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ABSTRACT 

In this thesis, some smoothing techniques in multivariate and functional data analysis 

such as, kernel smoothing, local linear regression (LLR), spline smoothing and 

smoothing together with principal components analysis through conditional expectation 

(PACE) methods are considered. Their details are studied and a new smoothing method 

benefiting from moving average concept and applicable under certain conditions is 

proposed. Due to the steps involved in its logic, the proposed method is named Strecthed 

Interpolated Moving Average (SIMA). Its application to different data sets produced 

better results in terms of involved error, compared with LLR and similar results when 

compared with PACE.   

 

 

 

 

 

 

Keywords: Karhunen–Loève Expansion, Stretched Interpolated Moving Average, 

Principal Component Scores, Lag Interval, Weight Function. 
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ÖZ 

Bu tezde, çok değişkenli ve fonksiyonel veri analizinin; çekirdek pürüzsüzleştirme, yerel 

lineer regresyon (LLR), spline pürüzsüzleştirme, ve koşullu beklenti ile temel bileşenler 

analizi (PACE) gibi bazı pürüzsüzleştirme tekniklerine yer verilmiştir. Bunların 

ayrıntıları incelenmiş ve belirli koşullar altında hareketli-ortalamadan yararlanılarak yeni 

bir pürüzsüzleştirme tekniği önerilmiştir. Kendi mantığı içinde yer alan adımları 

nedeniyle önerilen yöntem  Gerilmiş İnterpolasyonlu Hareketli-Ortalama (SIMA) diye 

adlandırılır. SIMA’nın farklı verilerde yapılan uygulamasında LLR uygulamasına 

kıyasla daha iyi sonuçlar elde edilmiş, PACE ile kıyaslandığında ise benzer sonuçlar 

elde edilmiştir.     

 

 

 

 

 

 

 

Anahtar Kelimeler: Karhunen–Loève Açılımı, Gerilmiş Interpolasyonlu Hareketli-

Ortalama, Temel Bileşenler Skorları, Gecikme Aralığı, Ağırlık Fonksiyonu.  
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Chapter 1  

                                 INTRODUCTION 

Studies in statistical data analysis gained momentum at the beginning of the 20th  

century. Substantial foundation work laid during the first half, and with the advent of 

computers in the second half of the same century, wide applications into all disciplines 

became common ground. Today the development of statistical theory and application of 

developed ideas using the continuously advancing computer technology has enabled the 

testing of abstract statistics theory, previously not possible. This resulted in rapid 

development of nonparametric statistical data analysis.  

 

For the analysis of multivariate data that is considered in this study, one main issue is to 

smooth the data before processing in order to eliminate the effect of extreme values. 

Alternately smoothing the mean and covariance functions are commonly used in many 

data analysis methods. Functional data analysis (FDA) forms the theoretical foundation 

for multivariate data analysis (MDA). Theory related with MDA and FDA is 

summarized in Chapter 2 and Chapter 3 respectively. One of the main concepts used in 

MDA is the Principle Component Analysis (PCA) that enables dimension reduction of 

multivariate data. Pioneering work on this topic was initially carried out by Hotelling 

(Hotelling, 1933), who built his theory on the foundations laid out by Karl Pearson. One 

main issue in FDA and MDA is the smoothing of raw data, mean and covariance 
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functions. There are many smoothing methods developed over the years. Amongst some 

widely used ones are Kernel group of smoothers, Spline smoothers, Regression 

smoothers and Moving Average smoothers. In this work, Epanechnikov kernel, and 

local linear regression smoothers are used and a specific method for the moving average 

smoothers is proposed.  

 

The Epanechnikov kernel and spline smoothers are used in the PCA through conditional 

expectation method (PACE) for smoothing the mean and covariance functions, Müller 

(2005). Further details on kernel smoothing is given by Härdle (1992). Structure of a 

smoothing spline is explained in detail by Ramsay and Silverman (2006). Principles of 

smoothing PCA is given in (Ramsay and Silverman, 2002). Local linear regression 

smoothing (LLR) is explained by Loader (1999).  

 

The main idea of estimating a trajectory from available data, through MDA is widely 

studied by many different researchers. One note worthy method in this respect is PACE, 

which is summarized in Section 2.3.  

 

Smoothing a trajectory, the mean function or the covariance matrix (surface) is possible 

using any of the above mentioned methods. The proposed moving average smoothing 

method is named as Stretched Interpolated Moving Average (SIMA), mainly because of 

the steps involved in its computation. Details are given in Chapter 4.  

 

The proposed SIMA smoothing method is applied to two distinct data sets together with 

kernel, and LLR smoothers in Chapter 5. Obtained results from SIMA are compared 
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with those from other methods. SIMA performed better than LLR under the condition of 

weak correlation between the variables involved. Since kernel and spline smoothers are 

used in the PACE method, these smoothers are sometimes referred to as PACE 

smoothers. In the application to the data sets for the smoothing of mean and covariance, 

SIMA performed equally well with PACE smoothers. The measure used in comparing 

different smoothers is Mean Square Error (MSE) between an observed trajectory and its 

smooth estimate. 
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Chapter 2  

MULTIVARIATE DATA ANALYSIS 

2.1 Introduction to the Multivariate Data Analysis 

Analyzing data where more than one variable is involved requires the use of MDA 

techniques. Representing the data in matrix format is essential in the process.  Let 

:  1, , ;  1, ,ijx i n j p   be the set of  n p  observations or data set. Then each 

column of the data belongs to the thj  random variable jX  and denoted by the column 

vector 

1

( ) ;  1, ,

j

j

nj

x

j p

x

 
 

  
 
 

x . Similarly the rows represent the data values belonging to 

each trajectory, denoted by the row vector 

1

;  1, ,

i

i

ip

x

i n

x

 
 

  
 
 

x . In this setup the row 

vectors  1 , ,T T

nx x  represents a random sample of the trajectories while the column 

vectors (1) ( ), , px x  represents the values of the random variables jX .  

The vector representation of data given above forms the n p data matrix X  as given 

below. 
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variables

11 1 1

objects 1

1

.

j p

i ij ip

n nj np

x x x

x x x

x x x

 
 
 
  
 
 
  

X  

When the number of variables and the trajectories are large, numerical processing 

needed in analyzing such data becomes prohibitive. On the other hand it is a fact that not 

every variable will have the same impact on the process under consideration. Therefore, 

one main concern of MDA is to identify the variables having major influence on the 

process under study. This in turn will enable the exclusion of the variables with minor or 

marginal effect, hence alleviating load of data processing while maintaining high level 

of accuracy (Mardia, et. al., 1979).  

2.1.1 The Sample Statistics 

The mean vector and covariance matrix of the multivariate data can be written by 

extending the univariate case to the multivariate form. The sample mean and sample 

variance of the thj  variable are given as in equations (2.1.1) and (2.1.2). 

                                    1 ,

n

ij

i
j

x

x
n




                                                                 (2.1.1)     

The vector of means for p variables is 

1

1

1 1n
T

i n

i

p

x

n n
x



 
 

   
 
 

x x X 1 . Here 

1

1

n

 
 


 
  

1  . 



6 

                                    

2

2 1

( )

,  ( 1, , ).
1

n

ij j

i
j

x x

s j p
n





 



                           (2.1.2) 

The sample covariance between the thj  and the *thj  variables is 

                                            

* *

*

*1

( )( )

,   , 1, ,
1

n

ij j ij j
i

jj

x x x x

s j j p
n



 

 



                   (2.1.3) 

It is evident that, *

2

jjj
s s , when *j j  . 

The p p  covariance matrix can be written as 

                                           
1

1
( )( )

n
T

i i

in 

  S x x x x .  

Using the centring matrix 
1 T

n
 H I 11 , the covariance can also be denoted as 

                                              
1 T

n
S X HX  .                                                       (2.1.4) 

Since H  is symmetric and idempotent, using a p-vector v, 
1

0T T T T

n
 v Sv v X H HXv  

can be written, meaning the covariance matrix S  in equation (2.1.4) is positive semi-

definite.  
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2.1.2 Linear Transformation 

Often in MDA linear transformation of data becomes necessary before analysis, due to 

linearly transformed data results in dimension reduction, simplifying computations. 

Hence, computation of statistics for linearly transformed data has to be formulated. 

Letting 1( , , )T

pa aa  be the vector of coefficients to be used in the transformation, 

transformed data will be ;   i 1, , ,  j 1, ,T

i ijy n p  a x . Transformed data will have a 

mean  

1

1 n
T T

i

i

y
n 

 a x a x  

and variance  

2 2

1 1

1 1
( ) ( x)( x)

n n
T T T

y i i i

i i

s y y
n n 

      a x x a a Sa  .                  

In a q dimensional linear transformation, q pA  being the matrix of coefficients and qb  

vector of constants, then,  

,  1, , T T

i i n   y Ax b Y = XA +1b   

can be written. Then, the mean vector and covariance matrix of transformation will be 

1

1

 and ( )( )
n

T T

y i i

i

n



     y Ax b S y y y y ASA . 
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It can be shown that linear combinations of a multinormal vector are univariate normal 

(Mardia, et.al., 1979). 

2.2 Multivariate Normal Theory 

The univariate normal distribution is the most widely used distribution in many 

statistical application problems. Its multivariate version distribution similarly enables the 

solution of many multivariate estimation problems. Therefore, it plays a major role in 

MDA. It is wholly defined by its first and second moments and the p-variate normal 

distribution is given by 

1/2 1( ) 2 exp( ) ( )Tf 
   x Σ x μ Σ x μ  

where 0Σ  is the positive definite covariance matrix,  and p px μ  are the vectors of 

random variables and their means, respectively. Then, ( , )μ ΣN  denotes a multivariate 

normal distribution with parameters  and μ Σ  (Park, 2008).  

 

In multivariate normal distribution, for pairs ( ,  i jX X ), correlation 0,  
i jX X i j    

implies independence and pairwise independence implies total independence.  

Corollary 2.2: If x  has a p-variate normal distribution, and if  y Ax c  is the linear 

combination of the variables, with q p  dimensional matrix A  and q-vector c , then y  

has q-variate normal distribution. That is, if ( , )px μ ΣN , then 

( , )T

q y Aμ b AΣAN , where μ  is the mean vector and Σ  is the covariance matrix 

(Mardia et al., 1979). 
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Certain applications may require the use of partitioned matrices, due to the nature of the 

process.  For example in a p variate process, if it is required to show the independence of 

k variables in a process from remaining t p k   elements of the process, then the 

covariance vector of variables x  can be partitioned into two sub-vectors 1 2 and x x  with 

k and t elements, respectively as given in the following Theorem 2.2.1. 

