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ABSTRACT

Researchers and students sometimes need to deal with large volumes of data, causing
them to have difficulty in the analysis and interpretation of these data. In the
statistical analysis of high dimensional data, it is required to reduce the dimension of
data set without losing any important information. One way of achieving this goal is
the use the principal component analysis (PCA). The PCA objectives are to extract
an important part of information from the data set, reducing the size of data with no
damage to data and information. This is achieved by finding a new set of
independent (uncorrelated) variables called principal components which are obtained
as a linear combination of the original variables. The calculation of PCs means the
computation of eigenvalues and eigenvectors for a positive-semidefinite symmetric
matrix. The first PC has the largest proportion of variance of the data, and the second
component has the second largest proportion of variance and is orthogonal to the first
principal component. Remaining PCs represents the remainin variance in descending
order, and each PC is orthogonal to its prdecesor. After computing the PCs, the first
several PCs that represents the large part of variation are selected for use in further
analysis. Finally, discussion of correlation between the PCs and original variables

and determine which variable has more influence on each PC.

Keywords: Principal Component Analysis (PCA), orthogonal matrix, eigenvalue,

eigenvector, singular value decomposition (SVD), covariance, correlation.



0z

Aragtirmacilar ve Ogrenciler c¢alismalarinda biiyiik veri kitleleri ile c¢alismak
durumunda kalabilirler. Bu durum verilerin analizinde ve yorumunda guclikler
yaratabilir. Blylk boyutlu verilerin istatistiksel analizinde verideki 6nemli bilgileri
kaybetmeden veri boyutu indirgemesi yapilmasi gereksinimi vardir. Bu amaca
ulagsmanin yollarindan bir taneside temel bilesenler analizi (TBA) dir. TBA’nin
amaci verideki onemli bilgi igerigini ¢ikarmak, veri boyutunu indirgerken veriye ve
icerdigi bilgiye hasar vermemektir. Bu hedefe ulasirken temel bilegsenler (TB) denen,
mevcut degiskenlerin lineer bir kominasyonu olan, birbirinden bagimsiz yeni
degiskenler tanimlanir. TB’lerin hesabinda prensip olarak pozitif-yarikesin simetrik
bir matrisin 6zdeger ve 6zvektorlerinin hesabi gerekir. Birinci TB verideki salinimin
(varyasyonun) en biiylik kismini, ikinci TB birinciye orthogonal olub verideki
saliimin ikinci en biiylik kismini temsil eder. Benzer sekilde geriye kalan TB’lerde
azalan oranda salinimi temsil eder ve her biri kendinden 6nce gelene ortogonaldir.
TB’lerin saptanmasindan sonra, verideki salinimin biiyiik kismini temsil eden ilk
birka¢ TB, daha ileri analiz ve yorumda kullanilmak tizere segilir. TB’ler ile verideki
degiskenler arasindaki iligki ve hangi degiskenlerin TB iizerinde daha buyik etkisi

oldugu incelenir.

Anahtar kelimeler: Temel bilesenler analizi (TBA), ortogonal matris, 6zdeger,

0zvektor, tekil deger ayrisimi1 (TDA), kovaryans, korelasyon.
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Chapter 1

INTRODUCTION

At the beginning of a statistical study, the researchers often collect a set of data.
When the data set and the variables involved are large, processing, analysis and
interpretation becomes very demanding. Hence, the principal component analysis
PCA method studied in this thesis provides an alternative by finding a set of linear

combinations of the variables representing the data.

Initial foundations for PCA was defined by Karl Pearson (1901) [1], and it is now
used in many scientific fields. PCA ingredients used to find the most influential
variables of data (a combination form) and that illustrate a greater part of the variance

in the data.

PCA is a technique used in statistical analysis to transform a large number of
correlated variables to a smaller number of uncorrelated (orthogonal) components
which is called principal components, while maintaining the important information
of the original data, and this makes the data easier to understanding and

representation.

In the third chapter some mathematical concepts which are important to
understanding the PCA technique are introduced. Fourth chapter begins discussing
the reduction of the dimensions geometrically, followed by the Mathematics of PCA

and its properties are discussed. Third part of the chapter discusses the interpretation

1



of PCA and the correlation between PCs and the original variables and the methods
of how to choosing the number of PCs that provides the best explanation of
population data. In the final part of chapter 4, a data set is used to highlight the

theoretical concepts of PCA in application, as well as interpretation of the results.



Chapter 2

LITERATURE REVIEW

According to Jolliffe (2002) [2], the first description of the PCA was given by Karl
Pearson in (1901). In his article ”On lines and planes of closest fit to systems of
points in space,” [1], he also discussed the geometrical representation of the data and
the best lines representing data. He concluded that “The best-fitting straight line to a
system of points coincides in direction with the maximum axis of the correlation
ellipsoid”. Also he pointed to the possibility of the using of analysis of several

variables.

Jolliffe (2002), Hotelling (1933; 1936) and Girshick (1939) provided significant

contributions to the development of PCA.

Hotelling (1933) started with the ideas of factor analysis, enabling the determination
of a smaller set of uncorrelated variables which represent the original variables. He
also chose the component which maximizes the total variances of original variables
[3]. In a further study, Hotelling gave the accelerated version of power method for

finding PCs [4].

Girshick (1939) illuminated the asymptotic variances and covariance of the

coefficients of PCs [5].



Anderson (1963) discussed the PCA from the theoretical point of view [6]. However,
the use of PCA remained limited until the development of computers. Parallel to the
rapid developments in the computer hardware and software in 1960s resulted in a

significant contribution to PCA.

Rao (1964) found new ideas for the use, techniques and interpretation of PCA [7].
Gower (1966) disscused the relation between the PCA and other statistical
techniques [8]. Jeffers (1967) disscused the practical side of PCA through a practical

application in two case studies of PCA [9].



