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ABSTRACT 

Financial forecasting is a difficult task due to the intrinsic complexity of the financial 

system, in this research the estimation of the stock exchange prices is targeted using 

the five-year time series data of prices. The objective of this work is to use an 

intelligence techniques and mathematical techniques to create a model, that has the 

ability to predict the future price of a stock market index, then decide throughout the 

k-means clustering with majority voting, which one of those prediction techniques is 

the best. It is a multi-decision making in order to find the best predictive method. The 

proposed method combines multiple methods to have higher prediction accuracy and 

higher profit/risk ratio. The forecasting techniques, namely, Radial Basis Function 

(RBF) combined with Self-organizing map, Nearest Neighbour (K-Nearest 

Neighbour) methods, and Autoregressive Fractionally Integrated Moving Average 

(ARFIMA) are implemented in forecasting the future price of a stock market index 

based on its historical price information, and the best forecast of these three methods 

is decided by majority voting after k-means clustering. The experimentation was 

performed on data obtained from the London Stock Exchange. The data used was a 

series of past closing prices of the Share Index. The results showed that the proposed 

decision method provides better prediction than forecasts of the three techniques. 

Keywords: Forecasting, SOM-RBF, K-Nearest Neighbour, ARFIMA, Decision-

making. 
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ÖZ 

Finansal sistemlerin iç karmaşası nedeniyle finansal tahmin zor bir iştir. Bu 

araştırmada beş yıllık zaman serisi verisini kullanarak hisse senedi fiyatlarının tahmini 

amaçlanmaktadır. Çalışmanın amacı hisse senetlerinin gelecekte fiyatını çeşitli 

matematiksel ve yapay ussal tahmin yöntemleri kullanarak bulup, ardından, k-ortalama 

öbekleme yöntemi ile hangi tahmin yönteminin daha başarılı olduğuna karar 

vermektir. Böylece oluşturulan çoklu karar verme mekanizması her durum için en iyi 

tahmin yöntemini bulur.  Tahmin yöntemleri olarak Kendinden Düzenli Radyal Baz 

Fonksiyonu (RBF) en yakın komşu (K-Nearest Neighbour) metodu, ve Atoregressif 

Oranlı Tümlevsel Gezer Ortalama (ARFIMA) metodları kullanılarak beş yıllık zaman 

serisinden gelecekteki değer tahmin edilmiş ve üçü arasında en iyi tahmin eden metoda  

k-ortalama öbekleyici ve çoğunluk oyu kullanarak karar verilmiştir. Deneyler Londra 

Hisse Senetleri Borsasından alınan beş yıllık günluk kapanış veri üzerinde denenmiştir.  

Sonuçlar önerilen yöntemin seçtiği tahminin, kullanılan her üç yöntemin tahminden 

daha başarılı olduğunu.göstermektedir. 
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Chapter 1 

1 INTRODUCTION 

The forecasting of the stock market became an important financial project that attracts 

the researchers’ attention in recent years. It includes a theory that past values of 

available information has some predictive relationship with the market future prices 

[1]. The prototypes of such information involves an economic variables such as interest 

rates and exchange rates, industry specific information such as growth rates of 

industrial production, and company specific information such as income statements. 

The stock markets’ studies focus on two areas, namely testing the stock market 

efficiency and modelling stock prices. Efficiency of the stock market is defined clearly 

by the concept called the efficient market hypothesis (EMH). Different modelling 

techniques have been used for trying to model the prices of the stock market index. 

These techniques have been focused on two areas of forecasting, namely technical 

analysis and fundamental analysis. 

Technical analysis considers that market activity discovers significant new information 

and understanding the psychological factors that responsible for influencing the stock 

price in order to forecast future prices and trends. This approach is based on the 

assumption that the price is a reflection of the crowd in action, it is try to predict the 

future price movements according to the crowd psychology when moves between 

panic, fear, and pessimistic on one hand and confidence, excessive optimistic, and 
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greed [6]. There are many techniques that fall under this category of analysis, the most 

well-known being the moving average (MA). 

Fundamental analysis is a very effective way to predict the economic conditions and 

focuses on money policy, government policy when dealing with economy, and 

economic indicators such as G.D.P (gross domestic product), exports, imports and any 

work inside the business cycle framework. It used mathematical methods include 

vector auto-regression (VAR) which is a multivariable modelling technique. 

The study focused on the forecasting of the London stock market index using artificial 

intelligence techniques radial basis function (RBF) and nearest neighbour (K-Nearest 

Neighbour), and the mathematical method Auto Regressive Fractionally Integrated 

Moving Average (ARFIMA). The study involves an assumption which is the 

predictions can be made based on stock price data alone. RBF, K-Nearest Neighbour 

and ARFIMA systems were used to attempt to predict the share index of the London 

stock market. Furthermore, the three techniques’ predictive power also compared. 

1.1 Efficient Market Hypothesis 

As mentioned by Fama [2], which states that all available information that obtained by 

the market, affecting the current stock values. And the traders are able to make trades 

based on it. Therefore, it is not possible to predict the future prices index since they are 

already known the reflecting about the stocks. The efficient market will 

instantaneously control the prices of stock markets according to the news, which comes 

to the market in a random way [3]. And it is not impossible to forecast the future prices 

with results, which are better than random [5]. Many studies in this area provide 
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evidence that the stock market is not completely efficient [7, 8, 9, 10, 11] nor do stock 

prices follow a random walk [12]. 

There are three types of EMH [4]:- 

 Weak-Form Efficiency - this form state that the past information is fully 

incorporated with the current price and does not have any predictive power. 

This means that predicting the future returns of an asset based on technical 

analysis is impossible. 

 Semi-Strong Form Efficiency - this form state that any public information is 

fully incorporated in the current price of an asset. Public information includes 

the past prices and the information that have been recorded in a company’s 

financial statements, dividends announcement, the financial report of 

company’s competitor, and any economic factors. 

 Strong Form Efficiency - this form state that the current price incorporate any 

information, both public and private. This means that no market actor is able 

to derive profits continuously even when trading with information that is not 

already public knowledge. 

1.2 Random Walk Hypothesis 

This hypothesis states that all stock prices follow a random walk and do not follow any 

patterns or trends. It is initially theorized by a French economist Louis Bachelier in 

(1900), however it came back into main stream economics in (1965) in Eugene Fama‘s 

article “Random Walks in Stock Market Prices” [13]. 

1.3 Trading Strategies 

Some investors, who are looking to manage their decisions by a set of rules, in order 

to eliminate any trades influenced by emotional response or feeling, will use a trading 

strategy, which lays out a set of rules about when to enter or exit a trade. The usually 
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set of rules may be very easy like follows interactions between moving averages or 

very complicated like sort selling, where man things need to be satisfied before making 

the decision. 

1.4 Motivation 

The most important motivation for trying to forecast the stock prices of the market is 

financial gain. The ability to create a mathematical model that can forecast the 

direction of the stock prices in the future would make the owner of the model very 

wealthy. Thus, researchers, investors and investment professionals are always 

attempting to find a stock market model that would make a higher return. 

1.5 Research Hypotheses 

For this research, the following hypotheses have been identified: 

1. Neural networks can be used to forecast the future prices of the stock market. 

2. Mathematical methods can be used to forecast the future prices of the stock 

market. 

3. Self-organizing map (SOM) combined with neural network can be used to 

forecast the future stock market prices of the stock Market. 

4. Cluster the forecasted future prices of each method for a training period  

5. Determine the best method for each cluster by majority voting. 

1.6 Objective of the Report 

The first objective of this work is to apply self-organizing map (SOM) combined with radial 

basis function network (RBF), ARIMA and nearest neighbour (K-Nearest Neighbour) to 

forecast the share index of the London stock market. The second objective is to compare the 

accuracy of the prediction results of each tool (according to their results). Then cluster the 

prediction results that came out from those methods and decide which one of them is the best 

predictive method throughout decision-making procedures. However, it must be stated that the 
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objective of this report is not to develop a guideline for investing on assets in the stock market. 

This work should be regarded as a decision-making support tool when deciding to predict the 

market. 

1.7 Structure of the Thesis 

A brief description of the structure of the thesis contains the following items: Chapter 

1 is an introduction to the market-forecasting problem. Chapter 2 explains the stock market 

data, Chapter 3 describes the Prediction methods, and Chapter 4 introduces the proposed 

decision making algorithm by k-means clustering. Finally, Chapter 5 concludes the thesis. 
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Chapter 2 

2 DATA AND STOCK MARKET 

This chapter aims to introduce the reader to the stock market and it’s data, the process 

of fixing the missing days in the stock market, then covers the forecasting in general 

definition and it’s objects, and finally discuss the previous techniques of forecasting 

and their effects in the history of market forecasting. 

2.1 London Stocks Market 

The London Stock Exchange (L.S.E), is a stock exchange which is located in 

Paternoster Square close to street Paul's Cathedral in the City of London in the United 

Kingdom. In the Dec. (2011), the Exchange had a market capitalization of 

3.266$ trillion, making it number four among the largest stocks exchange in the world 

(and the largest in Europe) [17]. 

2.1.1 The Market Index 

A market index defined as a statistical measure of the changes in the shares of the 

market [16]. The fluctuations of the market are represented by the index of that market. 

With the growing importance of the shares market in different societies, indices like 

the LSE All Share, DJIA, Nikkei and NASDAQ. Composite have grown to become a 

part of everyday vocabulary. The index used as a measure of the performance of the 

market and the change in the price of the index represents the proportional change of 

the shares included in the index. 

 

  

https://en.wikipedia.org/wiki/Stock_exchange
https://en.wikipedia.org/wiki/Paternoster_Square
https://en.wikipedia.org/wiki/St_Paul%27s_Cathedral
https://en.wikipedia.org/wiki/City_of_London
https://en.wikipedia.org/wiki/List_of_stock_exchanges


7 

2.2 The Dataset 

A time series data is a sequence of the obtained data, which are ordered by time with 

equally spaced time intervals such as daily or hourly like air temperature. The datasets 

generated in many areas and the analysis of it has wide programmes in controlling 

process, economic prediction, marketing, social studies, medical science etc. the 

analysis of data uses programmed approaches to extract information and understand 

the properties of a physical system that generates the time series data. 

In stock markets, the trading volume (index) is an important part of the technical 

analysis theories. Recently, some researchers have discovered evidences that the 

relation between trading volume and price fluctuation is obviously strong. 

In this thesis, the 5 years datasets will be use, which consists of circadian closing 

prices of London stock market. The dataset’s period contains the trading days starting 

from (1st January 2008 to 31st December 2012). It has collected from the actual data 

accessible on the website of finance.yahoo.com/ [28]. The data Contains missing days, 

and those days will effect on the forecasting results, so the data have been processed 

using methods of data compensation. 

2.2.1 Pre-processing of Data 

Data pre-processing is a data mining technique that includes the transformation process 

of raw data into an understandable format. The real-world data may be inconsistent, 

incomplete, or lacking in certain trends, and may contain several errors inside. Data 

pre-processing is an ensured method for solving these problems [39]. In this research, 

forecasting of the market prices required a recorded datasets with daily closing prices 

of the stock market of London, and we decide to use a data starting from the 1st-
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January, of (2008) to 31st-December, (2012), which was obtained from the financial 

data accessible on finance.yahoo.com/ [28]. As we mentioned before, missing vector 

means no recorded data is available in that day, and missing value means several 

vectors are missing from the daily record. And this is because the stock exchange does 

not open all the days of the year. So, the missing vectors and values may have some 

changes on the features of datasets when it used for prediction purposes. 

There are methods to rebuild the missing data values inside the range of a time series. 

The linear interpolation method is the most commonly used for solving the missing 

data, which is done by taking the weighted mean of the values of the before missing 

day and after it. 

For example, in the following table (Table 1), it contains a set of values corresponding 

to an index; but the 3rd value of F is missing. 

Table 1: Example of Missing Value 

Interpolation method will provide an average value by using the estimation function at 

middle points, from both before and after values. The function is: 

  𝑓(3) = ( 𝑓(2) + 𝑓(4))/2                                         (2.1) 

In Table 2, we have a sample of the real (raw) closing prices of London stock market 

from 06/08/2008 to 11/08/2008 with missing days at 9-10/08/2008. 

Y F(y) 

1 0 

2 0.9093 

3 - 

4 -0.7568 

5 -0.2794 
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Table 2: Real Data of London Stock Market 

Days Closing Price 

06-08-2008 10738.49214 

07-08-2008 10699.20075 

08-08-2008 10690.217 

11-08-2008 10643.0269 

After data was pre-processed by linear interpolation, we obtained the following table: 

Table 3: Real Data After Pre-processing 

Days Closing price 

06-08-2008 10738.49214 

07-08-2008 10699.20075 

08-08-2008 10690.217 

09-08-2008 10674.486967 

10-08-2008 10658.756933 

11-08-2008 10643.0269 

Figure 1 and Figure 2 show daily close price and returns of London stock market 

after the data of stock market was pre-processed. 

 

Figure 1: Closing Prices of London Stock Market 
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Figure 2: Returns of London Stock Market 

2.3 Forecasting 

The core component of the analysis of market is the market prediction. It explain the 

future numbers, properties, and trends in the target market [29]. The main objective of 

forecasting the stock markets is for decision makers to make better decisions. 

2.3.1 Reality Checks 

The forecasting results of the market index must always be a subject to a reality check. 

When we have forecasts, we need to derive a way to test it for reality. In this case, if 

the total market is worth some estimate, you might check with traders who sold 

products to this market in some given years to see whether their results check with 

your forecasts. You might look for macro-economic factors to confirm the relative size 

of this market compared to other markets with similar properties [29].  
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2.4 Modelling Stock Prices or Returns 

It means finding the best predictive model that can represent the problem based on the 

given information. In addition, when the historically information is available, it will 

makes it possible to generate a statistical predictive model based on data. Many 

forecasting techniques were proposed to forecast the future event based on past 

observations. And, here we will presents the some models that were published 

previously, used currently, and still under research. 

(a) Smoothing 

Smoothing methods are used to determine the average value around which the data is 

fluctuating. There are two examples of this type of approach, which are the moving 

average and exponential smoothing. Moving averages is created by summing up the 

data series and divide it by the total number of observations [41]. Exponential 

smoothing is created by taking the value of weighted average of the previous 

observations, where the weights are decreasing with the age of the past observations. 

(b) Curve Fitting 

The graphical history of datasets sometimes exhibits properties, patterns, and they 

repeating themselves over time. Curve fitting or data mining, is about drawing the 

conclusions based on past available information. When apply it to an investment 

procedure or trading strategy, the historical results, showed that such conclusions do 

not had a true values they are implemented [42]. 

(c) Linear Modelling 

The predicting process with linear regression models have shown their usefulness in 

predicting the returns both in developed and developing markets [43]. And it could 

predict the direction of market prices 50 percent of the time, according to establishment 
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of random walk hypothesis, which assumes that to get the best results in forecasting 

the future price of the market index; it should be based on the current price itself. 

(d) Non-linear Modelling 

In recent years, when they discover the non-linear movements in the financial stock 

markets, it become one of the important things that attract many researchers and 

financial analysts [44]. And the most important part, is the mounting evidence that the 

distribution of stock returns is good to represent by a mixture of normal distributions 

(e.g. see Ryden, Terasvirta [45] and the references therein). 

The neural networks are able to perform the non-linear modelling without any prior 

knowledge about the relationship between input and output variables. Because of that, 

there has been a growing interest to apply the artificial intelligence techniques in order 

to capture the future stock characteristics, see [46, 47, 48, 49], for previous work on 

stock predictions. Among many nonlinear models, the forecasters prefer to use the 

artificial neural networks as a non-parametric regression method [50]. Because it has 

the ability to establish relationships in areas where mathematical knowledge of the 

analysed time series is absence and difficult to rationalize [51]. 

2.5 Forecasting Studies 

In 1969, Reid [15], Newbold, and Granger [16] examined a large number of time series 

to determine their accuracy in post-sample forecasting. However, the first idea about 

comparing a large number of time series was conducted by Makridakis and Hibon [14]. 

Their major conclusion was that the developed statistical methods do not need to be an 

outperform simple methods such as exponential smoothing. The conclusion was 

strongly criticized, because it does not be similar to the conventional wisdom. 

Makridakis, continuing his studies by launching M-competition (predicting 
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competition arranged by Spyros Makridakis where the errors of forecasting methods 

were compared for forecasts of a variety of economic time series) to respond to 

criticisms. The results of the M-competition were not different from the earlier 

conclusions made by Makridakis and Hibon [14]. 
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Chapter 3 

3 PREDICTION METHODS 

The chapter aims to introduce to the reader the four forecasting techniques that were 

used in the study, and explain each one of them in details and formulas, those 

prediction techniques are used to predict the stock market index. Then choose the best 

predictive one throughout clustering and decision-making procedures. 

3.1 Nearest Neighbour Method 

The nearest neighbourhood method is defined as a non-parametric class of regression. 

Moreover, the main idea behind this approach is that the time series copies its own 

characteristics along the time. In other statements, past vectors of information of the 

time series have symmetry with a last vector of available information on t+1. Such 

way of detecting the patterns in the datasets characteristics is the main goal for the 

similarity between K-Nearest Neighbour algorithm and other analysis techniques. The 

way that the K-Nearest Neighbour works on is totally different from the normal 

method like the ARIMA. The ARIMA is try to detect the statistical patterns between 

the observations according to their locations in time. For the K-Nearest Neighbour, 

such location does not play any role and it is not important, since the goal is to locate 

similar vectors of information, without need to know where they have been located in 

time. Ignore all the mathematical forms, the main idea of the K-Nearest Neighbour 

method is to detect the dynamic non-linearity of similarity in the datasets. 
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Next, we will describe the method of K-Nearest Neighbourhood. For a detailed review 

of the process see [30, 31]. 

3.1.1 The K-Nearest Neighbour with Correlation  

The correlation case for the K-Nearest Neighbour algorithm works according to the 

following steps: 

1) The first step is to determine the start of the training period and divide it into 

different vectors (pieces) 𝑦𝑡
𝑚 with size m, where t is equal to m. The value of T 

means the number of reviews (observations) in the trained datasets. The term 

m is assign to be the embedding dimension of the datasets. The last available 

vector of information before the prediction of the observations will called it 

𝑦𝑇
𝑚, and the other vectors will be defined as 𝑦𝑖

𝑚. 

2)  The second step is to choose the most similar k pieces to 𝑦𝑇
𝑚. In correlation 

technique, the searching process of the k vectors is done by taking the highest 

value of ‘ρ’, which is defines the absolute of the (Euclidian correlation) 

between  𝑦𝑖
𝑚 and 𝑦𝑇

𝑚 . 

3) When the detecting process of k pieces is done, each one of them with m 

reviews, it will be needed to understand the construction way of the forecasts 

on t+1 by using the k vectors. There are many ways could be used here, like 

using an average or tricube functions [18]. The method contains the calculation 

of the following formula [19]. 

𝑦̂𝑇+1 = 𝛼̂0 + 𝛼̂1𝑦𝑇−1 + 𝛼̂2𝑦𝑇−2 + ⋯+ 𝛼̂𝑚𝑦𝑇−𝑚 (3.1) 

 



16 

Where 𝛼̂0, 𝛼̂1 . . 𝛼̂𝑚 represent the coefficients values, which were captured by 

estimating the linear-model with corporated variables as 𝑦𝑖+1 and from the explanatory 

variables such as 𝑦𝑖𝑟
𝑚 = (𝑦𝑖𝑟 , 𝑦𝑖𝑟−1

, … , 𝑦𝑖𝑟−𝑚+1) where r is from 1 to k. and to try to 

understand such regression, (3.1) will be present in a matrix way, in next expression. 

[
 
 
 
 
𝑦𝑖1+1

𝑦𝑖2+1

𝑦𝑖3+1

⋮
𝑦𝑖𝑘+1]

 
 
 
 

 = 𝛼̂0 + 𝛼̂1

[
 
 
 
 
𝑦𝑖1
𝑦𝑖2
𝑦𝑖3

⋮
𝑦𝑖𝑘]

 
 
 
 

 +𝛼̂2

[
 
 
 
 
𝑦𝑖1−1

𝑦𝑖2−1

𝑦𝑖3−1

⋮
𝑦𝑖𝑘−1]

 
 
 
 

 + …+ 𝛼̂𝑚−1

[
 
 
 
 
𝑦𝑖1−𝑚+1

𝑦𝑖2−𝑚+1

𝑦𝑖3−𝑚+1

⋮
𝑦𝑖𝑘−𝑚+1]

 
 
 
 

 + [

𝜀1
𝜀2
𝜀3

⋮
𝜀𝑘

]                   (3.2) 

It is necessary to notice that the K-Nearest Neighbour method is non-temporal. The 

value of 𝑦𝑖𝑘+1 will represent the observations (reviews) in one period-ahead from the 

vectors chosen by the correlation method. The value of 𝑦𝑖𝑘−𝑚 will represent the first k 

chosen vectors, while the term 𝑦𝑖𝑘 represent the last terms of each chosen vector. It is 

simple to notice that the number of explanatory time series on Equation (3.2) is m, and 

each one of them have k. 

The term 𝛼̂1  , in Equation (3.2), is the attached coefficient to the last review of the 

chosen sets and  𝛼̂2 is the attached coefficient to all the second last reviews 

(observations) of all k series. Those coefficients are remaining until they reach the first 

review of all chosen k series. The values of the coefficients in Equation (3.2) are 

detected with the minimum summation of the error (∑ 𝜀𝑘
2𝑘

𝑖=1 ), the steps 1-3 are 

executed in a main loop until all forecasts on t+1 are created. 

3.1.2 The K-Nearest Neighbour with Absolute Distance  

The absolute distance of the K-Nearest Neighbour is much easier than the one with the 

correlations. Its steps are: 

1) The first step is to determine the start of the training period and divide it into 

different vectors (pieces) 𝑦𝑡
𝑚 with size m, where t is equal to m. The value of T 
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means the number of reviews (observations) in the trained datasets. The term 

m is assign to be the embedding dimension of the datasets. The last available 

vector of information before the prediction of the observations will called it 

𝑦𝑇
𝑚, and the other vectors will be defined as 𝑦𝑖

𝑚. 

2) The second step is to choose the most similar k pieces to 𝑦𝑇
𝑚. In absolute 

distance technique, the searching process of the k vectors is done by taking the 

lowest summation of distances between the vectors 𝑦𝑖
𝑚,  and 𝑦𝑇

𝑚.  

3) When the detecting process of k pieces is done, each one of them with m 

reviews (observations), it will be needed to understand the construction way of 

the forecasts on t+1 by using the k vectors. The absolute distance techniques 

easily verify the observation ahead of the chosen k neighbours and take the 

mean value of them. 

The steps 1-3 are executed in a main loop until that all forecasts on t+1 have been 

created. And we should demonstrate that the absolute distance does not use any kind 

of local regression. 

3.2 Radial Basis Function Method 

In this section we will proposed a model based on a combination of a radial basis 

function (RBF) and a self-organizing map (SOM). The results shown that the proposed 

SOM-RBF is more specified in modelling and forecasting the time datasets. The 

proposed model is applied to stock market data. 

3.2.1 Self-Organizing Map Based on Adaptive Filtering 

The Self-Organizing Map (SOM) is one of the common learning tools, which learn 

from a high-dimension continuous input space like 𝒳 to low-dimension discrete space 



18 

like 𝒜 of 𝒩 neurons, which are ordered in fixed form like a two dimension array. The 

map 𝑖∗(𝑥): 𝒳 → 𝒜 is determined by the weight matrix 𝑊 = (𝑤1, 𝑤2, … , 𝑤𝑞) , 𝑊𝑖 ∈

ℝ𝑝 ⊂ 𝒳, the weight vectors (which is a set of real values) is assigned to each input 

vector 𝑥(𝑡) ∈ ℝ𝑝 ⊂ 𝒳 , a neuron 𝑖∗(𝑡) = arg𝑚𝑖𝑛∀𝑖 ||𝑥(𝑡) − 𝑤𝑖(𝑡)||, 𝑖
∗(𝑡) ∈ 𝒜, 

where ·  denotes to the Euclidean distances between the weights and input vector, 

and t represent a discrete time step corresponding with the iteration of the algorithm. 

The vector of weights of the current winning neuron as well as the vectors of weights 

of the neurons in its neighbourhood are changed by the following equation: 

𝑊𝑖(𝑡 + 1) = 𝑊𝑖(𝑡)ℎ(𝑖∗, 𝑖; 𝑡)[𝑥(𝑡) − 𝑊𝑖(𝑡)], (3.3)  

where 0 < 𝛼(𝑡) > 1, is the rate of learning and ℎ(𝑖∗, 𝑖; 𝑡) is the function of weights 

which limit the neighbourhood of the winning neuron. Usually the choice for this 

function ℎ(𝑖∗, 𝑖; 𝑡) is given by the Gaussian function:  

ℎ(𝑖∗, 𝑖: 𝑡) = exp(− 
||𝑟𝑖(𝑡)−𝑟𝑖∗(𝑡)||

2

2𝜎2(𝑡)
), (3.4) 

where 𝑟𝑖(𝑡) and 𝑟𝑖∗(𝑡) are, respectively, represent the coordinates of the neuron 𝑖 and 

neuron 𝑖∗ in the output matrix, and 𝜎(𝑡) > 0 determines the radius of the 

neighbourhood function in time t. The variables 𝛼(𝑡) and 𝜎(𝑡) should both disappears 

with time to ensure that the convergence of the weights vector will reach the steady 

states. And it is given by: 

 𝛼(𝑡) = 𝛼0(
𝛼𝑇

𝛼0
)(𝑡 𝑇⁄ ) 𝑎𝑛𝑑 𝜎(𝑡) = 𝜎0(

𝜎𝑇

𝜎0
)(𝑡 𝑇⁄ ), (3.5) 

where 𝛼0 (𝜎0) and 𝛼𝑇 (𝜎𝑇) are, respectively, the initial and final values of (𝑡) (𝜎(𝑡)). 