Theorem 2.2.1 (Mardia et al., 1979):  Assume 
1

2

( , )p

 
  
 

x
x μ Σ

x
N  where 1

kx , 

2

tx , and 1

2.1 2 21 11 1

 x x Σ Σ x  defined from the partitioned covariance matrix 

11 12

21 22

 
  
 

Σ Σ
Σ

Σ Σ
,  then, 1 1 11( , )kx μ ΣN  and 2.1 2.1 22.1( , )tx μ ΣN  are statistically 

independent, i.e. 1 2.1( , ) 0Cov x x  , with 1 1

2.1 2 21 11 1 22.1 22 21 11 12 and     μ μ Σ Σ μ Σ Σ Σ Σ Σ . 

Proof: Let  1 0kx I x  and  1

2.1 21 11 t

  x I x . By Corollary 2.2, the multivariate 

normalities, 1 1 11( , )kx μ ΣN  and 1 1

2.1 2 21 11 1 22 21 11 12( , )t

  x μ Σ Σ μ Σ Σ Σ ΣN  are clear. 

Consider the covariance for the independency. 

                                      1

1 2.1 21 11cov( , ) k t

 x x I 0 Σ Σ Σ I  

                                                          1

21 11k t

 
  

 

11 12

21 22

Σ Σ
I 0 Σ Σ I

Σ Σ
 

                                                         11 21 11 12

T

  Σ Σ Σ Σ  
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                                                         11 11 12 12

T  Σ Σ Σ Σ  

                                                         0 ,     

i.e. 1x  and 2.1x   are statistically independent. ■  

This theorem paves the way to the idea of conditional relationship between two sub-

vectors of a vector of random variables. This is highlighted in the following theorem.                                                                                                                                      

Theorem 2.2.2 (Mardia et al., 1979): From Corollary 2.2 and Theorem 2.2.1, 

conditional distribution of 2x  for a certain value of 1x  is approximately normally 

distributed, that is    

                                     2 1 2 .| ( ).t  -1

21 11 1 1 22 1x x μ Σ Σ (x -μ ),ΣN                       (2.2.1) 

with conditional mean   

                                2 1 2.1 2[ | ] .E    -1 -1

21 11 1 21 11 1 1x x μ Σ Σ x μ Σ Σ (x -μ )          (2.2.2) 

Proof: Since 2.1x  is independent of 1x , its conditional distribution for a given value of 

1x  is  same as its marginal distribution. Now 1

2 2.1 21 11 1

 x x Σ Σ x  and this term is 

constant when 1x  is given. Therefore the conditional distribution of 2 1|x x  is normal 

with conditional mean 2 1 2.1[ | ]E   -1

21 11 1x x μ Σ Σ x  (Mardia et al., 1979).    

On the other hand, let 2

1 1 1( , )x  N  and 2

2 2 2( , )x  N . Since, by Normal 

Distribution Theory the marginal distribution of 1x  is, 
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   
2 2

1 1 2 2 21 11 1 2 2

2 2 2
11 21 2

2
1 2

- - 1- --1
( )exp -2

22-2

1 1 2
2 1-

- 1

( )
2

x x xx x

e
f x dx

   


   

    

  
   

  
  

  



  . 

Moreover,  

                                           2 1 2 2 1 2| ( | )E x x x f x x dx





  ,                                                           

where the conditional distribution is as,  

                                          

2
2

2 2 1 1
1

2
2

( ( )
1

2 1

2 1
2

2

( | )
2 (1- )

x x

e
f x x


  



 

  

 
   

 
 
 
 

 . 

Clearly by Normal theory, the conditional expectation can be written as, 

                                             2
2 1 2 1 1

1

|E x x x


  


                                           (2.2.3)                                                                                          

and the general variance/covariance is as, 

                                             2 2

2 1 2var | 1x x    .                                                 (2.2.4) 

 

Now, in terms of matrices; consider 1 1 11( , )kNx μ Σ  and 

1 1

2.1 2 21 11 1 22 21 11 12( , )tN   x μ Σ Σ μ Σ Σ Σ Σ , then, substitute ij i j Σ  and 2

ii iΣ  in 

(2.2.3) and (2.2.4) we have, (2.2.2) and   1

2 1 22 21 11 12 22.1cov |x x   Σ Σ Σ Σ Σ .■ 

 

This theorem will help in understanding the concept of principal component analysis 

under some conditional forms. 
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2.3 Eigenvalues and Eigenvectors 

The symmetric covariance matrix is extensively used in MDA by means of eigenvalues 

and eigenvectors. Therefore two of the theorems pertaining to the eigenvalues and 

eigenvectors are presented for information.  

 

The theorem that establishes links between the structure of a symmetric matrix and its 

eigenvalues and eigenvectors which can be found in most serious linear algebra books, 

is as follows. 

Theorem 2.3.1: (Spectral or Jordan Decomposition) Any symmetric p p  matrix A 

can be written in terms of Λ , the diagonal matrix of its eigenvalues and Γ , an 

orthogonal matrix whose columns are standardized eigenvectors of A, 

                                     
1

p
T T

j j j

j




 A ΓΛΓ γ γ                                              (2.3.1) 

where, 1( ,..., )pdiag  Λ  and 1 2( , ,..., )pΓ γ γ γ . 

 Therefore, (2.3.1) shows that a symmetric matrix is uniquely determined by its 

eigenvalues and eigenvectors. If i  are distinct and written in decreasing order, then Γ is 

also uniquely determined. 

Another important concept used in MDA under certain circumstances, i.e. when a matrix 

is not square, is the singular value decomposition theorem given below. 
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Theorem 2.3.2: (Singular Value Decomposition) Each n p  matrix A with rank r can 

be decomposed by column orthonormal matrices, Γ ( n r ) and Δ ( p r ), satisfying 

T T

r Γ Γ Δ Δ I  and diagonal Θmatrix of positive elements, so that TA ΓΘΔ . 

This is the generalization of the Jordan decomposition theorem. 

2.4 Factoring the Data Matrices 

In this section factoring data matrices is reviewed, since principal component analysis 

depends on the concepts developed here. The aim is to reduce the dimension of the data 

matrix by means of geometric approach with respect to a least-squares criterion. As a 

result, low dimensional graphical pictures of the data matrix area obtained. This is the 

process of decomposing the data matrix into factors, a concept used in many 

multivariate techniques. Dimension reduction facilitates the easy interpretation of the 

process estimated by the data.  

 

2.4.1 Projecting Data from Higher to Lower Dimensional Space 

Representing a multivariate data set in matrix format n pX  was introduced in Section 

2.1. Projection of data values can be performed row or columnwise. In other words the 

column space C(X) or the row space ( )T
C X  can be approximated by smaller subspaces. 

An important point in dimension reduction is not to lose much from the variation and 

structure of the data.  
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2.4.1.1 Projecting Data onto q  from  p   

Procedure for projecting the p-dimensional n data points onto a subspace ,  ( )q q p  is 

explained. For simplicity details of projection from p  onto  will be given. 

Projection onto q  becomes an extension of the procedure undertaken for the one 

dimensional subspace.  

 

Let 1F   be the line that passes through the origin, onto which data is to be projected. 

Direction of the line 1F  is determined by the unit vector 1u . Projection is achieved by 

projecting the thi  individual  p

ix   onto 1u . Hence, the projection point 
ixp  will have 

the coordinate 1
1

1
i

T T

x i ip  
u

x x u
u

 on 1F .  On the other hand 1F  has to be located such 

that 1

pu  and  2

1
i

n

i x

i

x p


  is minimum. This is equivalent to maximizing 

2

1
i

n

x

i

p


 , reducing the problem to finding  1

pu  such that 2

1
i

n

x

i

p


  is maximum 

subject to the constraint 1 1u . Then projection is written as 

                                 

1

2

1 1

2 1

1

1n

T

T

T

n

p

p

p

   
   
       
        

x

x

x

x u

x u
Xu

x u

 .                                                    (2.4.1) 

and can also be expressed  in quadratic form as      
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1 1

1 1
1

max ( )
T

T T

u u

u X X u                                                                  (2.4.2)                                                          

(Härdle and Simar, 2003). For details see Appendix A. 

The vector 
1u  is the eigenvector of T

X X  corresponding to the largest eigenvalue 
1  of 

T
X X . 1u  minimizes, 2

1
i

n

i x

i

x p


 . When the data is centered ( 0x  ) and 1 TnS X X  

is the covariance matrix, then the quadratic form (2.4.2) is maximized with respect to S. 

Representation of n trajectories on 1F  are given by 1Xu  which is the first factorial 

variable 1 1z Xu  and 1u  is the first factorial axis. Then, 1 11 (1) 1 ( )p pu u  z x x  

represents a linear combination of trajectories with coefficients being the elements of 1u  

(Härdle and Simar, 2003).  

Projection of data on q  from p  where q p , is the extension of the above explained 

process from p  to  , except minimization of  2

1
i

n

i x

i

x p


  will produce  the best 

subspace 1, , qu u  which are the orthonormal eigenvectors of T
X X . Corresponding 

eigenvalues of T
X X  are 1 2 q     . Then the coordinates of n trajectories on the 

thk  factorial axis ku  are given by ;  1, ,k k k q z Xu . The linear combination of the 

original variables (1) ( ), px x  whose coefficients are given by the thk  vector 
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1

:  
p

k ik im mk

m

z x u


u  forms the factorial variables 
1( , , )T

k k nkz zz (Härdle and Simar, 

2003).   

2.4.1.2 Projecting Data onto q  from  n   

The columns of n p  data matrix X represents the data as p points in n . That is each 

column or variable is a vector ( ) 1( , , )T n

j j njx x x . Projecting the n-dimensional p 

data points onto a subspace  ( )q q n  is sought. A similar approach used in Section 

2.4.1.1 will be followed. Starting with projection onto a one dimensional space or a 

straight line 1G  defined by the unit vector 1

nv  that will best fit for the n dimensional 

p points.  It means finding 1v  such that 
( )

2

1 j

p

xj
p

  is maximized. In other words the 

unit vector 1v  should maximize,      1 1 1 1

T
T T TX v Xv v XX v . Then, the coordinates of 

p variables on 1G  are given by 1 1

Tw  X v . Hence, 1 11 1 1 ;  1, ,j j n njw v x v x j p    , 

can be written (Härdle and Simar, 2003).  

