account the similar logic used in both projections, the eigenvector equations
(X*X)u, =AU, in 07 and (XX")v, =/,v, in " can be written. They satisfy the

condition that, for k <r, r being the rank of X, the eigenvalues of X"X and XX are

the same, and their eigenvectors are related by

(2.4.3)

(Hérdle and Simar, 2003).
Let, U=[u,...u,],V=[v,...,v,],and A=diag[4,....,4,] , then singular value

.
decomposition of the data matrix is X = VA”?U" . From here, x; = > A/, u; .
k=1
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Chapter 3

FUNCTIONAL DATA ANALYSIS

3.1 Functional Modelling

In general many processes are continuous in nature, while available data is discrete. The
question is how to express discrete observations in functional form for the assessment of
the process in question. Processing of discrete data is dealt with in multivariate data
analysis (MDA), which is explained in Section 2. A random variable X is a functional

variable if it takes values in infinite dimensional space also called functional space.

Observations over X are denoted as x. If T isasubsetof [1*; k=1,2,... representing
the range of time or space within which the process is taking place, then the random

function X ={X(t); teT} and its realizations are x ={x(t); t € T}. Then the functional

data set x,...,x, is a particular realization of the n functional variables X,,..., X,

n

having the identical distribution as X .

In MDA a linear combination of variable values (the k™ principal components) is taken

p
by z, =inmumk, u,, being the weights applied to the x,, observed value.
=1
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Obtaining the functional data from available discrete observations for each trajectory,
would mean linear interpolation between successive observations and smoothing of

trajectories. Hence each trajectory can be denoted by X, (t),..., X, (t), t representing the

time or space coordinate of a trajectory. The discrete index used in MDA is replaced by
the continuous index t in functional PCA. Then, the principal component score in

functional data becomes,
& = [ux = Jux ). (3.1.1)

Estimating the mean function from n trajectories is possible. The obtained mean
function X (t) should be smoothed to avoid undesirable fluctuations in X (t) stemming

from noisy data.

The functional principal components weight function u(t) is defined for each component

over the range of t such that ju(t)zdt =1. Then, the principal component scores & in

(3.1.1) for the sample data is given by & = Iu(t)xi(t)dt.

In the first functional principal component the aim is to determine u,(t) such that it
2
maximizes the variance Var(&)=n") &i=n" i(Itul(t)xidt) under the constraint

Iu(t)zdt =1. Second and higher order principal components can be defined in the same

way except, they have to satisfy the additional mutual orthogonality property. That is,
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j u, (), (t)dt = j u, (O, (t)dt =+ = j u, (®u, ,(t)dt =0

(Ramsay and Silverman, 2002).

An optimal empirical orthonormal basis is needed for application purpose. That is
finding K orthonormal functions u, , enabling the expansion of each curve or trajectory

in terms of these basis functions, such that the trajectory is approximated as accurate as

possible. As a result seeking an expansion of the form,

4.0 = 240, (0 where &, = [x(0u, 0t 312)
is necessary.
The fitting criterion
(% =% (= [[x(t) - KO dt (3.1.3)

is used.

Then, from equation (3.1.3) the sum of the squares of errors for PCA,

n
SSEPCA:ZD x,— % [F, can be used as a measure of approximation. The basis that
i=1

minimizes SSE,., corresponds to the same set of PC weight functions that maximize

variance components.
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3.1.1. Brief Comparison of MDA and FDA

Given a data matrix X,,,, its covariance matrix S, =n~X"X or as in equation (2.1.4)

nxp !
with eigenvalues, 4, >4,>--->4, and corresponding orthogonal eigenvectors
u,,...,u,, are computed. Projection of data onto column subspace is subject to the

<o Ugo

constraint, max(u'Su). Solution of the eigen-equation Su=2u gives the eigenvalues

ful=l
in descending order, 4, >4, >---> 4, . Due to centering of X, its rank is at most, n—1,
meaning that the S covariance matrix will have min{p,n—1} nonzero eigenvalues.

In functional PCA, the covariance function s(t,t") can be written for n available data

as, s(t.t) =n"Y K (Ox(t).

Finding the principal components weights u,(t) requires the following concepts

(Ramsay and Silverman, 2006, Appendix A.5).

1. In a general inner product space, the symmetric matrix is replaced by a self-

adjoint linear operator, A, which satisfies (x, Ay)=(Ax,y), Vx,y.

2. A is compact (completely continuous) symmetric transformation on Hilbert

space.

Maximizing the inner product space <x, Ay> subject to the constraint [1x[}=1 is similar

to maximizing x' Ax subject to x'x =1 in the finite dimensional space.
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Here the sequence u; is defined as the solutions to the set of optimization problems

max (X, AX), subject to Ix=1and (x,u)=0fori<j. (3.1.4)

The solution is obtained under the given conditions by assessing the eigenfunction

problem Au=Au and normalizing the eigenfunctions u to satisfy, [Jul=1. Then, the
first eigenfunction u, solves the optimization problem given in (3.1.4) resulting in a

maximum value equal to 4. Subsequent eigenfunctions u; solve the constrained

problem given by (3.1.4). Then, maximum at the j* stage is, (u;, Au;) =4, [u; (= 4;.

Each of the principal components weight functions u; (t) should satisfy

[s(t.t)u)dt” = Aut) (3.1.5)

for a certain eigenvalue A . Left hand side of equation (3.1.5) is the integral transform of

the weight function u by the covariance function S given by Su :Is(.,t*)u(ﬁ)dt*.

This is called the covariance operator, S . Hence, Su = Au, can be written.

In MDA there are p eigenvalue-eigenvector pairs, whereas in FDA it becomes the

number of function values which are infinitely many.
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3.1.2. Smoothing in Functional PCA
Data matrix described in MDA, rows are the subjects or trajectories, representing one

realization of the random process governed by p random variables. In FDA a trajectory

represents a random function in continuum. The continuous environment T is a

bounded time or space interval over which the domain of the random process X (.) lies.

The weight functions u(t) used in the computation of principal components needs to be
smoothed by controlling their roughness. This results in the smoothing of the principal

components. For the first PC the function u,(t) maximizes the variance of the principal

component scores subject to

[lu®¥ dt+a [{u@®¥dt=1 a>0. (3.1.6)

a in (3.1.6) is a control factor over the amount of smoothing required. For smoothing
the second and higher order principal component scores in addition to constraint (3.1.6),

the constraint

j ui(t)uj(t)dt+aj u (t)u; (t)dt =0; i = j

is required.