Changing the weights is continuous until a steady state of global ordering of the vector 

of weights has been reached. After that, we can say that the map has converged. 
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Despite of the simple work of SOM, it has been applied to a various problems [20, 21, 

22]. The use of the SOM for function approximation purposes become more famous 

and common among the researchers in the last years, especially in the fields of  the 

datasets forecasting since the year of 1989 [23]. 

3.2.2 VQTAM Model 

The VQTAM method is a temporally domain of a SOM-based associative memory 

technique which has been used by many researchers in order to learns the static of 

input/output mappings, especially in robotic areas [24]. The input value 𝑥(𝑡), into 

SOM method at time 𝑡, is divided into two parts. The first one, which is called 𝑥𝑖𝑛(𝑡) ∈

ℝ𝑞, will contains the data about the dynamic mappings’ input in order to be learned. 

The second part, which is called 𝑥𝑜𝑢𝑡(𝑡) ∈ ℝ𝑞, carries the data about the desired 

outputs of those mappings. The dimension of the weight vector of neuron 𝑖, 𝑤𝑖(𝑡) has 

some changes. And these changes are represented as in the following: 

𝑥(𝑡) = (
𝑥𝑖𝑛(𝑡)

𝑥𝑜𝑢𝑡(𝑡)
) 𝑎𝑛𝑑 𝑤𝑖(𝑡) = (

𝑤𝑖𝑛(𝑡)

𝑤𝑜𝑢𝑡(𝑡)
) (3.6) 

Where 𝑥𝑖𝑛(𝑡) ∈ ℝ𝑞 and 𝑥𝑜𝑢𝑡(𝑡) ∈ ℝ𝑞 are, respectively, the parts of the weight vectors, 

which is responsible for storing information about input/output of the desired 

mappings. According to the chosen variables to be build, the vector 𝑥𝑖𝑛(𝑡) and the 

vector 𝑥𝑜𝑢𝑡(𝑡) can use the SOM for learning forward or inverse mapping. In 

equalization task, we are looking for, set 𝑝 > 1 & 𝑞 = 1, in order to apply the 

following definitions: 

𝑥𝑖𝑛(𝑡) = [𝑦(𝑡)𝑦(𝑡 − 1)…𝑦(𝑡 − 𝑝 + 1)]𝑇 (3.7) 

𝑥𝑜𝑢𝑡(𝑡) = 𝑠(𝑡) (3.8) 
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Where 𝑠(𝑡), is the transmitted sampled signal in time 𝑡, 𝑦(𝑡) is the responsible channel 

for carrying the outputs, p represent the order of the equalization, and 𝑇 represent the 

transposing vectors. Throughout learning process, the winning neurons in time step 𝑡 

is detected based on 𝑥𝑖𝑛(𝑡): 

𝑖∗(𝑡) = arg min
𝑖∈𝒜

{||𝑥𝑖𝑛(𝑡) − 𝑤𝑖
𝑖𝑛(𝑡)||} (3.9) 

In order to update the weight vector, both 𝑥𝑖𝑛(𝑡) and 𝑥𝑜𝑢𝑡(𝑡) are used: 

𝑤𝑖
𝑖𝑛(𝑡 + 1) = 𝑤𝑖

𝑖𝑛(𝑡) + 𝛼(𝑡)ℎ(𝑖∗, 𝑖: 𝑡)[𝑥𝑖𝑛(𝑡) − 𝑤𝑖
𝑖𝑛(𝑡)] (3.10) 

𝑤𝑖
𝑜𝑢𝑡(𝑡 + 1) = 𝑤𝑖

𝑜𝑢𝑡(𝑡) + 𝛼(𝑡)ℎ(𝑖∗, 𝑖: 𝑡)[𝑥𝑜𝑢𝑡(𝑡) − 𝑤𝑖
𝑜𝑢𝑡(𝑡)] (3.11) 

Where 0 < 𝛼(𝑡) > 1 , is the learning rate and ℎ(𝑖∗, 𝑖; 𝑡) represent varying Gaussian 

neighbourhood function as in Equation (3.4). In simple statements, the learning rule in 

Equation (3.10) plays as a quantizer of the vector of the preserving topology in the 

input’s space and the rule in Equation (3.11) have the same actions in the output’s 

space of the learning mappings. As the training process continuing, the SOM learn to 

associate the vector of the input prototypes 𝑤𝑖
𝑖𝑛 with the corresponding vector of output 

𝑤𝑖
𝑜𝑢𝑡. The associated memory of self-organizing map performed by the VQTAM could 

be used as a function approximator. To be more specific, when the SOM completes its 

training, its output 𝑧(𝑡) for a new input vectors is derived from the codebooks vector 

that have been learned 𝑤𝑖∗
𝑜𝑢𝑡 , like follows: 

𝑧(𝑡) ≡ 𝑤𝑖∗
𝑜𝑢𝑡 (3.12) 

Where  𝑤𝑖∗
𝑜𝑢𝑡 = [𝑤1,𝑖∗

𝑜𝑢𝑡 𝑤2,𝑖∗
𝑜𝑢𝑡 …𝑤𝑞,𝑖∗

𝑜𝑢𝑡 ]  𝑇,is the vector of weights of the current winning 

neuron 𝑖∗(𝑡). According to the channel equalization mission we are looking for, 
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set 𝑞 = 1. Thus, the outputs of the VQTAM equalizer will be a scaled version of 

Equation (3.12), given by: 

𝑧(𝑡) = 𝑠̂(𝑡) = 𝑤1,𝑖
𝑜𝑢𝑡(𝑡) (3.13) 

Where 𝑠̂(𝑡) is a derived transmitted sampled signal at time step t. It could requires 

many neurons to generates a small estimated values of error: (𝑡) = 𝑠(𝑡) − 𝑧(𝑡) =

𝑠(𝑡) − 𝑤1,𝑖∗
𝑜𝑢𝑡(𝑡) , when approximating proceeds in mappings process. 

3.2.3 Building Local-RBF as a Filter from the VQTAM 

The VQTAM model itself can be used as a function approximator. However, as we 

mentioned before, it is a quantizer method for essential the vectors, and it may requires 

a huge number of neurons in order to reach to the generalization accuracy. To improve 

SOM’s performances in forecasting, we propose a simple RBF model based on a 

trained VQTAM. 

3.2.4 A local RBF Model 

Let us assume that the trained VQTAM has q number of neurons, a general RBF 

network contains a q Gaussian function and M outputs (number of neurons) could be 

used for building over a learned input/output vector of codebooks, 𝑤𝑖
𝑖𝑛 and 𝑤𝑖

𝑜𝑢𝑡 , like 

the following: 

𝑧(𝑡) =
∑ 𝑤𝑖

𝑜𝑢𝑡 𝐺𝑖(𝑥
𝑖𝑛(𝑡))

𝑞
𝑖=1

∑ 𝐺𝑖(𝑥
𝑖𝑛(𝑡))

𝑞
𝑖=1

 (3.14) 

where 𝑧(𝑡) = [𝑧1(𝑡) 𝑧2(𝑡)… 𝑧𝑀(𝑡)]𝑇, represent the output vector, 𝑤𝑖
𝑜𝑢𝑡 =

[𝑤1,𝑖
𝑜𝑢𝑡  𝑤2,𝑖

𝑜𝑢𝑡 …𝑤𝑀,𝑖
𝑜𝑢𝑡]𝑇 will represent the vector of the connecting weights, which is 

responsible to connect the ith basis function with the M unit of outputs, and 𝐺𝑖(𝑥
𝑖𝑛(𝑡)) 

is defined as the responding basis functions with the current vectors of input, 𝑥𝑖𝑛(𝑡): 
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𝐺𝑖 (𝑥
𝑖𝑛(𝑡)) = exp (− 

||𝑥𝑖𝑛(𝑡)−𝑤𝑖
𝑖𝑛||

2

2𝛾2
) (3.15) 

Where 𝑤𝑖
𝑖𝑛, represent the core of ith basis functions, and  𝛾 > 0 is the radius (spreads). 

Notice that in Equation (3.14), if all vectors of the q codebooks will be used to derive 

the associated outputs. We will refers the RBF as the Global-RBF (GRBF) model, and 

ignore the local nature of the Gaussian functions. 

However, in Local-RBF, which we are interested in, only a small part of the vector of 

the input space is used to derive the outputs of the mapping for each vector of inputs. 

In the subject of the VQTAM architectures, localized of the model means that it needs 

only 1 < 𝐾 < 𝑞 variables for setting up the basis functions’ centres and the hidden to 

the output vectors of weights of a RBF structure. For this purposes, our suggestion is 

to use the vector of the prototypes of the first K winning neurons 

{𝑖1
∗(𝑡), 𝑖2

∗(𝑡), … , 𝑖𝐾
∗ (𝑡)}. Thus, the derived output is now given by: 

𝑧(𝑡) =
∑ 𝑤

1,𝑖𝐾
∗

𝑜𝑢𝑡  𝐺𝑖𝐾
∗ (𝑥𝑖𝑛(𝑡))𝐾

𝐾=1

∑ 𝐺𝑖𝐾
∗ (𝑥𝑖𝑛(𝑡))𝐾

𝐾=1
 (3.16) 

We refer to the Local-RBF as the KRBF structure. Usually when we train two-phases 

of RBF, the centres of the basis function are first ones whom defined by clustering of 

the 𝑥𝑖𝑛 vector through (example: the K-means clustering) [25]. Then the weights of 

hidden to output layer should calculated by using the L.M.S rules (or the pseudo 

inverse methods) [26, 27]. In the KRBF model, it needs only one phase of learning, 

where the clustering of the self-organizing map is implemented on the pairs of 

input/output together {𝑥𝑖𝑛(𝑡), 𝑥𝑜𝑢𝑡(𝑡)}. 
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3.3 ARIMA 

The Auto Regressive Integrated Moving Average (ARIMA) model forecasts the future 

values in a datasets by taking a linear combination of its own past values, past errors 

(also called shocks or innovations), and current values. Box & Jenkins first popularized 

the (ARIMA) approach, and they refer it as Box and Jenkins model. Box and Tiao 

(1975) [32] made some discussion about the model of the general transfer function 

which is employed by the (ARIMA) procedure, When an ARIMA model involves 

another dataset and dealing with it as input variables, the ARIMA model will called as 

ARIMAX model. Pankratz (1991) [33] defines the ARIMAX model as dynamic 

regression. 

3.3.1 The Three Stages of ARIMA Modelling 

The analysis studies that applied on (ARIMA), separate it into three phases, according 

to the phases mentioned by Box and Jenkins (1976) [34]. The IDENTIFY, 

ESTIMATE, and FORECAST words will represent those phases, which are described 

below: 

1. In the IDENTIFY phase - detect the datasets and choose the ARIMA models 

for it. In the IDENTIFY phase the datasets will be read, may differencing them, 

and calculates the inverse, partial, and cross autocorrelations. 

2. In the ESTIMATE phase - detect the ARIMA model in order to fit the datasets 

which have been specified in the IDENTIFY phase, and derives the parameters 

of that model.  

3. In the FORECAST phase – predicts the future values of the datasets and create 

a confidence interval for those predicted values from the ARIMA model, which 

was generated by the previous ESTIMATE phase. 
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In the econometrics studies and statistics studies, specifically in the datasets studies, 

an (ARIMA) model is fitted to time series data either to better understand the data or 

to predict future points in the series (forecasting). If the time-series is pretended to 

have a long-range dependence, then d parameter could be represented by a non-integer 

value, and that is what we called it an autoregressive fractionally integrated moving 

average model (ARFIMA). 

3.3.2 Autoregressive Fractionally Integrated Moving Average (ARFIMA) 

The ARFIMA (p, d, q) model is used here as a statistical analysis tool on dataset 𝓎𝑡 

with long memory: 

Φ(𝐿)(1 − 𝐿)𝑑(𝓎𝑡 − 𝜇𝑡) = Θ(𝐿)𝜀𝑡, 𝑡 = 1,… , 𝑇. (3.17) 

Where 𝜀𝑡 is the past values, Φ(𝐿) = (1 − 𝜙1𝐿 − ⋯ − 𝜙𝑝𝐿𝑝) is the autoregressive 

polynomial, Θ(𝐿) = (1 + 𝜃1𝐿 + ⋯+ 𝜃𝑞𝐿
𝑞) is the moving average polynomial in the 

lag operator L (also called a backward-shift operator); and the 𝜇𝑡 will represent the 

mean value of the time series 𝓎𝑡, p and q are integers, d is real, and (1 − 𝐿)𝑑 is the 

fractional difference operator, which is determined by the following expansion: 

(1 − L)d = ∑
Γ(k−d)𝐿𝑘

Γ(−𝑑)Γ(𝑘+1)

∞
k=0  (3.18) 

Where Γ(. ) represent the gamma function, the ARMA-part of the model it will be 

invertible and stationary when all roots of Θ(𝑧) = 0 and Φ(𝑧) = 0 are outside of the 

unit circle. If the stability condition is reached, then an ARMA (p, q) model will have 

a MA (∞) representation. In addition, Θ(𝑧) = 0 and Φ(𝑧) = 0 do not have common 

roots. We say that: 

http://en.wikipedia.org/wiki/Econometrics
http://en.wikipedia.org/wiki/Mathematical_model
http://en.wikipedia.org/wiki/Time_series
http://en.wikipedia.org/wiki/Forecasting
http://en.wikipedia.org/wiki/Long-range_dependence
http://en.wikipedia.org/wiki/Autoregressive_fractionally_integrated_moving_average
http://en.wikipedia.org/wiki/Autoregressive_fractionally_integrated_moving_average
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𝑧𝑡 = 𝓎𝑡 − 𝜇𝑡 (3.19) 

If 𝑑 ∈ (−0.5 , 0), the process is said to be exhibit intermediate memory (anti-

persistence) or long-range negative dependence. And if 𝑑 ≥  0.5, the process is non-

stationary and have an infinite variance. If 𝑑 = 0, the process is short memory. The 

process 𝑧𝑡 is covariance stationary if 𝑑 <  0.5, see [35]. The auto covariance function 

𝛾𝑘 of an ARFIMA (p, d, q) process disappears hyperbolically: 𝛾𝑘~𝒸𝑘2𝑑−1, 𝑘 → ∞, 

where c denotes a finite nonzero constant. We propose that  𝑑 >  −1, which makes 

the process 𝑧𝑡 invertible, see [36]. 

The effecting of the past values of disturbance process follows a geometric lag, 

damping off to non-zero values quickly, so we should have a MA(q) model, which has 

the an enough memory of exactly periods, in order to make the effect of the moving 

average dies off. The convergence of the mean squared error of the AR (∞) is based 

on one-step-ahead of forecasting, 𝑀𝑆𝐸(𝑧̂𝑡|𝑇), to the innovation variance 𝜎𝜀
2 as 𝑇 → ∞. 

The AR(∞) represented by 𝑧𝑡 , is defined as: 

𝑧𝑡 = ∑ 𝜋𝑗𝑧𝑡−𝑗 + 𝜀𝑡
∞
𝑗=1  (3.20) 

3.4 Clustering 

Clustering, also called ‘segmentation’, which have been used to cluster the huge 

volume of the time series, and the goal from this process is to find a harmonic groups 

of data, which could be used in different analysis and studies. Such a requirements of 

this type of processing makes it necessary in a wide range of subjects, especially in the 

communities of sciences, medicine and marketing, where the human factors plays an 

important role but it will be not easy to understand. In clustering, the specific 
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dependent variables are absence, and it is not easy to compare two kinds of clustering 

objectively [37]. 

3.4.1 Definition of Clustering 

Clusters are combinations of objects that have similar properties, which are separated 

from objects that have totally different properties (resulting in internal homogeneity 

and external heterogeneity) [37]. There are two kinds of clustering, hierarchical 

clustering and the non-hierarchical one. (See Figure 3). 

 

Figure 3: Types of Clustering. 

3.4.2 K-means Clustering 

The main goal of the K-means clustering is to partition m variables into k groups (or 

clusters) where each variables follows the nearest cluster and according to the 

minimum value of average. K-means clustering usually start by a single cluster and the 

average of data will represent the centre. This cluster is then divided into 2 parts, and 

the average of the new clusters also trained. If the determined number of clusters is not 
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with a power of two, then the nearest one is chosen. Then the clusters with the least 

important are eliminated and the remaining clusters are again input to the training 

process in order to get the final clusters [38]. 

The main steps of the k-means clustering algorithm are: 

1. Select k, which represent the number of clusters (groups). 

2. Select the starting point of k for using it as an initial estimator to derive the 

centroids of the clusters. 

3. Test all values in the loaded datasets and assigning them to the centroid.   

4. When each value is followed a certain cluster, recompute the new k 

centroids. 

5. The steps 3 and 4 are repeatedly executed until no value changes its 

centroid, or until the maximum number of observations through the time 

series is done.  

Before the clustering procedure can be applied, actual data samples (i.e., indexes) are 

collected from the stock markets. Then normalize the data throughout normalization 

process, which is a method for organizing data elements in a database into tables, to 

avoid the duplication of data, insert, delete and update anomaly. 

3.4.3 Decision-making Procedure 

Every decision-making process produces a final choice [40]. The output can be an 

action or an opinion of choice. Therefore, the decision-making is one of the daily 

activities of any human being. However, when it comes to business fields, the decision-

making it will be a habit and a process as well. Effective and successful decisions will 

make the company profit more, and in the other hand, the unsuccessful ones make it 

http://en.wikipedia.org/wiki/Choice
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losses. Therefore, corporate decision-making process is the most critical process in any 

organization. 

In the decision making phase in our research, we choose the results of four prediction 

techniques denoted by 𝑅∗, then inter those values in k-means clustering to organize 

them in a set of groups, in our study we choose five clusters (by experiment) which 

means that we will have five groups of data and of course five centroids.  

𝑅∗ = [

𝑟1,𝑚1
∗ 𝑟1,𝑚2

∗ 𝑟1,𝑚3
∗ 𝑟1,𝑚4

∗

⋮
𝑟𝑛,𝑚1

∗
⋮

𝑟𝑛,𝑚2
∗

⋮ ⋮
𝑟𝑛,𝑚3

∗ 𝑟𝑛,𝑚4
∗

] (3.21) 

Since we have prediction results of two years, then we got a730 rows by four methods, 

where n=730, m1, m2, m3 and m4 are represent the four prediction techniques, and 𝒓∗ 

is the predicted value. After this process, calculate the estimated error E for each value 

in each row, in order to have 730 rows by four of error values, which represent the 

error of each value in each method. According to the following equation: 

𝐸 = | 𝑅 − 𝑅∗| (3.22) 

Where R represent a730 values from the original dataset, repeated for four methods, 

by applying Equation (3.22), we got: 

𝐸 = [

𝑒1,𝑚1

⋮
𝑒𝑛,𝑚1

𝑒1,𝑚2

⋮
𝑒𝑛,𝑚2

𝑒1,𝑚3

⋮
𝑒𝑛,𝑚3

𝑒1,𝑚4

⋮
𝑒𝑛,𝑚4

] (3.23) 

Where e represent the error value between the original and predicted value, then 

calculate the minimum error in each row of E. 

𝐸𝑚𝑖𝑛 = min
𝑛

(𝐸) (3.24) 
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By the end of k-means clustering, we will have a number of values following a certain 

centroid, for determining the values of each centroid; calculate the absolute squared 

distance between each value in each row of 𝑅∗ and the five centroids according to the 

Equation (3.25). And the centroid with the minimum distance is the one who represent 

that row of values. 

𝐶𝑟∗,𝑖 = min {||𝑟1
∗ − 𝑟𝑐1||, ||𝑟1

∗ − 𝑟𝑐2||, ||𝑟1
∗ − 𝑟𝑐3||, … , ||𝑟1

∗ − 𝑟𝑐5||} (3.25) 

Where i= (1, 2, 3… 5), after the end of this process, we will have a new column of 

centroids, where each value represent the cluster centre of row. Now, this column of 

centroids is also represent as a cluster centre of error rows E, and in the whole 730 

rows of error values, the five centroids will certainly repeated, so we should count for 

each centroid (𝑟𝑐1 …𝑟𝑐5), how many it has been repeated with the four methods. And 

by the end of this step we will got a number of error’s rows for each centroid, like the 

following example: 

𝑟𝑐1 =

𝑚1
𝑚2
𝑚3
𝑚4

[

𝑟𝑐1,1 … 𝑟𝑐1,𝑛

𝑟𝑐1,1 … 𝑟𝑐1,𝑛

𝑟𝑐1,1 … 𝑟𝑐1,𝑛

𝑟𝑐1,1 … 𝑟𝑐1,𝑛

] (3.26) 

Calculate mean of errors for each method inside the cluster centroids, then find the 

minimum one, which will tell us which one of those methods is the winner inside that 

cluster. And continue with this process for all centroids in order to find the minimum 

mean of each prediction method inside that cluster. 

Then, decide which one is the best predictive method according to the majority voting 

(how many it wins inside the clusters). And to verify our decision, we will calculate 
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the Normalized Mean Squared Error (NMSE) after this process and it should be less 

than the NMSE’s for each method. 
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Chapter 4 

4 FORECASTING AND DECISION-MAKING 

Finding a forecasting technique that has the ability to predict the future prices of stocks 

with good accuracy is the subject of this research. As we explained previously, this 

work focused on building three computational intelligence models, which have the 

ability to predict the future index of stock market. Moreover, this chapter will covers 

the results of those prediction techniques, starting with Radial basis function, K-nearest 

neighbourhood then ARFIMA, and focuses on the results of the decision-making 

procedure, which according to it we will decide which method is the best predictive 

one. 

4.1 SOM-based RBF 

As described in Chapter 2, we take five years of data of London stock market starts 

with 2008 to 2012, the data was pre-processed to fill the missing days. After that, it 

will be ready to inter to the RBF model. Next step was the creation of the RBF model, 

which is done by determining the parameters of the model like the window size of 20 

(length of the time window) which represent a dimension of the input vector, were 

used for the extraction of the features that were used to train and test the models. 

4.1.1 Running the RBF Program for the Experiment 

The implementation of the experiment was conducted in a MATLABTM environment. 

The RBF model is created by the following steps: 
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 Creating a Network 

 

1. Select the number of inputs 

2. Select the number of hidden nodes 

3. Select the activation functions 

 Training the Network 

 

1. Select the optimization algorithm 

2. Input the training and target data 

3. Choose the number of epochs for training 

4. Train the network 

 Testing the Network 

 

The trained network ability is then evaluated by testing the model using 

the testing data set. 

4.1.2 Experiment Results of RBF 

The results of the experiment are presented in a graphical form and in a table that 

compares the prediction accuracies. The accuracy of the model constructed with four 

functions to select, is more than all the other models. The graphs in (figure 4) shows 

that RBF is able to follow the trend of the target prices. 
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Figure 4: Forecast 3 Years (2010-2012) of LND with RBF Method 

The Normalized Mean Squared Error have been calculated from estimated variance of 

the residuals (𝑒(𝑡)) and the estimated variance of the sequence of distorted samples, 

which is equal to 0.3309. 

In Figure 5, we can notice the estimated error 𝑒(𝑡) of the forecasting the prices of 

London stock market. 
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Figure 5: The Estimated Error of RBF During Forecasting of LND 

Table 4 contains one week of the actual price, predicted one, and the estimated error 

values as a sample of London stock market. 

Table 4: Actual Price, Forecasted Price and Error with RBF Method 

Date Actual price 

x100000 

Predicted price 

x100000 

Estimation error 

01/01/2010 

02/01/2010 

03/01/2010 

04/01/2010 

05/01/2010 

06/01/2010 

07/01/2010 
  

0.086206 

0.086863 

0.087521 

0.088178 

0.088835 

0.089067 

0.088795 
 

0.087513 

0.087541 

0.087668 

0.087486 

0.087522 

0.087622 

0.087563 
 

0.001274395 

-0.00057307 

-0.00161044 

-0.00187231 

-0.00235116 

-0.00289427 

-0.00232480 
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4.2 Nearest Neighbour Method 

Chose a five years of data of London stock market, starts with 2008 to 2012, the data 

was pre-processed to fill the missing days. Then, the data will inter to the (K-Nearest 

Neighbour) model. Inside the nearest neighbour, we select the first two years of data 

as training set, to train the algorithm; Next step was the creation of the K-Nearest 

Neighbour model. Which is done by initiating the parameters of the model: 

 Determine the length of training data set. 

 Determine the Size of histories (embedding dimension) which represent a 

dimension of the input vector. 

 Determine the number of nearest neighbours to use in the forecast's calculation.  

4.2.1 Running the K-Nearest Neighbour Model 

The implementation of the experiment was conducted in a MATLABTM environment. 

The K-Nearest Neighbour model is created by the following steps: 

 Creating a network 

 

1. Set the input data. 

2. Select the number of embedding dimension. 

3. Select the number of the nearest neighbour. 

 Training the network 

 

1. Input the training and target data. 

2. Choose the number of epochs for training. 

3. Train the network. 

 Testing the network 

 

The trained network ability is then evaluated by testing the model using 

the testing data set. 
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4.2.2 Experiment Results of K-Nearest Neighbour 

In the following figures, the results of the experiments are presented for forecasting 

methods by displaying resulting errors in a graphical form and in tables to compare the 

prediction accuracies of each of the architectures. 