 

Extending to projection onto ;  q q n  means generating a subspace through the 

orthonormal eigenvectors 1, , qv v  corresponding to the eigenvalues 1 q   

obtained from T
XX . Coordinates of the p variables on the k

th
 factorial axis are 

;   1, ,T

k k k p w X v  and 1( , , )k k kpw ww . Then, 
1

n

kj km mj

m

w v x


 . 
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2.4.1.3 Relationship Between the Projection of Data from  p  onto q  and n  

onto q   

The  ( )q q p dimensional (column) subspace onto which data points are projected, is 

generated by the orthonormal eigenvectors  1, , qu u  of  T
X X . Respective eigenvalues 

are 1, , q  . 

 

Projection of data from n  onto  ( )q q n , the row subspace is generated by the 

orthonormal eigenvectors 1, , qv v  of T
XX , 1, , q  being the respective eigenvalues. 

Taking into account the similar logic used in both projections, the eigenvector equations 

( )T

k k kX X u u  in p  and ( )T

k k kXX v v  in n  can be written. They satisfy the 

condition that, for k r , r being the rank of X, the eigenvalues of T
X X  and T

XX  are 

the same, and their eigenvectors are related by 

                                         ,   
T

k k
k k

k k 
 

X v Xu
u v ,                                              (2.4.3) 

(Härdle and Simar, 2003).    

Let,      1 1 1, , , , , , and , ,  r r rdiag    U u u V v v Λ , then singular value 

decomposition of the data matrix is 1/2 TX VΛ U . From here, 1/2

1

r

ij k ik jk

k

x v u


 .             
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Chapter 3  

FUNCTIONAL DATA ANALYSIS 

3.1 Functional Modelling 

In general many processes are continuous in nature, while available data is discrete. The 

question is how to express discrete observations in functional form for the assessment of 

the process in question. Processing of discrete data is dealt with in multivariate data 

analysis (MDA), which is explained in Section 2. A random variable X  is a functional 

variable if it takes values in infinite dimensional space also called functional space.  

 

Observations over X  are denoted as x . If T  is a subset of ;  1,2,k k     representing 

the range of time or space within which the process is taking place, then the random 

function { ( );  }X X t t T   and its realizations are { ( );  }x x t t T  . Then the functional 

data set 1, , nx x  is a particular realization of the n  functional variables 1, , nX X  

having the identical distribution as X .  

 

In MDA a linear combination of variable values (the thk  principal components) is taken 

by 
1

p

ik im mk

m

z x u


 , mku  being the weights applied to the imx  observed value.   
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Obtaining the functional data from available discrete observations for each trajectory, 

would mean linear interpolation between successive observations and smoothing of 

trajectories. Hence each trajectory can be denoted by 
1( ), , ( )nX t X t , t  representing the 

time or space coordinate of a trajectory. The discrete index used in MDA is replaced by 

the continuous index t  in functional PCA. Then, the principal component score in 

functional data becomes, 

                                                     ( ) ( )i i iux u t x t dt    .                                       (3.1.1) 

Estimating the mean function from n  trajectories is possible. The obtained mean 

function ( )X t  should be smoothed to avoid undesirable fluctuations in ( )X t  stemming 

from noisy data. 

The functional principal components weight function ( )u t  is defined for each component 

over the range of t  such that 2( ) 1u t dt  . Then, the principal component scores i  in 

(3.1.1) for the sample data is given by ( ) ( )i iu t X t dt   . 

In the first functional principal component the aim is to determine 1( )u t  such that it 

maximizes the variance   
2

1 2 1

1 1( ) ( )i i ii i t
Var n n u t x dt        under the constraint 

2( ) 1u t dt  . Second and higher order principal components can be defined in the same 

way except, they have to satisfy the additional mutual orthogonality property. That is,  
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1 2 1( ) ( ) ( ) ( ) ( ) ( ) 0j j j ju t u t dt u t u t dt u t u t dt                                   

(Ramsay and  Silverman, 2002). 

An optimal empirical orthonormal basis is needed for application purpose. That is 

finding K  orthonormal functions mu , enabling the expansion of each curve or trajectory 

in terms of these basis functions, such that the trajectory is approximated as accurate as 

possible. As a result seeking an expansion of the form, 

                                 
1

ˆ ( ) ( ) where ( ) ( )
K

i ik k ik i k

k

x t u t x t u t dt 


                            (3.1.2) 

is necessary.  

The fitting criterion  

                                  2 2ˆ ˆ[ ( ) ( )]i ix x x t x t dt                                                       (3.1.3) 

is used. 

 Then, from equation (3.1.3) the sum of the squares of errors for PCA, 

2

1

ˆ
n

PCA i i

i

SSE x x


  ,  can be used as a measure of approximation. The basis that 

minimizes PCASSE  corresponds to the same set of PC weight functions that maximize 

variance components.  
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3.1.1. Brief Comparison of MDA and FDA  

Given a data matrix 
n pX , its covariance matrix 

1 T

p p n

 S X X  or as in equation (2.1.4) 

with eigenvalues, 
1 2 q      and corresponding orthogonal eigenvectors 

1, , qu u , are computed. Projection of data onto column subspace is subject to the 

constraint,  
1

max T

u
u Su . Solution of the eigen-equation Su λu  gives the eigenvalues 

in descending order, 
1 2 q     . Due to centering of X, its rank is at most, 1n , 

meaning that the 
p pS  covariance matrix will have min{ , 1}p n  nonzero eigenvalues.  

In functional PCA, the covariance function ( , )s t t  can be written for n  available data 

as, 1

1

( , ) ( ) ( )
n

i i

i

s t t n x t x t  



  . 

Finding the principal components weights ( )ju t  requires the following concepts 

(Ramsay and Silverman, 2006, Appendix A.5).  

1. In a general inner product space, the symmetric matrix is replaced by a self-

adjoint linear operator, A , which satisfies , , , ,x Ay Ax y x y  .    

2. A  is compact (completely continuous) symmetric transformation on Hilbert 

space. 

Maximizing the inner product space  ,x Ay  subject to the constraint 1x   is similar 

to maximizing T
x Ax  subject to 1T x x  in the finite dimensional space.  
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Here the sequence 
ju  is defined as the solutions to the set of optimization problems  

                                 max ,x Ax , subject to 1 and , 0 for ix x u i j   .      (3.1.4) 

The solution is obtained under the given conditions by assessing the eigenfunction 

problem Au u  and normalizing the eigenfunctions u  to satisfy, 1u  . Then, the 

first eigenfunction 1u  solves the optimization problem given in (3.1.4) resulting in a 

maximum value equal to 1 . Subsequent eigenfunctions 
ju  solve the constrained 

problem given by (3.1.4). Then, maximum at the thj  stage is, 2,j j j j ju Au u   . 

Each of the principal components weight functions ( )ju t  should satisfy  

                                             ( , ) ( ) ( )s t t u t dt u t                                                  (3.1.5) 

for a certain eigenvalue  . Left hand side of equation (3.1.5) is the integral transform of 

the weight function u  by the covariance function S  given by (., ) ( )Su s t u t dt    . 

This is called the covariance operator, S . Hence, Su u , can be written. 

In MDA there are p  eigenvalue-eigenvector pairs, whereas in FDA it becomes the 

number of function values which are infinitely many. 
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3.1.2. Smoothing in Functional PCA 

Data matrix described in MDA, rows are the subjects or trajectories, representing one 

realization of the random process governed by p  random variables. In FDA a trajectory 

represents a random function in continuum. The continuous environment T  is a 

bounded time or space interval over which the domain of the random process (.)X  lies.  

 

The weight functions ( )u t  used in the computation of principal components needs to be 

smoothed by controlling their roughness. This results in the smoothing of the principal 

components. For the first PC the function  1( )u t  maximizes the variance of the principal 

component scores subject to  

                                               2 '' 2{ ( )} { ( )} 1;  0u t dt u t dt     .                        (3.1.6) 

  in (3.1.6) is a control factor over the amount of smoothing required. For smoothing 

the second and higher order principal component scores in addition to constraint (3.1.6), 

the constraint 

                                              '' ''( ) ( ) ( ) ( ) 0;  i j i ju t u t dt u t u t dt i j                                                

is required.  

Smoothing the sample mean function has a major importance in FDA. A functional data 

set 1( ), , ( )nX t X t  can be expanded in terms of basis functions, 1( ), , ( )mf t f t . A 
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coefficient matrix n mA  can be defined such that, 
1

( ) ( )
m

i ij j

j

X t a f t


 . Then the smoothed 

sample mean becomes, 

                                                  
1

1

( ) ( ),  if 
m

j j j iji
j

X t a f t a n a



   . 

3.1.3 Storing Functional Data/Observations  

Taking a basis to mean a standard set of functions  1( ), , ( )mf t f t  such that, any 

function of interest can be expanded in terms of ( )jf t . Then, a functional datum ( )x t  

can be expressed in terms of m  basis functions and the principal component weight ( u ) 

as 
1

( ) ( )
m

j j

j

x t u f t


 .      

    

In FDA basis functions are designed to represent the nature of the process under study. 

This is achieved by fitting basis coefficients to the observed data. Given values 1, , nx x  

observed at locations 1, , nt t , basis functions ( )jf t  can be represented by the matrix 

( ),  1, , , 1, ,j if t i n j m  B .  

If u  is the vector of coefficients, then the vector of values at the observed locations will 

be Bu . When the number of basis functions are at most the same as the observation 

locations ( m n ), then the basis functions can be fit by minimizing the sum of squares 

of deviations, 
2

( )i j jj
x u f t 
  .  



25 

For m n  the expansion ( ) ( )j jj
x t u f t  gives an exact interpolation of the 

ix  values. 

For m n  the expansion is the smooth version of the initial data.  

If m n , more basis functions than observed locations, then, a choice of u  values gives 

exact interpolation of the ix  values. That is, 
1

( ) ( ),  1, ,
m

k j j k

j

x t u f t k n


  . 

Then, the interpolation that includes the parameters that minimizes the roughness of the 

curve is selected.  