Smoothing the sample mean function has a major importance in FDA. A functional data

set X, (t),...,X,(t) can be expanded in terms of basis functions, f(t),...,f (t). A
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coefficient matrix A, can be defined such that, X, (t) = Zaij f;(t). Then the smoothed
j=1

sample mean becomes,
X(t)=>af,t), ifa,=n"> a.
j=L

3.1.3 Storing Functional Data/Observations

Taking a basis to mean a standard set of functions (fl(t),..., fm(t)) such that, any
function of interest can be expanded in terms of f,(t). Then, a functional datum x(t)

can be expressed in terms of m basis functions and the principal component weight (u)

as x(t)=iujfj(t).

In FDA basis functions are designed to represent the nature of the process under study.

This is achieved by fitting basis coefficients to the observed data. Given values x,,...,X,
observed at locations t,...,t,, basis functions f(t) can be represented by the matrix

B=f,t), i=1..,n j=L1...,m.

If u is the vector of coefficients, then the vector of values at the observed locations will
be Bu. When the number of basis functions are at most the same as the observation
locations (m <n), then the basis functions can be fit by minimizing the sum of squares

2

of deviations, [xi _Z,- u; f, (t)}
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For m=n the expansion x(t) = zi u; f,(t) gives an exact interpolation of the x; values.

For m<n the expansion is the smooth version of the initial data.

If m>n, more basis functions than observed locations, then, a choice of u values gives

exact interpolation of the x, values. That is, X, (t):Zujfj(tk), k=1...,n.
j=L

Then, the interpolation that includes the parameters that minimizes the roughness of the

curve is selected.

3.2 Expressing the Random Process in Terms of Global Mean and
Covariance

Let {Xt} be a random process in the interval [a,b]. Then the random trajectories X

te[a,b]
in L?(1) assumed to have mean function x(t)=E(X(t)) and covariance function
G(t,t") =cov(X(t), X(t")), where t,t"el. It is assumed that the operators on

covariance have a sequence of orthonormal eigenfunctions ¢ with eigenvalues

Py I

The Hilbert- Schmidt kernel, G is very useful in the expression of a random process in

terms of global mean and covariance and is given as
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Gtt) =Y AAOh ), tt eT. (3.1.7)

This is the orthogonal expansion of the covariance in L? in terms of eigenfunctions ¢,

and corresponding eigenvalues A4, k=12,...and 4, >4, >.... Karhunen-Loéve

Expansion and, Mercer's theorems guarantee the expansion given in equation (3.1.7)

and its spectral decomposition. Details of the Karhunen-Loéve theorems are in Apendix

C.

In classical functional PCA, for the process, {Xt}te[a g the random curve (trajectory)

X (t) can be expressed as,

X (1) = () + S 4 O, teT. (3.18)

Here, & are uncorrelated random variables with, E(& ) =0 and E(&?) = 4,, zkﬂk <o,

For any finite K, (3.1.8) can be written as,

X (O = u®+ 2 A0 (3.1.9)

K ©
K, determines the fraction of variance, F(K)=> 4/ 4, in the process under

i=1 k=1

consideration and is required to be as high as possible (preferably above 0.8).
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3.3 The Principal Components Analysis Through Conditional
Expectation
Functional principal component scores, &, , play a major role in the estimation of a

trajectory. They are uncorrelated random variables with mean zero and variances being
the eigenvalues of covariance matrix G. The functional principal components scores
given directly by equation (3.1.1), and it works well when the density of the grid of

measurements for each subject is sufficiently large.

The functional representation of a trajectory, X (), for the j™ observation of the i"
subject made at time t;, i=1..,n, j=1..p; is represented by Y,. Number of
observations, p,, made on each of the i" subjects are assumed to be i.i.d. random
variables. If no error is involved, then, Y, =X(t;). However, observations will
inherently include some measurement errors ¢; that are also assumed to be i.i.d. with

E(g;) =0 and constant variance o?. Then, the model representing the i™ subject based

on observations can be written as
Y, = ult) + D &b ) +e b €T (3.1.10)
k=1

Thus, instead of the integral, the estimated principal components scores are given by

bi
Ey = Z(Yu = u(t;)d, (t;)(t; —t; ) . However, this does not work well when the data are
j=1
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sparse, since substituting Y, for X;(t;) causes biased FPC scores. Therefore, an

alternative method, the Principal Components Analysis through Conditional Expectation
(PACE) is proposed by Yao, et. al. (2005). The PACE method, assumes that the

principal component scores &, and error g, are jointly Gaussian. Let

Xi=(X; (), xi(tipi N, Yi=(Y, (til)l""Yi(tipi N, M= (lu(til)!"":u(tipi))T , and
B = (4 (t),..4 (t;;)) - Thus, under Gaussian assumptions, the best prediction of the PC

scores can be found by conditional expectation.

i =EI& IYil= A, (Yi— 1), (3.1.11)

where X, =cov(Y:,Yi) =cov(Xi, Xi)+o’l, =G(T;,T,) +c°5; .
Substituting the estimates of 4, ¢, , £, and g inequation (3.1.11), leading to

Ei = ELE Y i]= Ay B (Vi) (3.112)

where, X, is obtained from the whole data. Then, the infinite-dimensional processes are
approximated by the projection on the functional space spanned by the first K
eigenfunctions of estimated Xy, covariance matrix. Thus, in practice the estimated

i" trajectory is
xi(t):ﬂ(t)+Z§ik¢k(t)' (3.1.13)
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The conditional method (3.1.12) under the Gaussian assumptions works well in both
case of sparse and dense data and yields the best estimates. It is also worth mentioning

that (3.1.11) is the best linear prediction of principal components scores &, and works

well weather the Gaussian assumption holds or not (Yao, et. al. , 2005). See Yao, et.al.,

(2003) for another estimation for functional principal component scores.
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Chapter 4

SMOOTHING

4.1 Smoothing The Mean

In a random process X (-) the underlying function f is generally unknown. Available
data collected or observations made at p different time or space locations,
Yi(t),Yi(t,),---Y,(t,) give some idea about the likely behaviour of the function. Using

available observations to predict the underlying random function representing the
random process is not an easy task, since data is mostly contaminated by errors due to
various agents. If there is sufficient evidence to indicate that data is error free, then some

simple linear interpolation may be adequate to represent X(-) with available
observations. However, in the presence of error ¢ smoothing will be required to

represent X (-). Here, ¢ isi.i.d. with E(g)=0and var(g)=0o".

Let Y; =X (t)+¢, i=1...,n be the noisy representation of X(:). If Y is the matrix of

observations, then var(Y) =X, = c”I.

