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ABSTRACT

This thesis focuses on the techniques of cryptography in linear algebra and number

theory.

We first give the necessary review on modular arithmetic. Under Linear Algebra, Hill
cipher cryptographic technique and its variations are studied. Under number theory, on
the other hand, the definition of Euler function, and some important theorems in this
regard are given. The cryptographic techniques such as the Caesar cipher, Exponential

transformations and the Public key cryptographic techniques are explained.

Finally, some more advanced cryptographic techniques such as the Digraph trans-

formations are given.

Keywords: Hill cipher, Euler theorem, Caesar cipher, Exponential method, Public Key
method, Monoalphabetic cipher, Digraph transformations.
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Bu yiiksek lisans tezinde Lineer Cebir ve Sayilar kurami kavramlar1 kullanan sifreleme

yontemleri anlatilmistir.

Tezin giris kismi tezde sikca kullanilan modiiler aritmetik ile ilgili 6n bilgi
vermektedir.Lineer cebir de Hill Sifreleme yontemi baz alinmigtir.Sayilar kurami
boliimiinde ise, Euler fonksiyonu tanitilip, bu fonksiyonla ilgili temel teoremler
verildikten sonra, bu teoremleri kullanan sifreleme yontemleri aktarilmistir.Sezar
Sifreleme, Ustel transformasyon ve Asimetrik sifreleme yontemleri islenen sifreleme

yontemlerinden bazilaridir.

Son olarak da daha ileri derecede sifreleme imkani sunan ‘tek sesi temsil eden iki harf’

yontemi anlatilmistir.

Anahtar Kelimeler: Hill Sifreleme, Euler Teoremi, SezarSifreleme, Ustel ransform-
asyon, Asimetrik sifreleme, Tek sesi temsil eden iki harf metodu.
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Chapter 1

INTRODUCTION

Cryptography is one of the most important applications of linear algebra and number

theory where the process is to change important information to another unclear one.

The main goal of cryptography is to keep the integrity and security of this information.
There are many types of cryptography techniques and we will try to consider some of
them in this thesis. This thesis consists of five chapters, where chapter one includes this
introduction. In the second chapter, we first mention some necessary definitions,
theorems and some known results that will be needed in this thesis. We show some

important proofs in modular arithmetic and groups.

We review the Division algorithm theorem, study the addition and multiplication
modulo n, and finally after defining the notion of a (group); we give the conditions for a
set to be a group. The third chapter gives the cryptography techniques that use linear
algebra. The most important type here is the Hill Cipher method, which uses the
encryption algorithm:

C=AP modN



G, a, - &, Py
: : . i | ¢ | modN

) a, - a J\p,
where C is the column vector containing the numerical values of the cipher text message
and we can get the new message that is unclear by changing these values to their letters.
A is called the key of the algorithm, and this key should be invertible for the decryption
algorithm. P is the column vector of the plaintext numerical values and finally N is the
number of letters of the alphabet used in our work. For the decryption algorithm:

P=A"C modN

where A™ is the inverse of the matrix A. We have used 2x2 and 3x3 matrices to
encode some messages in our examples. We can use matrices of higher size, where we
can use computer programs to find inverses of them. In this chapter also we try to use
the properties of the matrix A to make this process more complex and interesting. We
can also use more than one key, where the algorithm becomes:

C=ABP modN
Also, we use the algorithm of affine cipher with this method, where:

C=AP+B modN .

In the fourth chapter, we study the number theory techniques of cryptography with some
examples. Here, we define the Euler function ¢(n) and revise the proof of the Euler’s
theorem which states:

a’™ =1 mod n
where a and n are relatively prime. Also, we state and prove some theorems, lemmas

and corollaries related with the Euler’s theorem such as the Lagrange’s theorem:



H <G =[H][o|
where G is a finite group. Next, we talk about some codes that are based on number
theory.
(D Caesar cipher: In this cipher we use the encryption algorithm

y=X+k mod N;

where K is any integer and N is the number of letters of the alphabet used in the coding
process. For decryption, we use the algorithm:

x=y—k modN
@ Affine cipher; in this cipher we use for encryption the algorithm y=ax+b mod N
where a, b are any two different integers, a being a unit moduloN .
For decryption, the algorithm is:
x=a'(y—b) mod N

where a* is the inverse of the element a.

@ An exponential method; Here we choose a large prime number P and any integer e

where

gcd(e,P-1) =1
Then, for encryption the algorithm is:

y=x° mod P
For decryption:

x=y" modP

where eh =1 mod(P —1).



@ Public key cryptographic technique; here we choose two prime number’s p,q where:
n=pg = ¢(n)=(p-H(a-1).
Then, for encryption the algorithm is:
C=M*® modn
where e is any integer that is co-prime to #(n). For decryption:
M =C modn

where ed =1 mod ¢(n).

In the last chapter, more advanced cryptographic techniques are collected and some
related examples are given. First of all, we mention the mono alphabetic cipher. This
method depends on using the frequency analysis for the ciphertext message and

compares it with the standard frequency in the language that is used.

Also, to break the cipher which is encrypted, we use the techniques discussed in

previous chapters; i.e. we use the Caesar and the affine ciphers.

Later, we study the digraph transformation method. This method depends on putting the
letters of the plaintext message in pairs (x,y) and calculating

P=xN+y
where N again is the number of the letters in the alphabet. We use for encryption the
algorithm:

C=aP+b mod N?



For decryption, we use the algorithm:
P=a'C+b’ modN?*
where a* isthe inverse of a mod N, b’=—a'b mod N*. After that, we try to use an

affine matrix transformation of pairs of digraphs.

For encryption:
b
C E[a ]P+[e] mod N2,
c d f
C=AP+B mod N?
where A is an invertible matrix mod N?, and for decryption
P=A"(C-B) modN?*

Finally, we use an affine matrix transformation of P(x,y,z) trigraph. Here:

P=xN?+yN+z
And the algorithm is:
a b c)(R Y
C=|d e f||P |+| K |modN®
g h i){R L



Chapter 2

MODULAR ARITHMETIC

In this chapter, we will consider some important facts that we need in our study. First of
all we give the definition of addition modulo n and multiplication modulon, and then

we explain some facts on modular arithmetic.
2.1 The Equivalence Relation
Definition 2.1.1 We say that aandb are equivalent modulo n if and only if n | (a-b)

and we write modulo equivalent as:
a=b modn.

Theorem 2.1.2 The relation given above is an equivalence relation on Z .

Proof. a) Reflexive:VaeZ ,n[0=a—a=-a=amodn.

b) Symmetric: Va,beZ, a=bmod n = n|a—-bandnjb—a=—(a—b)=b=amodn.

c¢) Transitive: Va,b,ce Z, ifa=b mod n and b=c mod n then:
n‘a—b,n|b—c:>n|a—c=(a—b)+(b—c):>azc modn .o

Theorem 2.1.3 If a=b modn , c=dmodn then:

a) a+c=b+d mod n.

b) ac=bd mod n.