3.2 Expressing the Random Process in Terms of Global Mean and 

Covariance 

Let  
 ,t t a b

X


 be a random process in the interval [ , ]a b . Then the random trajectories X  

in 2 ( )L I  assumed to have mean function ( ) ( ( ))t E X t   and covariance function 

( , ) cov( ( ), ( ))G t t X t X t  , where ,t t I . It is assumed that the operators on 

covariance have a sequence of orthonormal eigenfunctions k  with eigenvalues 

1 2   .  

 

The Hilbert- Schmidt  kernel, G  is very useful in the expression of a random process in 

terms of global mean and covariance and is  given as  
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1

( , ) ( ) ( ),  t,tk k k

k

G t t t t T  


  



  .                                  (3.1.7) 

This is the orthogonal expansion of the covariance in 2L  in terms of eigenfunctions k  

and corresponding eigenvalues 1 2,  1,2,  and k k     . Karhunen-Loéve 

Expansion and,  Mercer's theorems guarantee the expansion given in equation (3.1.7) 

and its spectral decomposition. Details of the Karhunen-Loéve theorems are in Apendix 

C.  

In classical functional PCA, for the process,  
 ,t t a b

X


 , the random curve (trajectory) 

( )X t  can be expressed as,   

                                            
1

( ) ( ) ( ) ,  t Tk k

k

X t t t  




   .                          (3.1.8) 

Here, k  are uncorrelated random variables with, 2( ) 0 and ( ) ,  k k k kk
E E      . 

For any finite K , (3.1.8) can be written as,  

                                          
1

( ) ( ) ( )
K

k k

k

X t t t  


  .                                      (3.1.9)  

K , determines the fraction of variance, 
1 1

( ) /
K

i k

i k

F K  


 

  , in the process under 

consideration and is required to be as high as possible (preferably above 0.8).   
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3.3 The Principal Components Analysis Through Conditional 

Expectation 

Functional principal component scores, ik , play a major role in the estimation of a 

trajectory. They are uncorrelated random variables with mean zero and variances being 

the eigenvalues of covariance matrix G . The functional principal components scores 

given directly by equation (3.1.1), and it works well when the density of the grid of 

measurements for each subject is sufficiently large.  

 

The functional representation of a trajectory, ( )X  , for the thj  observation of the thi  

subject made at time ijt , 1,...,i n , 1,..., ij p  is represented by ijY . Number of 

observations, ip , made on each of the thi  subjects are assumed to be i.i.d. random 

variables. If no error is involved, then, ( )ij ijY X t . However, observations will 

inherently include some measurement errors ij  that are also assumed to be i.i.d. with 

( ) 0ijE    and constant variance 2 . Then, the model representing the thi  subject based 

on observations can be written as  

                               
1

( ) ( )ij ij ik k ij ij

k

Y t t   




   , ijt T .                            (3.1.10) 

Thus, instead of the integral, the estimated principal components scores are given by 

1

1

( ( )) ( )( )
ip

ik kij ij ij ij ij

j

Y t t t t   



   . However, this does not work well when the data are 
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sparse, since substituting 
ijY  for ( )i ijX t  causes biased FPC scores. Therefore, an 

alternative method, the Principal Components Analysis through Conditional Expectation 

(PACE) is proposed by Yao, et. al. (2005). The PACE method, assumes that the 

principal component scores ik  and error ik  are jointly Gaussian. Let 

1( ( ),..., ( ))
i

T
i i i i ipX X t X t , 1( ( ),..., ( ))

i

T
i i i i ipY Y t Y t , 1( ( ),..., ( ))

i

T

i i ipt t   , and 

1( ( ),... ( ))
i

T

ik k i k ipt t   . Thus, under Gaussian assumptions, the best prediction of the PC 

scores can be found by conditional expectation.  

                          1[ | ] ( )
i

T
i iik ik k ik Y iE Y Y        ,                                    (3.1.11) 

where 2 2cov( , ) cov( , ) ( , )
i i

i i i iY p ij il jlY Y X X G T T       I .  

Substituting the estimates of k , ik , 
iY  and i  in equation (3.1.11), leading to 

                      
1

[ | ] ( )
i

T

i Y ikik ik iikE Y Y    


    ,                                     (3.1.12)  

where, 
iY  is obtained from the whole data. Then, the infinite-dimensional processes are 

approximated by the projection on the functional space spanned by the first K  

eigenfunctions of estimated 
iY  covariance matrix. Thus, in practice the estimated 

thi trajectory is 

                         
1

( ) ( ) ( )
K

i ik k

k

X t t t  


  .                                                   (3.1.13) 
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The conditional method (3.1.12) under the Gaussian assumptions works well in both 

case of sparse and dense data and yields the best estimates. It is also worth mentioning 

that (3.1.11) is the best linear prediction of principal components scores ik  and works 

well weather the Gaussian assumption holds or not (Yao, et. al. , 2005). See Yao, et.al., 

(2003) for another estimation for functional principal component scores.  
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Chapter 4  

                                    SMOOTHING 

4.1 Smoothing The Mean 

In a random process ( )X   the underlying function f  is generally unknown. Available 

data collected or observations made at p  different time or space locations, 

1 2( ), ( ), , ( )i i i pY t Y t Y t   give some idea about the likely behaviour of the function. Using 

available observations to predict the underlying random function representing the 

random process is not an easy task, since data is mostly contaminated by errors due to 

various agents. If there is sufficient evidence to indicate that data is error free, then some 

simple linear interpolation may be adequate to represent ( )X   with available 

observations. However, in the presence of error   smoothing will be required to 

represent ( )X  . Here, i  is i.i.d. with 2( ) 0 and var( )i iE     .  

Let ( ) ,  1, ,i i iY X t i n    be the noisy representation of ( )X  . If Y  is the matrix of 

observations, then 2var( ) e  Y Σ I .  

There are many different smoothing techniques used in various application fields. Some 

of the important ones are introduced in the following section. 
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4.1.1. Commonly Used Smoothing Methods  

A simple smoothing will be the fitting of ordinary least squares function to the data 

defined by the basis function expansion,  

                                        ( ) ( )
K

T

j k k j

k

X t b t  b Φ . 

 

 ( )j k
t  are the basis functions and the coefficients vector 1 Kb  is determined by 

minimizing the sum of square errors (SSE),                                                          

                                

2

2

1

( | ) ( ) ( ) ( )
n K

T

j k k j

j k

SSE Y b Y b t


 
       

 
  Y Φb Y Φb Y Φb . 

Then, the estimated (fitted) vector ŷ  is found by   

                                      1ˆ T Ty Φ(Φ Φ) Φ Y . 

 

This assumes equal weight assignment to all observations, regardless of observation 

time/space t . In the case of regular grid this may be acceptable, but for irregularly 

observed data a weighing method is necessary. Then, the weighted least squares (WLS) 

fit offers a solution given by 

                                   ( | ) ( ) ( )TSSE Y b   Y Φb W Y Φb . 

 

Weights jW  to be assigned can be computed using different methods. Kernel functions, 

splines, moving averages are just a few that can be used. In the case of kernel functions, 

some of widely used ones are  
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                  Uniform: 
0.5    for  

( ) 1 

0,     otherwise

s p

s p

j

t t
t t

W t K h
h

 
  

   
  



. 

                  Quadratic: 

2

0.75 1    for  
( ) 1 

0  ,                            otherwise

s p s p

s p

j

t t t t
t t

W t K h h
h

    
              

  


. 

                  Gaussian: 

2
1

2

( )
2

s pt t

h
s p

j

t t e
W t K

h 

 
  

  
  

 
. 

 

                   Nadaraya-Watson: ( )

s p

j

s p

s

t t
K

h
W t

t t
K

h

 
 
 

 
 
 


. 

Widely used Epanechnikov kernel function takes the form 
2

[ 1,1]( ) 0.75(1 ) ( )K x x x  1  is 

the univariate case and 
2 2

[ 1,1] [ 1,1]( , ) 0.5625(1 )(1 ) ( ) ( )K x y x y x y    1 1  is the bivariate 

case with ( ) 1 if  and 0A x x A 1  otherwise for any set A . 

 

Smoothing the mean ( )t  and covariance ( ( ), ( ))Cov X t X t  of the set of observed 

curves is necessary in many applications (Rice and Silverman, 1991).  

Using the spline smoothing to smooth the mean is to use the penalized least squares. 

Given the thi  data vector 1( , , )T

i i ipx xx , the estimated mean curve ̂  should 

minimize  
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                                            1 2 2( )i

i

n t dt     x .                                      (4.1.1) 

Here,   is a positive smoothing parameter and the integral represents the roughness of 

 . (4.1.1) is equivalent to 2 2[ ( )] ( )j jj
X t t dt     , which is the spline smoothing 

applied to pointwise averages. Choice of the smoothing parameter   is subjective, but 

methods such as cross validation (CV) are available to automate the choice of optimum 

  value (Heckman, 1986).  

Similarly various moving averages techniques can also be used as the smoother of the 

mean and covariance functions. The stretches interpolated moving average technique 

developed during the course of this study and given in Section 4.3 is successfully 

applied to the smoothing of the mean. It is shown to be more robust than the local linear 

smoothing when the correlation between trajectories are weak.  

Local Linear Regression is also used as a smoother and some details of this method are 

given in Section 4.3.3.   

 4.1.2. Kernel Smoothing 

One other method used for smoothing the mean is the scatter plot smoothing utilizing 

kernel smoothers. Let ( ),  1, ,  and 1, ,ij iY t i n j p  , be the 
thj  observation on the i

th
 

subject made at time t . If the model has no additional error then shortly ( )ij ijY X t can 

be written.  
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The local linear scatter plot smoother at time t  for ( )t  is obtained from the scatter plot 

( , )ij ijt Y  by minimizing  

                                   
2

0 1

1 1

( )
i

ij

pn
t t

ij ijh

i j

Y t t


  


 

    ,                             (4.1.2)  

with respect to 0  and 1 , where h  is the bandwidth and univariate density   is the 

kernel function. Then the estimate of ( )t  is 0
ˆˆ( ) ( )t t  . The minimization can be 

done by taking the derivative of (4.1.2) with respect to  0  and 1 . Solution of the 

obtained equations yields the local linear estimator (smoothed) ˆ( )t  

                                      

1 1

0 11 1

( )

ˆ ˆˆ ( ) ( ) ( )

Ep Epij ij ij ij

i j i j

Ep Epij ij

i j i j

w Y w t t

t t t
w w

  



  

   

   
,       (4.1.3) 

where,   

                                 

1 1

1

1

1 2
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ˆ ( ) .
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ij ij ij ijEp Ep

i j i j

ij ij ijEp

i j ijEp

i j

ij ijEp

i j

ij ijEp

i j ijEp

i j

w t t w Y

w t t Y
w

t

w t t

w t t
w





 


 

 
  

   
 

 

 
 

 
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Here, 
ip

Ep
n




 ( ip : Number of observations on the i
th

 trajectory) and 

ij

ij

t t
w nh

h





 

   
 

 is the weight function, 
2

[ 1,1]( ) 0.75(1 ) ( )x x x   1  is the uni-variate 

Epanechnikov kernel function with ( ) 1 if  and 0A x x A 1  otherwise for any set A  

where t  is the starting data value of bandwidth h  (Yao et. al. 2005). Alternative 

formulas for (4.1.3) can be found in Hall et.al. (2006), and in Müller (2005).  