There are many different smoothing techniques used in various application fields. Some

of the important ones are introduced in the following section.
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4.1.1. Commonly Used Smoothing Methods
A simple smoothing will be the fitting of ordinary least squares function to the data

defined by the basis function expansion,

X(tj)zibk@(tj)zbw.

{;b(tj)}k are the basis functions and the coefficients vector b,, is determined by

minimizing the sum of square errors (SSE),

SSE(Y | b) =§n‘[vj —ZK:bkqﬁk(tj)} = (Y -®b)" (Y -®b) = |[Y - ®b|.

j=1
Then, the estimated (fitted) vector y is found by

Y=0(@ D)'PD'Y.

This assumes equal weight assignment to all observations, regardless of observation
time/space t. In the case of regular grid this may be acceptable, but for irregularly
observed data a weighing method is necessary. Then, the weighted least squares (WLYS)

fit offers a solution given by

SSE(Y | b) = (Y —®b)" W(Y —®b) .
Weights W; to be assigned can be computed using different methods. Kernel functions,

splines, moving averages are just a few that can be used. In the case of kernel functions,

some of widely used ones are
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S p

<1.

. t -t 0.5 for
Uniform: W, (t) = K L

0, otherwise

t,—t Y
_ t -t 0.75/1-| =—2" for
Quadratic: W, (t) = K n = h

0, otherwise

t,-t,

t -t
Gaussian: W(t) = K( 2 pj: €
h

)
K
Nadaraya-Watson: W, (t) == ————+~.
Tk t,—t,
3 h

Widely used Epanechnikov kernel function takes the form K(x) = 0.75(1—x2)1[_111](x) is

the univariate case and K(x,y) =0.5625(1—x*)(1—y?*)1., (X)L ,;(y) is the bivariate

case with 1,(x) =1if xe A and O otherwise for any set A.

Smoothing the mean w(t) and covariance Cov(X(t), X (t")) of the set of observed

curves is necessary in many applications (Rice and Silverman, 1991).

Using the spline smoothing to smooth the mean is to use the penalized least squares.
Given the i" data vector X, =(X,,...,% )", the estimated mean curve 4 should

<1 Nip

minimize
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N 0% - ulf +a j L(t)2dt . (4.1.1)

Here, « is a positive smoothing parameter and the integral represents the roughness of
4. (4.1.1) is equivalent to Zj[)?j —u(t,)T +aIy"(t)2dt , which is the spline smoothing
applied to pointwise averages. Choice of the smoothing parameter « is subjective, but

methods such as cross validation (CV) are available to automate the choice of optimum

a value (Heckman, 1986).

Similarly various moving averages techniques can also be used as the smoother of the
mean and covariance functions. The stretches interpolated moving average technique
developed during the course of this study and given in Section 4.3 is successfully
applied to the smoothing of the mean. It is shown to be more robust than the local linear

smoothing when the correlation between trajectories are weak.

Local Linear Regression is also used as a smoother and some details of this method are

given in Section 4.3.3.

4.1.2. Kernel Smoothing

One other method used for smoothing the mean is the scatter plot smoothing utilizing

kernel smoothers. Let Y;(t), i=1...,nandj=1...,p;, be the j™ observation on the i"
subject made at time t. If the model has no additional error then shortly Y; = X (t;) can

be written.
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The local linear scatter plot smoother at time t for w(t) is obtained from the scatter plot

(t;,Y;) by minimizing

n

pZK( ){Yij _ﬂo_ﬂl(t_tij)}z’ (4.1.2)

with respect to 4, and S, where h, is the bandwidth and univariate density « is the

kernel function. Then the estimate of u(t) is ﬂ(t)szo(t). The minimization can be
done by taking the derivative of (4.1.2) with respect to S, and f,. Solution of the

obtained equations yields the local linear estimator (smoothed) /(t)

Z%Z ; Z@Z i -t

i j

where,

, TET OTAT

A= TR EIRT
1t = : : 2
(ZQZWa 0]

ZEpr (t - Z?@Wu
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Here, Ep=& (p;: Number of observations on the i trajectory) and

i

t.—t
W, = K[“hJ/nhﬂ is the weight function, x(x) :0.75(1—x2)1[_111](x) is the uni-variate
Y2

Epanechnikov kernel function with 1,(x)=1ifxe Aand O otherwise for any set A
where t is the starting data value of bandwidth h, (Yao et. al. 2005). Alternative

formulas for (4.1.3) can be found in Hall et.al. (2006), and in Miiller (2005).

Choi and Hall (1998) give interesting ideas about bias reduction in local linear

smoothing depending on the kernel function.

4.2 Moving Average Approach to Smoothing

Moving average is a well-known technique in a broad range of disciplines and initially
used for trend generation in mainly time dependent variables. Various versions of
moving averages are in implementation, depending on the nature of the process under
consideration. Simple, cumulative, weighted, exponential moving average techniques

are some of the commonly used ones for trend generation.

Cumulative moving average is used when the average starting from a given time point
up to the present is required for decision making. Weighted moving average is mostly
used in cases where higher weights are to be assigned for the latest or new data.
Different weight determination techniques are employed. Widely used weighing

techniques are linearly or exponentially decreasing, by assigning the high weights to
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most recent data and lower weights as data becomes old (Durbin, 1959). In finance,

economy or in some medical applications weighted moving average is used.

In principle moving average is taken to be a simple smoothing method, but its
examination in detail indicates that sophisticated moving average methods can be
developed. In part of the research devoted to this thesis, some new ideas are developed,
and due to the process involved, it is named as “Stretched Interpolated Moving
Average” (SIMA). Obtained smoothing results are compared with those of Local Linear
Smoothing (LLR) and PACE results, to verify the validity of SIMA. First step is to
locate the computed moving averages at equal distance over the range of the data.
Hence, named as, stretched moving average, details of which are given in the following

section.

4.3. Stretched Interpolated Moving Average (SIMA)

4.3.1. Stretched Moving Average

The method developed handles the moving average process when data are available on a
regular grid basis in terms of time or space coordinates. That means, each datum is
located at equal time or space interval from its immediate neighboring data values.
Considering the one dimensional case, when p data values are regularly spaced on a
trajectory, m data points within a fixed lag interval h are used for averaging. The
number of averaged values will be, M = p—m+1. Process starts with the first or oldest
data averaging the first m data values (Kenny and Durbin, 1982). Let obtained average

values be denoted by the random variable Y . Given p, observations located at equal
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distance on the i™ trajectory, the moving average for each lag with m data values will

be

m+l-1
Yi = i X

2<m<p,i=1...,n 1=1...M. (43.1)
m j=I

ij’

Every averaged value has to be assigned to a coordinate within the lag interval it belongs

to. Assuming every averaged value Y is assigned to the first point’s coordinate of each

lag, the final average obtained from the last or M™ lag will fall h units distance behind
the present or newest datum. Alternately, averaged values can be assigned to the mid-
point or last point of each lag. Assignment of the upper lag boundary would mean
ignoring a time or space interval equivalent to h from the beginning point of the data
values. The idea proposed to overcome this handicap, is to assign the coordinate of the
first datum to the first average value, and the coordinate of the last datum to the last
(M™) average value. Remaining M —2 moving average values will be equally spaced

over the span of data.