Chapter 3

SOME MATIMATICAL AND STATISTICAL
CONCEPTS

In this chapter some basic mathematical and statistical concepts that will be required
to understand the Principal Components Analysis (PCA) and related topics in
subsequent chapters are introduced.
3.1Matrix Algebra Concepts
3.1.1 Eigenvalue and Eigenvector
In many statistical applications matrix algebra is widely used. Hence, some basic
ideas on matrix algebra are given below to facilitate the understanding of the
statistical methods introduced in the following chapters. Let A be any square matrix

of sizenxn. If there exist a non-zero vector x and scalar A such that

AX = X (3.1)

then the vector x is called eigenvector of A corresponding to the eigenvalue A [10].
3.1.2 Orthogonal Matrix

An nxn matrix A is called orthogonal if ATA =1 .

3.1.3 Singular Value Decomposition (SVD)

Let A be a mxn matrix of real-values of data and with rank = r. The SVD of matrix

A is the factorizing of A into the multiplication of three matrices.



A=UDQ" (3.2)

where U is a mxm matrix with orthogonal columns. The columns of U are referred
to the left singular vectors and ( U'U =1), while Q is an nxn orthogonal matrix,
the columns of Q (or rows of Q') are referred to the right singular vectors

(Q'"Q=1),and D isa mxn rectangular diagonal matrix defined as

s -
d("J)_{o i |

where i=12,..,nandj=12,..., p, the values d(i, j) =5, in the main diagonal of D
is known as the singular values of A [11].

3.1.4 Quadratic Form

Let A be nxn matrix. Then, the function f(x):R" — R definded by
f(x) =x"Ax

is called the quadratic form of A.
3.2 Statistical Concepts

To understand the statistical concepts, suppose that a random sample is taken from
population.

3.2.1 The Population Moment, Mean and Variance

Let X be a random variable with p.d.f. f(x). The k™ moment about the origin of a

r.v. X, denoted by , , is the expected value of X*;

s, =E(X*) = T X (x)dx (3.3)

6



when X is continuous and

e =EX)=3Xf(x) k=0,1,23.. (34)

when X is discret. The first moment when (k=1) E(X) = u is called the population

mean.

The k™ moment about the mean is called the central k™ moment of a random

variable X, and is defined as the expected value of (X — x)* given by

o0

E(X =) = [ (X = )" (x)0X (35)

—o0

When k=2, we have the variance o and can also be expressed as
oy =E(X—u)° =E(X*) - (E(X))’ (3.6)

The standard deviation o is the value that gives information on how the values of the
random variable are deviating from the population mean, and is given by the square
root of the variance.

3.2.2 The Sample Moment, Mean and Variances
Assume we have a sequence of random samples X;,X,,X;,.., X/, the rth sample

moment for any n of random samples is given by



Mo

XI==3X! p=123,.. (3.7)

L
p

M

The first sample moment is called the average and is defined by

X, ==> X (3.9)

where ¥x; is the observation value of X;,.

3.2.2(a) The Properties of Sample Moment

a) The expected value of X'

B[R-S E[Y X/ 1= (X ECX)I ==Y 1, (3.10)
n 4 n n
Ifther.vs X;;i=1...,n areidentically distributed, then
E[X!]1= 4. (3.11)
In the case of r=1 the expected value of X, is the mean ().

b) The Var(X!), where we have X,, X,,..., X, samples

Var()?rf)=Var(%iX{)=%Var(Zn:X{). (3.12)

8



When samples are independent,
Var()?;):%ZEVar(Xi’). (3.13)
If the samples are independent and identically distributed (i.i.d.), then
Var(X;)=%Var(xr) (3.14)

when r=1

2
(o}

Var(X.) :%Var(X) A (3.15)

3.2.3 The Sample Variance

The sample variance of n random samples is denoted by s®and given by

z:(xi_)z)2 1 n
s =12 - 1fo—ni2 (3.16)
- 4=

The expected value of sample variance is
2 1 \ v \2 1 C 2 N 2
E(s*)=—— > E(X; - X)*=——| >_EX;*—nE(X?)
n—l i=1 n_l i=1

Since E(X?) =0+ u* then



E(s®) = -

i_l{n(azﬁuz)—n(%zhuz)}:az (3.17)
Hence s® is an unbiased estimator of &*. The purpose of division by n-1 in
equation (3.16) is to ensure that S*is an unbiased estimator for the variance .
Division by n instead of n—1 will introduce a negative bias methodically producing
too-small estimator for o
3.2.3(a) Properties of Variance and Covariance
Var(aTX)=aTVar(X)a:Zaiajaxixj (3.18)

ij

Var(AX +b) = Avar(X)A' (3.19)
Var(X +Y)=Var(X)+Cov(X,Y)+Cov(Y, X)+Var(Y)

Cov(X +Y,Z)=Cov(X,Z)+Cov(Y,2)

Cov(AX,BY) = ACov(X,Y)B'

3.2.4 Covariance
The covariance is a measurement tool between two random variables and is defined

as
cov(X;, X;) =0y x =E(XX;)-E(X)E(X])  (3.20)

Statistically the sample covariance is

> (X - X)(X, - X)

COV(X;, X ) =8y x == — (3.21)

The covariance between a random variable X, and itself is the variance O')Z(i of the
variable.

10



3.2.5 Covariance Matrix

If the r.v. X, is p-dimensional e.g., X =(X1 X, .. Xp)T  then theoretical

covariance among all elements is given by the covariance matrix X .