 

Choi and Hall (1998) give interesting ideas about bias reduction in local linear 

smoothing depending on the kernel function.       

          

4.2 Moving Average Approach to Smoothing 

Moving average is a well-known technique in a broad range of disciplines and initially 

used for trend generation in mainly time dependent variables. Various versions of 

moving averages are in implementation, depending on the nature of the process under 

consideration. Simple, cumulative, weighted, exponential moving average techniques 

are some of the commonly used ones for trend generation.  

 

Cumulative moving average is used when the average starting from a given time point 

up to the present is required for decision making. Weighted moving average is mostly 

used in cases where higher weights are to be assigned for the latest or new data. 

Different weight determination techniques are employed. Widely used weighing 

techniques are linearly or exponentially decreasing, by assigning the high weights to 
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most recent data and lower weights as data becomes old (Durbin, 1959). In finance, 

economy or in some medical applications weighted moving average is used. 

 

In principle moving average is taken to be a simple smoothing method, but its 

examination in detail indicates that sophisticated moving average methods can be 

developed. In part of the research devoted to this thesis, some new ideas are developed, 

and due to the process involved, it is named as “Stretched Interpolated Moving 

Average” (SIMA). Obtained smoothing results are compared with those of Local Linear 

Smoothing (LLR) and PACE results, to verify the validity of SIMA. First step is to 

locate the computed moving averages at equal distance over the range of the data. 

Hence, named as, stretched moving average, details of which are given in the following 

section.  

 

4.3. Stretched Interpolated Moving Average (SIMA) 

4.3.1. Stretched Moving Average 

The method developed handles the moving average process when data are available on a 

regular grid basis in terms of time or space coordinates. That means, each datum is 

located at equal time or space interval from its immediate neighboring data values. 

Considering the one dimensional case, when p  data values are regularly spaced on a 

trajectory, m  data points within a fixed lag interval h  are used for averaging. The 

number of averaged values will be, 1M p m   . Process starts with the first or oldest 

data averaging the first m  data values (Kenny and Durbin, 1982). Let obtained average 

values be denoted by the random variable Y . Given ip  observations located at equal 
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distance on the thi  trajectory, the moving average for each lag with m  data values will 

be  

                                            
11

,  2 ,  1, , ,  1, ,
m l

il ij i

j l

Y X m p i n l M
m

 



     .     (4.3.1) 

 

Every averaged value has to be assigned to a coordinate within the lag interval it belongs 

to. Assuming every averaged value Y  is assigned to the first point’s coordinate of each 

lag, the final average obtained from the last or thM  lag will fall h  units distance behind 

the present or newest datum. Alternately, averaged values can be assigned to the mid-

point or last point of each lag. Assignment of the upper lag boundary would mean 

ignoring a time or space interval equivalent to h  from the beginning point of the data 

values. The idea proposed to overcome this handicap, is to assign the coordinate of the 

first datum to the first average value, and the coordinate of the last datum to the last 

( thM ) average value. Remaining 2M   moving average values will be equally spaced 

over the span of data.  

 

Mean and variance of the moving average values for the thi  trajectory is 

                                        
1

1 1

1 1
( )

M M m l

i il ij

l l j l

E Y Y X
M mM

 

  

   
 

                                       

2 2
1 1

2

2
1 1

1 1
i

M m l M m l

Y ij ij

l j l l j l

X X
Mm Mm


   

   

   
    

   
    . 

Relationship between the moving average values ilY , with data values ilX  can be found 

as follows (Mentz, 1975).  
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Consider the case, 2m  , then 

                                        1

1
il il ilY X X

m
  . 

Via mathematical induction, 1il il ilX mY X   , follows with,  

                                        1 1 1il il il ilX mY mY X      

                                               1 2 2il il il ilmY mY mY X       

                                              1 2 3 3il il il il ilmY mY mY mY X         

                                                 

                                             1

1

( 1) ( 1)
l

j l l

ij i

j

m Y X



    . 

For the formulation of the Stretched Moving Average, let random variable S  be the 

time or space interval covered by ip  data values on the thi  trajectory. It is required to 

locate the averaged values equally spaced on the same interval S . In other words, ip  

data values ijX , 1,..., ij p  on the thi  trajectory covers an interval S , the same interval 

will also be covered by iM  moving average values. Without loss of generality the data 

values can be assumed to be uniformly distributed on a trajectory with equal interval 

between points.  

Then, distance between data values is / ( 1)d S p   and the distance between the 

moving average points will be / ( 1)s S M  . Note that, d s . Alternately if p  data 

values are uniformly located on S  with unit interval in between ( 1d  ), then 

( 1) / ( 1)s p M   .  
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Moving average values will be located at s  distance apart such that the first one 1iY  

will correspond to the location of 1iX , and last one iMY  corresponding to the location 

of ipX . Other moving average values ranging from 2iY  to 1iMY   will occupy locations 

on S  accordingly at equal distances. Steps followed in the assignment of coordinates 

to compute moving average values, is named as the Stretched Moving Average. 

  

Clearly as the lag interval becomes larger, in simple moving average the computed 

final ilY  value will lag farther behind the latest data values. Magnitude of this distance 

is ( 1)m d . Stretched moving average eliminates the handicap by assigning the 

computed ilY  values uniformly over the full interval S  covered by the trajectory. 

Let t S , 1

1 1

Ms s S
s

M M


 

 
, where 1 min( )s t  and max( )Ms t , then the stretched 

moving average can be written as 

                                            
11

( ) ( ),  1,...,
m l

il il ij

j l

Y s X t l M
m

 



                                                        

(Tandoğdu and İyikal, 2013).        

             

To highlight the stretched moving average concept, a hypothetical data set consisting of 

p=10 data values ijX , 1,...,10j    given at unit interval apart over the thi  trajectory is 

used. Cumulative distances from the first datum towards the last one will be, 

1 2 100,  1,..., 9t t t   . This means, data is spread over 9S   units of time or space 

interval. Hence, data can be represented by ( )ij jX t . If a lag interval of 3h   units is 
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used, it will include 4m   data values for the averaging process. Then, 

( 1) / ( 1) 9 / 6 1.5s p M      units. First moving average value 1 1( )iY s  will be 

assigned to the same location as, 1t , i.e. 1 1s t . Subsequent moving average values will 

be ( )il lY s . The graph showing the raw data, simple moving average and stretched 

moving average is as shown in Figure 4.1.  

 
                               

              Figure 4.1: Raw, Simple Moving and Stretched Moving Averages. 

 

 

The simple moving average graph lags behind the latest raw data points ijX  by 1m  

unit distance. Stretching the locations of moving average values to cover the whole 

space S , is the first step towards the computation of  the error involved in smoothing 

committed by the moving average process. Accurate computation of this error would 

require a one to one correspondence between the data points and the moving average 

values. However, the number of moving average values is less than the number of data 

points on a trajectory by 1m . A linear interpolation is introduced to equalize the 

number of moving average values with the number of data values on a trajectory. 



41 

Further, the normality of a trajectory, leads to the conclusion that the stretched moving 

average trajectory is also normal as explained below. 

It is known that the random process iX  has a p-variate normal distribution if and only if 

T

iXa  is univariate normal for all fixed p  vectors a . Then a linear combination 

iX y A c  of iX  has a q-variate normal distribution, where A  is a q p  matrix of 

coefficients and c  is a 1q  vector of constants (Mardia, et.al., 1979). In place of y  the 

stretched moving average ( )iY t  can be written, leading to the fact expressed in the 

following theorem. 

Theorem 4.3.1: If the thi  trajectory ( )iX t  of the random process has p-variate normal 

distribution, then the corresponding stretched moving average trajectory ( )iY t  has an (p-

m+1)-variate normal distribution.  

Proof of Theorem 4.3.1 is given in the Appendix B.  

 

4.3.2. Linear Interpolation of the Stretched Moving Averages  

Since the idea is to use the moving average as a smoother, the error committed in the 

smoothing process should be measurable. This measure is usually expressed in some 

form of the difference between the observations and the corresponding moving average 

values. However, as number of observations on a trajectory is always greater than the 

number of computed moving average values ( i ip M ), it is deemed necessary to 

compute a moving average value corresponding to each observation. This is possible by 
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linear interpolation of the stretched moving average values. Method followed to obtain 

these averages is named as “Stretched Interpolated Moving Average” (SIMA). Obtained 

new averages for the thi  trajectory are denoted by *

iY  and given by 

 

                                       
*

1 1 1 1( ) [ ( ) ( )] ( )ij ij j ij j j ij jY t Y s Y s w Y s                                 (4.3.2) 

 

where, 
1

1

j

j

j j

t s
w

s s









. In (4.3.2), the first stretched interpolated moving average value 

*

1iY  is equal to the first moving average value 1iY , the last stretched interpolated moving 

average value 
*

ipY  is equal to the last moving average value ipY  (Tandoğdu and İyikal, 

2013). 

 

Sample covariance function’s limit distribution when the variance is finite in the moving 

average process, is derived by Davis and Resnick (1986).  Obviously the difference 

between the observed and smoothed values or the error is required to be a minimum.  