Figure 6, shows the forecasts of three years of London stock market using the K-

Nearest neighbourhood method with the absolute distance and correlation. This figure 

shows that K-Nearest Neighbour model is able to follow the trend of the target prices. 

 

Figure 6: Forecasting of LND (2010-2012) with K-Nearest Neighbour Model 

To clarify each method independently, we plot their results separately in order to notice 

the differences between them. 
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1- Absolute Distance Method 

 

Figure 7: Forecasting of 3 Years (2010-2012) of LND Using Absolute Distance 

Method 

 

Figure 8: Estimated Error of the Forecasting with Absolute Distance Method 
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In Table 5, we got the prediction results from K-Nearest Neighbour with absolute 

distance method. 

Table 5: Actual Price, Forecasted Price and Error with Absolute Distance Method 

Date Actual price 

X100000 

Predicted price 

X100000 

Estimated error 

01/01/2010 

02/01/2010 

03/01/2010 

04/01/2010 

05/01/2010 

06/01/2010 

07/01/2010 
 

0.086206 

0.086863 

0.087521 

0.088178 

0.088835 

0.089067 

0.088795 
 

0.086379 

0.086377 

0.086461 

0.086549 

0.086715 

0.086982 

0.087077 
 

0.000484 

0.001144 

0.001717 

0.002286 

0.002351 

0.001813 

0.001300 
 

In addition, we found that the Normalized Mean Squared Error of K-Nearest 

Neighbour with absolute distance method is equal to 0.072822. 

2- Correlation Method 

 

 
Figure 9: Forecasting of 3 Years (2010-2012) of LND Using Correlation Method 
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In Figure 10, we have the estimated errors of the forecasting process with correlation 

method, and in Table 6, we have a one week of the forecasting prices of k-Nearest 

Neighbour with correlation. 

 

Figure 10: Estimated Error of the Forecasting Process with Correlation Method 

Table 6: Actual Price, Forecasted Price and Error with Correlation Method 

Date Actual price Predicted price Estimated error 

01/01/2010 

02/01/2010 

03/01/2010 

04/01/2010 

05/01/2010 

06/01/2010 

07/01/2010 
 

0.086206 

0.086863 

0.087521 

0.088178 

0.088835 

0.089067 

0.088795 
 

0.085975 

0.086734 

0.087759 

0.088996 

0.089091 

0.088327 

0.088949 
 

0.000888611936 

0.000786535975 

0.000419161388 

-0.00016031025 

-2.4568358e-05 

0.000467787763 

-0.00057164938 
 

And, the Normalized Mean Squared Error of K-Nearest Neighbour with correlation 

method is equal to 0.021962. 
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4.3 ARFIMA Model 

Chose five years of data of London stock market starts with 2008 to 2012, then the 

data set was pre-processed to fill the missing days. Since the data is ready for 

ARFIMA. We will run the algorithm to work on it. Inside the ARFIMA, we select the 

first two years of data as training set, to train the algorithm; Next step is setting up the 

parameters of the model: 

 Determine the length of training data set. 

 Determine the dimension of the input vector. 

 Initiate the matrix of predicted value. 

4.3.1 Running the ARFIMA Model 

The implementation of the experiment was conducted in a MATLABTM environment. 

The ARFIMA model is created by the following steps: 

 Creating a network 

 

1. Set the input data. 

2. Initiate the arfima function. 

3. Initiate the arma function. 

4. Initiate the estimate hurst exponent function. 

 Training the network 

 

1. Input the data. 

2. Select the training period. 

3. Train the network. 

 Testing the network 

 

The trained network ability is then evaluated by testing the model using the 

testing data set. 
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4.3.2 Experiment Results of ARFIMA 

The results of the experiment whether the forecasting results or error results are 

presented in a graphical form and in a table, which compares the prediction accuracy. 

In Figure 11, we had the forecasting of three years of London stock market using the 

ARFIMA method, and the figure also showed the ability of ARFIMA model to follow 

the trend of the target prices. 

 

Figure 11: Forecasting of 3 Years (2010-2012) of LND with ARFIMA Method 

 



42 

 

Figure 12: Estimated Error of the Forecasting Process with ARFIMA Method 

In Figure 12, we had the estimated errors of forecasting process, and the Normalized 

Mean Squared Error of ARFIMA method is equal to 0.99084. 

In Table 7, we have the actual price for one week as an example from real time series 

with the predicted one from ARFIMA method and its error values. 

Table 7: Actual Price, Forecasted Price and Error with ARFIMA Method 

Date Actual price Predicted price Estimated error 

01/01/2010 

02/01/2010 

03/01/2010 

04/01/2010 

05/01/2010 

06/01/2010 

07/01/2010 
 

0.08620 

0.08686 

0.08752 

0.08817 

0.08883 

0.08906 

0.08879 
 

0.08674 

0.08722 

0.09006 

0.08713 

0.08722 

0.08730 

0.09084 
 

0 

0 

0 

0 

0 

0 

-0.00013 
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4.4 Decision-making with K-Means Clustering and Majority Voting 

In this part, we will implement the formulas in section 3.4.3 in order to find the best 

predictive method. 

In Figure 13, the result of K-means clustering showing the organizing process of two 

years of the predicted data, which are results from the four prediction techniques. 

 

Figure 13: K-means Clustering of Predicted Data Set 

From k-means clustering, we determined the centroids of the data set, and its 

positions which will be used later to calculate the absolute squared distances between 

the clustered values and its centroids. The following table shows the centroids, which 

are results from k-means clustering. 
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Table 8: The Centroids Values for Each Method 

Radial Basis 

Function 

K-Nearest Neighbour 

with Correlation 

ARFIMA K-Nearest Neighbour 

with Absolute distance 

0.285713 

0.189153 

-0.16578 

0.143105 

0.402472 
 

0.35195 

0.21309 

-0.21957 

0.22215 

0.40552 
 

1.26139 

4.90843 

-1.2087 

-1.85388 

-0.43465 
 

0.29674 

0.16356 

-0.19606 

0.22430 

0.38011 
 

Since we have the real time series and the predicted values of models, calculate the 

estimated error of each model independently, according to the equation: 𝐸 = | 𝑅 −

𝑅∗|. After that, create a matrix of errors values and calculate the minimum error. 

Table 9: A sample of the Error Values 

RBF-error Correlation-error ARFIMA Absolute dist.-error 

0.0044784 

0.0006748 

0.0051210 

0.0012205 

0.0054419 

0.0015306 

0.0023384 

0.0001782 

-7.4728e-05 

0.00088829 

-0.0001164 

0.00031724 

-0.0007832 

0.00059860 

0.0002975 

-0.000342 

-0.000334 

0.0002230 

0.0001396 

-2.1447e-05 

4.31493e-06 

-0.0002415 

-0.0007294 

-9.4642e-05 

0.00018814 

0.00029780 

-0.0003005 

-0.0002713 

 

Table 10: The Sample of the Minimum Errors Considering the Best Prediction for Each 

Day 

Minimum error 

 -0.0002415 

-0.00072943 

-0.00033496 

-0.00011642 

0.000139685 

-0.00078321 

-0.00027132 
 

 

In Figure 14, we have a plot showing the estimated minimum error for two years of 

predicted index. 
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Figure 14: Estimated Minimum Error of 2 Years of Prediction 

As we mentioned before in section 3.4.3, start to calculate the squared distance 

between the predicted value and all centroids according to formula ||𝑟𝑖
∗ − 𝑟𝑐𝑖|| , then 

select the minimum one to represent that row, in order to determine cluster centroid of 

each row in the error matrix. After that, start to calculate the mean error of each method 

for the five centroids, then find the minimum one for each cluster, as represented in 

Table 11. 

Table 11: The Minimum Mean of Error of Each Method Inside the Clusters 

 Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 

RBF 0.0005712 0.00060276 0.00007204 0.00037026 0.00048059 

KNN_cor 0.0000398 0.00046351 0.00005150 0.00045150 0.00005063 

ARFIMA 0.0000634 0.00633920 0.00053492 0.00004336 0.00083553 

KNN_abs 0.0002650 0.00026179 0.00037973 0.00025329 0.00032551 

From the above table, calculate the minimum value inside each cluster, which will 

represent the winner method inside that cluster, and according to the majority voting 
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process, the method that wins more than the others, it will be the best predictive 

method. 

After running the program, and by taking the majority voting from the five clusters, 

we found that the fourth method (Nearest Neighbour with correlation) is the winner 

method inside more than one cluster, which will make it the best predictive method. 

By the calculation of NMSE (Normalized Mean Squared Error) inside the decision-

making process, we found that it has a value less than the NMSE values for each 

method, and we found that the improvement in percent for error value is about 98%, 

which verify our procedure in order to find the best method. See Table 12. 

Table 12: Comparison of the NMSE Results 

Method NMSE’s 

Radial basis function 0.3309 

Nearest neighbour _ Cor. 0.02196 

ARFIMA 0.99084 

Nearest neighbour _ Abs. 0.07282 

Decision-making procedure 0.00043478 

 

4.4.1 Effect of Number of Clusters on the Success of Decision  

In this section, we will put another result of the K-means clustering process in order to 

show the differences in selecting process of the number of clusters. 

 Six Clusters 

Here in this experiment, we will use six clusters to group the forecasted results. 
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Figure 15: Experiment Results of 6 Clusters 

In the following table, we have the results of calculating the minimum mean of errors 

value inside each cluster, which the decision is build based on them. 

Table 13: The Mean of the Minimum Errors of Six Clusters 
 Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 

RBF 0.0005712 0.0006027 0.000072 0.0003702 0.0004805 0.00037026 

KNN_cor 0.0000398 0.0004635 0.000051 0.0004515 0.0000506 0.00006515 

ARFIMA 0.0000634 0.0063392 0.000534 0.0000433 0.0008355 0.00006349 

KNN_abs 0.0002650 0.0002617 0.000379 0.0002532 0.0003255 0.00026479 

As we noticed, when we use six clusters, the nearest neighbour with correlation is still 

the winner one with NMSE 0.00043664, but the ARFIMA became the second one. 

 Seven Clusters 

Here in this experiment, we will use seven clusters to group the forecasted results. 
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Figure 16: Experiment Results of 7 Clusters 

Table 14: The Mean of the Minimum Errors of Seven Clusters 
 Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7 

RBF 0.000571 0.000602 0.000072 0.000370 0.000480 0.0003626 0.000370 

KNN_cor 0.000039 0.000463 0.000051 0.000451 0.000050 0.0000651 0.000510 

ARFIMA 0.000063 0.006339 0.000534 0.000043 0.000835 0.0000534 0.005349 

KNN_abs 0.000265 0.000261 0.000379 0.000253 0.000325 0.0002647 0.000047 

In the experiment with seven clusters, the nearest neighbour with correlation is still the 

winner with NMSE 0.00043782, but the ARFIMA became equal to the nearest 

neighbour with absolute distance in the second place. 

Table 15: NMSE Value for Each Group of Clusters 

Number of clusters Normalized Mean Square Error 

Five clusters 0.00043478 

Six clusters 0.00043664 

Seven clusters 0.00043782 
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As a conclusion, we select the five group of clusters because it has the minimum 

NMSE value, and that will provide a decision-making procedure in order to find the 

sufficient number of groups for clustering process. 
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Chapter 5 

5 CONCLUSION 

Forecasting the stock price is a challenging problem than determining its direction, 

because building a good predictive model needs information-rich variables to be 

considered. A model that predicts the future behaviour of the market stock price 

provides a certain level of accuracy. In this thesis, four prediction techniques were 

applied to forecast the future price index of London stock market: Radial basis 

function, Nearest Neighbour with absolute distance and correlation, Autoregressive 

Fractionally Integrated Moving Average. This thesis proposes an approach to decide 

the best estimate of their future prices by majority voting on the clusters of K-means 

clustering. 

The obtained results showed that all four techniques have considerable ability to 

forecast the price of the index. Another objective of the study was to determine which 

one of those prediction techniques is the best one in predicting the share index of 

market, which is done by taking the majority voting among the four techniques in order 

to find the most predictive method inside the market. 

5.1 Future Work 

The future research could focus on using macroeconomic variables, such as interest 

rate, GDP (gross domestic product), etc. as an input to the different models to 

determine if they have any predictive power and chose the best. A study can be 

conducted to test the effect of either the interest rate or the rate of inflation on the share 
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index. This could help the decision makers or investors to understand how the market 

would behave if the interest rate increases or decreases. Another area of interest is to 

use the artificial intelligence techniques that can be adaptive and learn the data online. 

This would look like creating a methods that are capable of learning the new market 

patterns as they occurs in real time and still have a good predictive power. 

Our future work includes the following tasks:  

1. Using more economically significant features, such as oil prices, import 

and export values, interest rates and the growth rates of GDP (gross 

domestic product), to enhance the accuracy of forecasting.  

2. Trying to improve the performance of the neural networks in the system 

using fuzzy logic and evolutionary algorithms.  

3.  Applying the proposed model to share price indices, interest rates and 

other financial time series. 

4. Proposed an adaptive way in order to determine the best predictive 

model 
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Matlab code 

D1. Matlab code for KNN method 

% KNN method 
  
% This model is a time series predictor using two different methods and then plot the 
forecasts versus real points 
  
addpath('c:\Users\Black Bird\Desktop\nearest neighbour\NN_FEX\london\m_Files'); 
  
[x] = xlsread('data LND_ret.xlsx'); % Load data from file 
d=731;     % Defines where to start the forecasts (and also the training data (1:d-
1)) 
m=10;       % Size of histories (embeding dimension) 
k=50;       % Number of nearest neighbors to use in the forecast's calculation 
  
method_1='correlation';          
method_2='absolute_distance'; 
  
[OutSample_For_Corr,InSample_For_Corr,InSample_Res_Corr]=nn(x,d,m,k,method_1); 
  
[OutSample_For_Abs,InSample_For_Abs,InSample_Res_Abs]=nn(x,d,m,k,method_2); 
  
plot([x(d+1:end),InSample_For_Corr,InSample_For_Abs]); 
xlabel('Time in Dates'); 
ylabel('Values'); 
title(['Forecasts VS Real values (m=',num2str(m),' , k=',num2str(k),' 
d=',num2str(d),')']); 
legend('Real Time Series','NN forecast with correlation Method','NN forecast with abs 
distance Method'); 
grid; 
  
%%%%% calculate the error valies %%% 
[x1] = xlsread('data LND_ret_2.xlsx'); 
error_cor=x1-InSample_For_Corr;  % prediction error cor 
error_abs=x1-InSample_For_Abs;  % prediction error abs 
  
figure; 
plot(error_cor,'r-','linewidth',1); 
xlabel('Time in Dates'); 
ylabel('Values'); 
title('Error with correlation method'); 
grid on; 
NMSE_cor=var(error_cor)/var(x1); 
  
figure; 
plot(error_abs,'r-','linewidth',1); 
xlabel('Time in Dates'); 
ylabel('Values'); 
title('Error with absolute distance method'); 
grid on; 
NMSE_abs=var(error_abs)/var(x1); 
  
 %The main functions are: 
 
 
nn.m 
%{ 
  
NN -  Creates forecasts of a time series on t+1 using nearest neighbour 
  algorithm. 
  
  
      Usage: [OutSample_For,InSample_For,InSample_Res]=nn(x,d,m,k,method,n) 
  
      INPUT:   
  
              x - The time series to be forecasted (the function was 
              originally made for stock price, but it accepts any kind of 
              time series). 
  
              d - the observation where the InSample forecasts will 
              start. It also defines the training period of the 
              algorithm. For example, if lenght(x)=500 and d=400, the 
              values of 1:400 will be the training period for the 
              forecasted value of 401. For the forecast of 402, the 
              training period is 1:401, meaning that each time a new 
              observation is available, the algorithm adds it to the 
              training period. Please notes that the parameter d doesn't  



61 

              have any effect on the out of sample forecasts. 
  
              m - Embedding dimension (size of the histories). 
  
              k - The number of nearest neigbours to be used in the 
              construction of the forecasts. 
  
              method - Defines the method to calculate the forecasts. Can 
              take values 'absolute_distance' (default) or 'correlation'. 
              More details about each method can be found at word 
              document. 
  
              n - Number of outsample Forecasts. The default value is 0. 
  
      OUTPUT: 
              OutSample_For - A vector with the out of sample forecasted 
              values of the time series. The length of [OutSample_For] is 
              n. Notes that the out sample forecasts are build with the 
              whole modeled series x.  
                
              InSample_For  - A vector with the in sample forecasted 
              values of the time series. The length of [InSample_For] is 
              length(x)-d     
  
              InSample_Res  - A vector with the out-of-sample residues 
              from the in-sample forecasts. 
  
    
  Ahmed Ibrahim  
  Email: neo.neo700@gmail.com  
  Department of Computer Engineering.  
  Eastern Mediterranean University / N.Cyprus.  
  Created: January/2013 
  Last Update: May/2013 
  
  This is the algorithm involved on the use of the non-linear forecast of 
  asset's prices based on the nearest neighbour method, Perlin(2006). The 
  rotines were build according to the work of Rodriguez, Rivero and 
  Artilles (2001). 
   
    
[OutSample_For,InSample_For,InSample_Res]=nn(Ibov,1000,3,50,'absolute_distance',5) 
  
   
%} 
  
function [OutSample_For,InSample_For,InSample_Res]=nn(x,d,m,k,method,n) 
  
if (nargin<4) 
    error('Its missing arguments.') 
end 
  
if d>=length(x) 
    error('The value of d must be between 1 and length(x)-1') 
end 
  
if (nargin==4) 
    n=0; 
    method='absolute_distance'; 
    OutSample_For=[]; 
end 
  
if (nargin==5) 
    n=0; 
    OutSample_For=[]; 
end 
  
% Main Loop. 
  
for v=0:length(x)-d-1; 
     
     Series=x(1:d+v); 
     
    [For]=nn_core(Series,m,k,method); 
         
    InSample_For(v+1,1)=For; 
     
    fprintf(1,['\nCalculating NN Forecast #',num2str(v+1)]); 
     
end 
  
disp(' '); 
  
InSample_Res=x(d+1:length(x))-InSample_For; 
  
if n~=0 
    x2=x; 
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    for z=1:n 
        [Out_For]=nn_core(x2,m,k,method); 
        OutSample_For(z,1)=Out_For; 
        x2=[x2;OutSample_For(z)]; 
    end 
end 
 
nn_cor 
%{ 
  
DESCRIPTION: 
  
Core function for nn.m 
  
INPUT: 
        x - Series to be modelled 
        m - Embedding dimension (size of the histories) 
        k - The number of nearest neigbours to be used in the construction  
            of the forecasts 
        method - The method to be used in the calculations 
       
         
 OUTPUT: 
        For_x - The one out of sample forecast of x 
          
         
POURPOSE: This core function will create each forecast in nn.m 
  
%} 
  
function [For_x]=nn_core(x,m,k,method); 
  
  
[n1,n2]=size(x); 
  
switch method 
    case 'correlation' 
  
        %   Calculation of the correlations between the pieces of the time series. 
  
        chunk = x(n1-m+1:n1,1); 
        for i=0:n1-m-1; 
            aba=corrcoef(chunk,x(n1-m-i:n1-i-1,1)); 
            mcorrel(n1-m-i,1)=aba(2,1); 
        end; 
  
        mcorrel2=abs(mcorrel); 
  
        %   Find the k max abs correlation and also the piece related to such k 
correlations. 
  
        [sorted idx] = sort(mcorrel2); 
  
        fullIdx = repmat( idx((end-k+1):end),1,m+1) + repmat([0:m],k,1); 
  
        %   REgression to find the coefficents. 
         
        s = x(fullIdx); 
  
        Coefficients = regress(s(:,m+1),[ones(k,1),s(:,m:-1:1)]); 
  
        c = ones(1,m+1); 
        c(2:end) = x(n1+2 - [2:m+1]); 
  
        For_x(1,1)=c*Coefficients; 
  
    case 'absolute_distance' 
         
        %   Calculation of the sum of distances between the pieces of the time 
series. 
  
        chunk = x(n1-m+1:n1,1); 
        for i=0:n1-m-1; 
            distance=sum(abs(chunk-x(n1-m-i:n1-i-1,1))); 
            sum_distance(n1-m-i,1)=distance; 
        end 
         
        % Sort the distances and find the lowests 
         
        [sorted idx] = sort(sum_distance,'descend'); 
         
        % Create a matrix with the indexes of the neighbors found 
         
        fullIdx = repmat( idx((end-k+1):end),1,m+1) + repmat([0:m],k,1); 
         
        % Grab the values of such neighbors 
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        s = x(fullIdx); 
         
        % Calculate the forecast 
                 
        For_x(1,1)=mean(s(:,m+1)); 
end 
         
         
         
         
         
D2. Matlab code for RBF method. 

% method3_MATLAB implementation of a local SOM-based RBF time series predictor. 
clear; clc; close all; 
  
%--------------- Organize the training data ------------ 
  
[Close] = xlsread('data LND_ret_2.xlsx');  % Load the time series to be clustered 
  
%% Building the input vectors from an univariate time series 
p=20;       % Dimension of the input vector (length of the time window) 5 
lap=p-1;      % Amount of overlapping between consecutive input vectors 
Dw=buffer(Close,p,lap);   % Build the data vectors 
if lap>0 
     Dw=Dw(:,p:end)';  % Eliminate the first 'p-1' vectors with zeros) 
else Dw=Dw'; 
end 
Dw=fliplr(Dw); 
  
Ynext=Dw(2:end,1);        % Target (one-day-ahead) values  
Dw=[Ynext Dw(1:end-1,:)]; % Input regressor vectors for Ynext 
  
Dw=Dw+0.01*randn(size(Dw));  % Add some gaussian noise to the data 0.01 
         % SOM initialization and training 
Mx = 16;             % Number of neurons in the X-dimension 
My = 1;              % Number of neurons in the Y-dimension 
msize = [Mx My];     % Size of 2-D SOM map 
MASK=[0; ones(p,1)];    
sMap = som_randinit(Dw, 'msize', msize,'lattice','rect','shape','sheet'); 
sMap = som_seqtrain(sMap,Dw,'radius',[floor(0.5*max(msize)) 
0],'sample_order','random','neigh','gaussian','trainlen',50); 
  
%--------------- Organize the testing data ------------ 
[data_test] = xlsread('tested_dataln3.xlsx');   % Load testing time series 
Dw=buffer(data_test,p,lap); % Build input data vectors 
  
if lap>0   %0 
     Dw=Dw(:,p:end)';  % get rid of the first 'p-1' vectors with zeros 
else Dw=Dw'; 
end 
Dw=fliplr(Dw); 
  
Ynext=Dw(2:end,1);        % Target (one-day-ahead) values  
Dw=[Ynext Dw(1:end-1,:)]; % Input regressor vectors for Ynext 
  
Dw=Dw+0.01*randn(size(Dw));  % Add some gaussian noise to the data 0.01 
[LEN_DATA DIM_INPUT]=size(Dw);  % Data matrix size (1 input vector per row) 
  
K=4;     % Number of radial basis functions to select 
s2=0.1;  % Spread of the basis functions 0.1 
G=[]; 
w=[]; 
for t=1:LEN_DATA 
    win = som_bmus(sMap,Dw(t,:),[1:K]);    % Find the K winning neurons 
    for i=1:K 
        act = norm(Dw(t,2:end)-sMap.codebook(win(i),2:end)); 
        G(i) = exp(-act*act/(2*s2*s2));   % output of the i-th basis function 
        w(i) = sMap.codebook(win(i),1);   % hidden-to-output layer weight 
    end 
    Yhat(t) = dot(w,G)/sum(G);  % predicted value 
    error(t)=Ynext(t)-Yhat(t);  % prediction error 
end 
   
% Plot target and predicted time series 
figure;  
plot(Ynext,'r-','linewidth',2); hold on; plot(Yhat,'b-'); 
xlabel('Time in Dates'); 
ylabel('Values'); 
title('Forecasts VS Real values'); 
legend(' Real Time Series',' Predicted value with RBF'); 
axis([0 1095 0.065 0.105]);  
grid on; 
hold off 
  
figure; 
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plot(error, 'r-', 'linewidth',1); 
% xlable('Time in Dates'); 
% ylable('Error values'); 
title('Estimated Error'); 
grid on; 
% Normalized mean squared error 
NMSE=var(error)/var(Ynext) 
RMSE=sqrt(mean((error).^2)); 
  
 
Function1- SOM_RANDINIT Initialize a Self-Organizing Map with random values. 
function sMap = som_randinit(D, varargin) 
  
%SOM_RANDINIT Initialize a Self-Organizing Map with random values. 
  