Mean and variance of the moving average values for the i" trajectory is

E(Yi)zﬁzYn :m_ Z xij

Relationship between the moving average values Y, , with data values X, can be found

as follows (Mentz, 1975).
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Consider the case, m=2, then

1
Y, (XiI+XiI+l)'

'm

Via mathematical induction, X, ,, =mY, — X, , follows with,

i
Xy =MmY, —mY, , + X, ,

=mY, —mY,_, +mY,_, — X _,

=mY, —mY,,+mY, ,—mY, .+ X, ,

= mZI: DY + (D' X,

For the formulation of the Stretched Moving Average, let random variable S be the

time or space interval covered by p. data values on the i" trajectory. It is required to
locate the averaged values equally spaced on the same interval S. In other words, p;
data values X;;, j=1,...,p; onthe i"™ trajectory covers an interval S, the same interval

will also be covered by M, moving average values. Without loss of generality the data

values can be assumed to be uniformly distributed on a trajectory with equal interval
between points.

Then, distance between data values is d =S/(p—1) and the distance between the
moving average points will be s=S/(M —1). Note that, d <s. Alternately if p data

values are uniformly located on S with unit interval in between (d=1), then

s=(p-1)/(M-1).
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Moving average values will be located at s distance apart such that the first one Y,
will correspond to the location of X;,, and last one Y;,, corresponding to the location
of X;,. Other moving average values ranging from Y;, to Y,, , will occupy locations

on S accordingly at equal distances. Steps followed in the assignment of coordinates

to compute moving average values, is named as the Stretched Moving Average.

Clearly as the lag interval becomes larger, in simple moving average the computed

final Y, value will lag farther behind the latest data values. Magnitude of this distance
is (m-1)d. Stretched moving average eliminates the handicap by assigning the

computed Y, values uniformly over the full interval S covered by the trajectory.

Let teS, s=M TS
M-1 M-1

, where s, =min(t) and s,, =max(t), then the stretched

moving average can be written as

m-+1-1

DX, 1=1...M

Yil(sil):% :

(Tandogdu and Iyikal, 2013).

To highlight the stretched moving average concept, a hypothetical data set consisting of

p=10 data values X;, j=1,...,10 given at unit interval apart over the i" trajectory is

used. Cumulative distances from the first datum towards the last one will be,

t=0t=1..t,=9. This means, data is spread over S=9 units of time or space

interval. Hence, data can be represented by X;(t;). If a lag interval of h=3 units is
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used, it will include m=4 data values for the averaging process. Then,
s=(p-1)/(M-1)=9/6=15 units. First moving average value Y,(s;) will be
assigned to the same location as, t, i.e. s, =t . Subsequent moving average values will

be Y;(s). The graph showing the raw data, simple moving average and stretched

moving average is as shown in Figure 4.1.

percent change
in the Value of Shares

63

a0 T

— — — simple moving average

stretched moving average raw data

Figure 4.1: Raw, Simple Moving and Stretched Moving Averages.

The simple moving average graph lags behind the latest raw data points X, by m-1

unit distance. Stretching the locations of moving average values to cover the whole
space S, is the first step towards the computation of the error involved in smoothing
committed by the moving average process. Accurate computation of this error would
require a one to one correspondence between the data points and the moving average
values. However, the number of moving average values is less than the number of data
points on a trajectory by m—1. A linear interpolation is introduced to equalize the

number of moving average values with the number of data values on a trajectory.
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Further, the normality of a trajectory, leads to the conclusion that the stretched moving

average trajectory is also normal as explained below.

It is known that the random process X; has a p-variate normal distribution if and only if
a' X, is univariate normal for all fixed p vectors a. Then a linear combination
y=AX,+c of X, has a g-variate normal distribution, where A is a gqxp matrix of
coefficients and ¢ is a gx1 vector of constants (Mardia, et.al., 1979). In place of y the
stretched moving average Y;(t) can be written, leading to the fact expressed in the

following theorem.

Theorem 4.3.1: If the i" trajectory X, (t) of the random process has p-variate normal

distribution, then the corresponding stretched moving average trajectory Y;(t) has an (p-

m+1)-variate normal distribution.

Proof of Theorem 4.3.1 is given in the Appendix B.

4.3.2. Linear Interpolation of the Stretched Moving Averages

Since the idea is to use the moving average as a smoother, the error committed in the
smoothing process should be measurable. This measure is usually expressed in some
form of the difference between the observations and the corresponding moving average

values. However, as number of observations on a trajectory is always greater than the

number of computed moving average values (p, >M,), it is deemed necessary to

compute a moving average value corresponding to each observation. This is possible by
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linear interpolation of the stretched moving average values. Method followed to obtain

these averages is named as “Stretched Interpolated Moving Average” (SIMA). Obtained

new averages for the i trajectory are denoted by Y, and given by

Yij*(t) =[Y; (55) =Yy (8500w, + Y4 (55.) (4.3.2)

t—s. ] . .
where, w; =—2 In (4.3.2), the first stretched interpolated moving average value

iV
Y, is equal to the first moving average value Y, , the last stretched interpolated moving

average value Yip* is equal to the last moving average value Y;; (Tandogdu and Tyikal,

2013).

Sample covariance function’s limit distribution when the variance is finite in the moving
average process, is derived by Davis and Resnick (1986). Obviously the difference

between the observed and smoothed values or the error is required to be a minimum.

In SIMA, random variable p, represents the number of observations on the i trajectory
and p;’s are i.i.d. Assuming t; and X;:jeJ; are independent of p,, E(p,)<o,
P(p,>1)>0, and E(X;)=pu, then it is a well known fact that as p, —oo in a fixed
interval T and m—1,

SUpE Y, ()= X, (1) [=>0.

teT
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For more details see (Davis and Resnick, 1986) and (Furrer et.al, 2006). The following

theorem shows the variance of the error approaches to o> under similar assumptions.