 

In SIMA, random variable ip  represents the number of observations on the thi  trajectory 

and ip ’s are i.i.d. Assuming  and  :  j ij it X j J  are independent of ip , ( )iE p   , 

( 1) 0iP p   , and ( )ijE X  , then it is a well known fact that as ip   in a fixed 

interval T , and  1m , 

                                            
*sup | ( ) ( ) | 0il il

t T

E Y t X t


  . 
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For more details see (Davis and Resnick, 1986) and (Furrer et.al, 2006). The following 

theorem shows the variance of the error approaches to 2  under similar assumptions. 

  

Theorem 4.3.2: Let ip  be the number of observations on the thi  trajectory, and also 

under the assumption that ( )ijX t ’s are i.i.d., with ( ) 0ijE X   and 
2 2( )ijE X  , when 

jt s , i.e. 1jw  , then,  

                                         
* 2 21

sup [ ( ) ( )]il il
t T

m
E Y t X t

m





  . 

 

Further, when ip   and jt s  with very large m ,  

 

                                        
* 2 2sup [ ( ) ( )]il il

t T

E Y t X t 


  . 

 

Proof is given in Appendix B. 

 

Application of SIMA concept to data trajectories has yielded a smooth trend. Details of 

the application are explained in Chapter 5. Given a data set consisting of several 

variables and multiple observations on each variable, smoothing enables the construction 

of a functional relationship among the variables. Degree of smoothing obtained via 

SIMA is compared with the smoothing results obtained from LLR. Hence, a brief 

summary of LLR is given in Section 4.3.3. 
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4.3.3. Local Linear Regression 

The Local Linear Regression (LLR) is a smoothing method primarily based on the idea 

that a smooth function can be approximated by a low degree polynomial (Fan and 

Gijbels, 1996). This translates into minimizing 

                                              
2

0 1

1

( )( ( ( )))
n

i
i i

i

x x
w Y a a x x

h


   , 

to obtain estimates for the coefficients 0a  and 1a . Here (( ) / )iw x x h  is the kernel 

weight function with bandwidth h . The LLR estimate at point x  is given by 

1

ˆ( ) ( )
n

i i

i

x b x Y


 . The coefficients ib  are found by 

                                             
1

1( ) ( ( ),..., ( )) ( )T T T T

nx b x b x q  b X WX X W  

 

where, (1 0)Tq  , and 

11

1 n

x x

x x

 
 


 
  

X  is the design matrix. Further details are given 

in Loader (1999).  

 

LLR smoothing follows the observed trend closely when the correlation ( )ijr  between 

the predictor and response variables is high (preferably, | | 0.7ijr  ), and deviations from 

actual trend increase as this correlation becomes lower (Breiman and Friedman, 1985) 

(Hoover et. al.,1998, Härdle, 1992). 

 

Let ijr  be the correlation coefficient between different trajectories, where 1,...,i n  is 

the trajectory counter and 1,...,j p  is the column counter. Then obtained p p  
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correlation coefficient matrix R  is symmetric with, ij jir r . Close inspection of R  

gives an idea in between which trajectories one can expect good or poor LLR smoothing 

results.  

 

Figures 5.5 and Figure 5.7 are the graphical representation of matrix R  for the data sets 

used in this study. In examples where natural phenomenon is involved, such as those in 

Earth Sciences, trajectories spatially closer will tend to have high r  values. 

 

4.4. Smoothing the Covariance 

Observations made over a trajectory are likely to include errors or noise. Smoothing by 

expanding into orthogonal eigenfunctions will help to reduce the noise involved during 

sampling. Therefore, estimation of eigenfunctions becomes a crucial step in smoothing.  

Covariance matrix from observed data is defined as, ˆ ˆ( ( ))( ( ))ijl ij ij il ilG Y t Y t   . The 

obtained covariance matrix can be plotted as a scatter plot surface 

(( , ), ), , 1, , , and 1, ,ij il ijl it t G l j p i n   in 3 . Smoothing is applied to this surface 

under certain regularity assumptions as given in Fang et.al., (2005). Then the local linear 

surface smoother becomes 

                                       
2

1 1

, ( , ) ( ,( , ),( , )
i

n
ij il

i ij il ij il

i j l p G G

t t t t
G t t f t t t t

h h
  

   

 
 

 
   (4.4.1) 

where,  0 11 12( ,( , ),( , )) ( ) ( )ij il ij ilf t t t t t t t t         . Minimization of (4.4.1) with 

respect to 0 11 12,  ,  and    yields the smooth covariance matrix 0
ˆ ˆ( , ) ( , )G t t t t  . 
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Based on SIMA concept in Sections 4.3.1 and 4.3.2, smoothing the covariance matrix 

can be performed with a similar thought expressed above.  

 

The covariance surface can be smoothed by applying the SIMA concept in various 

directions. Smooth surfaces obtained from each direction are then averaged to obtain the 

final smooth surface. That is equivalent to averaging smooth values obtained for a given 

point, smoothed by different directions.   

 

Assume k is the number of different directions used in directional smoothing and 

* *

1, , kG G  be directional smoothed covariance matrices. Smoothing in each direction is 

carried out according to SIMA methodology. Final smoothed covariance matrix *
G  is 

obtained by averaging the corresponding elements of directional smoothed matrices.  

                                               * 1 *,  1, ,i

k

k i k G G                                            (4.4.2) 

 

The directional moving average smoothing concept in (4.4.2) is still under study. Thus, 

only one direction is used to smooth the covariance in Chapter 5. 
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Chapter 5 

     APPLICATIONS 

Multivariate and functional data analysis concepts introduced in Chapter 2 and Chapter 

3 together with the new method of smoothing (SIMA) developed during the course of 

this study given in Chapter 4, sets up the foundation of this thesis. Estimation of the 

unknown values or parameters in a certain process is of prime importance. Equation 

(3.1.13) is the key to the estimation of trajectories. Terms involved in this equation can 

all be estimated as explained in appropriate sections. The global mean function ˆ( )t  is 

estimated from all available data. ˆ( )t , the eigenfunction of  the covariance function is 

also estimated using all available data. ̂ , represents the principal component scores 

computed from the data. During the estimation process, some types of smoothing are 

used. Hence, smoothing becomes an important aspect in the estimation process. There 

exists a range of different smoothing techniques developed over the years. Kernel, 

splines, LLR are some of the widely used smoothers. However, there are still certain 

situations that require special attention. One such point was the use of moving averages 

as a smoother. When multivariate data are observed on a regular grid and especially 

when the correlation between variables are low, use of SIMA as explained in detail 

under Chapter 4, is at least as efficient as the kernel or LLR smoothing methods. 

Therefore, in the application of the aforementioned methodologies were tried on data 
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sets from different fields to test their validity, and sometimes compare different 

methodologies. 

5.1 Smoothing the Global Mean Function Using Different Smoothing 

Techniques  

Part of this thesis work involved evaluation of the new smoothing technique developed. 

Smoothing the global mean was undertaken using SIMA, PACE, and LLR methods, and 

results compared. SIMA is also applied to smoothing the covariance surface and 

graphically compared with the kernel smoothed covariance surface. Details of the 

applications are presented in the following sections of this chapter. 

 

5.1.1. Using SIMA and PACE for Smoothing the Mean 

There are several smoothing techniques used in various stages of data processing, i.e. 

direct smoothing of data values, smoothing the mean and covariance functions. These 

are the cases considered and used in this thesis. As an example, a data set consisting of 

the daily percent change in the value of shares over 30 consecutive working-days, 

belonging to 20 companies (trajectories) from İstanbul Stock Exchange is used to 

estimate the smooth mean function. Raw data and the estimated/smoothed data are 

shown in Figure 5.1. Negative values refer to a loss and positive values refer to a gain in 

the value of a share. Actual data set obtained from the online records of İstanbul Stock 

Exchange web site is given in Appendix D, Table 1. 
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Figure 5.1: Raw Trajectories of the Daily Percent Change in the Value of Shares Over 

30 Consecutive Working-Days, Trajectories Smoothed by SIMA, and PACE Methods. 
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Extreme values are visible in the first few days as well as days 18 and 24. It is a fact that 

the observation of an extreme value in a process would mean that there is/are 

unexpected situation(s) temporarily affecting the process. They  pose a danger if they are 

included in a study by shifting the trend (mean and variance) out of its expected path. 

Therefore, smoothing of data prior to the generation of the estimated mean function is 

beneficial. 

The Epanechnikov kernel smoother used in the PACE method, and the SIMA method 

are implemented to smooth the trajectories of the data. For each case the average of 

trajectories are computed and compared with the average of  the raw trajectories. MSE 

functions between average raw and smooth averages obtained through PACE and SIMA 

are given in Figure 5.2. In general the MSE function obtained from SIMA appears to be 

lower than that of PACE MSE function, indicating better performance in smoothing by 

the SIMA method.( 0.80 and 1.09SIMA PACEMSE MSE  ) 

  

Figure 5.2: MSE Functions between Average Raw and Smooth Averages obtained 

through PACE and SIMA. 
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A second data set from a different field of study is chosen for smoothing the mean using 

SIMA and PACE methodologies. This will give an idea about the performance of the 

two methods for comparison.  

The data set selected represents the coordinates of points in three dimensional space 

( , , )x y z . x  is the coordinate of a point in East –West,  y  is the coordinate in the North 

– South direction, while  z  is the elevation from sea level in meters.  

Data is obtained from 1:2500 scale topographic maps. Selected area containing gentle 

slopes as well as locations where rapid changes in elevation are observed, and are 

selected for the purpose of this study.  

The data set consists of 30 parallel trajectories at 50 meters apart and each trajectory 

containing 30 measurements taken on a regular grid bases at every 50 meters in the East-

West direction.  

Figure 5.3 shows the raw trajectories of this data in the East-West direction, but there are 

no significant deviations in the values forming each trajectory. Smoothed trajectories by 

SIMA and PACE are also given in Figure 5.3 for comparison.  

Data used in this study is given in Appendix D, Table 2. Hence, no extreme values.  

Smoothing of the mean is undertaken using SIMA and PACE methods and associated 

MSE functions are generated. Figure 5.4 shows the MSE functions between raw 

trajectories and smoothed by SIMA and PACE methods. From Figure 5.4 it can be seen 

that the error functions are following a similar trend, indicating no significant difference 
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between the two methodologies. In fact the overall MSE of SIMA method and PACE 

method are 8.47 and 7.97SIMA PACEMSE MSE   suporting the idea of close 

performance.  

However, for the data values at locations 3, 4, 28, and 29 the increase in MSE for SIMA 

is due to rapid change in elevation in the Nort – South direction.  