Oxx, - - - Oxx

Oyxx, - - - Oxx

and the covariance matrix of the sample is denoted by S

% T XX

S is an unbiased estimator of X . To show this, assume r.v.s

.
X :()(1,x2,...,xn)T and X’:(xl’,xz’,...,xn’) are given

1 n '
E(S)=—E XX —NXX'
=1 o |

= Zn:E(xixi')—nE(ﬁ')j

>
L
[N

- i():—i-,u,u')—n(V(Y)+ E(Y)E(X_'))]

>
=
[HEN

1
= n):+n,uy'—n—2—n,uy'j
n

>
=
[HEN

=——((n-)x)==x

5
[HEN
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3.2.6 Correlation Coefficient

Correlation Coefficient p is a measure of the linear relationship between two random

variables. (-1< p<1)

If the correlation between two variables is positive, then an increase (decrease) in the
value of one variable corresponds to an increase (decrease) in the value of the other.
Similarly a negative correlation would mean an increase (decrease) in the value of
one variable will correspond to an decrease (increase) in the value of the other. The
case of independence when there is no relation between two variables the correlation

Is zero. The correlation coefficient denoted by o, and is computed by (2.22) [12].

cov(X,Y)

Pr =COM(XY) = Jvar(X) var(Y)

(3.22)

Statistically

> (% - %)y, - )
COrT(X,Y) =1y = —=L (3.23)

> (%=X Y (-9

To prove this formula, let X and Y be two random variables with bivariate normal

distribution with joint probability density function

s = (= Gt el

2o, Oy \/’1— ok

F(x,y)="2 (3.24)

12



for so<x<o and —wo<y<oo where o, >0, o, >0 and —1< p <1. Consider a
set of paired data [(x,Yy;):i=12,...,n]where x, and y, are values of r.v. from

bivariate normal population with the parameters u,,u,,0,,0, and p. The

estimation of these parameters require the likelihood function given by

n

L:H f(x, ¥:) (3.25)

i=1

Maximization of L starts with differentiation of InLwith respected to

Uy, 1,0y ,0, and p. Equate the result to zero and then solve the system of

equations for all parameters. Let us deal with OlnL and olnL equated to zero.
a:ux aﬂy
22 (6 —at) 200 (%~ )
onL 1 = e
ouy — 21-p") o’ oo,
2 - 2 o
olmL 1 | P;(X. ux)+ ile(y. Hy)
ou,  2-p°) 040, e

then

ainL Z(Xi_‘ux) pZ(yi_ﬂY)
— =l + i=1 =0
Oty ox Ox Oy

13



IV SCETRED YR
— i=1 +i:1 =0

Otly OxOy Oy

By solving this equation system for g, and x, , the maximum likelihood estimates

for these parameters are obtained as

olnL oJlInL olnL
, and

oo, Ooy op

Subsequently, by equating to zero, substituting X and y

in place of x, and g, and Solving the system of equations

> (% =R - )

(3.26)

>
Il

n

> %=X [ -9

n n
are obtained.

3.2.7 Correlation Matrix

Let X =(X,,..., X,)" be n-dimensional random sample, the correlation between r.vs

X; and X is denoted by Nex, and given by

14



> (%~ X4, ~X))

> (% ~R)7 Y - K,

corr(X;, X;)=r, =

Obtained T, values can be represented in (nxn) matrix form

X% ' X Xq

3.2.8 Relation Between the Correlation Matrix and Covariance Matrix

The correlation matrix R formula can be rewrite in algebra matrix

cov(X;, X;)
Jvar(xi) var(X )

Mex, =Corr(X;, X;) =

=;COV(X X );
Jvar(X,) v ar(X ) (3.27)

Let D be a diagonal matrix such that the diagonal elements are the same as those of

the covariance matrix S i.e. ( d; =s;). From (3.27) the relation between the

correlation matrix and the covariance matrix is given by (3.28) [13].

R =D"?SD"? (3.28)

15



Chapter 4

PRINCIPAL COMPONENT ANALYSIS

Principal component analysis (PCA) is a technique used in statistics to facilitate the
easy analysis of multivariate data. It works by extracting the important information
from the data set and to expressing this information as a set of new orthogonal

variables called principal components (PCs).

4.1 Geometry of Dimension Reduction

Assume that X(nx p) is the data matrix composed of p variables and n observations.
Each row x; = (X, X5, %,), 1=1,2,3,...,n is a vector in p-dimensional space Figure

4.1.

Cloud of p points (variable) of coordinates x,

Figure 4-1: Cloud of n points (variable) in R"

Each column X; = (X, %, %) 1=12,3,..., p isa vector in n-dimensional space

Figur 4.2.

16



Cloud of nn points (observation) of coordinates x,

@

Figure 4-2: Cloud of n points (observation) in R”

4.1.1 Fitting p-dimensional Point (observation) Cloud
Let X be represented by n-point (observation) cloud in p-dimensional space. The

question is how to reduce the cloud into r-dimensional subspace such thatr < p. The

simplest case when r=1, the problem is how to project the n-point cloud into one-

dimensional subspace. Let L be the line of projection, it’s direction is given by the

unit vectoru € R”. For any vector of points x, e R”, let x; is the projection along
the direction u. g =x,-x; is the error vector (figure 4.3). The mean squared error

(MSE) is given by [14].

1 138
MSE ()= 3 Je f =23 . -xf
i=1 p i=1

17



RP s\\ \

Jofl=1
Figure 4-3: The projection of a point on the direction

The MSE (u) optimization is

1 19
MSE (u) =—Z||=ai||2 =2

=Bzaxxxx)

[EEN
o

23 (I -2 - (<))
p,

M- I I

-2+ ((WTx)u) (@x)u

(
(I - 26 @+ (@x)u) @)
(

I - 27 ™ )u+ (U)oU) "y

1
P
1
P
1
P

H

(I -7 )
X; || —( Zu (x; x)u]

x| —u” (E Zl:xiTxi )u

wﬁznnvawﬁ

-1
P
1
P
1
P
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Details of how to reduce MSE (u) by finding u e R" with |ju|| =1that maximizes

u' X" Xu are given in Theorems (4.2) and (4.3).

Theorem 4.1: A px p symmetric matrix A is orthogonally diagonalizable and can

be written as
T : T
A=TAT" => Ann; (4.1)
j=1

where A =diag(4, 4,,...4,), 4 being the eigenvalues of A, and I' =(m,,mn,,...,n,)
is an orthogonal matrix of eigenvectors n;of A [15].