Proof. a) Since a=b mod n =nja-b=a-b=mn=a=b+mn.

c=d mod n=nlc-d =>c-d=kn=c=d+kn.

6



For some m,k € Z, Then
(a+c)—(b+d)=b+mn+d+kn—b—-d =n(m+Kk)
Since
(m+k)ell =>a+c=b+d mod n
b) Also ac—bd = (b+mn)(d +kn)—bd =bd + knb + mnd + mkn* —bd
=n(kb+ md + mkn).
Since
(kb+md +mkn) e Z = ac=bd mod n.[

Definition 2.1.4 The set [a] of all integers equivalent to a (modn) is said to be the

remnant class of a .

We can also denote this class by a.

Example 2.1.5 Remnant classes mod 5:

[0]={....,-10,-5,0,5,10,......}, [1]={.....-9,-4,1,6,11,....... V214 058,53 ,2,7,12,. }
[381={.....-7 -2 ,3,8,13,....}, [4]={....,-6 -1 4,9,14,.....}

Definition 2.1.6 The set Z, ={0,12,3,......... ,(n=D}is said to be the set of the remnant

classes mod n This group is referred to as modular group.
Remark 2.1.7

Next, we can define the binary operations (+,) and (-,)onZ,, where (+,) is said to be
addition modulo n and (-,) is said to be multiplication modulon.

2.2 The Addition Modulo n

Definition 2.2.1V[a]e Z, and [b]e Z, we define the addition on Z, as follows:

[a]+, 6] =[a+5]

7



Theorem 2.2.2 ¥[a],[b].[c] € Z,:
a) [a]+,[b]=[b]+, [a]

b) [a]+, ([b]+, [c]) = (a]+, [b] +, [c]

¢) 3[0]< 2, Such that [a]+, [0] =[a]

d) 3[-a] e Z, Such that[a] +, [-a] =[0].

Proof. a) Since Va,beZ, a+b=b+a then[a]+, [b]=[a+b]=[b+a]=[b]+,[a].
b) Since Va,b,ceZ , a+(b+c)=(a+b)+c then

[a]+, (b]+, [c]) =[a]+, [b+c]=[a+b+c] =[a+b]+, [c]= (a] +, [b] +,[c].

¢) [a]+[0]=[a+0]=[a].

d) Since VaeZ, 3 (—a)such that a+(-a) = (-a) +a=0= [a]+,[-a]=[a+(-a)]=0.

a

Theorem 2.2.3VaeZ,, the system (Z,,+,) IS a group.
Proof. a) Z,, is closed under +,.

b) Z, is also associative by the theorem above.

c) [0] is the identity element of this set.

d) If [a] €Z, , then its inverse is[n-a], because[a]+, [n—a]=[a+n-a]=[n]=[0]

Therefore (Z,,+,) isagroup. o

2.3 The Multiplication Modulo n

Definition 2.3.1V[a],[b] € Z, , we define the multiplication on Z, as follows:
[a]-,[b]=[a-b]

8



Theorem 2.3.2 V[a],[b].[c] € Z,

iv) 3[1] e Z, such that[a]-, [1] =[a].

Proof. i) Sinceva,beZ, a-b=b-a then[a]-, [b]=[a-b]=[b-a]=[b]-,[a].
i) Since Va,b,ceZ ,a-(b-c)=(a-b)-c then:

2]+ (b] [cD =[] [b-c]=[a-b-c] =[a-b]-,[c]=(a] -, [b]) - [c]-
iiiy[a]-, [0] =[a-0]=[0].

iv) [a]-, [1]=[a-1]=[a].C

Theorem 2.3.3

v[a][b]lc]nez,:[a]- {b]+. [c[t={a] . [o}+.{a]- [

Proof.

since Va,b,ceZ, a(b+c)=(ab)+(ac)

Then

[a]-.{[b]+.[cP=[a]-, [p+c]=[al(b+c)]=[(ab) +(ac)]

=[ab]+, [ac]={[a]-, [b}+.{[a] - [c]}- U
Definition 2.3.4 We say that the numbers a,bare relatively prime if gcd (a,b)=1.

For example, 21- 20 are relatively prime = because gcd (21,20)=1.



Definition 2.3.5 We say that the number ae Z,is unit if 3be Z, such that
ab=1mod n

Remark 2.3.6 The set of all units in Z,, is denoted by U, or z; for example:
2; ~Us = [3h 23 =V, ~{[1].[2).[2L[41[5].[6]

Theorem 2.3.7 For any ae Z_, the system (Z,,-,)is a group.
Proof. i) If [a]eZ, and [b]eZ, then, J[c],[d]eZ, such that:
[a], [c]=[1] . [b], [d]=[1]= [ab], [cd] =[abed] =[acbd] =[ac]-, [bd] =[1]" = [1]
So [ab] is also a unit = Z; is a closed under (-,).
i) v[a][b][c] e Z,,

2] (b]-[c] =[a] [b-c]=[a-b-c]=[a-b] [c]=(a]-, [P] - [c]
iif) The identity of Z, is the class[1], because [a]-, [1]=[1]-,[a]=[a] for all[a]e Z,.
iv) Since for[a]eZz,, 3[b]ez, such that [a], [b]=[1] (from the definition), every
element in Z, has a multiplicative inverse.o
Remark 2.3.8 If n is a prime, then Z,, =, —[0]is a group under (-,), as all the non-zero

classes in this case, are units.

Theorem 2.3.9 [a]eZ has a multiplicative inverse [b] if and only if gcd (n,a)=1

Proof. <If gcd (a,n) =1, then by Euclid's algorithrm ac+nd =1 for somec,deZ.

That is:
[ac+nd]=[1].[ac]+, [nd]=[1], {[a] -, [e}-+4n]-n [t =[1].[a]  [c]=[1]

(Because [n]=[0]). So, [c]is the multiplicative inverse of[a], Let [c]=[b]=

10



[a]-,[P]=[1] mod n
=If ab=1 mod n . Then, n|1—ab or dn=1—ab for some d € Z . Therefore:
ab+dn=1=gcd (a,n)=1.0
Definition 2.3.10 We say that, the classes [a] and [b] are zero divisors if [a][b]=[0]but
both of [a],[b] are not zero classes. (This is also true for the elements; that is a non- zero
element ais a zero divisor if ab=0 for some other non zero elementb )

Theorem 2.3.11 If ais a unit, then ais not a zero divisor.

Proof. If a isaunit=a isinvertible =3¢ such that ac = 1.

Assume that a is a zero divisor. This means that a# 0, b # Obutab= ba = 0.
(ba)c=0=b(ac)=b =0.