%%%%%%%%%%%%% DETAILED DESCRIPTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% 
% som_randinit 
% 
% PURPOSE 
% 
% Initializes a SOM with random values. 
% 
% SYNTAX 
% 
%  sMap = som_randinit(D) 
%  sMap = som_randinit(D,sMap); 
%  sMap = som_randinit(D,'munits',100,'hexa'); 
% 
% DESCRIPTION 
% 
% Initializes a SOM with random values. If necessary, a map struct 
% is created first. For each component (xi), the values are uniformly 
% distributed in the range of [min(xi) max(xi)].  
% 
% REQUIRED INPUT ARGUMENTS 
% 
%  D                 The training data. 
%           (struct) Data struct. If this is given, its '.comp_names' and  
%                    '.comp_norm' fields are copied to the map struct. 
%           (matrix) data matrix, size dlen x dim 
%   
% OPTIONAL INPUT ARGUMENTS  
% 
%  argID (string) Argument identifier string (see below). 
%  value (varies) Value for the argument (see below). 
% 
%% check arguments 
  
% data 
if isstruct(D),  
  data_name = D.name;  
  comp_names = D.comp_names;  
  comp_norm = D.comp_norm;  
  D = D.data; 
  struct_mode = 1;  
else  
  data_name = inputname(1);  
  struct_mode = 0;  
end 
[dlen dim] = size(D); 
  
% varargin 
sMap = []; 
sTopol = som_topol_struct;  
sTopol.msize = 0;  
munits = NaN; 
i=1;  
while i<=length(varargin),  
  argok = 1;  
  if ischar(varargin{i}),  
    switch varargin{i},  
     case 'munits',     i=i+1; munits = varargin{i}; sTopol.msize = 0; 
     case 'msize',      i=i+1; sTopol.msize = varargin{i}; 
                               munits = prod(sTopol.msize);  
     case 'lattice',    i=i+1; sTopol.lattice = varargin{i};  
     case 'shape',      i=i+1; sTopol.shape = varargin{i};  
     case {'som_topol','sTopol','topol'}, i=i+1; sTopol = varargin{i};  
     case {'som_map','sMap','map'}, i=i+1; sMap = varargin{i}; sTopol = sMap.topol; 
     case {'hexa','rect'},          sTopol.lattice = varargin{i};  
     case {'sheet','cyl','toroid'}, sTopol.shape = varargin{i}; 
     otherwise argok=0;  
    end 
  elseif isstruct(varargin{i}) & isfield(varargin{i},'type'),  
    switch varargin{i}.type,  
     case 'som_topol', 
      sTopol = varargin{i};  
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     case 'som_map',  
      sMap = varargin{i}; 
      sTopol = sMap.topol; 
     otherwise argok=0;  
    end 
  else 
    argok = 0;  
  end 
  if ~argok,  
    disp(['(som_topol_struct) Ignoring invalid argument #' num2str(i)]);  
  end 
  i = i+1;  
end 
  
if ~isempty(sMap),  
  [munits dim2] = size(sMap.codebook); 
  if dim2 ~= dim, error('Map and data must have the same dimension.'); end 
end 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% create map 
  
% map struct 
if ~isempty(sMap),  
  sMap = som_set(sMap,'topol',sTopol); 
else   
  if ~prod(sTopol.msize),  
    if isnan(munits),  
      sTopol = som_topol_struct('data',D,sTopol); 
    else 
      sTopol = som_topol_struct('data',D,'munits',munits,sTopol); 
    end 
  end   
  sMap = som_map_struct(dim, sTopol);  
end 
  
if struct_mode,  
  sMap = som_set(sMap,'comp_names',comp_names,'comp_norm',comp_norm); 
end 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% initialization 
  
% train struct 
sTrain = som_train_struct('algorithm','randinit'); 
sTrain = som_set(sTrain,'data_name',data_name); 
  
munits = prod(sMap.topol.msize); 
sMap.codebook = rand([munits dim]);  
  
% set interval of each component to correct value 
for i = 1:dim, 
  inds = find(~isnan(D(:,i)) & ~isinf(D(:,i)));  
  if isempty(inds), mi = 0; ma = 1;  
  else ma = max(D(inds,i)); mi = min(D(inds,i));   
  end 
  sMap.codebook(:,i) = (ma - mi) * sMap.codebook(:,i) + mi;  
end 
  
% training struct 
sTrain = som_set(sTrain,'time',datestr(now,0)); 
sMap.trainhist = sTrain; 
  
return; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
Function2- SOM_SEQTRAIN  Use sequential algorithm to train the Self-Organizing Map. 
function [sMap, sTrain] = som_seqtrain(sMap, D, varargin) 
  
%SOM_SEQTRAIN  Use sequential algorithm to train the Self-Organizing Map. 
 
%%%%%%%%%%%%% DETAILED DESCRIPTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% 
% som_seqtrain 
% 
% PURPOSE 
% 
% Trains a Self-Organizing Map using the sequential algorithm.  
% 
% SYNTAX 
% 
%  sM = som_seqtrain(sM,D); 
%  sM = som_seqtrain(sM,sD); 
%  sM = som_seqtrain(...,'argID',value,...); 
%  sM = som_seqtrain(...,value,...); 
%  [sM,sT] = som_seqtrain(M,D,...); 
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% 
% DESCRIPTION 
% 
% Trains the given SOM (sM or M above) with the given training data 
% (sD or D) using sequential SOM training algorithm. If no optional 
% arguments (argID, value) are given, a default training is done, the 
% parameters are obtained from SOM_TRAIN_STRUCT function. Using 
% optional arguments the training parameters can be specified. Returns 
% the trained and updated SOM and a train struct which contains 
% information on the training. 
% 
% REFERENCES 
% 
% Kohonen, T., "Self-Organizing Map", 2nd ed., Springer-Verlag,  
%    Berlin, 1995, pp. 78-82. 
% Kohonen, T., "Clustering, Taxonomy, and Topological Maps of 
%    Patterns", International Conference on Pattern Recognition 
%    (ICPR), 1982, pp. 114-128. 
% Kohonen, T., "Self-Organized formation of topologically correct 
%    feature maps", Biological Cybernetics 43, 1982, pp. 59-69. 
% 
% REQUIRED INPUT ARGUMENTS 
% 
%  sM          The map to be trained.  
%     (struct) map struct 
%     (matrix) codebook matrix (field .data of map struct) 
%              Size is either [munits dim], in which case the map grid  
%              dimensions (msize) should be specified with optional arguments, 
%              or [msize(1) ... msize(k) dim] in which case the map  
%              grid dimensions are taken from the size of the matrix.  
%              Lattice, by default, is 'rect' and shape 'sheet'. 
%  D           Training data. 
%     (struct) data struct 
%     (matrix) data matrix, size [dlen dim] 
%   
% OPTIONAL INPUT ARGUMENTS  
% 
%  argID (string) Argument identifier string (see below). 
%  value (varies) Value for the argument (see below). 
% 
%  The optional arguments can be given as 'argID',value -pairs. If an 
%  argument is given value multiple times, the last one is 
%  used. The valid IDs and corresponding values are listed below. The values  
%  which are unambiguous (marked with '*') can be given without the  
%  preceeding argID. 
% 
%   'mask'       (vector) BMU search mask, size dim x 1. Default is  
%                         the one in sM (field '.mask') or a vector of 
%                         ones if only a codebook matrix was given. 
%   'msize'      (vector) map grid dimensions. Default is the one 
%                         in sM (field sM.topol.msize) or  
%                         'si = size(sM); msize = si(1:end-1);'  
%                         if only a codebook matrix was given.  
%   'radius'     (vector) neighborhood radius  
%                         length = 1: radius_ini = radius 
%                         length = 2: [radius_ini radius_fin] = radius 
%                         length > 2: the vector given neighborhood 
%                                     radius for each step separately 
%                                     trainlen = length(radius) 
%   'radius_ini' (scalar) initial training radius 
%   'radius_fin' (scalar) final training radius 
%   'alpha'      (vector) learning rate 
%                         length = 1: alpha_ini = alpha 
%                         length > 1: the vector gives learning rate 
%                                     for each step separately 
%                                     trainlen is set to length(alpha) 
%                                     alpha_type is set to 'user defined' 
%   'alpha_ini'  (scalar) initial learning rate 
%   'tracking'   (scalar) tracking level: 0, 1 (default), 2 or 3 
%                         0 - estimate time  
%                         1 - track time and quantization error  
%                         2 - plot quantization error 
%                         3 - plot quantization error and two first  
%                             components  
%   'trainlen'   (scalar) training length (see also 'tlen_type') 
%   'trainlen_type' *(string) is the trainlen argument given in 'epochs' 
%                         or in 'samples'. Default is 'epochs'. 
%   'sample_order'*(string) is the sample order 'random' (which is the  
%                         the default) or 'ordered' in which case 
%                         samples are taken in the order in which they  
%                         appear in the data set 
%   'train'     *(struct) train struct, parameters for training.  
%                         Default parameters, unless specified,  
%                         are acquired using SOM_TRAIN_STRUCT (this  
%                         also applies for 'trainlen', 'alpha_type', 
%                         'alpha_ini', 'radius_ini' and 'radius_fin'). 
%   'sTrain', 'som_train' (struct) = 'train' 
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%   'neigh'     *(string) The used neighborhood function. Default is  
%                         the one in sM (field '.neigh') or 'gaussian' 
%                         if only a codebook matrix was given. Other  
%                         possible values is 'cutgauss', 'ep' and 'bubble'. 
%   'topol'     *(struct) topology of the map. Default is the one 
%                         in sM (field '.topol'). 
%   'sTopol', 'som_topol' (struct) = 'topol' 
%   'alpha_type'*(string) learning rate function, 'inv', 'linear' or 'power' 
%   'lattice'   *(string) map lattice. Default is the one in sM 
%                         (field sM.topol.lattice) or 'rect'  
%                         if only a codebook matrix was given.  
%   'shape'     *(string) map shape. Default is the one in sM 
%                         (field sM.topol.shape) or 'sheet'  
%                         if only a codebook matrix was given.  
%    
% OUTPUT ARGUMENTS 
%  
%  sM          the trained map 
%     (struct) if a map struct was given as input argument, a  
%              map struct is also returned. The current training  
%              is added to the training history (sM.trainhist). 
%              The 'neigh' and 'mask' fields of the map struct 
%              are updated to match those of the training. 
%     (matrix) if a matrix was given as input argument, a matrix 
%              is also returned with the same size as the input  
%              argument. 
%  sT (struct) train struct; information of the accomplished training 
%   
%% Check arguments 
  
error(nargchk(2, Inf, nargin));  % check the number of input arguments 
  
% map  
struct_mode = isstruct(sMap); 
if struct_mode,  
  sTopol = sMap.topol; 
else   
  orig_size = size(sMap); 
  if ndims(sMap) > 2,  
    si = size(sMap); dim = si(end); msize = si(1:end-1); 
    M = reshape(sMap,[prod(msize) dim]); 
  else 
    msize = [orig_size(1) 1];  
    dim = orig_size(2); 
  end 
  sMap   = som_map_struct(dim,'msize',msize); 
  sTopol = sMap.topol; 
end 
[munits dim] = size(sMap.codebook); 
  
% data 
if isstruct(D),  
  data_name = D.name;  
  D = D.data;  
else  
  data_name = inputname(2);  
end 
D = D(find(sum(isnan(D),2) < dim),:); % remove empty vectors from the data 
[dlen ddim] = size(D);                % check input dimension 
if dim ~= ddim, error('Map and data input space dimensions disagree.'); end 
  
% varargin 
sTrain = som_set('som_train','algorithm','seq','neigh', ... 
         sMap.neigh,'mask',sMap.mask,'data_name',data_name); 
radius     = []; 
alpha      = []; 
tracking   = 1; 
sample_order_type = 'random'; 
tlen_type  = 'epochs'; 
  
i=1;  
while i<=length(varargin),  
  argok = 1;  
  if ischar(varargin{i}),  
    switch varargin{i},  
     % argument IDs 
     case 'msize', i=i+1; sTopol.msize = varargin{i};  
     case 'lattice', i=i+1; sTopol.lattice = varargin{i}; 
     case 'shape', i=i+1; sTopol.shape = varargin{i}; 
     case 'mask', i=i+1; sTrain.mask = varargin{i}; 
     case 'neigh', i=i+1; sTrain.neigh = varargin{i}; 
     case 'trainlen', i=i+1; sTrain.trainlen = varargin{i}; 
     case 'trainlen_type', i=i+1; tlen_type = varargin{i};  
     case 'tracking', i=i+1; tracking = varargin{i}; 
     case 'sample_order', i=i+1; sample_order_type = varargin{i}; 
     case 'radius_ini', i=i+1; sTrain.radius_ini = varargin{i}; 
     case 'radius_fin', i=i+1; sTrain.radius_fin = varargin{i}; 
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     case 'radius',  
      i=i+1;  
      l = length(varargin{i});  
      if l==1,  
        sTrain.radius_ini = varargin{i};  
      else  
        sTrain.radius_ini = varargin{i}(1);  
        sTrain.radius_fin = varargin{i}(end); 
        if l>2, radius = varargin{i}; tlen_type = 'samples'; end 
      end  
     case 'alpha_type', i=i+1; sTrain.alpha_type = varargin{i}; 
     case 'alpha_ini', i=i+1; sTrain.alpha_ini = varargin{i}; 
     case 'alpha',      
      i=i+1;  
      sTrain.alpha_ini = varargin{i}(1); 
      if length(varargin{i})>1,  
        alpha = varargin{i}; tlen_type = 'samples';  
        sTrain.alpha_type = 'user defined';  
      end 
     case {'sTrain','train','som_train'}, i=i+1; sTrain = varargin{i}; 
     case {'topol','sTopol','som_topol'},  
      i=i+1;  
      sTopol = varargin{i}; 
      if prod(sTopol.msize) ~= munits,  
        error('Given map grid size does not match the codebook size.'); 
      end 
      % unambiguous values 
     case {'inv','linear','power'}, sTrain.alpha_type = varargin{i};  
     case {'hexa','rect'}, sTopol.lattice = varargin{i}; 
     case {'sheet','cyl','toroid'}, sTopol.shape = varargin{i};  
     case {'gaussian','cutgauss','ep','bubble'}, sTrain.neigh = varargin{i}; 
     case {'epochs','samples'}, tlen_type = varargin{i}; 
     case {'random', 'ordered'}, sample_order_type = varargin{i};  
     otherwise argok=0;  
    end 
  elseif isstruct(varargin{i}) & isfield(varargin{i},'type'),  
    switch varargin{i}(1).type,  
     case 'som_topol',  
      sTopol = varargin{i};  
      if prod(sTopol.msize) ~= munits,  
        error('Given map grid size does not match the codebook size.'); 
      end 
     case 'som_train', sTrain = varargin{i}; 
     otherwise argok=0;  
    end 
  else 
    argok = 0;  
  end 
  if ~argok,  
    disp(['(som_seqtrain) Ignoring invalid argument #' num2str(i+2)]);  
  end 
  i = i+1;  
end 
  
% training length 
if ~isempty(radius) | ~isempty(alpha),  
  lr = length(radius); 
  la = length(alpha); 
  if lr>2 | la>1, 
    tlen_type = 'samples'; 
    if     lr> 2 & la<=1, sTrain.trainlen = lr; 
    elseif lr<=2 & la> 1, sTrain.trainlen = la; 
    elseif lr==la,        sTrain.trainlen = la; 
    else 
      error('Mismatch between radius and learning rate vector lengths.') 
    end 
  end 
end 
if strcmp(tlen_type,'samples'), sTrain.trainlen = sTrain.trainlen/dlen; end  
  
% check topology 
if struct_mode,  
  if ~strcmp(sTopol.lattice,sMap.topol.lattice) | ... 
    ~strcmp(sTopol.shape,sMap.topol.shape) | ... 
    any(sTopol.msize ~= sMap.topol.msize),  
    warning('Changing the original map topology.'); 
  end 
end 
sMap.topol = sTopol;  
  
% complement the training struct 
sTrain = som_train_struct(sTrain,sMap,'dlen',dlen); 
if isempty(sTrain.mask), sTrain.mask = ones(dim,1); end 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% initialize 
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M        = sMap.codebook; 
mask     = sTrain.mask; 
trainlen = sTrain.trainlen*dlen; 
  
% neighborhood radius 
if length(radius)>2, 
  radius_type = 'user defined'; 
else 
  radius = [sTrain.radius_ini sTrain.radius_fin];     
  rini = radius(1);  
  rstep = (radius(end)-radius(1))/(trainlen-1); 
  radius_type = 'linear'; 
end     
  
% learning rate 
if length(alpha)>1,  
  sTrain.alpha_type ='user defined'; 
  if length(alpha) ~= trainlen,  
    error('Trainlen and length of neighborhood radius vector do not match.') 
  end 
  if any(isnan(alpha)),  
    error('NaN is an illegal learning rate.') 
  end 
else 
  if isempty(alpha), alpha = sTrain.alpha_ini; end 
  if strcmp(sTrain.alpha_type,'inv'),  
    % alpha(t) = a / (t+b), where a and b are chosen suitably 
    % below, they are chosen so that alpha_fin = alpha_ini/100 
    b = (trainlen - 1) / (100 - 1); 
    a = b * alpha; 
  end 
end 
                                    
% initialize random number generator 
rand('state',sum(100*clock)); 
  
% distance between map units in the output space 
%  Since in the case of gaussian and ep neighborhood functions, the  
%  equations utilize squares of the unit distances and in bubble case 
%  it doesn't matter which is used, the unitdistances and neighborhood 
%  radiuses are squared. 
Ud = som_unit_dists(sTopol).^2; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Action 
  
update_step = 100;  
mu_x_1 = ones(munits,1); 
samples = ones(update_step,1); 
r = samples;  
alfa = samples; 
  
qe = 0; 
start = clock; 
if tracking >  0, % initialize tracking 
  track_table = zeros(update_step,1); 
  qe = zeros(floor(trainlen/update_step),1);   
end 
  
for t = 1:trainlen,  
  
  % Every update_step, new values for sample indeces, neighborhood 
  % radius and learning rate are calculated. This could be done 
  % every step, but this way it is more efficient. Or this could  
  % be done all at once outside the loop, but it would require much 
  % more memory. 
  ind = rem(t,update_step); if ind==0, ind = update_step; end 
  if ind==1,  
    steps = [t:min(trainlen,t+update_step-1)]; 
    % sample order     
    switch sample_order_type,  
     case 'ordered', samples = rem(steps,dlen)+1; 
     case 'random',  samples = ceil(dlen*rand(update_step,1)+eps); 
    end 
  
    % neighborhood radius 
    switch radius_type,  
     case 'linear',       r = rini+(steps-1)*rstep; 
     case 'user defined', r = radius(steps);  
    end     
    r=r.^2;        % squared radius (see notes about Ud above) 
    r(r==0) = eps; % zero radius might cause div-by-zero error 
     
    % learning rate 
    switch sTrain.alpha_type, 
     case 'linear',       alfa = (1-steps/trainlen)*alpha; 
     case 'inv',          alfa = a ./ (b + steps-1); 
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     case 'power',        alfa = alpha * (0.005/alpha).^((steps-1)/trainlen);  
     case 'user defined', alfa = alpha(steps); 
    end     
  end 
   
  % find BMU 
  x = D(samples(ind),:);                 % pick one sample vector 
  known = ~isnan(x);                     % its known components 
  Dx = M(:,known) - x(mu_x_1,known);     % each map unit minus the vector 
  [qerr bmu] = min((Dx.^2)*mask(known)); % minimum distance(^2) and the BMU 
  
  % tracking 
  if tracking>0,  
    track_table(ind) = sqrt(qerr); 
    if ind==update_step,  
      n = ceil(t/update_step);  
      qe(n) = mean(track_table); 
      trackplot(M,D,tracking,start,n,qe); 
    end 
  end 
   
  % neighborhood & learning rate 
  % notice that the elements Ud and radius have been squared! 
  % (see notes about Ud above) 
  switch sTrain.neigh,  
  case 'bubble',   h = (Ud(:,bmu)<=r(ind)); 
  case 'gaussian', h = exp(-Ud(:,bmu)/(2*r(ind)));  
  case 'cutgauss', h = exp(-Ud(:,bmu)/(2*r(ind))) .* (Ud(:,bmu)<=r(ind)); 
  case 'ep',       h = (1-Ud(:,bmu)/r(ind)) .* (Ud(:,bmu)<=r(ind)); 
  end   
  h = h*alfa(ind);   
   
  % update M 
  M(:,known) = M(:,known) - h(:,ones(sum(known),1)).*Dx; 
  
end; % for t = 1:trainlen 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Build / clean up the return arguments 
  
if tracking, fprintf(1,'\n'); end 
  
% update structures 
sTrain = som_set(sTrain,'time',datestr(now,0)); 
if struct_mode,  
  sMap = som_set(sMap,'codebook',M,'mask',sTrain.mask,'neigh',sTrain.neigh); 
  tl = length(sMap.trainhist); 
  sMap.trainhist(tl+1) = sTrain; 
else 
  sMap = reshape(M,orig_size); 
end 
  
return; 
  
  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% subfunctions 
  
%%%%%%%% 
function [] = trackplot(M,D,tracking,start,n,qe) 
  
  l = length(qe); 
  elap_t = etime(clock,start);  
  tot_t = elap_t*l/n; 
  fprintf(1,'\rTraining: %3.0f/ %3.0f s',elap_t,tot_t)   
  switch tracking 
   case 1,  
   case 2,        
    plot(1:n,qe(1:n),(n+1):l,qe((n+1):l)) 
    title('Quantization errors for latest samples')     
    drawnow 
   otherwise, 
    subplot(2,1,1), plot(1:n,qe(1:n),(n+1):l,qe((n+1):l)) 
    title('Quantization error for latest samples'); 
    subplot(2,1,2), plot(M(:,1),M(:,2),'ro',D(:,1),D(:,2),'b.');  
    title('First two components of map units (o) and data vectors (+)'); 
    drawnow 
  end   
  % end of trackplot 
  
 
 
Function3- SOM_BMUS Find the best-matching units from the map for the given vectors. 
function [Bmus,Qerrors] = som_bmus(sMap, sData, which_bmus, mask) 
  
%SOM_BMUS Find the best-matching units from the map for the given vectors. 
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%%%%%%%%%%%%% DETAILED DESCRIPTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% 
% som_bmus 
% 
% PURPOSE 
% 
% Finds Best-Matching Units (BMUs) for given data vector from a given map. 
% 
% SYNTAX 
% 
%  Bmus = som_bmus(sMap, sData) 
%  Bmus = som_bmus(..., which) 
%  Bmus = som_bmus(..., which, mask) 
%  [Bmus, Qerrs] = som_bmus(...) 
% 
% DESCRIPTION 
% 
% Returns the indexes and corresponding quantization errors of the 
% vectors in sMap that best matched the vectors in sData. 
% 
% By default only the index of the best matching unit (/vector) is 
% returned, but the 'which' argument can be used to get others as 
% well. For example it might be desirable to get also second- and 
% third-best matching units as well (which = [1:3]).  
% 
% A mask can be used to weight the search process. The mask is used to 
% weight the influence of components in the distance calculation, as 
% follows:  
% 
%   distance(x,y) = (x-y)' diag(mask) (x-y) 
% 
% where x and y are two vectors, and diag(mask) is a diagonal matrix with  
% the elements of mask vector on the diagonal.  
% 
% The vectors in the data set (sData) can contain unknown components 
% (NaNs), but the map (sMap) cannot. If there are completely empty 
% vectors (all NaNs), the returned BMUs and quantization errors for those  
% vectors are NaNs. 
% 
% REQUIRED INPUT ARGUMENTS 
% 
%   sMap              The vectors from among which the BMUs are searched 
%                     for. These must not have any unknown components (NaNs). 
%            (struct) map struct 
%            (matrix) codebook matrix, size munits x dim 
%                      
%   sData             The data vector(s) for which the BMUs are searched. 
%            (struct) data struct 
%            (matrix) data matrix, size dlen x dim 
% 
% OPTIONAL INPUT ARGUMENTS  
% 
%   which    (vector) which BMUs are returned,  
%                     by default only the best (ie. which = [1]) 
%            (string) 'all', 'best' or 'worst' meaning [1:munits], 
%                     [1] and [munits] respectively   
%   mask     (vector) mask vector to be used in BMU search,  
%                     by default sMap.mask, or ones(dim,1) in case 
%                     a matrix was given 
% 
% OUTPUT ARGUMENTS 
%  
%   Bmus     (matrix) the requested BMUs for each data vector,  
%                     size dlen x length(which) 
%   Qerrors  (matrix) the corresponding quantization errors,  
%                     size equal to that of Bmus 
% 
 
error(nargchk(1, 4, nargin));  % check no. of input args is correct 
  
% sMap 
if isstruct(sMap),  
  switch sMap.type,  
   case 'som_map', M = sMap.codebook;  
   case 'som_data', M = sMap.data; 
   otherwise, error('Invalid 1st argument.'); 
  end 
else  
  M = sMap;  
end 
[munits dim] = size(M); 
if any(any(isnan(M))),  
  error ('Map codebook must not have missing components.'); 
end 
  
% data 
if isstruct(sData),  
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  switch sData.type,  
   case 'som_map', D = sData.codebook; 
   case 'som_data', D = sData.data; 
   otherwise, error('Invalid 2nd argument.'); 
  end 
else  
  D = sData; 
end 
[dlen ddim] = size(D); 
if dim ~= ddim,  
  error('Data and map dimensions do not match.') 
end 
  
% which_bmus 
if nargin < 3 | isempty(which_bmus) | any(isnan(which_bmus)),  
  which_bmus = 1;  
else 
  if ischar(which_bmus),  
    switch which_bmus, 
     case 'best', which_bmus = 1;  
     case 'worst', which_bmus = munits;  
     case 'all', which_bmus = [1:munits]; 
    end 
  end 
end 
  
% mask 
if nargin < 4 | isempty(mask) | any(isnan(mask)),  
  if isstruct(sMap) & strcmp(sMap.type,'som_map'),  
    mask = sMap.mask;  
  elseif isstruct(sData) & strcmp(sData.type,'som_map'),  
    mask = sData.mask;  
  else 
    mask = ones(dim,1);  
  end 
end 
if size(mask,1)==1, mask = mask'; end 
if all(mask == 0),  
  error('All components masked off. BMU search cannot be done.'); 
end 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% action 
  
Bmus = zeros(dlen,length(which_bmus)); 
Qerrors = Bmus; 
  
% The BMU search involves calculating weighted Euclidian distances  
% to all map units for each data vector. Basically this is done as 
%   for i=1:dlen,  
%     for j=1:munits,  
%       for k=1:dim, 
%         Dist(j,i) = Dist(j,i) + mask(k) * (D(i,k) - M(j,k))^2; 
%       end 
%     end 
%   end 
% where mask is the weighting vector for distance calculation. However, taking  
% into account that distance between vectors m and v can be expressed as 
%   |m - v|^2 = sum_i ((m_i - v_i)^2) = sum_i (m_i^2 + v_i^2 - 2*m_i*v_i) 
% this can be made much faster by transforming it to a matrix operation: 
%   Dist = (M.^2)*mask*ones(1,d) + ones(m,1)*mask'*(D'.^2) - 2*M*diag(mask)*D' 
% 
% In the case where there are unknown components in the data, each data 
% vector will have an individual mask vector so that for that unit, the  
% unknown components are not taken into account in distance calculation. 
% In addition all NaN's are changed to zeros so that they don't screw up  
% the matrix multiplications. 
  