Theorem 4.2 (The Principal Axes Theorem): Let A=TAT" be defined as in
theorem 4.1, associated with the quadratic form x"Ax, then the change of variable

x =Ty transforms the quadratic form x"Ax into the quadratic form y" Ay [16].

x"Ax = (T'y)" Al'y

(4.2)
=y TTALy =y Ay = A4y, + 4 Y, +...+ 4, Y,

Theorem 4.3: Let f(x)=x"Ax be the quadratic form of the pxp symmetric matrix

A and 4 >4, >...> 4, be the eigenvalues of A. Then the maximum value of f(x)

Is 4,. Hence, it occurs when X is a unit eigenvector corresponding to 4,. Generally

max xAX' =4 >4 >..>1 = min XxAX' ,
p

{x:maxxxT:} ximax xx" =1.
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The vector which maximizes (minimizes) xAx" under the constraint xx' =1 is the
eigenvector of A which corresponds to the largest (smallest) eigenvalue of A [16].

Proof : By Theorem 4.1
T : T
A=TAI = Z;‘ijnjnj
J=

By the Principal Axes theorem , set x = I'y then
y'y=(Ty) (Ty)=y'T'Ty=x"x=1

f(X) =X"AX=y Ay =AY, + 4,Y, +.. + 4, Y,
SAY +AY, +tAY,
SAMN Y, +ety,)
<AY'Y=4

Thus, f(x) <A, forall x with x"x =1. Let n, be the eigenvector of A
which corresponds to 4, then
An, =Any,

Thus,
T T T
f(m)=m, An,=m; An, = A, =4

Hence, the vector u which maximizes u™ X" Xu is the eigenvector of X' X that

corresponds to the largest eigenvalue.

The point cloud coordinates on a straight line are given by new factorial variable z,

Xu (4.3)

N
o
Il
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This factor is a linear combination of the original variables(x[l],x[Z],...,x[p]), with

coefficients represented by the vector u, i.e.
Z; = UpXy +UpXp) U X (4.4)

In 2-dimensional subspaces, the projection of a point cloud onto a plane is

represented by best linear fitting of u, and u, (u, and u, are orthogonal), i.e.

max u, X" Xu, and max u,X" Xu, (4.5)
Uy, g =2 Up lug[=1
u;u,=0

Theorem 4.4: The second factorial axis u,, is the eigenvector of X" X corresponding

to the second largest eigenvalue of X' X [17].

The representation of the n-point cloud in two-dimensional subspace is given by z,

and z, figure (4.4) such that

z,=Xu, and z, = Xu,

i-th individual

A

* Zy

v

Figure 4-4 Representation of X, X,,..., X, individuals in 2-dimensional subspace
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In r-dimensional sub space2<r < p, the factor directions are u,,u,,...,u, which

denote the eigenvectors of X'X corresponds to the largest eigenvalues

A, >4, >...> A . The coordinates for representing the point cloud of individuals on
r-dimensional subspace are given by z, =Xu,z,=Xu,,..andz, =Xu,,

T
Zr = (er’ ZZr""’ an)

p
Zir = zximumr (46)
m=1
4.1.2 Fitting n-dimensional Point (variable) Cloud

Let X be represented by a p point (variable) cloud in n-dimensional space. The aim is

to reduce the cloud into g-dimensional subspace such thatq < n. Algebraically, this is

the same case as p-dimensional point cloud (replace X by X").
The representation of p variables in g-dimensional subspace is done by the same

technique of the n individuals; the g-subspace is spanned by orthonormal

eigenvectors v;,v,,...,v, of XX corresponding to the eigenvalues z4 > 1, >...>

respectively. Representation of the p variables on the k™ axis are given by the

factorial variables
w, =XV, k=12..q (4.7)

where W, = (W, Wiy, -y Wy,)

In 2 dimensional subspace the j™ variable is represented as in Figure 4.5.
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A 2
+
j-th variable
Wy -t
1
L - -
1
I )
- 1 h! ‘/1
<€ . >
+ W,
v

Figure 4-5: Representation of j™ variable in tow dimensional subspace

4.1.3 Subspaces Relationships

Ilustration of the duality relationship between two models, requires the consideration

of the equations of eigenvector in R"

XXV, =V, k=12,..r (4.8)
where r = rank(XX") = rank(X) . Multiplying (4.8) by X" we get
X (XXT ), =X 14V,
(XTX)(XTv ) = 14 (XTv) (4.9)

From (4.9), each eigenvector (X'v, ) of (XTX) is corresponding to an eigenvector

v, of XX".
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Now consider the equations of eigenvectors in R”

X"Xu, =AU, k=12,...r (4.10)

Multiplying (4.10) by X
X(X"X)u, = XAu,

(XXT)(Xuy ) =4, (Xuy) (4.11)
Particularly, assume that v, =(Xu, ), by rewriting (4.11)

XXV, = AV, (4.12)

This implies that the non-zero eigenvalues of X" X are eigenvalues of XX' as well.

The relation between the eigenvectors v, and u, is given in Theorem 4.5.
Theorem 4.5 : (Duality Relations) Let r be the rank of X. For k < r, the eigenvalues
A, of XX and XX' are the same and the eigenvectors (u, and v, respectively)

are related by

1
V, = ——=—= XU, (4.13)
Vi
u =LXTV (4.14)
k \/ﬂ_k k '
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4.2 Mathematics of PCA

PCA is a procedure that seeks an r-dimensional basis that best captures the variance
in the data. The vector that has the largest variance is called the first principal
component. The orthogonal vector that captures the second largest variance is called
the second principal component, and so on.

4.2.1 Data Pre-treatment

Prior to starting PCA procedure, data are often pre-treated to transform it into

suitable form for analysis.

Variables frequently have different numerical units, and different range. For example
when there are two variables, the first one being a persons’ weight and the second
variable is the height, the weight has large range so it has a large variance, but the
height has small range, then it has small variance. Since PCA is a method of
maximum variance projection, it follows that the variable which has large variance
will contribute more than the variable with low-variance [18].

4.2.1(a) Unit Variance (UV) Scaling

In the data matrix each element of a column is divided by the column standard

deviation, see figure (3.6) and figure (3.7).
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Figure 4-6 Unit Variance (UV) scaling processing
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Figure 4-7 Unit Variance (UV) scaling

4.2.1(b) Mean-centering
The second method of pre-treatment of data is mean centering. In this process the

mean of each scaled variable are computed and subtract from the UV scaled data.
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Figure 4-8 UV Scaling and Mean-centering

4.2.2 Centering a Data Matrix Algebraically

Let X be nx p data matrix (p variables and n observations). The “center of gravity"

of the columns is a vector X = (X, X,,...,X,) in RP of the means X; of the p variables

(columns) which given by:

X

I
Il

=n"X"1,

|

wherel, is nxn unit matrix.