This is a contradiction with the fact above. Hence, ais not a zero divisor. o

11



Chapter 3

LINEAR ALGEBRA CRYPTOGRAPHIC TECHNIQUES

In this chapter, the main cryptographic technique we will use is Hill cipher which is a
method developed by the mathematician Lester Hill in 1929 [11]. Here the encryption
algorithm takes plaintext letters as input, and produces m ciphertext letters for them.

3.1 Hill Cipher

3.1.1 The encryption process In fact, we can summarize the encryption which is the
process of converting plaintext into ciphertext in four basic steps:

i) Choose an (nxn) matrix Awhich is invertible, where n here maybe depends on the
length of the message that needs to be encrypted.

i) Change each plaintext to its numerical value, by using the table below:

0 1 2 3 4 5 6 7 8 9 10 11 12

13 14 15 16 17 18 19 20 21 22 23 24 25

iii) Form the (nx1) column vector P, having these numerical values as its entries.

12



iv) Get each ciphertext vector C by multiplying A with P, and convert each entry of
the ciphertext vector to its letter in the alphabet. The encryption algorithm of this method

is:

C=AP mod N.
where C is the column vector of the numerical values of ciphertext, P is the column
vector of the numerical values of plaintext, A an (nxn) matrix, is the key of the
algorithm, (this matrix must be invertible because we need the inverse of this matrix for

the decryption process), and N is the number of letters of the alphabet used in the

cryptography.

3.1.2 The decryption process The decryption which is the process of converting the

ciphertext into plaintext could also be summarized in four basic steps:
i) Get the inverse of the matrix A: say A™ .

ii) Change each ciphertext to its numerical value.

iii) Put each ciphertext in a (nx1) column vector say C .

iv) Get each plaintext vector by multiplying A‘lwithC, and convert each plaintext

vector to its letter in the alphabet. The decryption algorithm of this method is:

P=A'C modN.

where A is the inverse of the matrix A.

13
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Remark 3.1.3: In general, ifA=| ¢ . : | andP=| : | then, in the encryption

anl ann pnl

process, we get

C=AP mod N

Ciy a11 ain pll

U
Il

mod N
Cnl a‘nl ann pnl

Here when the size of the matrix A increases, or in other words when nincreases, we
will have the following advantages:

1. The cryptography process will be more complex and more difficult to decode.

2. The number of column vectors will decrease and we can encode any message
consisting for example of 7 letters by using a (7x7) matrix in only one step. But there is
one problem here, that is, it’s not easy to get the inverse of the matrix used in the
encryption process as n increases.

Below, we give several other ways of using Hill cipher technique for encryption.

3.2 Using More Than One Key in Hill Cipher

In the Hill cipher, since the key used to encode or decode any message is a matrix, we
can use the associative property of matrices to make the coding process more complex

and more secure. Therefore; if we have two invertible matrices A,Band a plaintext

column vector P, then the general case is explained below.

a, &, b11 bln Py
GivenA=| : . |,B=|: . [P =|: | theencryption algorithm is:
anl 4 bnl b pnl

nn nn

14



a, - a4, b11 e bln Py Cy
C=ABP=ABP)=| : "~ || i "~ |l i|z|}|modN
anl - a bnl '" b pnl Cnl

The decryption algorithm, on the other hand, is

P=(AB)'C=B*A'C=B*(A’C) modN .
In this way, we got a new cipher column vector C, because the matrix multiplication
operation is an associative. Here, we also use the fact that (XY)™' =Y X ™.
Note also that:
XY) =YX =X " ifand only if X and Y commute. Here we should be careful
as matrix multiplication is not always commutative.
3.2.1 Generalizing the Above Algorithm
In this case we can use n numberof invertible matrices to encode or decode any
message and the steps will be the same. This means that, if we have the invertible

matrices A, B,C,....... , M, then the encryption algorithm will be:

C=(ABC.....M)P mod N

Ch a, - a4, b11 bln m, - My Piy

Cnl anl e 4 bnl b mnl oo m pnl
Hence the decryption algorithm is:

P=(ABC....M)*Cmod N

3.3 Using The Affine Cipher Algorithm in Hill Cipher

We can use the Affine cipher technique to make the Hill cipher more complex.
Encryption algorithm here is given as:
C=AP+B (mod N)

15
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Il
+

(mod N)
Cnl an1 e a pnl bnl

nn

where A is an invertible matrix and B isa column vector like the vectors C and P.

For the decryption:
P=A'C-A'B=A*(C-B) (mod N)

3.4 Using the Affine Cipher Algorithm in Hill Cipher with More Than
One Key

By using the following algorithm to encrypt any message we will get more complex

process:
C=(AB..M)P+K (mod N).
Cll ail ain bll bln rnll rn1n pll kll
= P P + (mod N )
Cnl anl o ann bnl o bnn mnl o mnn pnl knl

The decryption here works as below;
P=(AB..M)*(C-K) (mod N).

Here are some examples now to illustrate the above facts.

16



3.5 Examples

Example 3.5.1 Encode the message (Help me) by using Hill cipher algorithm where the

matrix is

2 1
A= :
10
Solution. First use the table below to convert letters in the message to their numerical

values.

N ) P Q R S T U \% W X Y Z

14 15 16 17 18 19 20 21 22 23 24 25 0

Put also number 0 for the space between words. Group the plaintext letters into pairs and

add 0 to fill out the last pair:

H E L P M E
8 5 12 16 0 13 5 0
Then:
C=AP modN.

1)(8) (21

02

12) (40 (14
16}2(12]2 [12} (mod 26)

1)( 0 13
()] ot

17



2 1)(5) (10

1 ollo)"|'s (mod 26)

Now, the new message becomes: (Uhnim je).
21 8 14 12 13 0 10 5
U H N L M J E

Example 2.5.2 Decode the message (Xofmnofaare sfaty mqgepxeqgxetd amerblfseqcoeb-

bbdavxeraa), by using the Hill cipher algorithm and the inverse of the matrix:

-1 21
A=|0 1 1|
0 01
-1 21
Solution: Since A =| 0 1 1|, by Gaussian elimination, one can show that
0 01
-1 2 -1
Al=10 1 -1
0 0 1

Now, put the ciphertext into groups, where each group consists of three letters. Find the

numerical value of each letter from the table above. Therefore:

-1 2 -1)\(24 0
0 1 -1}|15(=|9].
0 0 1) 6 6

-1 2 -1)(13) (0) (0
0 1 -1|[14|=|-1|=| 25| (mod 26)
0 0o 1)l15) (15) (15

-1 2 -1\(6 -5 21
0 1 -1{|1|=0(|=|0 (mod 26)
0 1)1 1 1

18



-1
-1
1
-1
-1
1
-1
-1
1
-1
-1
1
-1
-1
1
2 -1
1 -1
0 1
2 -1
1 -1
0 1
2 -1
1 -1
0 1
2 -1
1 -1
0 1
2 -1
1 -1
01