A similar increase in MSE at data locations 14, 15,  17, and 18  in PACE method is 

considered attributable to over smoothing of the mean, foloowing the detailed study of 

the raw and smooth mean values.  

The shares data set with extreme values and the elevation data set without extreme 

values are both smoothed using SIMA and PACE methods. For each data set, associated 

MSE values indicates no significant difference between the two methodologies.  
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    Figure 5.3: Raw and Smoothed Trajectories of Elevation Data. 
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Figure 5.4: MSE Functions for SIMA and PACE Exhibits a Similar Behaviour with a 

Few Exceptions.  

 

5.1.2 Using SIMA and LLR for Smoothing the Mean. 

In this section same data sets used in Section 5.1.1 are used to compare the performance 

of SIMA with the LLR smoothing method. It is known that the accuracy of smoothing 

with LLR gets better as the correlation coefficient between the variables increase. For 

the elevation data set the high correlation between trajectories is expected, since the 

nature forces shaping the topography are the same within close proximity.  

 

In the shares data set, high correlation between trajectories should not be expected due to 

market conditions affecting shares differently.  

 

5.1.2.1 High Correlation Between Variables Case 

Area from where the elevation data is taken contains gentle slopes as well as locations 

where rapid changes in elevation are observed. Correlation between trajectories is 
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mostly high to very high | | 0.8ijr  . Correlation matrix surface given in Figure 5.5 clearly 

shows this feature. On the diagonal correlation values are 1 and decline towards the ends 

as distances between trajectories increase.  

 

 

Figure 5.5: Correlation Surface between Different Trajectories of Elevation Data. 

 

Smoothing of trajectories through SIMA is compared with the smoothing results of 

LLR. For comparison the Root Mean Square  Deviation (RMSD) or Root Mean Square 

Error (RMSE) between the observed and the smooth trajectories for SIMA and LLR are 

considered. Figure 5.6 shows the RMSD functions for the two smoothing methods.  
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           Figure 5.6: RMSD Functions for SIMA and LLR Smoothing Methods.  

 

As expected in the presence of high correlation between trajectories, smoothing carried 

out by LLR has lower trend, indicating smooth mean following closely the observed 

mean function. Higher RMSD values obtained in SIMA, meaning when the correlation 

is high between the variables LLR performs better than SIMA. 

 

5.1.2.2 When Correlation is Low Between Variables 

Based on the theory of linear regression it is known that as the correlation between two 

variables decrease, estimation using the obtained regression equation deteriorates, i.e. 

becomes less reliable. LLR is used as a smoother. Smoothing in the case when pairwise 

correlation between variables under study is low will result in high errors. Through trials 

using data sets where correlation between variables are low, agreed with this concept. 

The stock exchange shares data set introduced in Section 5.1.1 is used to compute the 

correlation between the daily performances of different shares. Results are shown in 

Figure 5.7. Apart from the diagonal elements where the correlation values are 
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1,  when ijr i j  . Of the remaining 870 correlation values only 13% are above 50%, 

leading to the conclusion of low correlation between 30 variables.  

 

 
       Figure 5.7: Correlation Values Between the Daily Performance of Different Shares. 

 

Smooth mean functions are computed via SIMA and LLR. The RMSD between the 

average obtained from raw data and the smooth means are shown in Figure 5.8.  

 

Clearly, SIMA resulted in lower errors compared with LLR, indicating better smoothing 

results can be obtained from a data set where the correlation between variables are low.    
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          Figure 5.8: RMSD Functions Obtained for SIMA and LLR Smoothing. 

 

In Figure 5.9, correlation coefficient ( ijr ) values between predictor and response 

trajectories, and RMSD values between observed and LLR smoothed trajectories are 

given for comparison. It can be seen that for correlation ijr  values under 0.45, RMSD 

values tend to be not very sensitive to changes in ijr , while RMSD starts decreasing for 

values  of  ijr  above 45%. This is an expected result due to the nature of the shares of 

different companies.  

 
Figure 5.9: Relationship Between Correleation Coefficient and RMSD for the Shares 

Data Set. 
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5.2. Smoothing the Covariance Surface Using SIMA and Kernel 

Smoothers 

The covariance matrix plays a major role in MDA and FDA. Smoothing is essential 

especially when high local variability is observed. Amount of smoothing in SIMA 

depends on the number of data points (m) falling into each lag interval (h), while in 

kernel smoothing used in PACE depends on the band width (h).  

 

In the studied elevation and shares data sets, for SIMA m=3 and for PACE h is 

automatically selected by generalized cross validation (GCV) method (Müller and 

Prewitt, 1993). As a result both covariance surfaces are highly smoothed by the kernel 

smoother, while smoothing by SIMA remained relatively mild compared with kernel 

smoothing. Increasing the lag interval will increase the degree of smoothing, and 

similarly reducing the size of the bandwidth in kernel will reduce the degree of 

smoothing.  

 

Figure 5.10 and Figure 5.11 show the raw, smoothed by SIMA and smoothed by kernel 

covariance surfaces for the elevation and shares data, respectively.  
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Figure 5.10: Raw Covariance Surface and Covariance Surfaces Smoothed by SIMA, and 

by Epanechnikov Kernel Methods for the Elevation Data. 
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Figure 5.11: Raw Covariance Surface and Covariance Surfaces Smoothed by SIMA, and 

by Epanechnikov Kernel Methods for the Shares Data. 
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5.3 Robustness of SIMA Method 

An estimator is said to be robust if it is insensitive to changes in the underlying 

distribution and resistant against the presence of outliers.  

 

A good robust estimator as given in Abu-Shawiesh (2008) should have, 

 high efficiency, meaning minimum variance. 

 high breakdown point, which is a measure of the maximum fraction of outliers.  

 redescending influence function measuring the reaction of an estimator to a small 

fraction of outliers. 

 low gross error sensitivity which measures the worst influence a small amount of 

contamination of fixed size can have on the value of the estimator.  

 

The median absolute deviation from the sample median (MAD) is considered as one of 

the good robust estimators since it satisfies these requirements to notable level of 

significance. Other noteworthy references on robustnes are Lax (1985), and Parr and 

Schucany (1980). 

 

MAD values are computed using the formula given in Abu-Shawiesh, (2008) 

                                   1.4826 , i=1,2,...,n.iMAD MD X MD  . 

Here, MD  is the sample median. The factor 1.4826 is only used when samples come 

from Gaussian distribution, and should not be used when sample comes from non-
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Gaussian distributions. The lower control limit ( clL ) and upper control limit ( clU ) of the 

S-control chart are given as, 

                                          

2

4 4

2

4 4

3 1

3 1

cl

cl

L c S S c

U c S S c

  

  
                                          ( 5.3.1) 

where,  

                                         
4

2 ( / 2)

1 ( 1/ 2)

n
c

n n




  
 , 

(He and Grigoryan, 2002). 

 

The robustness of the proposed SIMA method of smoothing is checked by using the 

Shewhart S-control chart. Column-wise standard deviations jS  of SIMA values of the 

share and elevation data sets are calculated and plotted together with respective control 

limits from (5.3.1).  

 

Figure 5.12 shows the standard deviation function together with the control limits for the 

elevation data, while Figure 5.13 shows the same for the shares data. In both cases the 

standard deviation function falls completely within the control limits indicating the 

robustness of the SIMA smoothing method. 
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Figure 5.12: Standard Deviation Function for the Elevation Data Totally within the 

Control Limits Indicating the Robustness of the SIMA Smoothing Method. 

 

 

 

 

Figure 5.13: Standard Deviation Function for the Shares Data Set Completely within the 

Control Limits Indicating the Robustness of the SIMA Smoothing Method. 
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Chapter 6 

CONCLUSION AND FURTHER STUDY 

6.1 Conclusion 

Application of the proposed SIMA smoothing method is applied to two distinct data sets 

together with kernel (PACE) and LLR smoothers. Obtained results from SIMA are 

compared with those from PACE and LLR. 

 

SIMA performed better than LLR under the condition of weak correlation between 

variables involved. In the application to the data sets for the smoothing of mean and 

covariance, SIMA performed equally well with PACE method which uses Epanechnikov 

kernel smoother.   

 

The measures used in comparing different smoothers are Mean Square Error (MSE) and 

Root Mean Square Deviation (RMSD) between an observed trajectory and its smoothed 

estimate. 

 

SIMA smoothing method is checked for robustness using the standard deviation function 

control limits method (Shewhart S-control chart) and is found to be a robust smoother. 
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6.2 Further Research  

Based on the research that led to the preparation of this thesis, the following topics are 

identified as possible areas of further research.  

1. Minimizing the error for the proposed SIMA smoothing method by using areas 

between a trajectory and its estimated SIMA trajectory. 

2.  The directional moving average smoothing with SIMA concept is another area 

for further investigation. One immediate application area can be the smoothing 

of the covariance surface given in equation (4.4.2).   
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APPENDIX A: Projecting the Data 

  

It is known that the angle   between vectors , px y  is defined by                                          

                                     cos
T

 
x y

x y
.                                                           (A.1)                                                            

 

If 0T x y , then / 2  , from (A.1). In a right angled triangle, the cosine of   is equal 

to the length of the base xp , over, the length of the hypotenuse x . Thus,  

                                                | cos | ,
T

x  
p x y

x x y
 

can be written. Hence 

                                                 | cos | .
T

x  
x y

p x
y

                                           (A.2) 

Here, xp  is the projection (coordinate) of x  on y . Therefore, the coordinate of ix  on 1L  

is the projection point 
ixp ,  

                                                  1
1

1
i

T T

x i ip  
u

x x u
u

.                                                 (A.3) 

In "least-square" meaning; the best line 1L  is defined by finding a unit vector 1

pu  

which minimizes 
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2

1
i

n

i x

i

p


 x                                                              (A.4) 

or, maximizes 
2

1
i

n

x

i

p


  under the constraint 1 1u . From (A.3) the following can be 

written 

                                     

1

2

1 1

2 1

1

1n

T
x

T
x n

T

nx

p

p

p

   
   
        
        

x u

x u
Xu

x u

.                                              

The following theorem will be used to reformulate the maximization problem (Härdle 

and Simar, 2003). 