The covariance matrix S can be written as

S=n"X"X-xx" =n"(X"X-n"X"1 1] X)
=n"X"(1,-n"1,17)X
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Hence, (In —n‘llnlﬁ) is a centering matrix denoted by H. Rewriting the covariance

formula
S=n*X"HX (4.15)
is obtained.

Note that H is symmetric and idempotent(H =H?). Then the standardized data

matrix is denoted as X, and given by
X, =n""*HXD™? (4.16)

where D =diag(sy x )

4.2.3 Relationship Between SVD and PCA

Let X, be the centered matrix of X nx pdata matrix. By (2.2) the SVD of X_ given

as
X, =LAQ' (4.17)

Now calculate the matrix X_"X_

X,'X, =(LAQ") (LAQ")
=QA'L'LAQ’
=QA'AQ’
=QA; Q' (4.18)
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Where Aic is nxn matrix with diagonal entries 6> for i =1,2,..., p (3.2).

: . : . . 1
Since X, is centered data matrix, the covariance matrix £==X_"X_ by theorem
n

4.2). This can be decomposed as £ =U"AU then
( p

XX, =nx
=nUTAU
=U"(nA)U (4.19)

By (4.18) and (4.19), Q (right singular vectors) are the same of the eigenvectors of
matrix X, additionally, the singular values of X_ are related with the eigenvalue of

X,

nj, =67
2

5 =9 i=12,..,p
n

4.2.4 Standardized Linear Combinations (SLC)
A simple way to reducing dimension is to weigh all variables equally. This is
undesirable, since all of the elements of vector x are measured with equal importance

(weight). A more suitable approach is to study a weighted average, namely

Let X= (X, X,,...,X,)" be avector, and & = (&}, 52,...,5,))T weighting vector. Then

§Tx—zp:5x 5 =
=2.0;X; sothat > 5 =1 (4.20)
j=1 i=1
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Equation (4.20) is called a standardized linear combination (SLC). The goal is to

p
maximize the variance of the projection ' x = Zéjxj , I.e., to choose & such that
j=1

max Var(s' X) = {max Ss'Var(X)o (4.21)

{oo1=1} Sol=1y

The weighting vector 6 in (4.21) is found through the spectral decomposition of the
covariance matrix, by Theorems (4.2) and (4.3). The direction & is given by the

eigenvectorn, of the covariance matrix X =Var(X) that corresponds to the largest

eigenvalue A, .
The SLC with the maximum variance obtained from maximizing (4.21) is the first

PC y, =n,"X. In orthogonal direction to n, we compute the SLC with the second

highest variance y, =n,"X, the second PC.

By processing in this way the result for rv. X with E(X)=x and

Var(X)=X =TAI" the PC transformation can be defined as
Y=I"(X-p) (4.22)

The variable X was centered in order to obtain a PC variable Y with mean equal to

ZEero.

The next numerical example explains how to calculate the PCs from covariance

matrix.
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Example (4.1): Let X,, X, and X, be the r.vs. and X data matrix

125 137 121
144 173 147
X=[105 119 125
154 149 128
137 139 109

The sample mean X of X is (133 1434 126 )'

Covariance matrix S of X s

356.5 290 68.25
S=| 290 390.8 191
68.25 191 190

The ordered eigenvalues of S from the highest to the lowest are (729.3961,
183.8405, 24.0634) and the eigenvectors is the columns of next matrix corresponds

to the eigenvalues respectively

0.6163 -0.6355 -0.4651
I'=|0.7146 0.2031 0.6694
0.3310 0.7449 -0.5793

Then the first eigenvector n, which corresponding to the largest eigenvalue is the

first column of T
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0.6163

n, =| 0.7146
0.3310
The PC transformation is
Y =I'"(X -X)

vi) (m ) x—133
Y, |=|n, || X,-143.4
Y3 'll X, —126
y, = 0.6163(x, —133) + 0.7146(x, —143.4) + 0.3310(x, —126)

y, =—0.6355(x, —133) +0.2031(X, —143.4) + 0.7449(x, —126)

y, =—0.4651(x, —133) + 0.6694(x, —143.4) —0.5793(x, —126)

The first PC is y, which corresponds to the largest eigenvalue and the second PC is
y, is orthogonal to y, and corresponds to second largest eigenvalue.

4.2.5 PCs in Practice

The PCs are obtained from the SVD of the covariance matrix. In the principal
component transformation, the estimator u is replaced by X and X is replaced by

S. Spectral decomposition of the covariance matrix can be written as

S=GLG" (4.23)

Then the PCs are obtained by
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Y =(X-1X")G (4.24)

where L =diag((,,(,,...,£,) is the diagonal matrix of eigenvalues of S and

G =(9,,9,,--9,)is a matrix of orthogonal eigenvectors g; of S.

If all original p variables are uncorrelated (orthogonal, independent), then the

variables themselves are the PCs. Hence S would have the form

and the eigenvalues ¢ of the covariance matrix S will be

0, =5, i=12..p.

Correspondingly the normalized eigenvectors g; which have 1 in j™ position and

zeros else where are

9,/ =(0,0,..,1,0.,...,0) j=12..,p

Thus the j" PC is
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As another illustration, in the covariance S or correlation matrix R, a distinguishing
pattern may be identified, from which formulation of the principal components can
be deduced. For example, if one of the variables has the highest variance compared
with others, this variable will dominate the first component, accounting for the

majority of the variance.

Generally, the PCs are computed from S rather than R, specially if the PCs are used
in farther computation. However, in some cases, the PCs will be more interpretable if

calculated from R [19].