18

19

20
25

13
17

16
24

17
24

20

13

18

12

19

-8) (18

5 |=| 5 | (mod 26)
0) Lo

-8) (18
=| 5 | (mod 26)

1 1

30) (4

25|=1 25| (mod 26)

o) (o

=119 (mod 26)
5

~12) (14

4 1= 4| (mod 26)

20

—26) (0
~101=116 | (mod 26)
12 ) (12

27 (1

14 1=114 | (mod 26)
5) |5

19



1

—26
-12
15

1

14
15

3
15

5

2

:

19

|

|

-1)\(17

-1

-1 2

0 1

1

0

-1

-1 2

0

-1

-1 2

~1/4|=|3

0 1

-1\(22
1| 24

-1 2

0 1

0

—~ © © o
& N N ~
o) o) =
kS 2 e o
£ E £ £
N A
¢ v 9 o o S o« - N
D O — — 1“7
Il Il It | EEE—Z
— I~ I
~ ™ o~ ——
- o 1o o — o < r~
_ _ _ NS~
\ 2
1] Il Il Il
N—
— — — —
ror T rop rop
AN +H O AN 4 O AN 4 O N 4 O
T o o T o o T o o T o o

} (mod 26)

-1 2 -1\(5 31 5
0 1 -1}|18|=|18|=|18
0 0 1)(0 0 0

20



It is clear that, by changing every numerical value above to its letter in the alphabet, we
get the message (If you are ready please send the plane now because | am in

danger).

2 1
Example 3.5.3 Encode the following message by using the matrices A :(1 0] :

B
4 3

(3 ZJ, (I AM IN CYPRUS).

Solution. Put the plaintext message in pairs; change the letters to their numerical values
by using the following table and put 0 instead of a space between words:

A B C D E F G H I J K L M

1 2 3 4 5 6 7 8 9 10 11 12 13
N O P Q R S T U \Y W X Y Z

14 15 16 17 18 19 20 21 22 23 24 25 0

th_g P_1 o 14 P_3 P_16
COR= o) 2T (q3) T o)’ ° |25) "% (18)"

21
P,= [19} . Here we put 0 for the space between words. Therefore:

]
R
o O
—

~U

]

A L
30 232 Y e
3 0L Y2 e
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! [ EHEEHE ows
ofer 5 ) ooze

V)5t (&) mos20)
5] ot

Then by changing every numerical value to its letter, the ciphertext message becomes

(LAWCKRJPWG FEW).

Example 3.5.4 Try to decode the message (KY JQCVMHUEVEDD) by using the

inverse of the matrices:

-1 21 1 00
A=|0 11/ ,B=|0 1 0|
0 01 -4 0 1
-1 21
Solution. Since A =| 0 1 1| , by Gaussian elimination, one can show that
0 01
-1 2 -1
At=|0 1 -1|
0 0 1
1 00
Andsince B = | 0 1 0] , by Gaussian elimination, one can show that
-4 0 1
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0)(-1 2 -1\(11 0)(39) (39) (13
0 1 -1|25|= 0| 25|=| 25 |=| 25 |(mod 26)
40 1)l0 1)\o) 40 1)0) (156) |0

=l 5 |=] 5 [(mod 26)

—4} —4 22

-8 18

1 0 0)-1 2 -1)21) (1 O 0(33 -33 19

0 -1 5 |= =17 |=| -17 |=| 9 |(mod 26)
0 1)\22 22 -110) (20

1 0)-1 2 -1)(5 1 0 0)-1) (-1) (25
0 1 -1(4|=|0 1 0| 0|=|0|=|0 |(mod 26).
0 0 1)4) 40 1)\4 0 0

Now by changing each numerical value in plaintext column vectors to its letter we get
the message (MY UNIVERSITY).

Example 3.5.5 Try to encode (LONDON) by using the algorithm C = AP+ B (mod 26)

where'A-56 B = 2
2 3) T \3)
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Solution. By using the table:

13 14 15 16 17 18 19 20

11 14 13 3 14

Then:

C=AP+B (mod N)

5 6 11+2_139+2_141_11 0d 26
2 3)\14) (3) |64 3_67_15( )
5 6)(13) (2) (83) (2) (85) (7

+ = + = = (mod 26).
2 3)\3)\3) (35) (3) |38) (12

5 6\14) (2) (148 2) (150 20
+ = + = = (mod 26).
2 3)\13 3 67 3 70 18

LONDON= LPHMUS.

21

J K
9 10
W X
22 23
N
13

L M
11 12
Y Z

24 25

Example 3.5.6 Try to decode the ciphertext message (LPMGKZ) by using the algorithm

P =(AB)}(C—K) (modN),

and the inverse of the matrices A =
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-1 21
Solution. SinceA=| 0 1 1| ,by Gaussian elimination,one can show that
0 01
-1 2 -1
At=10 1 -1
0 0 1
1 00
Andsince B=| 0 1 0| ,by Gaussian elimination, one can show that B™ =
-4 0 1
Since
L P M G K Z
11 15 12 6 10 25
Then:
1 0)-1 2 -1\[(11) (1
P=B'A'(C,-K)=|0 1 0 1 -1||15]-]2
4 1100 0 1 12 3

10

[EY
o
|
[N
N
|
=

1 0\7) (7 7
={0 1 0| 4|=| 4 |=| 4 | (mod 26).
1)l9) (37) (11
1 0)-1 2 -1)\[(6) (1
P,=B"A'(C,-K)=|0 1 0{0 1 -1([10|-|2
4 1o 0 1)\25) (3

1 0 0)-1 2 1) 5
=0 1 0 -1
4 0 10 0 1)(22

25

H~ O -
o - O
= O O



1 00
=0 1 0
4 01

(LPMGK?Z)

-11 -11 15
—14 |=| -14 |=|12 | (mod 26).
22 -22 4

— (HELPME).
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Chapter 4

NUMBER THEORY CRYPTOGRAPHIC TECHNIQUES

In this chapter, we give the definition of the Euler function ¢(n), revise the proof of the
Euler’s theorem, and study the number theory techniques of cryptography with some

examples.

4.1 Euler s Function

Definition 4.1.1 [7] We define ¢(n), to be the number of units inZ . In other words,
#(n)=|U, |-

Example 4.1.2 Compute the Euler function of nwhere nis the set of all integers less
than or equal to 15.

Solution.

pn) |1 |1 ]2 |2 |4 |2 |6 |4 |6 |4 10 |4 12 |6 |8

Before we give the Euler theorem, we state and prove the Lagrange’s theorem.
Theorem 4.1.3 (Lagrange’s Theorem) If G is a finite group and H is a subgroup of G,

then the order of H , divides the order of G .
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Proof. Since G is a finite group,G ={a,,a,,a,,.....,a.}, and the left coset of H bya is
given byaH ={ah,ah,,.....,ah,} .Two cosets are either equivalent or disjoint, so

aH =a;H oraH na;H =¢.Since cosets have the same size,|aH|=|H|for allaeG
Therefore:

G=UaH =G]= 2 [aH|= X |H| =k|H|=[H]|G|.c
Corollary 4.1.4 If G isagroup and a is an element inG, [a|G|.