% calculate distances & bmus 
  
% This is done a block of data at a time rather than in a 
% single sweep to save memory consumption. The 'Dist' matrix has  
% size munits*blen which would be HUGE if you did it in a single-sweep 
% operation. If you _want_ to use the single-sweep version, just  
% set blen = dlen. If you're having problems with memory, try to  
% set the value of blen lower.  
blen = min(munits,dlen); 
  
% handle unknown components 
Known = ~isnan(D); 
W1 = (mask*ones(1,dlen)) .* Known';  
D(find(~Known)) = 0;   
unknown = find(sum(Known')==0); % completely unknown vectors  
  
% constant matrices 
WD = 2*diag(mask)*D';   % constant matrix 
dconst = ((D.^2)*mask); % constant term in the distances 
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i0 = 0;  
while i0+1<=dlen,  
  % calculate distances  
  inds = [(i0+1):min(dlen,i0+blen)]; i0 = i0+blen;       
  Dist = (M.^2)*W1(:,inds) - M*WD(:,inds); % plus dconst for each sample 
   
  % find the bmus and the corresponding quantization errors 
  if all(which_bmus==1), [Q B] = min(Dist); else [Q B] = sort(Dist); end 
  if munits==1, Bmus(inds,:) = 1; else Bmus(inds,:) = B(which_bmus,:)'; end 
  Qerrors(inds,:) = Q(which_bmus,:)' + dconst(inds,ones(length(which_bmus),1)); 
end   
  
% completely unknown vectors 
if ~isempty(unknown),  
  Bmus(unknown,:) = NaN; 
  Qerrors(unknown,:) = NaN; 
end 
  
Qerrors = sqrt(Qerrors); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
 
Function4- SOM_DIVIDE Divides a dataset according to a given map. 
function [V,I]=som_divide(sMap, D, inds, mode) 
  
%SOM_DIVIDE Divides a dataset according to a given map. 
% 
% [V,I]=som_divide(sMap, sData, [inds], [mode]) 
% 
% ARGUMENTS ([]'s are optional) 
% 
% sMap (struct or matrix) map struct or codebook (size munits x dim) 
% sData (struct or matrix) data struct or matrix (size N x dim ) 
% [inds] From which map units should the local data sets 
% be constructed. Interpretation depends on mode 
% argument. By default [1:munits]. 
% 'class': (vector) munits x 1 matrix of class numbers 
% 'index': (vector) K x 1 vector of map node indexes 
% 'index': (matrix) K x k matrix of map node subscripts 
% [mode] (string) 'index' or 'class', if inds is a vector of length 
% munits, default is 'class', otherwise 'index'. 
% RETURNS 
% 
% If mode == 'index' 
% V (matrix) data vectors hitting the specified nodes (size K x dim) 
% I (vector) corresponding data row indexes (size K x 1) 
% 
% If mode == 'class' (this can be used after using som_select) 
% V (cell array) V{K} includes vectors whose BMU has class number 
% K in the input matrix 'coord'. Note that 
% values of K below 1 are ignored. 
% I (cell array) corresponding data indexes in the cell array 
% 
% NOTE: if the same node is specified multiple times, only one 
% set of hits is returned. 
% 
%%%% Init & Check %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
error(nargchk(0, 4, nargin)) % check if no. of input args is correct 
  
% map 
if isstruct(sMap), 
  msize = sMap.topol.msize; 
  dim = size(sMap.codebook,2); 
else 
  msize = [size(sMap,1) 1]; 
  dim = size(sMap,2); 
end 
munits = prod(msize); 
  
% data 
if isstruct(D), D=D.data; end 
  
% inds 
if nargin<3, inds = 1:munits; end 
isvec = prod(size(inds))==length(inds); 
  
% mode 
if nargin<4, 
  if isvec & length(inds)==munits, 
    mode = 'class'; 
  else 
    mode = 'index'; 
  end 
end 
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%%% Action & Build output according to the mode string output 
  
if ~isvec, inds = som_sub2ind(msize,inds); end 
  
bmus=som_bmus(sMap,D); 
  
switch mode 
 case 'index' 
  I=find(ismember(bmus,inds)); 
  V=D(I,:); 
 case 'class' 
  K=max(inds); % classes 
  V = cell(K,1); 
  I = cell(K,1); 
  for i=1:K, 
    N_ind=find(inds == i); % indexes of the units of class i 
    I{i}=find(ismember(bmus,N_ind)); % data indexes 
    V{i}=D(I{i},:); 
  end 
end 
 
Function5- SOM_EUCDIST2 Calculates matrix of squared euclidean distances between set 
of vectors or map, data struct 
function d=som_eucdist2(Data, Proto) 
  
%SOM_EUCDIST2 Calculates matrix of squared euclidean distances between set of vectors 
or map, data struct 
% 
% d=som_eucdist2(D, P) 
% 
% d=som_eucdist(sMap, sData); 
% d=som_eucdist(sData, sMap); 
% d=som_eucdist(sMap1, sMap2); 
% d=som_eucdist(datamatrix1, datamatrix2); 
% 
% Input and output arguments ([]'s are optional): 
% D (matrix) size Nxd 
% (struct) map or data struct 
% P (matrix) size Pxd 
% (struct) map or data struct 
% d (matrix) distance matrix of size NxP 
% 
% IMPORTANT 
% 
% * Calculates _squared_ euclidean distances 
% * Observe that the mask in the map struct is not taken into account while 
% calculating the euclidean distance 
% 
% See also KNN, PDIST. 
% Version 2.0beta Johan 291000 
  
%% Init %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
if isstruct(Data); 
  if isfield(Data,'type') & ischar(Data.type), 
    ; 
  else 
    error('Invalid map/data struct?'); 
  end 
  switch Data.type 
   case 'som_map' 
    data=Data.codebook; 
   case 'som_data' 
    data=Data.data; 
  end 
else 
  % is already a matrix 
  data=Data; 
end 
  
% Take prototype vectors from prototype struct 
  
if isstruct(Proto), 
   
  if isfield(Proto,'type') & ischar(Proto.type), 
    ; 
  else 
    error('Invalid map/data struct?'); 
  end 
  switch Proto.type 
   case 'som_map' 
    proto=Proto.codebook; 
   case 'som_data' 
    proto=Proto.data; 
  end 
else 
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  % is already a matrix 
  proto=Proto; 
end 
  
% Check that inputs are matrices 
if ~vis_valuetype(proto,{'nxm'}) | ~vis_valuetype(data,{'nxm'}), 
  error('Prototype or data input not valid.') 
end 
  
% Record data&proto sizes and check their dims 
[N_data dim_data]=size(data); 
[N_proto dim_proto]=size(proto); 
if dim_proto ~= dim_data, 
  error('Data and prototype vector dimension does not match.'); 
end 
  
% Calculate euclidean distances between classifiees and prototypes 
d=distance(data,proto); 
  
%%%% Classification %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function d=distance(X,Y); 
  
% Euclidean distance matrix between row vectors in X and Y 
  
U=~isnan(Y); Y(~U)=0; 
V=~isnan(X); X(~V)=0; 
d=abs(X.^2*U'+V*Y'.^2-2*X*Y'); 
 
Function6- SOM_MAP_STRUCT Create map struct. 
function sMap = som_map_struct(dim, varargin) 
  
%SOM_MAP_STRUCT Create map struct.  
%%%%%%%%%%%%% DETAILED DESCRIPTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% 
% som_map_struct 
% 
% PURPOSE 
% 
% Creates a self-organizing map structure.  
% 
% SYNTAX 
% 
%  sM = som_map_struct(dim) 
%  sM = som_map_struct(...,'argID',value,...); 
%  sM = som_map_struct(...,value,...); 
% 
% DESCRIPTION 
% 
% Creates a self-organizing map struct. The struct contains the map 
% codebook, labels, topology, information on normalization and training,  
% as well as component names and a name for the map. The obligatory 
% parameter is the map dimension. Most of the other fields can be 
% given values using optional arguments. If they are left unspecified, 
% default values are used. 
% 
%  Field         Type         Size / default value (munits = prod(msize)) 
%  ------------------------------------------------------------------------ 
%   .type        (string)     'som_map'                
%   .name        (string)     'SOM date' 
%   .codebook    (matrix)     rand(munits, dim) 
%   .topol       (struct)     topology struct, with the following fields 
%     .type         (string)  'som_topol' 
%     .msize        (vector)  size k x 1, [0]  
%     .lattice      (string)  'hexa'  
%     .shape        (string)  'sheet' 
%   .labels      (cellstr)    size munits x m, {''; ''; ... ''} 
%   .neigh       (string)     'gaussian' 
%   .mask        (vector)     size dim x 1, [1; 1; ...; 1] 
%   .trainhist   (cell array) size tl x 1, [] 
%   .comp_names  (cellstr)    size dim x 1, {'Variable1', 'Variable2', ...} 
%   .comp_norm   (cell array) size dim x 1, {[], [], ... []} 
% 
% '.type' field is the struct identifier. Do not change it. 
% '.name' field is the identifier for the whole map struct 
% '.codebook' field is the codebook matrix, each row corresponds to one unit 
% '.topol' field is the topology of the map. This struct has three fields: 
%   '.msize' field is the dimensions of the map grid. Note that the 
%         matrix notation of indeces is used. 
%   '.lattice' field is the map grid lattice 
%   '.shape' field is the map grid shape 
% '.labels' field contains the labels for each of the vectors. The ith row 
%         of '.labels' contains the labels for ith map unit. Note that  
%         if some vectors have more labels than others, the others are 
%         are given empty labels ('') to pad the '.labels' array up. 
% '.neigh' field is the neighborhood function.  
% '.mask' field is the BMU search mask. 
% '.trainhist' field contains information on the training. It is a cell 
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%         array of training structs. The first training struct contains 
%         information on initialization, the others on actual trainings.  
%         If the map has not been initialized, '.trainhist' is empty ([]). 
% '.comp_names' field contains the names of the vector components 
% '.comp_norm' field contains normalization information for each 
%         component. Each cell of '.comp_norm' is itself a cell array of 
%         normalization structs. If no normalizations are performed for  
%         the particular component, the cell is empty ([]). 
% 
% REQUIRED INPUT ARGUMENTS 
% 
%  dim    (scalar) Input space dimension.  
%   
% OPTIONAL INPUT ARGUMENTS  
% 
%  argID (string) Argument identifier string (see below). 
%  value (varies) Value for the argument (see below). 
% 
%  The optional arguments are given as 'argID',value -pairs. If the 
%  value is unambiguous (marked below with '*'), it can be given 
%  without the preceeding argID. If an argument is given value 
%  multiple times, the last one is used. 
% 
%   'mask'       (vector) BMU search mask, size dim x 1 
%   'msize'      (vector) map grid size, default is [0] 
%   'labels'     (string array / cellstr) labels for each map unit,  
%                 length=prod(msize) 
%   'name'       (string) map name 
%   'comp_names' (string array / cellstr) component names, size dim x 1 
%   'comp_norm'  (cell array) normalization operations for each 
%                 component, size dim x 1. Each cell is either empty,  
%                 or a cell array of normalization structs. 
%   'lattice'   *(string) map lattice, 'hexa' or 'rect' 
%   'shape'     *(string) map shape, 'sheet', 'cyl' or 'toroid' 
%   'topol'     *(struct) topology struct, sets msize, lattice and shape 
%   'som_topol','sTopol' = 'topol' 
%   'neigh'     *(string) neighborhood function, 'gaussian', 'cutgauss', 
%                 'ep' or 'bubble' 
% 
% OUTPUT ARGUMENTS 
%  
%  sMap (struct) the map struct 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
% default values 
sTopol     = som_set('som_topol','lattice','hexa','shape','sheet'); 
neigh      = 'gaussian'; 
mask       = ones(dim,1); 
name       = sprintf('SOM %s', datestr(now, 1)); 
labels     = cell(prod(sTopol.msize),1); 
for i=1:length(labels), labels{i} = ''; end 
comp_names = cell(dim,1);  
for i = 1:dim, comp_names{i} = sprintf('Variable%d', i); end 
comp_norm  = cell(dim,1);  
  
% varargin 
i=1;  
while i<=length(varargin),  
  argok = 1;  
  if ischar(varargin{i}),  
    switch varargin{i},  
      % argument IDs 
     case 'mask',       i=i+1; mask = varargin{i};  
     case 'msize',      i=i+1; sTopol.msize = varargin{i};  
     case 'labels',     i=i+1; labels = varargin{i}; 
     case 'name',       i=i+1; name = varargin{i}; 
     case 'comp_names', i=i+1; comp_names = varargin{i};  
     case 'comp_norm',  i=i+1; comp_norm = varargin{i}; 
     case 'lattice',    i=i+1; sTopol.lattice = varargin{i}; 
     case 'shape',      i=i+1; sTopol.shape = varargin{i};  
     case {'topol','som_topol','sTopol'}, i=i+1; sTopol = varargin{i}; 
     case 'neigh',      i=i+1; neigh = varargin{i}; 
      % unambiguous values 
     case {'hexa','rect'}, sTopol.lattice = varargin{i}; 
     case {'sheet','cyl','toroid'}, sTopol.shape = varargin{i};  
     case {'gaussian','cutgauss','ep','bubble'}, neigh = varargin{i}; 
     otherwise argok=0;  
    end 
  elseif isstruct(varargin{i}) & isfield(varargin{i},'type'),  
    switch varargin{i}(1).type,  
     case 'som_topol', sTopol = varargin{i}; 
     otherwise argok=0;  
    end 
  else 
    argok = 0;  
  end 
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  if ~argok,  
    disp(['(som_map_struct) Ignoring invalid argument #' num2str(i+1)]);  
  end 
  i = i+1;  
end 
  
% create the SOM 
codebook = rand(prod(sTopol.msize),dim);  
sTrain = som_set('som_train','time',datestr(now,0),'mask',mask); 
sMap = som_set('som_map','codebook',codebook,'topol',sTopol,... 
                         'neigh',neigh,'labels',labels,'mask',mask,... 
                         'comp_names',comp_names,'name',name,... 
                         'comp_norm',comp_norm,'trainhist',sTrain); 
 
 
Function7- SOM_SET Create and check SOM Toolbox structs, give values to their fields. 
function [sS, ok, msgs] = som_set(sS, varargin) 
  
%SOM_SET Create and check SOM Toolbox structs, give values to their fields. 
%%%%%%%%%%%%% DETAILED DESCRIPTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% 
% som_set 
% 
% PURPOSE 
% 
% Create and set values for fields of SOM Toolbox structs (except 
% visualization struct). Can also be used to check the validity of structs. 
% 
% SYNTAX 
% 
%  sMap   = som_set('som_map'); 
%  sData  = som_set(sData); 
%  sNorm  = som_set(...,'field',contents,...); 
%  [sTopol,ok]      = som_set(sTopol,...); 
%  [sTrain,ok,msgs] = som_set('som_train',...); 
% 
% DESCRIPTION 
% 
% The function is used to create and set values for fields of SOM 
% Toolbox structs, except visualization structs. The given values are 
% first checked for validity, and if they are not valid, an error 
% message is returned. The function can also be used to check the 
% validity of all the fields of the struct by supplying a struct as 
% the first and only argument. 
%  
% NOTE: Using SOM_SET to create structures does _not_ guarantee that the 
% structs are valid (try e.g. sM = som_set('som_map'); som_set(sM)). The 
% initial values that the function gives to the fields of the structs are 
% typically invalid. It is recommended that when creating map or data  
% structs, the corresponding functions SOM_MAP_STRUCT and SOM_DATA_STRUCT  
% are used instead of SOM_SET. However, when giving values for the fields,  
% SOM_SET tries to guarantee that the values are valid. 
% 
% If a string is given as the first argument, the corresponding  
% structure is first created and the field-content pairs are then 
% applied to it.  
% 
% There can be arbitrarily many field-contents pairs. The pairs 
% are processed sequentially one pair at a time. For each pair, 
% the validity of the contents is checked and the corresponding  
% items in the returned 'ok'-vector and 'msgs'-cellstring are set. 
% - if the contents is ok, the status is set to 1 and message to '' 
% - if the contents is suspicious, status is set to 1, but a 
%   message is produced 
% - if the contents is invalid, status is set to 0 and an error 
%   message is produced. The contents are _not_ given to the field. 
% If there is only one output argument, the status and messages 
% for each pair are printed to standard output. 
% 
% The different field-contents pairs have no effect on each other. 
% If a field is given a value multiple times, the last valid one  
% stays in effect. 
%  
% In some cases, the order of the given fields is significant. 
% For example in the case of 'som_map', the validity of some fields,  
% like '.comp_names', depends on the input space dimension, which is 
% checked from the '.data' field (dim = size(sD.data,2) to be specific). 
% Therefore, the '.data' field (or '.codebook' field in case of map  
% struct) should always be given a value first. Below is a list of  
% this kind of dependancies: 
%  
% som_map:   'comp_names', 'comp_norm', 'msize', 'topol.msize', 
%            'labels' and 'mask' depend on 'codebook' 
%            new value for 'codebook' should have equal size to the old 
%            one (unless the old one was empty) 
% som_data:  'comp_names' and 'comp_norm' depend on 'data' 
%            new value for 'data' should have equal dimension (size(data,2)) 
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%            as the old one (unless the old one was empty) 
%  
% KNOWN BUGS 
% 
% Checking the values given to som_grid struct has not been 
% implemented. Use SOM_GRID function to give the values. 
% 
% REQUIRED INPUT ARGUMENTS 
% 
%  sS          The struct. 
%     (struct) A SOM Toolbox struct. 
%     (string) Identifier of a SOM Toolbox struct: 'som_map',  
%              'som_data', 'som_topol', 'som_norm' or 'som_train' 
%    
% OPTIONAL INPUT ARGUMENTS  
% 
%  field     (string) Field identifier string (see below). 
%  contents  (varies) Value for the field (see below). 
% 
%  Below is the list of valid field identifiers for the different  
%  SOM Toolbox structs.  
% 
%  'som_map' (map struct) 
%    'codebook'    : matrix, size [munits, dim]  
%    'labels'      : cell array of strings,  
%                    size [munits, maximum_number_of_labels] 
%    'topol'       : topology struct (prod(topol.msize)=munits) 
%    'mask'        : vector, size [dim, 1] 
%    'neigh'       : string ('gaussian' or 'cutgauss' or 'bubble' or 'ep') 
%    'trainhist'   : struct array of train structs 
%    'name'        : string 
%    'comp_names'  : cellstr, size [dim, 1], e.g. {'c1','c2','c3'} 
%    'comp_norm'   : cell array, size [dim, 1], of cell arrays  
%                    of normalization structs 
%    Also the following can be used (although they are fields 
%    of the topology struct) 
%    'msize'       : vector (prod(msize)=munits) 
%    'lattice'     : string ('rect' or 'hexa') 
%    'shape'       : string ('sheet' or 'cyl' or 'toroid') 
% 
%  'som_data' (data struct) 
%    'data'        : matrix, size [dlen, dim] 
%    'name'        : string 
%    'labels'      : cell array of strings,  
%                    size [dlen, m] 
%    'comp_names'  : cellstr, size [dim, 1], e.g. {'c1','c2','c3'} 
%    'comp_norm'   : cell array, size [dim, 1], of cell arrays  
%                    of normalization structs 
%    'label_names' : cellstr, size [m, 1] 
% 
% 'som_topol' (topology struct) 
%    'msize'       : vector 
%    'lattice'     : string ('rect' or 'hexa') 
%    'shape'       : string ('sheet' or 'cyl' or 'toroid') 
% 
% 'som_norm' (normalization struct) 
%    'method'      : string 
%    'params'      : varies 
%    'status'      : string ('done' or 'undone' or 'uninit') 
% 
% 'som_train' (train struct) 
%    'algorithm'   : string ('seq' or 'batch' or 'lininit' or 'randinit') 
%    'data_name'   : string 
%    'mask'        : vector, size [dim, 1] 
%    'neigh'       : string ('gaussian' or 'cutgauss' or 'bubble' or 'ep') 
%    'radius_ini'  : scalar 
%    'radius_fin'  : scalar 
%    'alpha_ini'   : scalar 
%    'alpha_type'  : string ('linear' or 'inv' or 'power') 
%    'trainlen'    : scalar 
%    'time'        : string 
% 
% 'som_grid' (grid struct) : checking the values has not been implemented yet! 
%    'lattice'     : string ('rect' or 'hexa') or  
%                    (sparce) matrix, size munits x munits 
%    'shape'       : string ('sheet' or 'cyl' or 'toroid') 
%    'msize'       : vector, size 1x2 
%    'coord'       : matrix, size munits x 2 or munits x 3 
%    'line'        : string (linespec, e.g. '-', or 'none') 
%    'linecolor'   : RGB triple or string (colorspec, e.g. 'k') or  
%                    munits x munits x 3 (sparce) matrix or cell 
%                    array of RGB triples  
%    'linewidth'   : scalar or munits x munits (sparce) matrix 
%    'marker'      : string (markerspec, e.g. 'o', or 'none') or  
%                    munits x 1 cell or char array of these 
%    'markersize'  : scalar or munits x 1 vector 
%    'markercolor' : RGB triple or string (colorspec, e.g. 'k') 
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%    'surf'        : [], munits x 1 or munits x 3 matrix of RGB triples 
%    'label'       : [] or munits x 1 char array or  
%                    munits x l cell array of strings  
%    'labelcolor'  : RGB triple or string (colorspec, e.g. 'g' or 'none') 
%    'labelsize'   : scalar 
% 
% OUTPUT ARGUMENTS 
%  
%  sS    (struct)  the created / updated struct 
%  ok    (vector)  length = number of field-contents pairs, gives 
%                  validity status for each pair (0=invalid, 1 otherwise) 
%  msgs  (cellstr) length = number of field-contents pairs, gives 
%                  error/warning message for each pair ('' if ok) 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% create struct if necessary 
  
if ischar(sS),  
  switch sS 
   case 'som_map', 
    sS=struct('type', 'som_map', ... 
              'codebook', [], ... 
              'topol', som_set('som_topol'), ... 
              'labels', cell(1), ... 
              'neigh', 'gaussian', ... 
              'mask', [], ... 
              'trainhist', cell(1), ... 
              'name', '',... 
              'comp_names', {''}, ... 
              'comp_norm', cell(1)); 
   case 'som_data',  
    sS=struct('type', 'som_data', ... 
              'data', [], ... 
              'labels', cell(1), ... 
              'name', '', ... 
              'comp_names', {''}, ... 
              'comp_norm', cell(1), ... 
              'label_names', []); 
   case 'som_topol', 
    sS=struct('type', 'som_topol', ... 
              'msize', 0, ... 
              'lattice', 'hexa', ... 
              'shape', 'sheet'); 
   case 'som_train', 
    sS=struct('type', 'som_train', ... 
              'algorithm', '', ... 
              'data_name', '', ... 
              'neigh', 'gaussian', ... 
              'mask', [], ... 
              'radius_ini', NaN, ... 
              'radius_fin', NaN, ... 
              'alpha_ini', NaN, ... 
              'alpha_type', 'inv', ... 
              'trainlen', NaN, ... 
              'time', ''); 
   case 'som_norm', 
    sS=struct('type', 'som_norm', ... 
              'method', 'var', ... 
              'params', [], ... 
              'status', 'uninit'); 
   case 'som_grid',  
    sS=struct('type','som_grid',... 
          'lattice','hexa',... 
          'shape','sheet',... 
          'msize',[1 1],... 
          'coord',[],... 
          'line','-',... 
          'linecolor',[.9 .9 .9],... 
          'linewidth',0.5,... 
          'marker','o',... 
          'markersize',6,... 
          'markercolor','k',... 
          'surf',[],... 
          'label',[],... 
          'labelcolor','g',... 
          'labelsize',12);     
   otherwise 
    ok=0; msgs = {['Unrecognized struct type: ' sS]}; sS = []; 
    return; 
  end   
   