After centering the data matrix X, =X—-1 X', X! X_ is the covariance matrix which

C
is used in PCA. When the variables are measured with different unit, the data must

be standardized by dividing each variable (each column) by column standard

deviation (4.15) (Figure 4.6). In this case X[ X, is equal to correlation matrix R.

£

Then the analysis referred to correlation PCA [19].

The next simple bivariate example explains how the principal components are
changed when computed from original data, centered data and standardized data.
Example 4.2: Dtat given in Table 1 represents the number of engineers in various

disciplines with monthly salary, years of experience and working hours

X, = Experience(in years)
X, =Salary
X, = Work hours
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Table 1 Engineering salary

Engineering competence Experience Salary Work hour
(years) (IRD per month) | (hours/ day)
CAE Analyst 10 900,000 6
Design Engineer 10 900,000 5
Purchase Engineer 11 850,000 8
SCM Enigneer 8 850,000 7
Quality Engineer 11 850,000 5
Production Engineer 9 750,000 9
Maintenance Engineer 12 750,000 6
Mechatronics Engineer 10 800,000 8
OEM Sales Engnineer 9 950,000 7
Engineer 12 800,000 5
Application Engineer 10 800,000 9
Service Engineer 13 600,000 6
Homologation Engineer 10 850,000 9
Management 8 800,000 7
Electronics & Comunication 11 800,000 5
Lead final Assembly Line 11 800,000 8
RAMS Engineers Electrical 10 700,000 6
Structural Design Engineers 9 600,000 7
Configuration Engineers 10 600,000 7
Aerospace Stress Engineer 12 550,000 8

PCs from raw, centered and the standardized data matrices are computed for

comparison.

The eigenvalues and eigenvector of X" X are

4, =1.0100 v; =(0.0124 0.9999  0.0082)
A, =0.00007 v} =(0.9870 —0.0135  0.1603)
=0.000012 v; =(0.1604 0.0062 -0.9870)

3

Thus the PCs are
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Yix = 0.0124(X, — %) +0.9999(X,, — X,) +0.0082(X, — X,)
Yox = 0.9870(X, — %) —0.0135(X, —X,) +0.1603(X, — X,)

Yax =0.1604(X, — X ) +0.0062(X, — X,) —0.9870(X , — X,)

The eigenvalues and eigenvector of the covariance matrix for the centered data

S=X./X, are

A, =9.3341 v] =(-0.0093  1.0000  -0.0005)
A, =0.0041 v = (0.5533 0.0047 —-0.8329)
A, =0.0012 v] =(-0.8329 -0.0080 -0.5534)

the PCs are

Y, =-0.0093X, +1.0000X,, —0.0005X,
Y, =0.5533X, +0.0047 X, — 0.8329X,

Y, =—0.8329X, —0.0080X,, —0.5534X,

Eigenvalues and eigenvectors of the correlation matrix after standardizing data ( X.)

R=X."X, are

2, =1.6673 v =(0.7144  -05457 —0.4380)
2, =1.0282 vl =(-0.0084 —0.6326  0.7744)
= 0.3046 VI =(-0.6997 —0.5495 —0.4565)

3

the PCs in third case are
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Y, =0.7144X, —0.5457 X, —0.4380X,,
Y, =-0.0084X, —0.6326X, +0.7744X,

Y, =-0.6997X, —0.5495X , — 0.4565X,,

4.2.6 Mean and Variance of PCs

Let X ~(1,X) , Z=TTAT and Y =T (X — x) be a linear transformation then the

following properties apllies

a) EY;=0 j=12,..,p

EY, = E(] (X - ) =) E(X - ) =0

b) Var(Y;) =4 i=L12,..,p

Var(Y;) =Var(n; (X — 4)) by (3.18) and (3.19)

=n;Var(X)n, =4,

¢) Cov(Y;,Y;)=0 i j
Cov(Y,,Y;) = E(YY;)-E(Y)E(Y;) =0
d) Let S be the covariance matrix of original variables, and let Y = (X-1, X" )I

The covariance matrix of the PCs is

w
Il
>
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where A =diag(4,,4,,...,4,) is the eigenvalues of S, by (4.1)

S, =n'YTHY =n*((X-1, X)) H(X-1, X" ) =n"T'X"HXI
=T'SI'=A

4.3 Interpreting the Meaning of the PC

PCA produce two items of basic information for interpreting results. First one is the
correlation coefficients between the original variables and the PCs which are used in
interpreting the meaning of the PCs. The second one is each principal component is
associated with an eigenvalue which converts to the proportion of the variation that
explained by the PC.

4.3.1 Loading: Correlation Between the r.v. X and its PC

The covariance between the original r.v X and the PC Y is given in [2] as

Cov(X,Y)=E(XY)—E(X)E(Y")=E(XY")
=E(XX'T)—pp'T
=Var(X)I' (4.25)
=xr
=sTAT'T =TA

where the covariance matrix X =TAI"" and A =diag (4 Ayses 4,) IS the

eigenvalues and I' =(n,,m,,...,n,) - This is a matrix of orthogonal eigenvectors n; of

the covariance matrix.
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The correlation between each PC and the original variables is denoted by Pxy, and

given by
77i-/7~1 /ll i:1,2,..., p
Pxy; = : 72 Uij[ ] i=12 (4.26)
(O-Xixi J) Gxixi ]=14..0Q
Using actual data, (4.26) translates to
1/2
g
I’xin =0;| —— (4.27)
SXiXi

This correlation coefficient between the r.v X and PC is also called “loading”. Note

that sum of squares of loadings is equal to 1.

P 005 s
erivj :Z]:l R (4.28)

j=1 S><ixi Sxixi

4.3.2 Number of PCs to be used

Usually, only the important information is required to be drawn from a data matrix.
In this case, the problem is to find how many components are needed to be
considered. There are many methods to decide on the number of PCs. Four of them
are given below.

4.3.2(a) Scree Plot Test

The Cattell scree test (Cattell, 1966) is based on a graphical representation of the
eigenvalues. In this method, the eigenvalues are presented in descending order with

corresponding PCs in a scatter plot and drawing the curve. Cattell's scree rule says to
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drop all PCs after the elbow point. The logic behind this test is that the elbow point
divides the major or important PCs (factors) from the trivial or minor PCs (factors). This
rule is criticized because of the elbow point selection is subjective and depends on

the researcher [20].