Theorem 4.3.2: Let p, be the number of observations on the i" trajectory, and also
under the assumption that X (t)’s are i.i.d., with E(X;)=0 and E(X;)’=0", when
t—s;, i.e. w; >1, then,

sup ELY; (t) - X, ) s mT_lO'Z-

teT

Further, when p, - and t —s; with very large m,

sup E[Y; (1) = X, () = o°.

teT

Proof is given in Appendix B.

Application of SIMA concept to data trajectories has yielded a smooth trend. Details of
the application are explained in Chapter 5. Given a data set consisting of several
variables and multiple observations on each variable, smoothing enables the construction
of a functional relationship among the variables. Degree of smoothing obtained via
SIMA is compared with the smoothing results obtained from LLR. Hence, a brief

summary of LLR is given in Section 4.3.3.
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4.3.3. Local Linear Regression
The Local Linear Regression (LLR) is a smoothing method primarily based on the idea
that a smooth function can be approximated by a low degree polynomial (Fan and

Gijbels, 1996). This translates into minimizing

S0~ 3y + 3,05 -0

to obtain estimates for the coefficients a, and a,. Here w((x,—x)/h) is the kernel

weight function with bandwidth h. The LLR estimate at point x is given by

a(x) = Zbi (x)Y, . The coefficients b, are found by

i=1

b(X)" = (By().....b, (1)) = 4" (X"WX) X" W

1 x-X
where, "' =( 0),and X=|: : is the design matrix. Further details are given
1 x, —X

in Loader (1999).

LLR smoothing follows the observed trend closely when the correlation (r;) between

the predictor and response variables is high (preferably, |r; [>0.7), and deviations from

actual trend increase as this correlation becomes lower (Breiman and Friedman, 1985)

(Hoover et. al.,1998, Hardle, 1992).

Let r; be the correlation coefficient between different trajectories, where i=1,...,n is

the trajectory counter and j=1,...,p is the column counter. Then obtained pxp
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correlation coefficient matrix R is symmetric with, r, =r;. Close inspection of R

gives an idea in between which trajectories one can expect good or poor LLR smoothing

results.

Figures 5.5 and Figure 5.7 are the graphical representation of matrix R for the data sets
used in this study. In examples where natural phenomenon is involved, such as those in

Earth Sciences, trajectories spatially closer will tend to have high r values.

4.4. Smoothing the Covariance

Observations made over a trajectory are likely to include errors or noise. Smoothing by
expanding into orthogonal eigenfunctions will help to reduce the noise involved during
sampling. Therefore, estimation of eigenfunctions becomes a crucial step in smoothing.
Covariance matrix from observed data is defined as, Gy (Y; —a(t;)(Y, —4(t,)). The
obtained covariance matrix can be plotted as a scatter plot surface
((t:5).Gy), I, j=1...,p,andi=1...,n in [1°. Smoothing is applied to this surface
under certain regularity assumptions as given in Fang et.al., (2005). Then the local linear

surface smoother becomes

> ¥ K(t”h—_t,t"h—‘t]{exti,-,ti.)—f(ﬂ,(t,tw,(ti,-,ti.)}z (4.4.2)

where, (8, (t,1),(t;,t,)) = £ + B, (t=t;) + B,(t-t,) . Minimization of (4.4.1) with

respect to f,, £,, and £, yields the smooth covariance matrix G(t,t") =Bo(t,t*).
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Based on SIMA concept in Sections 4.3.1 and 4.3.2, smoothing the covariance matrix

can be performed with a similar thought expressed above.

The covariance surface can be smoothed by applying the SIMA concept in various
directions. Smooth surfaces obtained from each direction are then averaged to obtain the
final smooth surface. That is equivalent to averaging smooth values obtained for a given

point, smoothed by different directions.

Assume k is the number of different directions used in directional smoothing and

G;,,...,G, be directional smoothed covariance matrices. Smoothing in each direction is

carried out according to SIMA methodology. Final smoothed covariance matrix G~ is

obtained by averaging the corresponding elements of directional smoothed matrices.

G =k'>.Gj, i=1...k (4.4.2)
k

The directional moving average smoothing concept in (4.4.2) is still under study. Thus,

only one direction is used to smooth the covariance in Chapter 5.
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Chapter 5

APPLICATIONS

Multivariate and functional data analysis concepts introduced in Chapter 2 and Chapter
3 together with the new method of smoothing (SIMA) developed during the course of
this study given in Chapter 4, sets up the foundation of this thesis. Estimation of the
unknown values or parameters in a certain process is of prime importance. Equation
(3.1.13) is the key to the estimation of trajectories. Terms involved in this equation can

all be estimated as explained in appropriate sections. The global mean function z(t) is
estimated from all available data. ¢(t), the eigenfunction of the covariance function is

also estimated using all available data. 5 , represents the principal component scores

computed from the data. During the estimation process, some types of smoothing are
used. Hence, smoothing becomes an important aspect in the estimation process. There
exists a range of different smoothing techniques developed over the years. Kernel,
splines, LLR are some of the widely used smoothers. However, there are still certain
situations that require special attention. One such point was the use of moving averages
as a smoother. When multivariate data are observed on a regular grid and especially
when the correlation between variables are low, use of SIMA as explained in detail
under Chapter 4, is at least as efficient as the kernel or LLR smoothing methods.

Therefore, in the application of the aforementioned methodologies were tried on data
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sets from different fields to test their validity, and sometimes compare different

methodologies.

5.1 Smoothing the Global Mean Function Using Different Smoothing

Techniques

Part of this thesis work involved evaluation of the new smoothing technique developed.
Smoothing the global mean was undertaken using SIMA, PACE, and LLR methods, and
results compared. SIMA is also applied to smoothing the covariance surface and
graphically compared with the kernel smoothed covariance surface. Details of the

applications are presented in the following sections of this chapter.

5.1.1. Using SIMA and PACE for Smoothing the Mean

There are several smoothing techniques used in various stages of data processing, i.e.
direct smoothing of data values, smoothing the mean and covariance functions. These
are the cases considered and used in this thesis. As an example, a data set consisting of
the daily percent change in the value of shares over 30 consecutive working-days,
belonging to 20 companies (trajectories) from Istanbul Stock Exchange is used to
estimate the smooth mean function. Raw data and the estimated/smoothed data are
shown in Figure 5.1. Negative values refer to a loss and positive values refer to a gain in
the value of a share. Actual data set obtained from the online records of Istanbul Stock

Exchange web site is given in Appendix D, Table 1.
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Raw Trajectories

12 3 4 5 6 7 8 91011121314 151617 18192021 2223 24 2526 27 28 29 30
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;

1 2 3 4 5 6 7 8 9 1011 12131418&9&718192021 222324 252627 28 2930

Est Traj. by PACE

% CHANGES

DAYS

Figure 5.1: Raw Trajectories of the Daily Percent Change in the Value of Shares Over
30 Consecutive Working-Days, Trajectories Smoothed by SIMA, and PACE Methods.
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Extreme values are visible in the first few days as well as days 18 and 24. It is a fact that
the observation of an extreme value in a process would mean that there is/are
unexpected situation(s) temporarily affecting the process. They pose a danger if they are
included in a study by shifting the trend (mean and variance) out of its expected path.
Therefore, smoothing of data prior to the generation of the estimated mean function is

beneficial.