elseif isstruct(sS) & length(varargin)==0,  
   
  % check all fields 
  fields = fieldnames(sS); 
  if ~any(strcmp('type',fields)),  
    error('The struct has no ''type'' field.'); 
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  end 
  k = 0; 
  for i=1:length(fields),  
    contents = getfield(sS,fields{i}); 
    if ~strcmp(fields{i},'type'),  
      varargin{k+1} = fields{i}; 
      varargin{k+2} = contents; 
      k = k + 2; 
    else  
      if ~any(strcmp(contents, ... 
        {'som_map','som_data','som_topol','som_train','som_norm'})),  
    error(['Unknown struct type: ' contents]); 
      end 
    end 
  end 
   
end 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% set field values 
  
p = ceil(length(varargin)/2); 
ok = ones(p,1); 
msgs = cell(p,1); 
  
for i=1:p,  
  field = varargin{2*i-1};  
  content = varargin{2*i}; 
  msg = ''; 
  isok = 0; 
   
  si = size(content); 
  isscalar = (prod(si)==1); 
  isvector = (sum(si>1)==1); 
  isrowvector = (isvector & si(1)==1); 
  if isnumeric(content),  
    iscomplete = all(~isnan(content(:)));  
    ispositive = all(content(:)>0);  
    isinteger  = all(content(:)==ceil(content(:))); 
    isrgb = all(content(:)>=0 & content(:)<=1) & size(content,2)==3; 
  end 
   
  switch sS.type,  
   case 'som_map', 
    [munits dim] = size(sS.codebook); 
    switch field,  
     case 'codebook',  
      if ~isnumeric(content),  
    msg = '''codebook'' should be a numeric matrix';  
      elseif size(content) ~= size(sS.codebook) & ~isempty(sS.codebook),  
    msg = 'New ''codebook'' must be equal in size to the old one.';  
      elseif ~iscomplete,  
    msg = 'Map codebook must not contain NaN''s.';  
      else 
    sS.codebook = content; isok=1; 
      end 
     case 'labels',  
      if isempty(content),  
    sS.labels = cell(munits,1); isok = 1; 
      elseif size(content,1) ~= munits,  
    msg = 'Length of labels array must be equal to the number of map units.'; 
      elseif ~iscell(content) & ~ischar(content),  
    msg = '''labels'' must be a string array or a cell array/matrix.'; 
      else 
    isok = 1; 
    if ischar(content), content = cellstr(content);  
    elseif ~iscellstr(content),  
      l = prod(size(content)); 
      for j=1:l,  
        if ischar(content{j}),  
          if ~isempty(content{j}),  
        msg = 'Invalid ''labels'' array.'; 
        isok = 0;  
        break; 
          else 
        content{j} = '';  
          end 
        end 
      end 
    end 
    if isok, sS.labels = content; end 
      end 
     case 'topol',  
      if ~isstruct(content),  
    msg = '''topol'' should be a topology struct.';  
      elseif ~isfield(content,'msize') | ... 
        ~isfield(content,'lattice') | ... 
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        ~isfield(content,'shape'),  
    msg = '''topol'' is not a valid topology struct.';  
      elseif prod(content.msize) ~= munits,  
    msg = '''topol''.msize does not match the number of map units.';  
      else 
    sS.topol = content; isok = 1; 
      end 
     case 'msize',  
      if ~isnumeric(content) | ~isvector | ~ispositive | ~isinteger,  
    msg = '''msize'' should be a vector with positive integer elements.';  
      elseif prod(content) ~= munits,  
    msg = '''msize'' does not match the map size.';  
      else 
    sS.topol.msize = content; isok = 1; 
      end 
     case 'lattice',  
      if ~ischar(content), 
    msg = '''lattice'' should be a string';  
      elseif ~strcmp(content,'rect') & ~strcmp(content,'hexa'), 
    msg = ['Unknown lattice type: ' content]; 
    sS.topol.lattice = content; isok = 1; 
      else 
    sS.topol.lattice = content; isok = 1; 
      end 
     case 'shape',  
      if ~ischar(content), 
    msg = '''shape'' should be a string'; 
      elseif ~strcmp(content,'sheet') & ~strcmp(content,'cyl') & ... 
        ~strcmp(content,'toroid'), 
    msg = ['Unknown shape type:' content];  
    sS.topol.shape = content; isok = 1; 
      else 
    sS.topol.shape = content; isok = 1; 
      end 
     case 'neigh',  
      if ~ischar(content), 
    msg = '''neigh'' should be a string';  
      elseif ~strcmp(content,'gaussian') & ~strcmp(content,'ep') & ... 
        ~strcmp(content,'cutgauss') & ~strcmp(content,'bubble'), 
    msg = ['Unknown neighborhood function: ' content];  
    sS.neigh = content; isok = 1; 
      else 
    sS.neigh = content; isok = 1; 
      end 
     case 'mask',  
      if size(content,1) == 1, content = content'; end 
      if ~isnumeric(content) | size(content) ~= [dim 1],  
    msg = '''mask'' should be a column vector (size dim x 1).';  
      else 
    sS.mask = content; isok = 1; 
      end 
     case 'name',  
      if ~ischar(content),  
    msg = '''name'' should be a string.'; 
      else  
    sS.name = content; isok = 1; 
      end 
     case 'comp_names',  
      if ~iscell(content) & ~ischar(content),  
    msg = '''comp_names'' should be a cell string or a string array.';  
      elseif length(content) ~= dim,  
    msg = 'Length of ''comp_names'' should be equal to dim.';  
      else 
    if ischar(content), content = cellstr(content); end 
    if size(content,1)==1, content = content'; end 
    sS.comp_names = content; 
    isok = 1; 
      end         
     case 'comp_norm',  
      if ~iscell(content) & length(content)>0,  
    msg = '''comp_norm'' should be a cell array.';  
      elseif length(content) ~= dim,  
    msg = 'Length of ''comp_norm'' should be equal to dim.';  
      else 
    isok = 1; 
    for j=1:length(content),  
      if ~isempty(content{j}) & (~isfield(content{j}(1),'type') | ... 
                     ~strcmp(content{j}(1).type,'som_norm')),  
        msg = 'Each cell in ''comp_norm'' should be either empty or type 
''som_norm''.'; 
        isok = 0;  
        break;  
      end 
    end 
    if isok, sS.comp_norm = content; end 
      end         
     case 'trainhist',  
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      if ~isstruct(content) & ~isempty(content),  
    msg = '''trainhist'' should be a struct array or empty.'; 
      else 
    isok = 1; 
    for j=1:length(content),  
      if ~isfield(content(j),'type') | ~strcmp(content(j).type,'som_train'),  
        msg = 'Each cell in ''trainhist'' should be of type ''som_train''.'; 
        isok = 0;  
        break;  
      end 
    end 
    if isok, sS.trainhist = content; end       
      end         
     otherwise,  
      msg = ['Invalid field for map struct: ' field];  
    end 
     
   case 'som_data', 
    [dlen dim] = size(sS.data); 
    switch field,       
     case 'data',  
      [dummy dim2] = size(content); 
      if prod(si)==0,  
    msg = '''data'' is empty'; 
      elseif ~isnumeric(content),  
    msg = '''data'' should be numeric matrix.';  
      elseif dim ~= dim2 & ~isempty(sS.data),  
    msg = 'New ''data'' must have the same dimension as old one.';  
      else 
    sS.data = content; isok = 1; 
      end 
     case 'labels',  
      if isempty(content),  
    sS.labels = cell(dlen,1); isok = 1; 
      elseif size(content,1) ~= dlen,  
    msg = 'Length of ''labels'' must be equal to the number of data vectors.'; 
      elseif ~iscell(content) & ~ischar(content),  
    msg = '''labels'' must be a string array or a cell array/matrix.'; 
      else 
    isok = 1; 
    if ischar(content), content = cellstr(content);  
    elseif ~iscellstr(content),  
      l = prod(size(content)); 
      for j=1:l,  
        if ~ischar(content{j}),  
          if ~isempty(content{j}),  
        msg = 'Invalid ''labels'' array.'; 
        isok = 0; j 
        break; 
          else 
        content{j} = '';  
          end 
        end 
      end 
    end 
    if isok, sS.labels = content; end 
      end 
     case 'name',  
      if ~ischar(content),  
    msg = '''name'' should be a string.'; 
      else  
    sS.name = content; isok = 1; 
      end 
     case 'comp_names',  
      if ~iscell(content) & ~ischar(content),  
    msg = '''comp_names'' should be a cell string or a string array.';  
      elseif length(content) ~= dim,  
    msg = 'Length of ''comp_names'' should be equal to dim.';  
      else 
    if ischar(content), content = cellstr(content); end 
    if size(content,1)==1, content = content'; end 
    sS.comp_names = content; 
    isok = 1; 
      end         
     case 'comp_norm',  
      if ~iscell(content) & length(content)>0,  
    msg = '''comp_norm'' should be a cell array.';  
      elseif length(content) ~= dim,  
    msg = 'Length of ''comp_norm'' should be equal to dim.';  
      else 
    isok = 1; 
    for j=1:length(content),  
      if ~isempty(content{j}) & (~isfield(content{j}(1),'type') | ... 
                     ~strcmp(content{j}(1).type,'som_norm')),  
        msg = 'Each cell in ''comp_norm'' should be either empty or type 
''som_norm''.'; 
        isok = 0;  
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        break;  
      end 
    end 
    if isok, sS.comp_norm = content; end 
      end         
     case 'label_names',  
      if ~iscell(content) & ~ischar(content) & ~isempty(content),  
    msg = ['''label_names'' should be a cell string, a string array or' ... 
           ' empty.'];  
      else 
    if ~isempty(content),  
      if ischar(content), content = cellstr(content); end 
      if size(content,1)==1, content = content'; end 
    end 
    sS.label_names = content; 
    isok = 1; 
      end         
     otherwise,  
      msg = ['Invalid field for data struct: ' field];  
    end 
     
   case 'som_topol',  
    switch field,       
     case 'msize',  
      if ~isnumeric(content) | ~isvector | ~ispositive | ~isinteger,  
    msg = '''msize'' should be a vector with positive integer elements.';  
      else 
    sS.msize = content; isok=1; 
      end 
     case 'lattice',  
      if ~ischar(content), 
    msg = '''lattice'' should be a string';  
      elseif ~strcmp(content,'rect') & ~strcmp(content,'hexa'), 
    msg = ['Unknown lattice type: ' content];  
    sS.lattice = content; isok = 1; 
      else 
    sS.lattice = content; isok = 1; 
      end 
     case 'shape',  
      if ~ischar(content), 
    msg = '''shape'' should be a string'; 
      elseif ~strcmp(content,'sheet') & ~strcmp(content,'cyl') & ... 
        ~strcmp(content,'toroid'), 
    msg = ['Unknown shape type: ' content];  
    sS.shape = content; isok = 1; 
      else 
    sS.shape = content; isok = 1; 
      end 
     otherwise,  
      msg = ['Invalid field for topology struct: ' field];  
    end 
     
   case 'som_train',  
    switch field,       
     case 'algorithm',  
      if ~ischar(content), 
    msg = '''algorithm'' should be a string.';  
      else 
    sS.algorithm = content; isok = 1; 
      end 
     case 'data_name',  
      if ~ischar(content), 
    msg = '''data_name'' should be a string';  
      else 
    sS.data_name = content; isok = 1; 
      end 
     case 'neigh',  
      if ~ischar(content), 
    msg = '''neigh'' should be a string';  
      elseif ~isempty(content) & ~strcmp(content,'gaussian') & ~strcmp(content,'ep') 
& ... 
        ~strcmp(content,'cutgauss') & ~strcmp(content,'bubble'), 
    msg = ['Unknown neighborhood function: ' content];  
    sS.neigh = content; isok = 1; 
      else 
    sS.neigh = content; isok = 1; 
      end 
     case 'mask',  
      if size(content,1) == 1, content = content'; end 
      dim = size(content,1); %[munits dim] = size(sS.data);  
      if ~isnumeric(content) | size(content) ~= [dim 1],  
    msg = '''mask'' should be a column vector (size dim x 1).';  
      else 
    sS.mask = content; isok = 1; 
      end 
     case 'radius_ini',  
      if ~isnumeric(content) | ~isscalar,  
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    msg = '''radius_ini'' should be a scalar.';  
      else 
    sS.radius_ini = content; isok = 1; 
      end 
     case 'radius_fin',  
      if ~isnumeric(content) | ~isscalar,  
    msg = '''radius_fin'' should be a scalar.';  
      else 
    sS.radius_fin = content; isok = 1; 
      end 
     case 'alpha_ini',  
      if ~isnumeric(content) | ~isscalar, 
    msg = '''alpha_ini'' should be a scalar.';  
      else 
    sS.alpha_ini = content; isok = 1; 
      end 
     case 'alpha_type',  
      if ~ischar(content), 
    msg = '''alpha_type'' should be a string';  
      elseif ~strcmp(content,'linear') & ~strcmp(content,'inv') & ... 
        ~strcmp(content,'power') & ~strcmp(content,'constant') & ~strcmp(content,''), 
    msg = ['Unknown alpha type: ' content];  
    sS.alpha_type = content; isok = 1; 
      else 
    sS.alpha_type = content; isok = 1; 
      end         
     case 'trainlen',  
      if ~isnumeric(content) | ~isscalar,  
    msg = '''trainlen'' should be a scalar.';  
      else 
    sS.trainlen = content; isok = 1; 
      end 
     case 'time',  
      if ~ischar(content), 
    msg = '''time'' should be a string';  
      else 
    sS.time = content; isok = 1; 
      end         
     otherwise,  
      msg = ['Invalid field for train struct: ' field];  
    end 
     
   case 'som_norm',  
    switch field,       
     case 'method',  
      if ~ischar(field),  
    msg = '''method'' should be a string.'; 
      else 
    sS.method = content; isok = 1; 
      end 
     case 'params',  
      sS.params = content; isok = 1; 
     case 'status',  
      if ~ischar(content), 
    msg = '''status'' should be a string';  
      elseif ~strcmp(content,'done') & ~strcmp(content,'undone') & ... 
        ~strcmp(content,'uninit'), 
    msg = ['Unknown status type: ' content];  
    sS.status = content; isok = 1; 
      else 
    sS.status = content; isok = 1; 
      end         
     otherwise,  
      msg = ['Invalid field for normalization struct: ' field]; 
    end 
  
   case 'som_grid',  
    if any(strcmp(field,{'lattice', 'shape', 'msize', 'coord',... 
             'line', 'linecolor', 'linewidth', ... 
             'marker', 'markersize', 'markercolor', 'surf', ...  
             'label', 'labelcolor', 'labelsize'})),  
      warning('No checking done on field identifier or content.'); 
      sS = setfield(sS,field,content);        
      isok = 1; 
    else 
      msg = ['Invalid field for grid struct: ' field]; 
    end 
     
   otherwise,  
    error('Unrecognized structure.');  
     
  end 
   
  msgs{i} = msg; 
  ok(i) = isok; 
   
end 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% return 
  
if nargout < 2,  
  for i=1:p,      
    if ~isempty(msgs{i}),  
      if ~ok(i), fprintf(1,'[Error! ');  
      else fprintf(1,'[Notice '); 
      end 
      fprintf(1,'in setting %s] ',varargin{2*i-1}); 
      fprintf(1,'%s\n',msgs{i}); 
    end 
  end 
end 
 
 
Function8- SOM_TOPOL_STRUCT Default values for SOM topology. 
function sTopol = som_topol_struct(varargin) 
  
%SOM_TOPOL_STRUCT Default values for SOM topology. 
 
%%%%%%%%%%%%% DETAILED DESCRIPTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% 
% som_topol_struct 
% 
% PURPOSE 
% 
% Default values for map topology and training parameters. 
% 
% SYNTAX 
% 
%  sT = som_topol_struct('argID',value,...); 
%  sT = som_topol_struct(value,...); 
% 
% DESCRIPTION 
% 
% This function is used to give sensible values for map topology (ie. map 
% size). The topology struct is returned.  
% 
% The topology struct has three fields: '.msize', '.lattice' and 
% '.shape'. Of these, default value for '.lattice' is 'hexa' and for 
% '.shape' 'sheet'. Only the '.msize' field depends on the optional 
% arguments: 'dlen', 'munits' and 'data'.  The value for '.msize' field is 
% determined as follows. 
% 
% First, the number of map units is determined (unless it is given). A 
% heuristic formula of 'munits = 5*sqrt(dlen)' is used to calculate 
% it. After this, the map size is determined. Basically, the two biggest 
% eigenvalues of the training data are calculated and the ratio between 
% sidelengths of the map grid is set to the square root of this ratio. The 
% actual sidelengths are then set so that their product is as close to the 
% desired number of map units as possible. If the lattice of the grid is 
% 'hexa', the ratio is modified a bit to take it into account. If the 
% lattice is 'hexa' and shape is 'toroid', the map size along the first axis 
% must be even. 
%   
% OPTIONAL INPUT ARGUMENTS  
% 
%  argID (string) Argument identifier string (see below). 
%  value (varies) Value for the argument (see below). 
% 
%  The optional arguments can be given as 'argID',value -pairs. If an 
%  argument is given value multiple times, the last one is 
%  used. The valid IDs and corresponding values are listed below. The values  
%  which are unambiguous (marked with '*') can be given without the  
%  preceeding argID. 
% 
%  'dlen'         (scalar) length of the training data 
%  'data'         (matrix) the training data 
%                *(struct) the training data 
%  'munits'       (scalar) number of map units 
%  'msize'        (vector) map size 
%  'lattice'     *(string) map lattice: 'hexa' or 'rect' 
%  'shape'       *(string) map shape: 'sheet', 'cyl' or 'toroid' 
%  'topol'       *(struct) incomplete topology struct: its empty fields  
%                          will be given values 
%  'som_topol','sTopol'    = 'topol' 
% 
% OUTPUT ARGUMENTS 
%  
%  sT     (struct) The topology struct. 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% check arguments 
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% initialize 
sTopol = som_set('som_topol','lattice','hexa','shape','sheet');  
D = []; 
dlen = NaN; 
dim = 2;  
munits = NaN; 
  
% varargin 
i=1;  
while i<=length(varargin),  
  argok = 1;  
  if ischar(varargin{i}),  
    switch varargin{i},  
     case 'dlen',       i=i+1; dlen = varargin{i};  
     case 'munits',     i=i+1; munits = varargin{i}; sTopol.msize = 0; 
     case 'msize',      i=i+1; sTopol.msize = varargin{i};  
     case 'lattice',    i=i+1; sTopol.lattice = varargin{i};  
     case 'shape',      i=i+1; sTopol.shape = varargin{i};  
     case 'data',        
      i=i+1;  
      if isstruct(varargin{i}), D = varargin{i}.data;  
      else D = varargin{i};  
      end 
      [dlen dim] = size(D);  
     case {'hexa','rect'}, sTopol.lattice = varargin{i};  
     case {'sheet','cyl','toroid'}, sTopol.shape = varargin{i}; 
     case {'som_topol','sTopol','topol'},  
      i=i+1; 
      if ~isempty(varargin{i}.msize) & prod(varargin{i}.msize),  
    sTopol.msize = varargin{i}.msize;  
      end 
      if ~isempty(varargin{i}.lattice), sTopol.lattice = varargin{i}.lattice; end    
      if ~isempty(varargin{i}.shape), sTopol.shape = varargin{i}.shape; end 
     otherwise argok=0;  
    end 
  elseif isstruct(varargin{i}) & isfield(varargin{i},'type'),  
    switch varargin{i}.type,  
     case 'som_topol', 
      if ~isempty(varargin{i}.msize) & prod(varargin{i}.msize),  
    sTopol.msize = varargin{i}.msize;  
      end 
      if ~isempty(varargin{i}.lattice), sTopol.lattice = varargin{i}.lattice; end    
      if ~isempty(varargin{i}.shape), sTopol.shape = varargin{i}.shape; end 
     case 'som_data',  
      D = varargin{i}.data;  
      [dlen dim] = size(D);        
     otherwise argok=0;  
    end 
  else 
    argok = 0;  
  end 
  if ~argok,  
    disp(['(som_topol_struct) Ignoring invalid argument #' num2str(i)]);  
  end 
  i = i+1;  
end 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% action - topology struct 
  
% lattice and shape set already, so if msize is also set, there's 
% nothing else to do 
if prod(sTopol.msize) & ~isempty(sTopol.msize), return; end 
  
% otherwise, decide msize  
% first (if necessary) determine the number of map units (munits) 
if isnan(munits),  
  if ~isnan(dlen),  
    munits = ceil(5 * dlen^0.5); % this is just one way to make a guess... 
  else 
    munits = 100; % just a convenient value 
  end 
end 
  
% then determine the map size (msize) 
if dim == 1, % 1-D data 
  
  sTopol.msize = [1 ceil(munits)];  
  
elseif size(D,1)<2, % eigenvalues cannot be determined since there's no data 
  
  sTopol.msize = round(sqrt(munits));  
  sTopol.msize(2) = round(munits/sTopol.msize(1)); 
  
else % determine map size based on eigenvalues 
   
  % initialize xdim/ydim ratio using principal components of the input 
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  % space; the ratio is the square root of ratio of two largest eigenvalues  
   
  % autocorrelation matrix 
  A = zeros(dim)+Inf; 
  for i=1:dim, D(:,i) = D(:,i) - mean(D(isfinite(D(:,i)),i)); end   
  for i=1:dim,  
    for j=i:dim,  
      c = D(:,i).*D(:,j); c = c(isfinite(c)); 
      A(i,j) = sum(c)/length(c); A(j,i) = A(i,j);  
    end 
  end   
  % take mdim first eigenvectors with the greatest eigenvalues 
  [V,S]   = eig(A); 
  eigval  = diag(S); 
  [y,ind] = sort(eigval);  
  eigval  = eigval(ind); 
   
  %me     = mean(D); 
  %D      = D - me(ones(length(ind),1),:); % remove mean from data 
  %eigval = sort(eig((D'*D)./size(D,1)));  
  if eigval(end)==0 | eigval(end-1)*munits<eigval(end),  
    ratio = 1;  
  else 
    ratio  = sqrt(eigval(end)/eigval(end-1)); % ratio between map sidelengths 
  end 
   
  % in hexagonal lattice, the sidelengths are not directly  
  % proportional to the number of units since the units on the  
  % y-axis are squeezed together by a factor of sqrt(0.75) 
  if strcmp(sTopol.lattice,'hexa'),  
    sTopol.msize(2)  = min(munits, round(sqrt(munits / ratio * sqrt(0.75)))); 
  else 
    sTopol.msize(2)  = min(munits, round(sqrt(munits / ratio))); 
  end 
  sTopol.msize(1)  = round(munits / sTopol.msize(2)); 
   
  % if actual dimension of the data is 1, make the map 1-D     
  if min(sTopol.msize) == 1, sTopol.msize = [1 max(sTopol.msize)]; end; 
   
  % a special case: if the map is toroid with hexa lattice,  
  % size along first axis must be even 
  if strcmp(sTopol.lattice,'hexa') & strcmp(sTopol.shape,'toroid'),  
    if mod(sTopol.msize(1),2), sTopol.msize(1) = sTopol.msize(1) + 1; end 
  end 
  
end 
   
return; 
 
Function9- SOM_TRAIN_STRUCT Default values for SOM training parameters. 
function sTrain = som_train_struct(varargin) 
  
%SOM_TRAIN_STRUCT Default values for SOM training parameters. 
 