Proof. LetH c Gbe the subgroup(a). Then by Lagrange’s theorem,

H|=[(a)| divides
IG|. 0
Theorem 4.1.5 [1] (Euler's Theorem) If a and n are relatively prime, a™ =1 (mod n).

Proof. Since the system (U _,* ) is a group and since |Un| is the number of elements in

U, . then by Lagrange’s theorem [a]""' =[1]for all[a] U, = a*™ =1 (modn) .0
Example 4.1.6 1) Ifn=8=U, ={[1],[3],[5].[7]} = |U,| = ¢(8) = 4.

Then: (1)' =1, (3)" =81=1 (mod8), (5)' =625=1(mod8), (7)' =2401=1 (mod8).
2)1f n=9 = U, ={[1],[2].[4].[5].[7],[8]} = |U,|=¢(9) =6.

Then: (1)° =1, (2)° =64=1mod9, (4)° =4096=1mod9, (5)° =15625=1mod9,
(7)° =117649 =1mod9, (8)° =262144 =1mod9.

Lemma 4.1.7 Ifa is a prime number, then a"* =1 (modn)for all[a]eU,,.
Example 4.1.8 1) Ifn=5=U, ={[1],[2],[3].[4]} .

Then: (1)" =1, (2)' =16=1 (mod5), (3)' =81=1(mod5), (4)' =256=1 (mod5).

)1 n=7 = U, ={[1],[2],[3].[4].[5]. [6]"
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Then: (1) =1, (2)° =64=1mod7, (3)' =729=1mod7, (4)° =4096=1mod?7,

(5)° =15625=1mod7, (6)° = 46656 =1mod7.

Corollary 4.1.9 [1]

Let p be aprime then:
a” =a (mod p)
for every integer a.
Example 4.1.10 1) If n=5 then, 3> =243=3 mod 5, 4° =1024= 4 mod 5,
6° = 7776 =6mod5.
2) If n=7, then, 3’ =2187=3mod 7, 4" =16384=4mod7, 5" =78125=5mod 7.
Corollary 4.1.11 ¢(n) is an even number for all n>3.
Proof. The element n—1 in U, always has order2; so by Lagrange’s theorem, 2|[U, |

which implies that 2| ¢(n). [

Theorem 4.1.12 [7] If n= p®where p is prime, then:
e e e-1 e-1 1
pnN)=¢(p’)=p"—p""=p (p—1)=n(1—5j.

Proof. #(n) is the number of elements in Z, that are relatively prime to n=p°®, or in
other words, the number of elements that are not multiples of p. This set contains p°
elements where p®/ p = p°®* of them are in the formkp, so ¢(p°) = p*— p* . [
Example 4.1.13 1) Ifn =25=5° = ¢(5°) =5°-5'=25-5=20 .

) Ifn=27=3=¢(3*)=3-32=27-9=18.

Lemma 4.1.14 Let the set M be a complete set of residues mod nand let a and b be
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two integers, where a and nare relatively prime. Then the new set:

Ma+b={ma+b:meM}
is again a complete set of residues mod n.
Proof. ma+b=m'a+b (modn) = ma=m'a (modn) =>m=m’ (mod n) = m=m".
Since every element (Ma+b) corresponds to a different congruency class in M , the set
(Ma+Db) is again a complete set of residues modn.o

Theorem 4.1.15 The Euler function is multiplicative. That is to say; for relatively prime
numbers aand b:
¢(ab) = p(a)p(b) .
Proof. Assume that R=ab where a,b are coprime .Then by the Chinese remainder
theorem:
gcd(n,R) =1 < gcd(n,a) =1and gcd(n,b) =1.
Orif:
A={t:t=1(mod R)}.
B={t:t=1(moda)andt=1(mod b)}
Now, forany ke Z, , k <Rand relatively prime with R = K = #(R). But also for any

pair (c,d) where c <a and relatively prime with a = c=¢(a), d <b and relatively

prime withb = d =¢(b). Thus, ¢(R) = ¢(ab) =¢(a)s(b). ]
Example 4.1.16 1) If n =35 = ¢(35) = ¢(7-5) = ¢(7)p(5) = 6-4 = 24.
2) If N=55= ¢(55) =¢(11-5) = p(11)¢(5) =10-4 = 40.

Corollary 4.1.17 If n=pp,*...p. " where P, P,...., P, are all primes, then:
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s =110, -0 H=Tp," {“i]: ”Hil‘i]
§=1 j=1

Pi) =l P
Proof. We will prove this corollary by induction, whenm =1=n= p* = by a previous

theorem:

#(n) = p*— p = pxﬂl—i)znil_l)
p p

Now assume that the statement is true for m—21and try to prove it form .Since

n=p p,2...p, " and since ¢(n)is multiplicative, then ¢(n)=@(p,*...pmo"*)d(Pr ™)

Since:
L X, -1 . ]
#(p P ™) =] J(p;,”" — ;") (By induction)
=1
#(p, ) = p,™ — p,, " (By a previous theorem)
Therefore:

00) = 4Py 9, b =[5 =B ) =T T, =) =n[ [0~ &
i ; ;

§=1 ¥ §=1 ¥

Example 4.1.18

_ : _a2-31n=66l1- L1121 ) 1=t ) oee( L) 2)(20)
1) If n=66 = then: ¢(66) = #(2-3-11) 66(1 2)(1 3)(1 11) 66(2j(3)(11j 20.

21t n=70 a0tz 511011212 2] £ ) -2

Theorem 4.1.19 The sum of the Euler functions over all positive divisorsd of n is equal

to the number n wheren=1,2,...... ,that is to say

S #(@)=n
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Proof. Let A={12,...,n},and let A, ={x e A:gcd(x,n) =g} for every (d|n), since

XxeZ then:

So, we must prove that|A,|=¢(d) . xeZ < xe A, =>1<x<n, gcd(x,n):g. Now

let bzﬁ VxeZ, thenx:%bwhere beZ withl<b<d, gcd(b,d)=1. Therefore:
n

Al=dd)= Y g(d)=n.c

(d/n)
Example 4.1.20 Ifn=8=(d \8) =1,2,4,8. ¢(1) =1,¢(2) =1, ¢(4) =2,4(8) =4.
=1+1+2+4=8=n.

4.2 Applications of Euler's Theorem
We can use Euler’s theorem (a*™ =1 mod n) to compute simple congruences ( mod n) .

Example 4.2.1 Find the least non-negative residue of 9"** mod 70.