The Epanechnikov kernel smoother used in the PACE method, and the SIMA method
are implemented to smooth the trajectories of the data. For each case the average of
trajectories are computed and compared with the average of the raw trajectories. MSE
functions between average raw and smooth averages obtained through PACE and SIMA
are given in Figure 5.2. In general the MSE function obtained from SIMA appears to be
lower than that of PACE MSE function, indicating better performance in smoothing by

the SIMA method.( MSEy,,, = 0.80 and MSE,,. =1.09)
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| ——MSEofPACE —#—MSEofSIMA | Days

Figure 5.2: MSE Functions between Average Raw and Smooth Averages obtained
through PACE and SIMA.
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A second data set from a different field of study is chosen for smoothing the mean using
SIMA and PACE methodologies. This will give an idea about the performance of the

two methods for comparison.

The data set selected represents the coordinates of points in three dimensional space

(X,¥,2) . x is the coordinate of a point in East —~West, Yy is the coordinate in the North

— South direction, while z is the elevation from sea level in meters.

Data is obtained from 1:2500 scale topographic maps. Selected area containing gentle
slopes as well as locations where rapid changes in elevation are observed, and are

selected for the purpose of this study.

The data set consists of 30 parallel trajectories at 50 meters apart and each trajectory
containing 30 measurements taken on a regular grid bases at every 50 meters in the East-

West direction.

Figure 5.3 shows the raw trajectories of this data in the East-West direction, but there are
no significant deviations in the values forming each trajectory. Smoothed trajectories by

SIMA and PACE are also given in Figure 5.3 for comparison.

Data used in this study is given in Appendix D, Table 2. Hence, no extreme values.

Smoothing of the mean is undertaken using SIMA and PACE methods and associated
MSE functions are generated. Figure 5.4 shows the MSE functions between raw
trajectories and smoothed by SIMA and PACE methods. From Figure 5.4 it can be seen

that the error functions are following a similar trend, indicating no significant difference
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between the two methodologies. In fact the overall MSE of SIMA method and PACE

method are MSE,,, =8.47 and MSE,,,.. =7.97 suporting the idea of close

performance.

However, for the data values at locations 3, 4, 28, and 29 the increase in MSE for SIMA

IS due to rapid change in elevation in the Nort — South direction.

A similar increase in MSE at data locations 14, 15, 17, and 18 in PACE method is
considered attributable to over smoothing of the mean, foloowing the detailed study of

the raw and smooth mean values.

The shares data set with extreme values and the elevation data set without extreme
values are both smoothed using SIMA and PACE methods. For each data set, associated

MSE values indicates no significant difference between the two methodologies.

52



Raw Trajectories

East-West Direction

Est Traj by SIMA method

550

500

450

B
Q
Q

Elevations

East-West Direction

Est by PACE method

550

4]

Q0

a
o

levationg
(=]
o

of
3

300 ~

Figure 5.3: Raw and Smoothed Trajectories of Elevation Data.
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Figure 5.4: MSE Functions for SIMA and PACE Exhibits a Similar Behaviour with a
Few Exceptions.

5.1.2 Using SIMA and LLR for Smoothing the Mean.

In this section same data sets used in Section 5.1.1 are used to compare the performance
of SIMA with the LLR smoothing method. It is known that the accuracy of smoothing
with LLR gets better as the correlation coefficient between the variables increase. For
the elevation data set the high correlation between trajectories is expected, since the

nature forces shaping the topography are the same within close proximity.

In the shares data set, high correlation between trajectories should not be expected due to

market conditions affecting shares differently.

5.1.2.1 High Correlation Between Variables Case
Area from where the elevation data is taken contains gentle slopes as well as locations

where rapid changes in elevation are observed. Correlation between trajectories is
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mostly high to very high |r; |>0.8. Correlation matrix surface given in Figure 5.5 clearly

shows this feature. On the diagonal correlation values are 1 and decline towards the ends

as distances between trajectories increase.

Correl. Coef.

Trajectories

Figure 5.5: Correlation Surface between Different Trajectories of Elevation Data.

Smoothing of trajectories through SIMA is compared with the smoothing results of
LLR. For comparison the Root Mean Square Deviation (RMSD) or Root Mean Square
Error (RMSE) between the observed and the smooth trajectories for SIMA and LLR are

considered. Figure 5.6 shows the RMSD functions for the two smoothing methods.
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Figure 5.6: RMSD Functions for SIMA and LLR Smoothing Methods.

As expected in the presence of high correlation between trajectories, smoothing carried
out by LLR has lower trend, indicating smooth mean following closely the observed
mean function. Higher RMSD values obtained in SIMA, meaning when the correlation

is high between the variables LLR performs better than SIMA.

5.1.2.2 When Correlation is Low Between Variables

Based on the theory of linear regression it is known that as the correlation between two
variables decrease, estimation using the obtained regression equation deteriorates, i.e.
becomes less reliable. LLR is used as a smoother. Smoothing in the case when pairwise
correlation between variables under study is low will result in high errors. Through trials
using data sets where correlation between variables are low, agreed with this concept.
The stock exchange shares data set introduced in Section 5.1.1 is used to compute the
correlation between the daily performances of different shares. Results are shown in

Figure 5.7. Apart from the diagonal elements where the correlation values are
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r; =1, wheni=j. Of the remaining 870 correlation values only 13% are above 50%,

leading to the conclusion of low correlation between 30 variables.

Figure 5.7: Correlation Values Between the Daily Performance of Different Shares.

Smooth mean functions are computed via SIMA and LLR. The RMSD between the

average obtained from raw data and the smooth means are shown in Figure 5.8.

Clearly, SIMA resulted in lower errors compared with LLR, indicating better smoothing

results can be obtained from a data set where the correlation between variables are low.
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Figure 5.8: RMSD Functions Obtained for SIMA and LLR Smoothing.