Theorem A.1 : If A  and B  are symmetric and 0B , then maximum of 
T

T

x Ax

x Bx
 is given 

by the largest eigenvalue of 1
B A . In general terms this can be expressed as,   

                                  1 2max min ,
T T

pT T
      

xx

x Ax x Ax

x Bx x Bx
                       

where, i ’s are the eigenvalues of  1
B A . If 1T x Bx    we obtain 

1 2
{ : 1}{ : 1}

max min ,
TT

T T

p  


    
x x Bxx x Bx

x Ax x Ax  

Proof:  By definition 1/2 1/2 T
B B B

B Γ Λ Γ  is symmetric. Then 1/2 2 1/2 2T T x Bx x B B x . 
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Let 
1/2

1/2 2


B x
y

B x
, then 

                                  1/2 1/2

{ : 1}
max max

T

T
T

T

 




x y y y

x Ax
y B AB y

x Bx
                                   (A.5) 

 From spectral decomposition theorem for symmetric square matrices 

1/2 1/2 T  B AB ΓΛΓ . Letting Tz Γ y  we get T T T T z z y ΓΓ y y y . 

Thus (A.5) can be written as  

                                     2

{ : 1} { : 1}
1

max max
T T

p
T

i i

i


 



 
z z z z z z

z Λz z  and 2 2

1 1

1

1

max max
p

i i i

i

  




  
z z

z z  

When (1,0, ,0)Tz  gives the maximum. That is 1y γ  the first column of Γ , hence 

1/2

1

x B λ .  

As 1 1/2 1/2 and   
B A B AB    have the same eigenvalues, proof is complete.■ 

In Theorem A.1, substituting TA X X  and B I , we have:  

If  T
X X  and 0I  are symmetric, then the maximum of 1 1

T T
u X Xu  under the constraint 

1 1 1T u u  is given by the largest eigenvalue of T
X X .  
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1 1 11 1 1

1 1 1 2 1 1
{ : 1}{ : 1}

max min
TT

T T T T

p  


    
u u uu u u

u X Xu u X Xu      (A.6) 

Thus, by (A.6) the problem reformulated as: Find 1

pu , with 1 1u  that maximizes 

the quadratic form 1 1( ) ( )T
Xu Xu  or 

1 1 1

1 1
{ : 1}

max
T

T T

u u u

u X Xu . The unit vector 1u  can be  found 

by the following theorem.  

Theorem A.2: The vector 1u  is the eigenvector of T
X X  associated with the largest 

eigenvalue 1  of  T
X X .                                                                                                       

Proof: If eigenvector equation is used for T
X X , we have 1 1( ) ( )T T TX X k u X Xu k , 

where k  is the eigenvector of T
X X . The eigenvector equation can be rewritten as 

follows 

                                      1 1 1 1( ) ( ) 0.T T T T Tk   X X u X Xu k X X u ku              (A.7)                    

From (A.7) it is clear that 1k u .  ■ 
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APPENDIX B: Some Proofs  

Proof of Theorem 4.3.1: Let J  be any ( 1p m  )-vector and 
1

( ) ( )i m iY t X t
m

 A . Then, 

( ) ( )T T

i iY t X tJ θ , where 
1 T

m
m

θ A J  and the ( 1)p m p     matrix mA  has the  

general form.     

                                    

1 1 1 0 0 0

0 1 1 1 0 0

.

0 0 1 1 1 0

0 0 0 1 1 1

m

 
 
 
 

  
 
 
 
 

A
                                             

Let ija  be the elements of mA . Then 

                            
1, , 1

.
0, ,

ij

for i j i m
a

for elsewhere

   
 


                                                     

Since ( )iX t  is p-variate normal, then ( )T

iX tθ  is univariate normal. Thus ( )T

iY tJ  is also 

univariate normal for all fixed vectors J , and ( )iY t  is multivariate normal.∎  

 

Proof of Theorem 4.3.2:  Under the assumptions on ip  and t , 

                         

2
1 2 2

* 2

1 1

1 1
[ ( ) ( )] ( ) ( ) ( ) ( )

m l m l m l

il il ij ij j ij il

j l j l j l

E Y t X t E X t X t w X t X t
m m

     

    

  
      

   
    

can be rewritten as, 
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2 22 1 2 1 2 2
* 2

2 2
1 1 1

1 2

1

2
[ ( ) ( )] ( ) ( ) ( ) ( ) ( )

2 2
( ) ( ) ( )

m l m l m l m l m l
j j

il il ij ij ij ij ij

j l j l j l j l j l

m l m l
j

il ij il ij il i

j l j l

w w
E Y t X t E X t X t E X t X t X t

m m

w
E X t X t X X t E X X

m m

         

       

   

  

    
       
     

 
   

 

    

 
2

2 2
2

2
1 1

1
( ) ( ) [ ]

m l m l

j ij il

j l j l

t E X t E X
m

   

   

   
    

   
 

 

2 22 1 1 2 2

2 2 2
1 1

2
2 2

2

2
1 1

2 (1 ) ( 2)
( ) ( ) ( ) ( )

2 1
( ) ( ) [ ] .

m l m l m l m l
j j j j j

ij ij ij ij

j l j l j l j l

m l m l

il ij ij il

j l j l

w w w w w
E X t E X t X t E X t

m m m

E X X t E X t E X
m m

       

     

   

   

      
       

     

   
     

   

   

 

(B.1) 

 

Under the i.i.d assumption on ijX , and 2 2( ) 0 and ( )ij ijE X E X   , then 

                                     

2 2
2 1 1 2

2

1 1

( ) ( ) ( ) ( )
m l m l m l m l

ij ij ij ij

j l j l j l j l

E X t E X t E X t X t m
       

     

     
       

     
    . 

Therefore, (B.1) can be written as, 

                                    
2

1 2
2

2
1 1

1 2
( ) ( ) ( ) ( )

m l m l

ij il il ij

j l j l

E X t E X t E X t X t
m m

   

   

   
    

   
  . 

As jt s , 

                                   * 2 21
[ ( ) ( )]il il

m
E Y t X t

m



  . 

Moreover, for 
ip   and 

jt s , with very large m , 

                                   * 2 2[ ( ) ( )]il ilE Y t X t   . ■ 
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APPENDIX C: Karhunen–Loève Theorem   

The Karhunen–Loève theorem is an infinite linear combination of orthogonal functions 

representation of a stochastic process, as a Fourier series expansion of a function on a 

bounded interval. The theorem yields the best basis that minimizes the total mean 

squared error. 

 

The coefficients in the Karhunen–Loève theorem are random variables and the 

expansion basis depends on the process. Hence, the orthogonal basis functions are 

determined by the covariance function of the process.  

 

In the case of a centered stochastic process  t t I
X


 , i.e. ( ) 0tE X   for all t I , where I 

is a closed and bounded time or space interval,  can be decomposed as 

                                                  
1

( )t k k

k

X t 




                                                           (C.1)                                                        

where, k  are pairwise uncorrelated random variables and the functions k  are 

continuous real-valued functions on I  that are pairwise orthogonal in 2 ( )L I . (C.1) is 

called Karhunen–Loève expansion or Karhunen–Loève decomposition.  If the process is 

not centered, then in place of tX ,  ( )t tX E X  is used.  

 

http://en.wikipedia.org/wiki/Orthogonal_function
http://en.wikipedia.org/wiki/Fourier_series
http://en.wikipedia.org/wiki/Mean_squared_error
http://en.wikipedia.org/wiki/Mean_squared_error
http://en.wikipedia.org/wiki/Random_variable
http://en.wikipedia.org/wiki/Covariance_function
http://en.wikipedia.org/wiki/Uncorrelated
http://en.wikipedia.org/wiki/Orthogonal
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The empirical version of the Karhunen–Loève theorem is called as the Karhunen–Loève 

transform, principal component analysis,  proper orthogonal decomposition, Empirical 

orthogonal functions or the Hotelling transform. 

A linear operator 2 2: ( ) ( )
XGT L I L I  defined for covariance function kG , as follows,                                                                         

                                                 ( ) ( , ) ( )X

I

f t G s t f s ds  . 

Since 
XGT  is a linear operator, its eigenvalues k  and eigenfunctions k  can be  found 

by solving the following equation.  

                                               ( , ) ( ) ( )X k k

I

G s t s ds t                                               (C.2)   

 

Mercer’s Theorem: Let tX  be a zero-mean square integrable stochastic process over 

t I , with continuous covariance function ( , )XG s t . Then, ( , )XG s t  is a Mercer 

kernel. Let k  be an orthonormal basis of  2 ( )L I  formed by the eigenfunctions 

of 
XGT  with respect to eigenvalues k , tX  has the representation 

1

( )t k k

k

X t 




  where 

the convergence is in 2L , uniform in t , and ( )k t k

I

X t dt   . Further, k  are 

uncorrelated with ( ) 0kE    and var( )k k  . 

 

http://en.wikipedia.org/wiki/Statistic
http://en.wikipedia.org/wiki/Principal_component_analysis
http://en.wikipedia.org/wiki/Empirical_orthogonal_functions
http://en.wikipedia.org/wiki/Empirical_orthogonal_functions
http://en.wikipedia.org/wiki/Harold_Hotelling
http://en.wikipedia.org/wiki/Linear_operator
http://en.wikipedia.org/wiki/Mercer%27s_theorem
http://en.wikipedia.org/wiki/Mercer%27s_theorem
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Hence, Mercer's theorem says that, there exists a set of eigenvalues and eigenfunctions 

of 
XGT  from (C.2), forming an orthonormal basis of 2 ( )L I , such as, 

                                          
1

( , ) ( ) ( )X k k k

k

G s t s t  




 . 

 

More specifically, given any orthonormal basis  k  of 2 ( )L I , the process tX  may 

decomposed as 
1

( ) ( ) ( )t k k

k

X s s t 




  where ( ) ( ) ( )k t k

I

s X s t dt    and may 

approximate by the finite sum 

                                                 
1

ˆ ( ) ( ) ( )
K

t k k

k

X s s t 


 .                                               (C.3)                                                        

The integer K  can be found by using the function 
1 1

( ) /
K

k k

k k

F K  


 

  . Claim of all 

such approximations (C.3) is that; the Karhunen–Loève approximation is the one that 

minimizes the total mean square error provided that eigenvalues are arranged in 

decreasing order.  

 

 

 

 

 

 

http://en.wikipedia.org/wiki/Mercer%27s_theorem
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APPENDIX D: Data Sets.   
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