Solution:

Since 9 is relatively prime with 70, by Euler's theorem9”™ =1 mod 70, and since
1 1 1
70=2:5:7 = ¢(70) = ¢(2-5-7) = 701~ (- D-) = 24

Then 9" =1 mod 70. Also since 1346 =24-56+2

= 913 = 9**%9 .9 mod 70 =9 mod 70.

Now, 9> =81=11mod 70, then the least non-negative residue of 9"** mod 70 is 11.
4.3 Number Theory Techniques

Now we shall talk about some codes that are based on number theory:
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4.3.1 Caesar cipher, Caesar cipher uses the algorithm:
y=X+k (modN)

wherek is any integer. For decoding, we use:
x=y—k (modN).

Example 4.3.1.1 If k=3:

For example; for k =3, the plaintext message (Cyprus) becomes (FBSUXV).
Remark 4.3.1.2 This type of cryptographic technique is easy to decode because in
English alphabet, there are only 25 possible keys.
4.3.2 Affine cipher
The Affine cipher is another type of cryptographic technique that uses the transfor-
mation

y=ax+b (modN)

Here, a and b are two different integers where a is a unit(mod N). For decoding we

use the transformation:
x=a'y+b' (modN)

where a™* istheinverse of a, and b'=-a'b.

33




Example 4.3.2.1 Try to encode the message (GAUSS) by using the transformation
y =3x+4 (mod 26) and the numerical values A=0, ..., Z =25.
Solution.G —»3-6+4=22 >W
A—>3.0+4=4>E
U—>3-20+4=64=12 (mod26) —> M
S —3-18+4=58=6 (mod 26) —G
S —>3-18+4=58=6 (mod26) — G, Then (GAUSS) — (WEMGG).
Example 4.3.2.2 Try to decode (WEMGG) by using the transformation
x=ay+b’ mod 26
Solution.
Here, sincea=3 then a™* =9 because 3-9=27=1mod 26, and b'=-36=16 mod N
The decoding transformation is x =9y +16 (mod 26)
W —9x22+16 =214 =6 (mod 26) —> G
E—>9%x4+16=52=0 (mod26) > A
M —9x12+16 =124 = 20 (mod 26) —>U
G —>9%x6+16=70=18 (mod26) — S
G 5> 9x6+16=70=18 (mod26) — S = (WEMGG) —(GAUSS)

4.3.3 An Exponential Method

In this method we choose p to be a large prime number ande to be any integer where
gcd(e, p- 1)= 1.Now for the encode transformation

X — x° (mod p)
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WhereO<x<p =X is relatively prime to p=x"*? =1 (mod p) {Fermat's Little
Theorem}.

For the decoding transformation, we should findh where eh =1 (mod p —1)
= eh=(p-1k+1 for some integerk . Then:
X—y"=(x%)" =xPP = (x") x = x (mod p)
Example 4.3.3.1 Try to encode the message (EULER) by using the previous method, if

p =31, e =7and the numerical values A=0, ..., Z=25 as follows.
Sinceged (7,30) =1, the encoding transformation is y = x” (mod31).
E —(4)" =16384=16 (mod31) - Q
U — (20)" =1280000000 =18 mod 31— S
L —(11)" =19487171=13 mod 31— N
E — (4)" =16384=16 mod31—Q

R — (17)" =410338673=12 mod 31— M
Then the word (EULER ) transforms into the word (QSNQM).

Example 4.3.3.2 Try to decode (QSNQM) by using the inverse of the previous trans-
formation.

Solution. Here, since e=7 — h=13 because 7x13=91=1 (mod30).

Then, the decoding transformation is x — y* (mod31):
Q—>(16)° =(4")° =4 =4%%" =4%%4 =4 (mod31) > E

S— (18)" = (20")"® = 20°" = 20*°*" = 20320 = 20 (mod31) — U
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N— (13)" = (11" =11" =11%*" =11**11=11 (mod 31) - L
Q- (16)F = (47)® =4 =431 = 4%°4 =4 (mod31) > E
M — (12)° = (171" =17 =17**" =177 =17 (mod31) - R
Then (QSNQM) = (EULER).

4.3.4 Public Key cryptographic technique

This method depends on using two keys; referred to as the public key and the private
key instead of one key used in other cryptographic techniques. Also it depends on using
a one- way function y = f (x) where the calculation of the function f is easy, but the
calculation of the inverse function (f ) is infeasible.
4.3.4.1 The general algorithm of public key cryptography technique We use Euler’s
theorem to make this method more interesting. Choose two prime numbers p, g then;
n=pg = ¢(n)=¢(pa) =¢(p)#(a) =(p-(qa-1)
Now, select a number e coprime to ¢(n) .The algorithm becomes:
C=M°modn
M =C? mod n
Where:
ed =1mod ¢(n) = g(n)|ed -1 = g(n)k +1=ed.
M —>C%=(M°)? =MDt =MD M =M modn
(Euler s Theorem, where M is coprime ton).

This algorithm is called the RSA algorithm and it was developed in 1977 by Rivest,

Shamir and Adleman. It is one of the oldest and most current public key cryptosystems
[8].
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Example 4.3.421f p=7, q=11=n=pq=77
#(n) = p(pa) = #(P)#(a) = (P—1(q-1) =6x10=60
Now, we select e as the smallest number satisfying gcd(e,60) =1=e=7
ed =1mod 60=d =e™ = d =43 because 7x43=301=1 mod 60.
For the message (NO):
M, =13=C, =M =13" mod 77= 62 =10 mod 26 = K
M,=14=C, =M, =14" mod 77=42=16 mod 26 = Q
Now, for the decryption process:
C,=62=M, =C! mod 77= 62 mod 77 =13= N
C,=42=M, =C{ mod 77=42" mod 77=14=0

Remark 4.3.4.3 In Public key cryptographic technique we can keep the integrity of any
important message by using the signature. In the case that the sender can decode any
message by using his public key and encode the result by using the receivers public key
and send it. The receiver should decode the ciphertext message by using his public key
then encode the result by using the sender’s public key. Here the receiver will be sure

this message came from this sender and nobody else.
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Chapter 5

MORE ADVANCED CRYPTOGRAPHIC TECHNIQUES

In this chapter, we’ll study some other types of encryption, which are more complex
than the ones discussed in previous chapters. These are Monoalphabetic ciphers, digraph
transformations and the affine matrix transformations by using the digraph transfor-

mation method.

5.1 Monoalphabetic Cipher

This method depends on using the frequency analysis in a way that, we can easily obtain
the original message from the quite long ciphertext message. The main idea here is to
get the relative frequency of each letter in the ciphertext message by using the formula:

B the number of the letters in ciphertext
the number of occurrences of a letter in ciphertext

Then by comparing the relative frequency of the letters in the ciphertext, with their

standard frequency in the English alphabet, we can guess the original letter.
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12.702

6.996
6.749

6.094
5987

Relative |'m(|uunq (%)

4.253
4.025

2015
1.929
1.974

13
1.492

=10.153

#H0.150
N0.074

K L M N O P

R 5 T U V W

Fig 5.1: Frequency of Letters in English Alphabet [10].