In Figure 5.9, correlation coefficient (r;) values between predictor and response

trajectories, and RMSD values between observed and LLR smoothed trajectories are

given for comparison. It can be seen that for correlation r; values under 0.45, RMSD
values tend to be not very sensitive to changes in r;, while RMSD starts decreasing for
values of r; above 45%. This is an expected result due to the nature of the shares of

different companies.
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Figure 5.9: Relationship Between Correleation Coefficient and RMSD for the Shares
Data Set.
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5.2. Smoothing the Covariance Surface Using SIMA and Kernel

Smoothers

The covariance matrix plays a major role in MDA and FDA. Smoothing is essential
especially when high local variability is observed. Amount of smoothing in SIMA
depends on the number of data points (m) falling into each lag interval (h), while in

kernel smoothing used in PACE depends on the band width (h).

In the studied elevation and shares data sets, for SIMA m=3 and for PACE h is
automatically selected by generalized cross validation (GCV) method (Miiller and
Prewitt, 1993). As a result both covariance surfaces are highly smoothed by the kernel
smoother, while smoothing by SIMA remained relatively mild compared with kernel
smoothing. Increasing the lag interval will increase the degree of smoothing, and
similarly reducing the size of the bandwidth in kernel will reduce the degree of

smoothing.

Figure 5.10 and Figure 5.11 show the raw, smoothed by SIMA and smoothed by kernel

covariance surfaces for the elevation and shares data, respectively.
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Figure 5.10: Raw Covariance Surface and Covariance Surfaces Smoothed by SIMA, and
by Epanechnikov Kernel Methods for the Elevation Data.
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Figure 5.11: Raw Covariance Surface and Covariance Surfaces Smoothed by SIMA, and
by Epanechnikov Kernel Methods for the Shares Data.
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5.3 Robustness of SIMA Method

An estimator is said to be robust if it is insensitive to changes in the underlying

distribution and resistant against the presence of outliers.

A good robust estimator as given in Abu-Shawiesh (2008) should have,
e high efficiency, meaning minimum variance.
e high breakdown point, which is a measure of the maximum fraction of outliers.
o redescending influence function measuring the reaction of an estimator to a small

fraction of outliers.

e low gross error sensitivity which measures the worst influence a small amount of

contamination of fixed size can have on the value of the estimator.

The median absolute deviation from the sample median (MAD) is considered as one of
the good robust estimators since it satisfies these requirements to notable level of
significance. Other noteworthy references on robustnes are Lax (1985), and Parr and

Schucany (1980).

MAD values are computed using the formula given in Abu-Shawiesh, (2008)
MAD =1.4826MD{|X; —MD|}, i=1,2,...,n..

Here, MD is the sample median. The factor 1.4826 is only used when samples come

from Gaussian distribution, and should not be used when sample comes from non-
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Gaussian distributions. The lower control limit (L, ) and upper control limit (U, ) of the

S-control chart are given as,

L, =¢,S+3S41l-c,?
(5.3.1)
U, =c¢,S-3Sy1-c,

. _ ; 2 TI(n/2)
““\n-1r(n-1/2) "

(He and Grigoryan, 2002).

where,

The robustness of the proposed SIMA method of smoothing is checked by using the
Shewhart S-control chart. Column-wise standard deviations S; of SIMA values of the

share and elevation data sets are calculated and plotted together with respective control

limits from (5.3.1).

Figure 5.12 shows the standard deviation function together with the control limits for the
elevation data, while Figure 5.13 shows the same for the shares data. In both cases the
standard deviation function falls completely within the control limits indicating the

robustness of the SIMA smoothing method.
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Figure 5.12: Standard Deviation Function for the Elevation Data Totally within the
Control Limits Indicating the Robustness of the SIMA Smoothing Method.
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Figure 5.13: Standard Deviation Function for the Shares Data Set Completely within the
Control Limits Indicating the Robustness of the SIMA Smoothing Method.
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Chapter 6

CONCLUSION AND FURTHER STUDY

6.1 Conclusion

Application of the proposed SIMA smoothing method is applied to two distinct data sets
together with kernel (PACE) and LLR smoothers. Obtained results from SIMA are

compared with those from PACE and LLR.

SIMA performed better than LLR under the condition of weak correlation between
variables involved. In the application to the data sets for the smoothing of mean and
covariance, SIMA performed equally well with PACE method which uses Epanechnikov

kernel smoother.
The measures used in comparing different smoothers are Mean Square Error (MSE) and
Root Mean Square Deviation (RMSD) between an observed trajectory and its smoothed

estimate.

SIMA smoothing method is checked for robustness using the standard deviation function

control limits method (Shewhart S-control chart) and is found to be a robust smoother.
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6.2 Further Research

Based on the research that led to the preparation of this thesis, the following topics are
identified as possible areas of further research.
1. Minimizing the error for the proposed SIMA smoothing method by using areas
between a trajectory and its estimated SIMA trajectory.
2. The directional moving average smoothing with SIMA concept is another area
for further investigation. One immediate application area can be the smoothing

of the covariance surface given in equation (4.4.2).
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APPENDIX A: Projecting the Data

It is known that the angle & between vectors x,y €[] * is defined by

Xy (A1)

cosf = .
Y

If x'y=0,then @=7/2, from (A.1). In a right angled triangle, the cosine of @ is equal

to the length of the base |p, |, over, the length of the hypotenuse |x|. Thus,

|cos@|= ”px”: Xy :
I vl
can be written. Hence
;
I, =[X]1cos 0}~ 7= (A2)
M

Here, p, is the projection (coordinate) of x on y. Therefore, the coordinate of x; on L,

is the projection point p, ,

P, =X, o XU, . (A.3)
|y

In "least-square” meaning; the best line L, is defined by finding a unit vector u, e[] °

which minimizes
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(A.4)

>hx-p,

under the constraint |u,|=1. From (A.3) the following can be

.. 0 2
or, maximizes Z‘ D,
i=1

written

pxl XIUl
p XU
Bl=| T = Xu, el ",
T
px Xnul

n

The following theorem will be used to reformulate the maximization problem (Hardle

and Simar, 2003).

T

Theorem A.1: If A and B are symmetric and B >0, then maximum of 5 is given
X Bx

by the largest eigenvalue of B™A. In general terms this can be expressed as,

where, s are the eigenvalues of B™A. If x'Bx=1 we obtain

max X'AX=4 >4, >...24,= min X Ax

{x:x"Bx=1} {x:x"Bx=1}

Proof: By definition BY> = I, ALTL is symmetric. Then x"Bx =1x"BY? [?=1B"*x[?.
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X
— = then
BY2x [P

Lety =

]
X AX_ max y'B ARy (A5)
x X Bx {yy'y=p

From spectral decomposition theorem for symmetric square matrices

B?AB?=TAI". Letting z=T"y weget z'z=y'ITT'y=y'y.