6 -

5 -

4 - \—eblew point

N4

eigenvaleus
w

1 2 3 = 5 6 7 8 S 10
Principal Components
Figure 4-9 Scree plot test
4.3.2(b) Kaiser Criterion
This method is proposed by Kaiser (1960), it’s rule says only the PCs That
corresponding to the eigenvalues which are greater than 1 are retained for
interpretation [21]. Despite the ease of this method, it carries many weaknesses. One
such weakness is in the selection of PCs that do not satisfy the majority of the
variance. For instance, it regards a PC with an eigenvalue of 1.01 as ‘major’ and one
with an eigenvalue of .99 as ‘trivial” which is not a very healthy decision.
4.3.2(c) Horn's Parallel Analysis (PA)
This technique based on a simulation method that make a comparison between the
observed eigenvalues with those obtained from orthogonal normal variables. A PC is

maintained if the corresponding eigenvalue is greater than the 95th of the distribution

of eigenvalues derived from the random data [22].

The algorithem of Horn's Parallel Analysis (PA) can be explained as below.
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Step 1: Generation of a Random Data

i. Setting up the number of observations and variables in the original data;

ii. Setting up the values taken by original data set (e.g. Likert scale 1-5);

iii. Create a random data set by using SPSS or similar program.

Step 2:Computing Eigenvalues from the Random Data Correlation Matrix

i. Computing the eigenvalues from the random data set, either by a PCA using the
SPSS, or any equivalent program;

ii. Note the eigenvalues sequentially in MS Excel or similar software

iii. Repeat Step 1 (iii) and Step 2(i)-(ii) for at least 50 times to create a set of 50 or
more parallel eigenvalues.

Step 3: Average Eigenvalues

i. Find the mean, and 95th percentile of all eigenvalues generated by PCA of random
data sets;

ii. The result will be a vector of average (and 95th percentile) of eigenvalues. The
number of eigenvalues is the same as the number of variables, and in decreasing
order.

Step 4: Compare Real Data with Parallel Random Data:

i. Plot eigenvalues from the real and random data sets

ii. Retain only those factors whose eigenvalues are greater than the eigenvalues from
the random data.

4.3.2(d) Variance Explained Criteria

The proportion of variance of each PC is calculated by

Var(Yi) — ﬂ’l (429)

Zp:Var(Yj) Zp:;tj
j=1 j=1
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p
Let ¢, be the proportion of the sum of first g eigenvalues to Z;tj

j=1

Zq:Var(Yj) quflj
_= e

Zp:Var(Yj) Zp:/ij
j=1 j=1

?q (4.30)

Then the number of PCs to be considered are expected to satisfy above 70% of the

p
total variation Zﬂj .
-1

4.3.3 Rotation
Most of the foundations of rotation are developed by Thurstone (1947) and Cattell
(1978), who defends the use of rotation to make interpretation of PCs easier and

more reliable [23].

After the number of PCs has been selected, an attempt is made to facilitate
interpretation and the analysis often based on a rotation of the selected PCs. There
are two main kinds of rotation, orthogonal and oblique rotation.

4.3.3(a) Orthogonal Rotation

An orthogonal rotation method is described by a rotation matrix R, where the rows
represents the original factors and the columns represents the new (rotated) factors.
At the intersection of row i and column j we have the cosine of the angle 6 between

the original axis and the new axis.

R cosd, coso, cos6, -sing,
| cos6,, cosb,,| |sing, cosb,
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Figure 4-10 Orthogonal rotation in 2-dimensional space
4.3.3(b) VARIMAX
VARIMAX is the most popular orthogonal rotation technique, which was developed
by Kaiser (1958) [24]. In statistics, VARIMAX rotation means changing of
coordinates used in PCA that maximizes the sum of variances of the squared

loadings (squared correlations between variables and PCs).

v=2(a* -7’

Where q; , being the loading of j" variable of matrix loadings matrix Q of PC ( and

g/ the squared mean of loading. VARIMAX simple solution implies each PC has a

small quantity of large loading and a large number of small (or zero) loading.

If the loadings in each column were approximately equal, the variance would be
close to 0. As the squared loadings teands 0, the variance will approach a maximum,
Thus the VARIMAX technique attempts to make the loadings either large or small to

facilitate interpretation [13].
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The VARIMAX is available in most of factor ( PC ) analysis software programs, the
output usually includes the rotated loading matrix Q°, the variance accounted for
(sum of squares of each column of Q"), and the orthogonal rotation matrix R that

used to obtain Q" =QR..

4.3.3(c) Oblique Rotation

The aim of using the Oblique Rotation is to get a simple stracture by relocation of
factor axes. Oblique rotations strongly recommended by Thurstone [25], since PCs

are orthogonal, so they are used more rarely than their orthogonal rotation methods.

4.4 Example

The data in Table A.5 contians library collections, staff and operating expenditures
of the 60 largest college and Uni. libraries: Fiscal year 2008 [26]. The following

variables are defined on the data set.

X, =Number of volumes at end of year (in thousands)
X, =Number of e-books at end of year

X, =Number of serials at end of year

X, =Technician

X, =Librarians

X, =Other expenses

X, =Salaries and wages

X =Public service hours per typical week

X, =Gate count per typical week1

X,, =Reference transactions per typical week
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Since the variables were measured using different units, they are standardized and

the correlation matrix is used in PCA. The correlation matrix

1.0000 0.1926 0.4975 0.8644 0.7801 0.8677 0.8657 0.0631 0.2709 0.4047
0.1926 1.0000 0.2063 0.0895 0.0231 0.1433 0.0700 -0.1365 0.0867 0.0155
0.4975 0.2063 1.0000 0.4362 0.3050 0.4929 0.4195 -0.0193 0.0953 0.0165
0.8644 0.0895 0.4362 1.0000 0.8906 0.9534 0.9707 0.1516 0.3157 0.3657
0.7801 0.0231 0.3050 0.8906 1.0000 0.8504 0.8744 0.2453 0.2984 0.3428
0.8677 0.1433 0.4929 0.9534 0.8504 1.0000 0.9724 0.0787 0.1416 0.2947
0.8657 0.0700 0.4195 0.9707 0.8744 0.9724 1.0000 0.0902 0.2045 0.3110
0.0631 -0.1365 -0.0193 0.1516 0.2453 0.0787 0.0902 1.0000 0.2157 0.0436
0.2709 0.0867 0.0953 0.3157 0.2984 0.1416 0.2045 0.2157 1.0000 0.3408
0.4047 0.0155 0.0165 0.3657 0.3428 0.2947 0.3110 0.0436 0.3408 1.0000

As seen from the correlation matrix, the linear correlation between variables ranges

from very strong to very weak.