As an example, if the most common letter in the ciphertext is P, then this letter should
be E in the original message and so on.
Remark 5.1.1 The Monoalphabetic method is much easier than other types of cryptog-
raphic techniques and it is very useful for us to break the ciphertext that is encrypted by
using the Caesar cipher and the Affine cipher.
i) The Caesar cipher: In this method, the algorithm used is:

C=P+K (mod26)
where P is the numerical value of the plaintext letter, and K is the key used to encode the
original message. Now by using the Monoalphabetic cipher we can find the most
common letter in the ciphertext message, and this letter will correspond to the letter E in
English alphabet. Hence, we can get the key of the previous algorithm. For example, if

the most frequently occurring letter in a ciphertext message encrypted by using Caesar
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cipher is M, then this letter corresponds to the letter E in the original message, hence by
using the numerical value of these letters, we can find the keyK: M =12, E=4 =
M=E+K (mod26) =12=4+K (mod26) = K =8 (mod 26).

i1) The Affine cipher: The algorithm used in this method is:

C=aP+b (modN)
P=a'C—a'b=a'C+b' (modN)

where P is the numerical value of the plaintext letter, a and bare the keys used to
encode the original message,a"is the multiplicative inverse of the element a and

b'=—a"b. Again, by using the Monoalphabetic cipher we can discover the first and
second most common letters in the ciphertext message, and these letters will agree with

the letters E and T in English alphabet. Now, by solving these two congruencies:
P.=a'C,+b’ (modN)
P,=a"'C,+b’ (mod N)
we can get the keys of the previous algorithm. For example, if we have the part
(QAOOYQQEVHEQYV) from the cipher text message and if the first most frequently
occurring letter in a cipher text message encrypted by using the Affine cipher isY , and
the second most frequently occurring letter is V , then these letters correspond to the
letters E and T in the original message. Finally, by using the numerical value of these
letters, we can find the keys:Y =24 , E=4 , V=21 , T=19
24a7' +b' =4 (mod 26)
21a™ +b' =19 (mod 26)

3a ' =-15 (mod 26) = a " =-5=21 (mod 26) = a =>5.
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b’=4-24a™ (mod 26)=—-500 = 20 (mod 26) =>b =4

Now we can decode the following parts:

Q —16(21) + 20 =356 =18 (mod 26) —> S

A—>0(21) + 20 = 20 (mod 26) —> U

O —>14(21)+20=314=2 (mod 26) —>C

E —4(21)+20=104=0 (mod 26) —> A

H —7(21)+20=167 =11 (mod 26) — L
Therefore (QAOOYQQEVHEQV) becomes (SUCCESS AT LAST).
5.2 Digraph Transformations
This method depends on putting the letters of the plaintext message in pairs (x, y), and
then using the algorithm:

C=aP+b (modN?)
where:
P=xN+y
Here x is the numerical value of the first letter and y is the numerical value of the
second letter in P . N is the number of the letters in the alphabet, ais relatively prime
with N2, and b is a random number. For the decryption process, the algorithm is:
P=a'C+b’ (modN?)
where:
C=x'N+y', a=a'(modN? ,b'=—a'b (modN?).

Example 5.2.1 Find the ciphertext for plaintext BE, by using the digraph transfor-
mation, where a=79, b=50.
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Solution:

If Pis(BE), then P=1x26+4=230. Then, if a=79, b=50

C =79 (30)+50 (mod676) =2420=392 (mod676) = 392=15x26+2 = (PC).
Example 5.2.2 We encode the message (HELP ME PLEASE), by using the digraph

transformation cryptographic technique where a=451, b=60.

Solution:

The algorithm here is:

C=aP+b (modN?)
where

P=xN+y, N=26
Now

P(HE) = 7x26+4 =186
P,(LP) =11x26+15=301
P,(ME) =12x26+4 =316
P,(PL) =15x 26 +11=401
P.(EA) = 4x26+0=104

P,(SE) =18x26+4 =472
Then

C, =451x186+60=83946 =122mod 676 =122 = 4x 26 +18 = C,(ES)
C, =451x301+60=135811=611mod 676 = 611=23x26+13= C,(XN)

C, =451x316+60=142576 =616 mod 676 = 616 = 23x 26 +18 = C,(XS)
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C, =451x401+60=180911=419mod 676 = 419=16x26+3=C,(QD)
C, =451x104+60 = 46964 = 302mod 676 = 302 =11x 26 +16 = C,(LQ)

C, =451x472+60 =212932 = 668 mod 676 = 668 = 425x 26+ 18 = C,(ZS)

Therefore, the original message becomes (ESXNXSQDLQZS).Now, for decryption, we
use the algorithm:

P=a'C—-a’b (modN?)

Since

a=451 = a' =3 because (3x451)=1353=1 mod 676
Also
a™'b=3x60=180
P, =3x122-180=186mod 676
P, =3x611-180=1653=301mod 676
P, =3x616-180=1658 =316 mod 676
P, =3x419-180=1077 =401mod 676
P, =3x320-180 =780=104mod 676
P, =3x668-180 =1824 = 472mod 676

Finally:

P =186 = 7x 26+ 4 = (HE)
P, =301=11x26+15= (LP)
P,=316=12x26+4= (ME)
P, =401=15x26+11=> (PL)
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P. =104 =4x26+0=> (EA)
P, =472 =18x26+4 = (SE)

So, we get the original message (HELP ME PLEASE).
Remark 5.2.3 If the message has numbers, we can modify the alphabet so that it is
suitable for this kind of message. For example; if we have the message (GIVE ME

15308%), the letters A—Z take the numerical values 0-25, numbers 0—9take the

values 26—35and finally $ sign takes the value 36. Here, we can use the same process
with mod 37 and now to encode the previous message by using the Caesar cipher with
K =15, the algorithm is:

C=P+15 mod37

G=6=C =6+15mod37=21=V , [|=8=C,=8+15mod37=23=X
v=21=C,=21+15mod37=36=% , E=4=C,=4+15mod37=19=T
M=12=C, =12+15mod37=27=1 , 1=27=C,=6+15mod37=5=F
5=31=C, =31+15mod37=9=J , 3=29=C,=29+15mod37=7=H
0=26=C,=26+15mod37=4=E ,$=36=C,, =36+15mod37=14=0

Then the original message becomes (VX$T1F]HEO), therefore we can use this method

in all types of cryptographic techniques.

5.3 The Affine Matrix Transformations by Using the Digraph Trans-
formation Method

We can use the digraph transformation method in the affine matrix transformations.