Thus (A.5) can be written as

max z' Az = max Zﬂ,z and maxZﬂ,z _ﬂlmasz =

{zz"z=1} {zz"z 1}

%,_J
=1

When z =(10,...,0)" gives the maximum. That is y =1y, the first column of I', hence

x=B"%,.

As B7A and B?AB ™2 have the same eigenvalues, proof is complete.m
In Theorem A.1, substituting A=X"X and B=1, we have:
If X"X and 1 >0 are symmetric, then the maximum of u," X" Xu, under the constraint

uju, =1 is given by the largest eigenvalue of X" X.
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max u X'Xu, =4 >4 >...>4 = min_u; X" Xu, (A.6)

{ugu"u =13 {ugu, o =13
Thus, by (A.6) the problem reformulated as: Find u, €[] *, with |u,[ =1 that maximizes

the quadratic form (Xu,)" (Xu,) or max u; X" Xu,. The unit vector u, can be found

{upufu =1}

by the following theorem.

Theorem A.2: The vector u, is the eigenvector of X' X associated with the largest

eigenvalue 4, of X'X.

Proof: If eigenvector equation is used for X' X, we have (X' X)k =(u," X" Xu,)k,

where k is the eigenvector of X'X. The eigenvector equation can be rewritten as

follows

(X" X —u; X" Xu,)k = X" X(k —ujku,) =0. (A7)

From (A.7) itisclear that K=u,. m
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APPENDIX B: Some Proofs

Proof of Theorem 4.3.1: Let J be any ( p—m-+1)-vector and Y, (t) = lAmXi (t). Then,
m

JTY (t) =07 X, (t), where G:EAmTJ and the (p—m+1)xp matrix A_ has the
m

general form.

1 100 0
11 10 0
A, =
0 - 0 1 1
00 1 1]

Let a; be the elements of A . Then

L forii<j<i+m-1
") 0, for,elsewhere

Since X, (t) is p-variate normal, then 0" X, (t) is univariate normal. Thus J"Y,(t) is also

univariate normal for all fixed vectors J, and Y;(t) is multivariate normal.m

Proof of Theorem 4.3.2: Under the assumptions on p, and t,

£ (- X, OF =E[ (Z X,0-3 Xi,-<t)Jw,-+%mZ X,0-%,®

1
m jo-1 j=-1

can be rewritten as,
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j=I-1 j=I-1 1-1

EDY; (- X, (O =5 {Z X,0- Y. xm} Erz X, Y X0~ (Z xi,-(t>] }

_Z_E[x,,(t)mfx”(t) X”mizxu(t)} {x,,mizx”(t)}miE[mizx”(t)} FE[X, T

j=I-1 j=I-1 j=I-1

:ﬂzErfxu(t)} +—2W rflx”(t)mizx”(t)} "W, =2) rizx”(t)}
=l j=11 j=1-1 (B.l)

%E|:X|Imiz xlj (t):|+_E|:mi2 le (t):| + E[X|I]

j=l-1 j=l-1

Under the i.i.d assumption on X, and E(X;)=0and E(X;)* =o”, then

f”zzx.,(o} -Erfxum} rfxua)mizxua)}

j=1-1 j=1-1

Therefore, (B.1) can be written as,

—E[mfx.mt)}m[x..a)] {x.m“zzx.,a)}

j=1-1 j=1-1

Ast—>sj,

ELY, (©) - X, OF > 22
m

Moreover, for p, —eo and t — s, , with very large m,

E[Yn*(t) =X OF >0’ =
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APPENDIX C: Karhunen—Loéve Theorem

The Karhunen—Loéve theorem is an infinite linear combination of orthogonal functions
representation of a stochastic process, as a Fourier series expansion of a function on a
bounded interval. The theorem yields the best basis that minimizes the total mean

squared error.

The coefficients in the Karhunen—Loéve theorem arerandom variablesand the
expansion basis depends on the process. Hence, the orthogonal basis functions are

determined by the covariance function of the process.

In the case of a centered stochastic process {Xt} i.e. E(X,)=0 forall tel, wherel

tel !

is a closed and bounded time or space interval, can be decomposed as
X, =D & (t) (C.1)
k=1

where, & are pairwise uncorrelated random variables and the functions ¢, are

continuous real-valued functions on | that are pairwise orthogonal in L*(1). (C.1) is
called Karhunen—Lo¢ve expansion or Karhunen—Loéve decomposition. If the process is

not centered, then in place of X,, X, —E(X,) is used.
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The empirical version of the Karhunen—Lo¢ve theorem is called as the Karhunen—Lo¢ve
transform, principal component analysis, proper orthogonal decomposition, Empirical

orthogonal functions or the Hotelling transform.

A linear operator T L?(1) — L*(1) defined for covariance function G, , as follows,

f(t)—> j G, (s,t) f (s)ds.

Since T is a linear operator, its eigenvalues A, and eigenfunctions ¢, can be found
X

by solving the following equation.

[ Gy (s.0)(s)ds = 444 (1) (C2)

Mercer’s Theorem: Let X, be a zero-mean square integrable stochastic process over
tel, with continuous covariance function G, (s,t). Then, G, (s,t) is a Mercer

kernel. Let ¢, be an orthonormal basis of L*(1) formed by the eigenfunctions

of T, with respect to eigenvalues 4,, X, has the representation X, :zgﬁ(;ﬁk(t) where
k=1
the convergence is in L*, uniform int,and ¢& :Ixt¢k(t)dt. Further, & are
l

uncorrelated with E(&,) =0 and var(&,) = 4, .
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Hence, Mercer's theorem says that, there exists a set of eigenvalues and eigenfunctions

of T, from (C.2), forming an orthonormal basis of L*(1), such as,

G (5.0 = Y A ().

More specifically, given any orthonormal basis {gpk} of L°(1), the process X, may

decomposed as Xt(s):icjk(s)gok(t) where {k(s):jxt(s)gok(t)dt and may

k=1 |

approximate by the finite sum

X(8)= 249 0). (€3)

K o0
The integer K can be found by using the function F(K)zZAk /Zﬂk . Claim of all

k=1 k=1
such approximations (C.3) is that; the Karhunen—Loéve approximation is the one that
minimizes the total mean square error provided that eigenvalues are arranged in

decreasing order.
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APPENDIX D: Data Sets.
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