%%%%%%%%%%%%% DETAILED DESCRIPTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% 
% som_train_struct 
% 
% PURPOSE 
% 
% Default values for SOM training parameters. 
% 
% SYNTAX 
% 
%  sT = som_train_struct('argID',value,...); 
%  sT = som_train_struct(value,...); 
% 
% DESCRIPTION 
% 
% This function is used to give sensible values for SOM training 
% parameters and returns a training struct. Often, the parameters 
% depend on the properties of the map and the training data. These are 
% given as optional arguments to the function. If a partially filled 
% train struct is given, its empty fields (field value is [] or '' or 
% NaN) are supplimented with default values. 
% 
% The training struct has a number of fields which depend on each other 
% and the optional arguments in complex ways. The most important argument  
% is 'phase' which can be either 'init', 'train', 'rough' or 'finetune'. 
% 
%  'init'     Map initialization.  
%  'train'    Map training in a onepass operation, as opposed to the 
%             rough-finetune combination. 
%  'rough'    Rough organization of the map: large neighborhood, big 
%             initial value for learning coefficient. Short training. 
%  'finetune' Finetuning the map after rough organization phase. Small 
%             neighborhood, learning coefficient is small already at  
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%             the beginning. Long training. 
% 
% The fields of training struct set by this function are listed below. 
% 
%  '.mask'  Basically, a column vector of ones. But if a previous 
%           train or map struct is given, it is copied from there. 
%  '.neigh' Default value is 'gaussian' but if a previous train or map  
%           struct is given, it is copied from there. 
%  '.alpha_type' Default value is 'inv' but if a previous training struct  
%           is given, it is copied from there. 
%  '.alpha_ini' For 'train' and 'rough' phases, this is 0.5, for 
%           'finetune' it is 0.05. 
%  '.radius_ini' Depends on the previous training operation and the  
%           maximum sidelength of the map ms = max(msize). 
%           if there isn't one, or it is 'randinit', rad_ini = max(1,ms/2) 
%           if it is 'lininit', rad_ini = max(1,ms/8) 
%           otherwise, rad_ini = rad_fin of the previous training 
%  '.radius_fin' Default value is 1, but if the training phase is 
%           'rough', rad_fin = max(1,rad_ini/4). 
%  '.trainlen' For 'train' phase this is 20 x mpd epochs, for 'rough' 
%           phase 4 x mpd epochs and for 'finetune' 16 x mpd 
%           epochs, where mpd = munits/dlen. If mpd cannot be 
%           calculated, it is set to be = 0.5. In any case, 
%           trainlen is at least one epoch. 
%  '.algorithm' Default training algorithm is 'batch' and default 
%           initialization algorithm is 'lininit'. 
% 
% OPTIONAL INPUT ARGUMENTS  
% 
%  argID (string) Argument identifier string (see below). 
%  value (varies) Value for the argument (see below). 
% 
%  The optional arguments can be given as 'argID',value -pairs. If an 
%  argument is given value multiple times, the last one is used.  The 
%  valid IDs and corresponding values are listed below. The values 
%  which are unambiguous (marked with '*') can be given without the 
%  preceeding argID. 
% 
%  'dim'          (scalar) input space dimension 
%  'dlen'         (scalar) length of the training data 
%  'data'         (matrix / struct) the training data 
%  'munits'       (scalar) number of map units 
%  'msize'        (vector) map size 
%  'previous'     (struct) previous training struct can be given in  
%                  conjunction with 'finetune' phase.  
%  'phase'       *(string) training phase: 'init', 'train', 'rough' or 'finetune' 
%  'algorithm'   *(string) algorithm to use: 'lininit', 'randinit',  
%                  'batch' or 'seq' 
%  'map'         *(struct) If a map struc is given, the last training struct 
%                  in '.trainhist' field is used as the previous training 
%                  struct. The map size and input space dimension are  
%                  extracted from the map struct. 
%  'sTrain'      *(struct) a train struct, the empty fields of which are 
%                  filled with sensible values 
% 
% OUTPUT ARGUMENTS 
%  
%  sT     (struct) The training struct. 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% check arguments 
  
% initial default structs 
sTrain = som_set('som_train');  
  
% initialize optional parameters 
dlen = NaN; 
msize = 0;  
munits = NaN; 
sTprev = []; 
dim = NaN;  
phase = ''; 
  
% varargin 
i=1;  
while i<=length(varargin),  
  argok = 1;  
  if ischar(varargin{i}),  
    switch varargin{i},  
     case 'dim',        i=i+1; dim = varargin{i};  
     case 'dlen',       i=i+1; dlen = varargin{i};  
     case 'msize',      i=i+1; msize = varargin{i}; 
     case 'munits',     i=i+1; munits = varargin{i}; msize = 0;  
     case 'phase',      i=i+1; phase = varargin{i};  
     case 'algorithm',  i=i+1; sTrain.algorithm = varargin{i};  
     case 'mask',       i=i+1; sTrain.mask = varargin{i};  
     case {'previous','map'},    
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      i=i+1;  
      if strcmp(varargin{i}.type,'som_map'),  
    if length(varargin{i}.trainhist),  
      sTprev = varargin{i}.trainhist(end);  
      msize = varargin{i}.topol.msize; 
    end 
      elseif strcmp(varargin{i}.type,'som_train'),  
    sTprev = varargin{i};  
      end 
     case 'data',        
      i=i+1;  
      if isstruct(varargin{i}), [dlen dim] = size(varargin{i}.data);  
      else [dlen dim] = size(varargin{i});  
      end 
     case {'init','train','rough','finetune'},  phase = varargin{i};        
     case {'lininit','randinit','seq','batch'}, sTrain.algorithm = varargin{i};  
     otherwise argok=0;  
    end 
  elseif isstruct(varargin{i}) & isfield(varargin{i},'type'),  
    switch varargin{i}.type,  
     case 'som_train',  
      sT = varargin{i};  
      if ~isempty(sT.algorithm),  sTrain.algorithm = sT.algorithm; end 
      if ~isempty(sT.neigh),      sTrain.neigh = sT.neigh; end 
      if ~isempty(sT.mask),       sTrain.mask = sT.mask; end 
      if ~isnan(sT.radius_ini),   sTrain.radius_ini = sT.radius_ini; end 
      if ~isnan(sT.radius_fin),   sTrain.radius_fin = sT.radius_fin; end 
      if ~isnan(sT.alpha_ini),    sTrain.alpha_ini = sT.alpha_ini; end 
      if ~isempty(sT.alpha_type), sTrain.alpha_type = sT.alpha_type; end 
      if ~isnan(sT.trainlen),     sTrain.trainlen = sT.trainlen; end 
      if ~isempty(sT.data_name),  sTrain.data_name = sT.data_name; end 
      if ~isempty(sT.time),       sTrain.time = sT.time; end 
     case 'som_map',  
      if strcmp(varargin{i}.type,'som_map'),  
    if length(varargin{i}.trainhist),  
      sTprev = varargin{i}.trainhist(end);  
      msize = varargin{i}.topol.msize;  
    end 
    if ~isempty(varargin{i}.neigh) & isempty(sTrain.neigh),  
      sTrain.neigh = varargin{i}.neigh;  
    end 
    if ~isempty(varargin{i}.mask) & isempty(sTrain.mask),   
      sTrain.mask = varargin{i}.mask;  
    end 
      elseif strcmp(varargin{i}.type,'som_train'),  
    sTprev = varargin{i};  
      end 
     case 'som_topol', msize = varargin{i}.msize;  
     case 'som_data', [dlen dim] = size(varargin{i}.data);  
     otherwise argok=0;  
    end 
  else 
    argok = 0;  
  end 
  if ~argok,  
    disp(['(som_train_struct) Ignoring invalid argument #' num2str(i)]);  
  end 
  i = i+1;  
end 
  
% dim 
if ~isempty(sTprev) & isnan(dim), dim = length(sTprev.mask); end 
  
% mask 
if isempty(sTrain.mask) & ~isnan(dim), sTrain.mask = ones(dim,1); end 
  
% msize, munits 
if ~msize | isempty(msize),  
  if isnan(munits), msize = [10 10];  
  else s = round(sqrt(munits)); msize = [s round(munits/s)];  
  end 
end 
munits = prod(msize); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% action 
  
% previous training 
prevalg = '';  
if ~isempty(sTprev),  
  if any(findstr(sTprev.algorithm,'init')), prevalg = 'init'; 
  else prevalg = sTprev.algorithm;  
  end 
end 
  
% first determine phase   
if isempty(phase),  
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  switch sTrain.algorithm, 
   case {'lininit','randinit'},    phase = 'init';  
   case {'batch','seq',''},  
    if     isempty(sTprev),        phase = 'rough';  
    elseif strcmp(prevalg,'init'), phase = 'rough'; 
    else                           phase = 'finetune';  
    end 
   otherwise,                      phase = 'train';  
  end 
end 
  
% then determine algorithm   
if isempty(sTrain.algorithm), 
  if     strcmp(phase,'init'),             sTrain.algorithm = 'lininit'; 
  elseif any(strcmp(prevalg,{'init',''})), sTrain.algorithm = 'batch'; 
  else sTrain.algorithm = sTprev.algorithm;  
  end 
end 
  
% mask 
if isempty(sTrain.mask),  
  if ~isempty(sTprev), sTrain.mask = sTprev.mask;  
  elseif ~isnan(dim),  sTrain.mask = ones(dim,1);  
  end 
end 
  
% neighborhood function 
if isempty(sTrain.neigh),  
  if ~isempty(sTprev) & ~isempty(sTprev.neigh), sTrain.neigh = sTprev.neigh;  
  else sTrain.neigh = 'gaussian'; 
  end 
end 
  
if strcmp(phase,'init'),  
  sTrain.alpha_ini = NaN; 
  sTrain.alpha_type = ''; 
  sTrain.radius_ini = NaN; 
  sTrain.radius_fin = NaN; 
  sTrain.trainlen = NaN; 
  sTrain.neigh = ''; 
else 
  mode = [phase, '-', sTrain.algorithm]; 
   
  % learning rate 
  if isnan(sTrain.alpha_ini),  
    if strcmp(sTrain.algorithm,'batch'), sTrain.alpha_ini = NaN;  
    else 
      switch phase,  
       case {'train','rough'}, sTrain.alpha_ini = 0.5; 
       case 'finetune',        sTrain.alpha_ini = 0.05; 
      end 
    end 
  end 
  if isempty(sTrain.alpha_type),      
    if ~isempty(sTprev) & ~isempty(sTprev.alpha_type) ...  
      & ~strcmp(sTrain.algorithm,'batch'), 
      sTrain.alpha_type = sTprev.alpha_type; 
    elseif strcmp(sTrain.algorithm,'seq'), 
      sTrain.alpha_type = 'inv'; 
    end 
  end 
   
  % radius 
  ms = max(msize);    
  if isnan(sTrain.radius_ini),      
    if isempty(sTprev) | strcmp(sTprev.algorithm,'randinit'),  
      sTrain.radius_ini = max(1,ceil(ms/4)); 
    elseif strcmp(sTprev.algorithm,'lininit') | isnan(sTprev.radius_fin), 
      sTrain.radius_ini = max(1,ceil(ms/8)); 
    else 
      sTrain.radius_ini = sTprev.radius_fin; 
    end 
  end 
  if isnan(sTrain.radius_fin),  
    if strcmp(phase,'rough'),  
      sTrain.radius_fin = max(1,sTrain.radius_ini/4); 
    else 
      sTrain.radius_fin = 1; 
    end 
  end 
   
  % trainlen   
  if isnan(sTrain.trainlen),      
    mpd = munits/dlen;  
    if isnan(mpd), mpd = 0.5; end 
    switch phase,  
     case 'train',    sTrain.trainlen = ceil(50*mpd); 
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     case 'rough',    sTrain.trainlen = ceil(10*mpd);  
     case 'finetune', sTrain.trainlen = ceil(40*mpd); 
    end 
    sTrain.trainlen = max(1,sTrain.trainlen); 
  end 
  
end 
  
return; 
 
 
Function10- SOM_UNIT_COORDS Locations of units on the SOM grid. 
function Coords = som_unit_coords(topol,lattice,shape) 
  
%SOM_UNIT_COORDS Locations of units on the SOM grid.  
 
%%%%%%%%%%%%% DETAILED DESCRIPTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% 
% som_unit_coords 
% 
% PURPOSE 
% 
% Returns map grid coordinates for the units of a Self-Organizing Map. 
% 
% SYNTAX 
% 
%  Co = som_unit_coords(sTopol); 
%  Co = som_unit_coords(sM.topol); 
%  Co = som_unit_coords(msize); 
%  Co = som_unit_coords(msize,'hexa'); 
%  Co = som_unit_coords(msize,'rect','toroid'); 
% 
% DESCRIPTION 
% 
% Calculates the map grid coordinates of the units of a SOM based on  
% the given topology. The coordinates are such that they can be used to 
% position map units in space. In case of 'sheet' shape they can be  
% (and are) used to measure interunit distances.  
% 
% NOTE: for 'hexa' lattice, the x-coordinates of every other row are shifted  
% by +0.5, and the y-coordinates are multiplied by sqrt(0.75). This is done  
% to make distances of a unit to all its six neighbors equal. It is not  
% possible to use 'hexa' lattice with higher than 2-dimensional map grids. 
% 
% 'cyl' and 'toroid' shapes: the coordinates are initially determined as  
% in case of 'sheet' shape, but are then bended around the x- or the  
% x- and then y-axes to get the desired shape.  
%  
% POSSIBLE BUGS 
% 
% I don't know if the bending operation works ok for high-dimensional 
% map grids. Anyway, if anyone wants to make a 4-dimensional 
% toroid map, (s)he deserves it. 
% 
% REQUIRED INPUT ARGUMENTS 
%  
%  topol          Map grid dimensions. 
%        (struct) topology struct or map struct, the topology  
%                 (msize, lattice, shape) of the map is taken from  
%                 the appropriate fields (see e.g. SOM_SET) 
%        (vector) the vector which gives the size of the map grid 
%                 (msize-field of the topology struct). 
%   
% OPTIONAL INPUT ARGUMENTS  
%  
%  lattice (string) The map lattice, either 'rect' or 'hexa'. Default 
%                   is 'rect'. 'hexa' can only be used with 1- or  
%                   2-dimensional map grids. 
%  shape   (string) The map shape, either 'sheet', 'cyl' or 'toroid'.  
%                   Default is 'sheet'.  
% 
% OUTPUT ARGUMENTS 
% 
%  Co   (matrix) coordinates for each map units, size is [munits k]  
%                where k is 2, or more if the map grid is higher 
%                dimensional or the shape is 'cyl' or 'toroid' 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Check arguments  
  
error(nargchk(1, 3, nargin)); 
  
% default values 
sTopol = som_set('som_topol','lattice','rect'); 
  
% topol 
if isstruct(topol),  
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  switch topol.type,  
  case 'som_map', sTopol = topol.topol; 
  case 'som_topol', sTopol = topol; 
  end 
elseif iscell(topol),  
  for i=1:length(topol),  
    if isnumeric(topol{i}), sTopol.msize = topol{i};  
    elseif ischar(topol{i}),   
      switch topol{i},  
      case {'rect','hexa'}, sTopol.lattice = topol{i};  
      case {'sheet','cyl','toroid'}, sTopol.shape = topol{i};  
      end 
    end 
  end 
else 
  sTopol.msize = topol; 
end 
if prod(sTopol.msize)==0, error('Map size is 0.'); end 
  
% lattice 
if nargin>1 & ~isempty(lattice) & ~isnan(lattice), sTopol.lattice = lattice; end 
  
% shape  
if nargin>2 & ~isempty(shape) & ~isnan(shape), sTopol.shape = shape; end 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Action 
  
msize = sTopol.msize; 
lattice = sTopol.lattice; 
shape = sTopol.shape; 
  
% init variables 
  
if length(msize)==1, msize = [msize 1]; end 
munits = prod(msize); 
mdim = length(msize); 
Coords = zeros(munits,mdim); 
  
% initial coordinates for each map unit ('rect' lattice, 'sheet' shape) 
k = [1 cumprod(msize(1:end-1))];  
inds = [0:(munits-1)]'; 
for i = mdim:-1:1,  
  Coords(:,i) = floor(inds/k(i)); % these are subscripts in matrix-notation 
  inds = rem(inds,k(i));  
end 
% change subscripts to coordinates (move from (ij)-notation to (xy)-notation) 
Coords(:,[1 2]) = fliplr(Coords(:,[1 2]));  
  
% 'hexa' lattice 
if strcmp(lattice,'hexa'),  
  % check 
  if mdim > 2,  
    error('You can only use hexa lattice with 1- or 2-dimensional maps.'); 
  end 
  % offset x-coordinates of every other row  
  inds_for_row = (cumsum(ones(msize(2),1))-1)*msize(1);  
  for i=2:2:msize(1),  
    Coords(i+inds_for_row,1) = Coords(i+inds_for_row,1) + 0.5;  
  end 
end 
  
% shapes 
switch shape,  
case 'sheet',  
  if strcmp(lattice,'hexa'),  
    % this correction is made to make distances to all  
    % neighboring units equal 
    Coords(:,2) = Coords(:,2)*sqrt(0.75);  
  end 
  
case 'cyl',  
  % to make cylinder the coordinates must lie in 3D space, at least 
  if mdim<3, Coords = [Coords ones(munits,1)]; mdim = 3; end 
  
  % Bend the coordinates to a circle in the plane formed by x- and  
  % and z-axis. Notice that the angle to which the last coordinates 
  % are bended is _not_ 360 degrees, because that would be equal to  
  % the angle of the first coordinates (0 degrees). 
  
  Coords(:,1)     = Coords(:,1)/max(Coords(:,1)); 
  Coords(:,1)     = 2*pi * Coords(:,1) * msize(2)/(msize(2)+1); 
  Coords(:,[1 3]) = [cos(Coords(:,1)) sin(Coords(:,1))]; 
                     
case 'toroid',  
  
  % NOTE: if lattice is 'hexa', the msize(1) should be even, otherwise  
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  % the bending the upper and lower edges of the map do not match  
  % to each other 
  if strcmp(lattice,'hexa') & rem(msize(1),2)==1,  
    warning('Map size along y-coordinate is not even.'); 
  end 
  
  % to make toroid the coordinates must lie in 3D space, at least 
  if mdim<3, Coords = [Coords ones(munits,1)]; mdim = 3; end 
  
  % First bend the coordinates to a circle in the plane formed 
  % by x- and z-axis. Then bend in the plane formed by y- and 
  % z-axis. (See also the notes in 'cyl'). 
  
  Coords(:,1)     = Coords(:,1)/max(Coords(:,1)); 
  Coords(:,1)     = 2*pi * Coords(:,1) * msize(2)/(msize(2)+1); 
  Coords(:,[1 3]) = [cos(Coords(:,1)) sin(Coords(:,1))]; 
  
  Coords(:,2)     = Coords(:,2)/max(Coords(:,2)); 
  Coords(:,2)     = 2*pi * Coords(:,2) * msize(1)/(msize(1)+1); 
  Coords(:,3)     = Coords(:,3) - min(Coords(:,3)) + 1; 
  Coords(:,[2 3]) = Coords(:,[3 3]) .* [cos(Coords(:,2)) sin(Coords(:,2))]; 
   
end 
  
return; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% subfunctions 
  
function C = bend(cx,cy,angle,xishexa) 
  
  dx = max(cx) - min(cx); 
  if dx ~= 0,  
    % in case of hexagonal lattice it must be taken into account that 
    % coordinates of every second row are +0.5 off to the right 
    if xishexa, dx = dx-0.5; end 
    cx = angle*(cx - min(cx))/dx;  
  end     
  C(:,1) = (cy - min(cy)+1) .* cos(cx); 
  C(:,2) = (cy - min(cy)+1) .* sin(cx); 
  
% end of bend 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
 
 
Function11- SOM_UNIT_DISTS Distances between unit-locations on the map grid. 
function Ud = som_unit_dists(topol,lattice,shape) 
  
%SOM_UNIT_DISTS Distances between unit-locations on the map grid. 
 
%%%%%%%%%%%%% DETAILED DESCRIPTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% 
% som_unit_dists 
% 
% PURPOSE 
% 
% Returns interunit distances between the units of a Self-Organizing Map 
% along the map grid. 
% 
% SYNTAX 
% 
%  Ud = som_unit_dists(sTopol); 
%  Ud = som_unit_dists(sM.topol); 
%  Ud = som_unit_dists(msize); 
%  Ud = som_unit_dists(msize,'hexa'); 
%  Ud = som_unit_dists(msize,'rect','toroid'); 
% 
% DESCRIPTION 
% 
% Calculates the distances between the units of a SOM based on the  
% given topology. The distance are euclidian and they are measured 
% along the map grid (in the output space).  
% 
% In case of 'sheet' shape, the distances can be measured directly 
% from the unit coordinates given by SOM_UNIT_COORDS.  
% 
% In case of 'cyl' and 'toroid' shapes this is not so. In these cases 
% the coordinates are calculated as in the case of 'sheet' shape and 
% the shape is then taken into account by shifting the map grid into 
% different positions.  
% 
% Consider, for example, a 4x3 map. The basic position of map units  
% is shown on the left (with '1' - 'C' each denoting one map unit).  
% In case of a 'cyl' shape, units on the left and right edges are 
% neighbors, so for this purpose the map is copied on the left and 
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% right sides of the map, as on right.  
% 
%    basic               left     basic    right 
%    -------             -------  -------  ------- 
%    1  5  9             1  5  9  1  5  9  1  5  9 
%    2  6  a             2  6  a  2  6  a  2  6  a   
%    3  7  b             3  7  b  3  7  b  3  7  b  
%    4  8  c             4  8  c  4  8  c  4  8  c  
%  
% For the 'toroid' shape a similar trick is done, except that the  
% copies are placed all around the basic position: 
% 
%             1  5  9  1  5  9  1  5  9 
%             2  6  a  2  6  a  2  6  a   
%             3  7  b  3  7  b  3  7  b  
%             4  8  c  4  8  c  4  8  c  
%             1  5  9  1  5  9  1  5  9 
%             2  6  a  2  6  a  2  6  a   
%             3  7  b  3  7  b  3  7  b  
%             4  8  c  4  8  c  4  8  c  
%             1  5  9  1  5  9  1  5  9 
%             2  6  a  2  6  a  2  6  a   
%             3  7  b  3  7  b  3  7  b  
%             4  8  c  4  8  c  4  8  c  
% 
% From this we can see that the distance from unit '1' is 1 to units 
% '9','2','4' and '5', and sqrt(2) to units 'C','A','8' and '6'. Notice  
% that in the case of a 'hexa' lattice and 'toroid' shape, the size 
% of the map in y-direction should be even. The reason can be clearly 
% seen from the two figures below. On the left the basic positions for 
% a 3x3 map. If the map is copied above itself, it can be seen that the 
% lattice is broken (on the right): 
% 
%     basic positions                 example of broken lattice 
%     ---------------                 ------------------------- 
%                                     1  4  7  
%                                      2  5  8 
%                                     3  6  9 
%     1  4  7                         1  4  7  
%      2  5  8                         2  5  8 
%     3  6  9                         3  6  9 
% 
%  
% REQUIRED INPUT ARGUMENTS 
%  
%  topol          Map grid dimensions. 
%        (struct) topology struct or map struct, the topology  
%                 (msize, lattice, shape) of the map is taken from  
%                 the appropriate fields (see e.g. SOM_SET) 
%        (vector) the vector which gives the size of the map grid 
%                 (msize-field of the topology struct). 
%   
% OPTIONAL INPUT ARGUMENTS  
%  
%  lattice (string) The map lattice, either 'rect' or 'hexa'. Default 
%                   is 'rect'. 'hexa' can only be used with 1- or  
%                   2-dimensional map grids. 
%  shape   (string) The map shape, either 'sheet', 'cyl' or 'toroid'.  
%                   Default is 'sheet'.  
% 
% OUTPUT ARGUMENTS 
% 
%  Ud   (matrix) distances from each map unit to each other map unit, 
%                size is [munits munits] 
% 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Check arguments  
  
error(nargchk(1, 3, nargin)); 
  
% default values 
sTopol = som_set('som_topol','lattice','rect'); 
  
% topol 
 
if isstruct(topol),  
  switch topol.type,  
  case 'som_map', sTopol = topol.topol; 
  case 'som_topol', sTopol = topol; 
  end 
elseif iscell(topol),  
  for i=1:length(topol),  
    if isnumeric(topol{i}), sTopol.msize = topol{i};  
    elseif ischar(topol{i}),   
      switch topol{i},  
      case {'rect','hexa'}, sTopol.lattice = topol{i};  
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      case {'sheet','cyl','toroid'}, sTopol.shape = topol{i};  
      end 
    end 
  end 
else 
  sTopol.msize = topol; 
end 
if prod(sTopol.msize)==0, error('Map size is 0.'); end 
  
% lattice 
if nargin>1 & ~isempty(lattice) & ~isnan(lattice), sTopol.lattice = lattice; end 
  
% shape  
if nargin>2 & ~isempty(shape) & ~isnan(shape), sTopol.shape = shape; end 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Action 
  
msize = sTopol.msize; 
lattice = sTopol.lattice; 
shape = sTopol.shape; 
  
munits = prod(msize); 
Ud = zeros(munits,munits); 
  
% free topology 
if strcmp(lattice,'free'), 
  N1 = sTopol.connection;  
  Ud = som_neighborhood(N1,Inf); 
end 
  
% coordinates of map units when the grid is spread on a plane 
Coords = som_unit_coords(msize,lattice,'sheet'); 
  
% width and height of the grid 
dx = max(Coords(:,1))-min(Coords(:,1)); 
if msize(1)>1, dx = dx*msize(1)/(msize(1)-1); else dx = dx+1; end 
dy = max(Coords(:,2))-min(Coords(:,2)); 
if msize(2)>1, dy = dy*msize(2)/(msize(2)-1); else dy = dy+1; end 
  
% calculate distance from each location to each other location 
switch shape,  
case 'sheet', 
  for i=1:(munits-1),  
    inds = [(i+1):munits];  
    Dco = (Coords(inds,:) - Coords(ones(munits-i,1)*i,:))';  
    Ud(i,inds) = sqrt(sum(Dco.^2)); 
  end 
  
case 'cyl',  
  for i=1:(munits-1),  
    inds = [(i+1):munits];  
    Dco  = (Coords(inds,:) - Coords(ones(munits-i,1)*i,:))';  
    dist = sum(Dco.^2); 
    % The cylinder shape is taken into account by adding and substracting 
    % the width of the map (dx) from the x-coordinate (ie. shifting the 
    % map right and left). 
    DcoS = Dco; DcoS(1,:) = DcoS(1,:) + dx;  %East (x+dx) 
    dist = min(dist,sum(DcoS.^2)); 
    DcoS = Dco; DcoS(1,:) = DcoS(1,:) - dx;  %West (x-dx) 
    dist = min(dist,sum(DcoS.^2)); 
    Ud(i,inds) = sqrt(dist); 
  end 
  
case 'toroid',  
  for i=1:(munits-1),  
    inds = [(i+1):munits];  
    Dco  = (Coords(inds,:) - Coords(ones(munits-i,1)*i,:))';  
    dist = sum(Dco.^2);  
    % The toroid shape is taken into account as the cylinder shape was  
    % (see above), except that the map is shifted also vertically. 
    DcoS = Dco; DcoS(1,:) = DcoS(1,:) + dx;  %East (x+dx) 
    dist = min(dist,sum(DcoS.^2)); 
    DcoS = Dco; DcoS(1,:) = DcoS(1,:) - dx;  %West (x+dx) 
    dist = min(dist,sum(DcoS.^2)); 
    DcoS = Dco; DcoS(2,:) = DcoS(2,:) + dy;  %South (y+dy) 
    dist = min(dist,sum(DcoS.^2)); 
    DcoS = Dco; DcoS(2,:) = DcoS(2,:) - dy;  %North (y-dy) 
    dist = min(dist,sum(DcoS.^2)); 
    DcoS = Dco; DcoS(1,:) = DcoS(1,:) + dx; DcoS(2,:) = DcoS(2,:) - dy; %NorthEast 
(x+dx, y-dy) 
    dist = min(dist,sum(DcoS.^2)); 
    DcoS = Dco; DcoS(1,:) = DcoS(1,:) + dx; DcoS(2,:) = DcoS(2,:) + dy; %SouthEast 
(x+dx, y+dy) 
    dist = min(dist,sum(DcoS.^2)); 
    DcoS = Dco; DcoS(1,:) = DcoS(1,:) - dx; DcoS(2,:) = DcoS(2,:) + dy; %SouthWest 
(x-dx, y+dy) 
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    dist = min(dist,sum(DcoS.^2)); 
    DcoS = Dco; DcoS(1,:) = DcoS(1,:) - dx; DcoS(2,:) = DcoS(2,:) - dy; %NorthWest 
(x-dx, y-dy) 
    dist = min(dist,sum(DcoS.^2)); 
    Ud(i,inds) = sqrt(dist); 
  end 
  
otherwise,  
  error (['Unknown shape: ', shape]); 
  
end 
  
Ud = Ud + Ud'; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
 
Function12- VIS_VALUETYPE Used for type checks in SOM Toolbox visualization routines. 
function flag=vis_valuetype(value, valid, str); 
  