Here the algorithm is:
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C a b P+ ¢ mod N2
c d f
—=C=AP+B modN?.

where: 0<a,b,c,d <N?, ad —bc is must be unit mod N?, P is a column vector of two

Py

plaintext digraphs pz[p j P =xN+Yy, , X is the numerical value of the first letter in

2
P, y isthe numerical value of the second letter inP, and N is the number of the letters

in the alphabet.

: . . . b
Remark 5.3.1 The most important condition here is that, the matrix [i dj must be

invertible mod N?. That it has no common factor with N for the decryption process. The

decryption algorithm is:
P=A'C-A'B=A"(C-B) modN?

5 6

100
Example 5.3.2 If we have B(NO), P,(BE) , Az[2 3} , B =[ 53} then we can endode

them as follows: P (NO) =13x 26 +14 =352, P,(BE)=1x26+4=30, N =26 = N’ =676

5 6)(352) (100 1941\ (100 2040 12
C= + = + = = mod 676

2 3) 30 53 794 53 847 171

=C,=12=0%x26+12= AM.
C,=171=6x26+15=GP
Now, for the decryption:
P=A'C-A'B=A"(C-B) mod676

. 3 -6
SlnceA’lz—O| 1A( ) 5) mod 676, detA=3:>—OI 1A=%=31:>31=451mod676
et Al - e
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3 3 -6 1353 2706 1 674
= A" =451 = = mod 676
-2 5 —-902 2255 450 227

Now:
1 674)\|(12 100 1 674\ -8 79444 352
P= — = = = mod 676
450 227)|\171 53 450 227)\118 —12814 30
=P =352=13x26+14=(NO), P,=30=1x26+4= (BE).
Remark 5.3.3 We can use a (3x3) matrix in the previous method, again by setting
P=xN+y

Example 5.3.4 We try to encode the message (HELP ME PLEASE) by using the

digraph transformation with

-1 21 162
A= 0 1 1|,B=|219
0 01 323

Solution. Here, since

P(HE) = 7x26+4=186
P,(LP) =11x 26+15=2301
P,(ME) =12x26+4 =316
P,(PL) =15x26+11=401
R.(EA) = 4x 26+ 0=104

P.(SE) =18x 26+ 4 =472

We use the algorithmC = AP+ B mod N? ,P = , N =26, then:
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-1 2 186
301 |+| 219 | mod 676

O
IIl
o

160 | mod 676

732
617 |+| 219
316

-1 2 401
C.,=/0 1 104 |+| 219 | mod 676
1

472
=| 576 |+]| 219 |= J 119 | mod676, Therefore:

218=8x26+10= C,(IK)
160=6x26+4 = C,(GE)

639 =24 x26+15=>C,(YP)

441=16x26+25=C,(Q2)

119=4x26+15=C,(EP)

119=4x26+15=C,(EP), Finally, the ciphertext message is(IKGEYPGZEPEP).Now,

for the decryption we use the inverse of the matrix A, and the algorithm works as below:

12 -1
P=AC-B) modN? A*=l 0 1 -1
0 0 1

-1 2 -1)/(218 162
P=/0 1 -1}|160|-|219
0 0 1)/\639 323
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-1 2 -1\ 56 —490 186

=0 1 -11-59|=|-375|=|301| mod676
0 0 1)\316 316 316
-1 2 -1\[(441) (162
P=| 0 1 -1]/[119|-|219
0 0 1)(119) (323
-1 2 -1\ 279 275\ (401
=0 1 -1|-100|=| 104 |=|104 | mod676. Therefore:
0 0 1)\—204) (-204) |472

186 =7x26+4 = P,(HE)
301=11x26+15=P,(LP)

316=12x26+4=> P,(ME)

401=15x26+11=>P,(PL)

104 =4x26+0= P,(EA)

472=18x26+4 = P,(SE), we can get the original message (HELP ME PLEASE).
Remark 5.3.5 We can use the previous method with (x,y, z) that is with P = xN* + yN + z,
where x,y and z are the numerical values of the letters of P.

Example 5.3.6 Try to encode the message (HELP ME NOW) by using the previous

method where:

-1 21 162
A= 0 1 1|,B=|219
0 01 323

Solution. Here, we have P,(HEL), P,(PME), P,(NOW).
= P, =7x26° +4x26+11=14847
P, =15x 26% +12x 26 + 4 =10456
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P, =13x 26° +14x 26+ 22 =9174, Then, by using the algorithm:

C=AP+BmodN?

-1 2 1)( 4847 162 25239 162 25401 7825
C=| 0 1 1{/10456 |+| 219 |=|19630 |+| 219 |=|19849 |=| 2273 |mod 26°
0 0 1){ 9174 323 9174 323 9497 9497

Now:
7825 mod 26° =11x 26% +14x 26 + 25 = (LOZ).
2273 mod 26° =3x 26" +9x 26 +11= (DJL).

9497 mod 26° =14x 262 +1x 26+ 7 = (OAH).

Therefore, the message becomes (LOZD]LOAH). Finally, for decryption the algorithm is:
P=A"(C-B) modN?
Then

-1 2 -1)| (7825 162 -1 2 -1)(7663 -12729 4847
P={ 0 1 -1||2273|-|219||=/0 1 -1||2054|=| -7120 |=|10456 | mod 26
0 0 1 9497 323 0 0 1)(9174 9174 9174

where 4847 =7x 26% + 4x 26 +11= (HEL)
10456 =15x 262 +12x 26 + 4 = (PME)
9174 =13x26" +14x26+22 = (NOW).In this way, we can get the original message

(HELP ME NOW).

Remark 5.3.7 We can use this method with a(nxn) matrix, if we can find the inverse of
the matrix used in the encryption algorithm.
a, A, P bl

C=| : ™. : : |+ ¢ | modN"
a, - A, Pn bn
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For example, if (x,y,zh)withP= xN*+ yN*+ zN + h, or if (x,y,z,d) with

P= xN°>+ yN*+ zN + hN + d .The previous process will be more difficult and the

numbers will be very big but this makes the cryptographic technique more secure and

interesting.
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Chapter 6

CONCLUSION

From this study, we emerged some points, the most definite one that, the cryptography
techniques which use linear algebra are easier than the others which use number theory
to implement. But, on the other hand the first type is easy to break and decreases the
privacy and the integrity of the information that is encoded. We can improve the security
of this technique by using matrices of higher size where we can use computer programs

to find inverses of them.

Another point is that, the cryptographic techniques that use number theory are more
difficult to calculate and hence are more private. But, also, in this type, it’s not easy to

determine the inverse of a big prime number modulo n.

Another problem with this type is that, there are many situations where one wants to

know if a large number e is a prime.

Finally, there is another type of cryptography technique that uses a one-way function in
its coding. There is no known algorithm to decode these and as an example one could

use a non-invertible matrix as a key.
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