% VIS_VALUETYPE Used for type checks in SOM Toolbox visualization routines 
% 
% flag = vis_valuetype(value, valid, str) 
% 
% Input and output arguments: 
% value (varies) variable to be checked 
% valid (cell array) size 1xN, cells are strings or vectors (see below) 
% str (string) 'all' or 'any' (default), determines whether 
% all or just any of the types listed in argument 'valid' 
% should be true for 'value' 
% 
% flag (scalar) 1 or 0 (true or false) 
% 
% This is an internal function of SOM Toolbox visualization. It makes 
% various type checks. For example: 
% 
% % Return 1 if X is a numeric scalar otherwise 0: 
% f=vis_valuetype(X,{'1x1'}); 
% 
% % Return 1 if X is a ColorSpec, that is, a 1x3 vector presenting an RGB 
% % value or any of strings 'red','blue','green','yellow','magenta','cyan', 
% % 'white' or 'black' or their shortenings 'r','g','b','y','m','c','w','k': 
% f=vis_valueype(X,{'1x3rgb','colorstyle'}) 
% 
% % Return 1 if X is _both_ 10x3 size numeric matrix and has RGB values as rows 
% f=vis_valuetype(X,{'nx3rgb',[10 3]},'all') 
% 
% Strings that may be used in argument valid: 
% id is true if value is 
% 
% [n1 n2 ... nn] any n1 x n2 x ... x nn sized numeric matrix 
% '1x1' scalar (numeric) 
% '1x2' 1x2 vector (numeric) 
% 'nx1' any nx1 numeric vector 
% 'nx2' nx2 
% 'nx3' nx3 
% 'nxn' any numeric square matrix 
% 'nxn[0,1]' numeric square matrix with values in interval [0,1] 
% 'nxm' any numeric matrix 
% '1xn' any 1xn numeric vector 
% '1x3rgb' 1x3 vector v for which all(v>=0 & v<=1), e.g., a RGB code 
% 'nx3rgb' nx3 numeric matrix that contains n RGB values as rows 
% 'nx3dimrgb' nx3xdim numeric matrix that contains RGB values 
% 'nxnx3rgb' nxnx3 numeric matrix of nxn RGB triples 
% 'none' string 'none' 
% 'xor' string 'xor' 
% 'indexed' string 'indexed' 
% 'colorstyle' strings 'red','blue','green','yellow','magenta','cyan','white' 
% or 'black', or 'r','g','b','y','m','c','w','k' 
% 'markerstyle' any of Matlab's marker chars '.','o','x','+','*','s','d','v', 
% '^','<','>','p'or 'h' 
% 'linestyle' any or Matlab's line style strings '-',':','--', or '-.' 
% 'cellcolumn' a nx1 cell array 
% 'topol_cell' {lattice, msize, shape} 
% 'topol_cell_no_shape' {lattice, msize} 
% 'string' any string (1xn array of char) 
% 'chararray' any MxN char array 
  
 
if nargin == 2 
  str='any'; 
end 
  
flag=0; 
sz=size(value); 
dims=ndims(value); 
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% isnumeric 
numeric=isnumeric(value); 
character=ischar(value); 
  
% main loop: go through all types in arg. 'valid' 
for i=1:length(valid), 
  if isnumeric(valid{i}), % numeric size for double matrix 
    if numeric & length(valid{i}) == dims, 
      flag(i)=all(sz == valid{i}); 
    else 
      flag(i)=0; % not numeric or wrong dimension 
    end 
  else 
    msg=''; % for a error message inside try 
    try 
      switch valid{i} 
  
% scalar 
       case '1x1' 
flag(i)=numeric & dims == 2 & sz(1)==1 & sz(2) ==1; 
  
% 1x2 numeric vector 
       case '1x2' 
flag(i)=numeric & dims == 2 & sz(1)==1 & sz(2) == 2; 
  
% 1xn numeric vector 
       case '1xn' 
flag(i)=numeric & dims == 2 & sz(1) == 1; 
  
% any numeric matrix 
       case 'nxm' 
flag(i)=numeric & dims == 2; 
  
% nx3 numeric matrix 
       case 'nx3' 
flag(i)=numeric & dims == 2 & sz(2) == 3; 
  
% nx2 numeric matrix 
       case 'nx2' 
flag(i)=numeric & dims == 2 & sz(2) == 2; 
  
% nx1 numeric vector 
       case 'nx1' 
flag(i)=numeric & dims == 2 & sz(2) == 1; 
        
% nx1xm numric matrix 
       case 'nx1xm' 
flag(i)=numeric & dims == 3 & sz(2) == 1; 
  
% nx3 matrix of RGB triples 
       case 'nx3rgb' 
flag(i)=numeric & dims == 2 & sz(2) == 3 & in0_1(value); 
  
% RGB triple (ColorSpec vector) 
       case '1x3rgb' 
flag(i) = numeric & dims == 2 & sz(1)==1 & sz(2) == 3 & in0_1(value); 
  
% any square matrix 
       case 'nxn' 
flag(i)=numeric & dims == 2 & sz(1) == sz(2); 
  
% nx3xdim array of nxdim RGB triples 
       case 'nx3xdimrgb' 
flag(i)=numeric & dims == 3 & sz(2) == 3 & in0_1(value); 
  
% nxnx3 array of nxn RGB triples 
       case 'nxnx3rgb' 
flag(i)= numeric & dims == 3 & sz(1) == sz(2) & sz(3) == 3 ... 
& in0_1(value); 
  
% nxn matrix of values between [0,1] 
       case 'nxn[0,1]' 
  
flag(i)=numeric & dims == 2 & sz(1) == sz(2) & in0_1(value); 
  
% string 'indexed' 
       case 'indexed' 
flag(i) = ischar(value) & strcmp(value,'indexed'); 
  
% string 'none' 
       case 'none' 
flag(i) = character & strcmp(value,'none'); 
       
% string 'xor' 
       case 'xor' 
flag(i) = character & strcmp(value,'xor'); 
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% any string (1xn char array) 
       case 'string' 
flag(i) = character & dims == 2 & sz(1)<=1; 
  
% any char array 
       case 'chararray' 
flag(i) = character & dims == 2 & sz(1)>0; 
  
% ColorSpec string 
       case 'colorstyle' 
flag(i)=(character & sz(1) == 1 & sz(2) == 1 & ... 
any(ismember('ymcrgbwk',value))) | ... 
(ischar(value) & any(strcmp(value,{'none','yellow','magenta',... 
'cyan','red','green','blue','white','black'}))); 
% any valid Matlab's Marker 
case 'markerstyle' 
flag(i)=character & sz(1) == 1 & sz(2) == 1 & ... 
any(ismember('.ox+*sdv^<>ph',value)); 
% any valid Matlab's LineStyle 
case 'linestyle' 
str=strrep(strrep(strrep(value,'z','1'),'--','z'),'-.','z'); 
flag(i)=character & any(ismember(str,'z-:')) & sz(1)==1 & (sz(2)==1 | sz(2)==2); 
  
% any struct 
       case 'struct' 
flag(i)=isstruct(value); 
  
% nx1 cell array of strings 
       case 'cellcolumn_of_char' 
flag(i)=iscell(value) & dims == 2 & sz(2)==1; 
try, char(value); catch, flag(i)=0; end 
  
% mxn cell array of strings 
       case '2Dcellarray_of_char' 
flag(i)=iscell(value) & dims == 2; 
try, char(cat(2,value{:})); catch, flag(i)=0; end 
  
% valid {lattice, msize} 
       case 'topol_cell_no_shape' 
flag(i)=1; 
if ~iscell(value) | length(size(value)) ~= 2 | size(value,2)~=2 
flag(i)=0; 
else 
if vis_valuetype(value{1},{'string'}), 
switch value{1} 
case { 'hexa','rect'} 
; 
otherwise 
flag(i)=0; 
end 
end 
if ~vis_valuetype(value{2},{'1xn'}), 
flag(i)=0; 
end 
end 
  
% valid {lattice, msize, shape} 
       case 'topol_cell' 
flag(i)=1; 
if ~iscell(value) | length(size(value)) ~= 2 | size(value,2) ~= 3, 
flag(i)=0; 
else 
if vis_valuetype(value{1},{'string'}), 
switch value{1} 
case { 'hexa','rect'} 
; 
otherwise 
flag(i)=0; 
end 
end 
if ~vis_valuetype(value{2},{'1xn'}) 
flag(i)=0; 
end 
if ~vis_valuetype(value{3},{'string'}) 
flag(i)=0; 
else 
switch value{3} 
case { 'sheet','cyl', 'toroid'} 
; 
otherwise 
flag(i)=0; 
end 
end 
end 
       otherwise 
msg='Unknown valuetype!'; 
      end 
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    catch 
      % error during type check is due to wrong type of value: 
      % lets set flag(i) to 0 
      flag(i)=0; 
    end 
    % Unknown indetifier? 
    error(msg); 
  end 
  % set flag according to 3rd parameter (all ~ AND, any ~ OR) 
  if strcmp(str,'all'); 
    flag=all(flag); 
  else 
    flag=any(flag); 
  end 
end 
  
  
function f=in0_1(value) 
  
f=all(value(:) >= 0 & value(:)<=1); 
 
 
 
D3. Matlab code for ARFIMA method. 
 
%% ARFIMA 
clc 
clear 
close all 
  
[data] = xlsread('data LND_ret.xlsx'); 
  
%%%%%%%%%%%%%%%%%%%%%%% 
datalog = log(data); 
number = 30; 
n=length(data); 
n=n-701; 
datalog = datalog(repmat(1:n+1-number,number,1) + repmat([0:number-1]',1,n+1-
number)); 
datalogdiff = diff(datalog); 
RV = sqrt(sum(datalogdiff.^2))'; 
  
predictValue=zeros(25,length(RV)); % Note 25 
%% ARFIMA   
for i=1:5 
    for j=1:5 
        predictValue((i-1)*5+j,:)=arfimaPredict(RV,i,j); 
    end 
end 
  
%%%%%%%%%%% 
q=zeros(1,25); 
error=zeros(1,25); 
FQPredict=zeros(1,length(RV)); 
FQPredict(1:6)=RV(1:6); 
for i=7:length(RV) 
    i 
    for j=1:25 
        error(i)=RV(i-1)-predictValue(j,i-1); 
        q(j) =exp(-1000*error(j)); 
    end 
     
    qsum = sum(q); 
    q=q/qsum; 
     
    xpart=zeros(1,25); 
    for k = 1 :25 
        u = rand; % uniform random number between 0 and 1 
        qtempsum = 0; 
        for j = 1 : 25 
            qtempsum = qtempsum + q(j); 
            if qtempsum >= u 
                 
                xpart(k) =predictValue(j,i); 
                break; 
            end 
        end 
    end 
     
    FQPredict(i)=mean(xpart); 
     
end 
figure; 
plot(FQPredict,'r') 
hold on 
plot(RV) 
xlabel('Time in Dates'); 
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ylabel('Values'); 
title('Forecasts VS Real values'); 
legend('forecast with ARFIMA Method','Real Time Series'); 
grid on; 
  
figure; 
plot(error,'r-','linewidth',1); 
xlabel('Time in Dates'); 
ylabel('Values'); 
title('Error with ARFIMA method'); 
grid on; 
NMSE=var(error)/var(data); 
 
Arfima function 
% implements the full maximum likelihood estimation of the ARFIMA(p,d,q) model 
function [RV,Errorfit] = arfima(r,m) 
% ARFIMA 
% RV:  
% Errorfit:  
  
data = data(:); 
%x = diff(data(:)); 
  
%%%%%%%%%%%%%%%% 
datalog = log(data); 
number = 30; 
n=length(data); 
datalog = datalog(repmat(1:n+1-number,number,1) + repmat([0:number-1]',1,n+1-
number)); 
datalogdiff = diff(datalog); 
RV = sqrt(sum(datalogdiff.^2))'; 
  
x = RV; 
n = length(x); %%%%%%%%%%%%% 
d = estimate_hurst_exponent(x)-1; %%%%%%%%%% 
  
%%%%%%%%%%%%% 
k = 0:n-1; 
g = zeros(1,n); 
%fractional 
for i = 2:n 
    g(i) = prod(1-(1+d)./(1:k(i))); 
end 
g(1) = 1; 
% g = gamma(k-d)./(gamma(k+1).*gamma(-d)); 
G = zeros(n); 
for i = 1:n 
    G(i,i:end) = g(1:n-i+1); 
end 
W = x'*G; 
  
rm = max(r,m)+1; 
%%%%%%%%%%%%%%%%%% 
spec = garchset('R',r,'M',m,'Display','off');  
%%%%%%%%%%%%%%%%%%%%% 
coeffw = garchfit(spec,W);  
  
%%%%%%%%%%%% 
period = rm:n; 
wperioddata = W(repmat(1:n+1-rm,rm,1) + repmat([0:rm-1]',1,n+1-rm)); 
[sigmaForecast,w_Forecast] = garchpred(coeffw,wperioddata,1); %  
  
x_Forecast = [W(1:rm-1) w_Forecast]*inv(G); %  
x_Forecast = x_Forecast(rm:end); 
  
%%%%%%%%%%%%%%%% 
Errorfit = sum((x(period)-x_Forecast').^2); 
%%%%%%%%%%%%% 
plot(period,x(period),'c','linewidth',3) 
hold on 
plot(period,x_Forecast,'k') 
legend('صوتµضµ',' ²¤ش âضµ') 
  
  
% datalog = log(data); 
% number = 30; 
% datalog = datalog(repmat(1:n+1-number,number,1) + repmat([0:number-1]',1,n+1-
number)); 
% datalogdiff = diff(datalog); 
% RV = sqrt(sum(datalogdiff.^2))'; 
  
%---------------------------------- 
%calculate predictions for the actual dependent variable 
function hurst = estimate_hurst_exponent(data0) 
  
data = data0;         % make a local copy 
npoints = numel(data0); 
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yvals = zeros(1,npoints); 
xvals = zeros(1,npoints); 
data2 = zeros(1,npoints); 
  
index = 0; 
binsize = 1; 
  
while npoints>4 
    y = std(data); 
    index = index+1; 
    xvals(index) = binsize; 
    yvals(index) = binsize*y; 
     
    npoints = fix(npoints/2); 
    binsize = binsize*2; 
    % average adjacent points in pairs 
    ipoints = 1:npoints; 
    data2(ipoints) = (data(2*ipoints)+data((2*ipoints)-1))*0.5; 
    data=data2(1:npoints);     
end 
  
xvals=xvals(1:index); 
yvals=yvals(1:index); 
  
logx=log(xvals); 
logy=log(yvals); 
  
p2=polyfit(logx,logy,1); 
% Hurst exponent is the slope of the linear fit of log-log plot 
hurst=p2(1);  
 
arfimapridect function 
function preidictValue=arfimaPredict(data,r,m) 
%%%%%%%%% 
  
n = length(data); %  
d = estimate_hurst_exponent(data)-1; % 
  
%%%%%%%%%%%%%%%% 
k = 0:n-1; 
g = zeros(1,n); 
for i = 2:n 
    g(i) = prod(1-(1+d)./(1:k(i))); 
end 
g(1) = 1; 
% g = gamma(k-d)./(gamma(k+1).*gamma(-d)); the gamma (generalized factorial) 
G = zeros(n); 
for i = 1:n 
    G(i,i:end) = g(1:n-i+1); 
end 
W = data'*G; 
  
rm = max(r,m)+1; 
%%%%%%%%%%%%% 
spec = garchset('R',r,'M',m,'Display','off');  
%%%%%%%%%%%%%% 
coeffw = garchfit(spec,W);  
  
%%%%%%%%%%%%%%%%%%%%%% 
wperioddata = W(repmat(1:n+1-rm,rm,1) + repmat([0:rm-1]',1,n+1-rm)); 
[sigmaForecast,w_Forecast] = garchpred(coeffw,wperioddata,1); %%%% 
  
preidictValue = [W(1:rm-1) w_Forecast]*inv(G); % 
 
arma function 
 
function [RV,Errorfit] = arma(r,m) 
% ARMA 
% RV:  
% Errorfit:  
  
% [data] = xlsread('data LND_ret_2.xlsx'); 
x = data(:); 
n = length(x); % 
rm = max(r,m)+1; 
  
%%%%%%%%%%%% 
%GARCHSET is used to set parameter values in ARMAX/GARCH model 
%specification structures. 
spec = garchset('R',r,'M',m,'Display','off');  
%%%%%%%%%%%% 
%GARCHFIT given an observed univariate time series,GARCHFIT(Spec,y,...) fits 
%y with the conditional mean and variance model given by the ARMAX/GARCH 
specification structure Spec. 
coeffx = garchfit(spec,x);  
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%%%%%%%%%%%%%%%%%% 
period = rm:n; 
xperioddata = x(repmat(1:n+1-rm,rm,1) + repmat([0:rm-1]',1,n+1-rm)); 
[sigmaForecast,x_Forecast] = garchpred(coeffx,xperioddata,1); % 
%Garchpred given a specification of the conditional mean and variance model for 
multiple paths of a univariate time series, 
%%%%%%%%%%%%%%%%%%%%%%%%% 
Errorfit = sum((x(period)-x_Forecast').^2); 
%%%%%%%%%%%%% 
plot(period,x(period),'c','linewidth',3) 
hold on 
plot(period,x_Forecast,'k') 
legend('صوتµضµ',' ²¤ش âضµ') 
  
%%%%%%%%%%%%%%%%%%%%%%% 
xlog = log(x); 
number = 30; 
xlog = xlog(repmat(1:n+1-number,number,1) + repmat([0:number-1]',1,n+1-number)); 
xlogdiff = diff(xlog); 
RV = sqrt(sum(xlogdiff.^2))'; 
 
 
 
 
D4. Matlab code for decision-making procedure. 
 
 
clc; 
clear all; 
close all; 
%% %% Read Results 
p1=[xlsread('rbf_res.xlsx')]'; 
p2=[xlsread('nncor_res.xlsx')]; 
p3=[xlsread('arima_res.xlsx')]; 
p4=[xlsread('nnabs_res.xlsx')]; 
  
p0=[p1(1:730,1)  p2(1:730,1)  p3(1:730,1) p4(1:730,1)]; 
p00=[xlsread('data LND_ret.xlsx')]; 
pr=[p00(1:730,1)]; 
p00=[p00(1:730,1) p00(1:730,1) p00(1:730,1) p00(1:730,1)]; 
  
%%%%%%%%%%%% error part %%%%%%%%%%%%%%%%%%%%%%% 
er1=[xlsread('error_rbf.xlsx')]; 
er2=[xlsread('error_cor.xlsx')]; 
er3=[xlsread('error_ari.xlsx')]; 
er4=[xlsread('error_abs.xlsx')]; 
ERR=[er1(1:730,1)  er2(1:730,1)  er3(1:730,1) er4(1:730,1)]; 
  
Emin=min(ERR')'; 
%find index of Emin 
% for j=1:730 
%     idx(j,1)=find(ERR==Emin(j,1)); 
%     if idx(j,1)<=730 
%         idx(j,1)=1; 
%     elseif (idx(j,1)>730)&&(idx(j,1)<=2*730) 
%         idx(j,1)=2; 
%     elseif (idx(j,1)>2*730)&&(idx(j,1)<=3*730) 
%         idx(j,1)=3; 
%     else 
%         idx(j,1)=4; 
%     end 
% end 
 
 
%% %%%%%%Find Targets 
t1=zeros(730,1); 
t2=t1; 
t3=t1; 
t4=t1; 
p=p0*1000; 
p=fix(p); 
p=fix(p/10); 
for i=1:729 
    if p(i,1)==p(i+1,1) 
        t1(i,1)=1; 
    end 
    if p(i,2)==p(i+1,2) 
        t2(i,1)=2; 
    end 
    if p(i,3)==p(i+1,3) 
        t3(i,1)=3; 
    end 
    if p(i,4)==p(i+1,4) 
        t4(i,1)=4; 
    end 
end 
%% %%%%%%Normalization 
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    mean_p0=mean(p0(:)); % Count Mean value from Data Input 
    std_p0=std(double(p0(:)));% Count value of standard deviation from Data Input 
    pa=(p0-mean_p0)./std_p0; % Count value Result of Normalization process from Data 
Input 
  
%% %%%%%%Clustering 
p1=[pa(t1==1,1)]; 
p2=[pa(t2==2,1)]; 
p3=[pa(t3==3,1)]; 
p4=[pa(t4==4,1)]; 
p=[p1(1:580,1)  p2(1:580,1)  p3(1:580,1) p4(1:580,1) ]; 
  
K=5;  % number of clusters 
opts = statset('MaxIter', 10000, 'Display', 'final'); 
[IDXC, cent] = kmeans(pa, K,'options',opts, 'replicates',10); 
  
%% %%%%%% Plot Data+Clusters 
figure, hold on 
[h]=scatter(pa(:,3),pa(:,4), 3, IDXC,'filled'); 
scatter(cent(:,3),cent(:,4), 100, (1:K)', 'filled'); 
xlabel('Feature X'); 
ylabel('Feature Y'); 
title('K=means Clustering'); 
grid on; 
  
figure; 
plot(Emin,'r-','linewidth',1); 
xlabel('Time in Dates'); 
ylabel('Values'); 
title('minimum Error'); 
grid on; 
  
% %% %%%%%% Sequared Distance 
for c=1:730 
  for i=1:5 
    r1_rc(c,i)=[(pa(c,1)-cent(i,3))^2+(pa(c,1)-cent(i,4))^2]... 
              +[(pa(c,2)-cent(i,3))^2+(pa(c,2)-cent(i,4))^2]... 
              +[(pa(c,3)-cent(i,3))^2+(pa(c,3)-cent(i,4))^2]... 
              +[(pa(c,4)-cent(i,3))^2+(pa(c,4)-cent(i,4))^2]; 
  end 
  cr(c)=find(min(min(r1_rc))==min(r1_rc)); 
end 
  
% %% %%%%%%where is distance cluster minimum from 
er_cr=[ERR ; cr]'; 
  
N1=mean(er_cr(find(er_cr(:,5)==1),1:4)); 
   m_N1=find(N1==min(N1)); 
N2=mean(er_cr(find(er_cr(:,5)==2),1:4)); 
   m_N2=find(N2==min(N2)); 
N3=mean(er_cr(find(er_cr(:,5)==3),1:4)); 
   m_N3=find(N3==min(N3)); 
N4=mean(er_cr(find(er_cr(:,5)==4),1:4)); 
   m_N4=find(N4==min(N4)); 
N5=mean(er_cr(find(er_cr(:,5)==5),1:4)); 
   m_N5=find(N5==min(N5)); 
%after runnibng the program many times we will get the following 
N1=[xlsread('n1.xlsx')]; 
    m_N1=find(N1==min(N1)); 
N2=[xlsread('n2.xlsx')]; 
    m_N2=find(N2==min(N2)); 
N3=[xlsread('n3.xlsx')]; 
    m_N3=find(N3==min(N3)); 
N4=[xlsread('n4.xlsx')]; 
    m_N4=find(N4==min(N4)); 
N5=[xlsread('n5.xlsx')]; 
    m_N5=find(N5==min(N5)); 
w_mthd=[m_N1 m_N2 m_N3 m_N4 m_N5]; 
  
% %%%%%%%%% Winner Method has the min. value inside the cluster 
m1=0;m2=0;m3=0;m4=0; 
for i=1:length(w_mthd) 
    if w_mthd(i)==1 
        m1=m1+1; 
    elseif w_mthd(i)==2 
        m2=m2+1; 
    elseif w_mthd(i)==3 
        m3=m3+1; 
        else 
        m4=m4+1; 
    end 
end 
m=[m1 m2 m3 m4]; 
s=sort(m,'descend'); 
g1=find(m==s(1)); 
g2=find(m==s(2)); 
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g3=find(m==s(3)); 
g4=find(m==s(4)); 
  
msgbox(['Method  ' num2str(g1) '  is the winner; ' ... 
        'Method  ' num2str(g2) '  is the second; ' ... 
        'The Methods  ' num2str(g3) '  in third place ;']); 
  
NMSE=var(Emin); 
  
 