The ordered eigenvalues of the correlation matrix from highest to lowest are

I" =(5.0787 1.3459 10911 0.9236 0.6705 0.5527 0.1624 0.1318 0.0259 0.0175)

The matrix G is made up of eigenvectors g; of R.

0.4104 0.0839 -0.0493 0.0504 0.0041 -0.0598 -0.8249 0.3647 -0.0324 -0.0375
0.0665 0.4226 -0.6327 -0.3285 -0.5435 -0.0463 0.0921 -0.0039 -0.0320 0.0408
0.2288 0.3902 -0.0345 -0.3801 0.6724 -0.3918 0.1899 0.0618 -0.0278 0.0581
0.4327 -0.0146 0.0792 0.0290 -0.0443 0.1232 0.1072 -0.3177 -0.7264 -0.3850
0.4017 -0.1287 0.1401 0.0114 -0.1591 0.1568 0.4826 0.7193 0.0426 0.0151
0.4242 0.1341 0.1445 0.0391 -0.0982 0.0237 0.0602 -0.3393 0.6715 -0.4469
0.4258 0.0558 0.1586 0.0840 -0.0871 0.1312 0.0166 -0.3374 0.0255 0.8024
0.0710 -0.5486 0.2138 -0.6574 -0.2511 -0.3702 -0.0877 -0.0864 0.0143 0.0253
0.1527 -0.4465 -0.5471 -0.2096 0.3805 0.5171 -0.0235 -0.0755 0.1251 0.0016
0.1911 -0.3521 -0.4231 0.5094 0.0114 -0.6154 0.1356 -0.0514 0.0164 0.0303
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Table 2 lists the eigenvalues of the correlation matrix R in the first column, ratio of
each eigenvalue to the total in the second column, and the cumulative proportion in
the third column. From the third column it is evident that the first 4 eigenvalues
which are the variance of the first 4 PCs, represents about 84% of the total variation
in the data. Therefore, the use of the first 4 PCs is considered adequate for the

representation of the data.

Table 2 : Example 4.4 The proportion of variance of PCs

Eigenvalue Proportion of variance Cumulated Proportion
p q p
\ |/ > >, /3,
= j=1 j=1
5.0787 0.507865 0.51
1.3459 0.134589 0.64
1.0911 0.109109 0.75
0.9236 0.092359 0.84
0.6705 0.067049 0.91
0.5527 0.055269 0.97
0.1624 0.01624 0.98
0.1318 0.01318 0.99566
0.0259 0.00259 0.99825
0.0175 0.00175 1
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Figure 4-11: Example 4.4, The proportion of variance |, ZIJ of PCs
j=1
The coefficients used in the computation of the first four PCs that accounts for 84%

of total variation are given in Table 3.

Table 3 : Example 4.4 Characteristics coefficients (weights or eigenvectors of the
correlation matrix) for first 4 PCs for the PCA of libraries data.

Variables

gl 92 93 94
X, 0.4104 0.0839 -0.0493 0.0504
X, 0.0665 0.4226 -0.6327 -0.3285
X, 0.2288 0.3902 -0.0345 0.0290
X, 0.4327 -0.0146 0.0792 -0.3801
X 0.4017 -0.1287 0.1401 0.0114
X 0.4242 0.1341 0.1445 0.0391
X, 0.4258 0.0558 0.1586 0.0840
X 0.0710 -0.5486 0.2138 -0.6574
X, 0.1527 -0.4465 -0.5471 -0.2096
X0 0.1911 -0.3521 -0.4231 0.5094
Total 2.3945 25772 2.4229 2.2989

9/>0.0; 0.17 0.03 0.02 0.2
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The weights of PCs in Table 3 explain which variables are dominant in each PC. The

first PC which accounts for 51% of total variation in the data, is highly influenced by

the variables X, X,, X5, X, and X,, and using y; = (X —1,X")g; can be written as

y, =0.4104X, +0.067X, +0.228X, +0.433X, +0.402X, +0.424X, +0.426X, +0.071X, +0.1527X, +0.191X,

The second PC accounts for 13.5% of total variation is mainly composed of the

difference between X,, X, and X;, X,. This is given by

y, =0.084X, +0.423X, +0.390X, —0.015X , —0.129X, +0.134X,, +0.056X, —0.549X,, —0.447X, —0.352X,,

Similarly other PCs can be interpreted.

Scatter diagrams for PC1 versus PC2 and PC3 versus PC4 are given in Figure 4.12
and Figure 4.13 respectively. To highlight the effect of a variable on the PCs, the

points on the scatter diagrams are marked as “o” if the X, value involved in the
computation of the PC is less than X, and those greater than the X, are marked as

“+”. In Figure 4.12 two groups forms reasonably separate scaters mainly due to the

high influence X, has on PC1 (17% of weights assigned with PC1), compared with

its low influence on PC2 (3% of weights assigned to PC2).

In Figure 4.13, two groups of points are mixed as the influence of X, on both PC3

and PC4 is about the same, but opposite in sign.
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Figure 4-12 Example 4.4: PC1 versus PC2 of the college and Uni. Libraries data.
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Figure 4-13 Example 4.4: PC3 versus PC4 of the college and Uni. Libraries data.

The correlation between original variable and PCs computed by (4.27) are given in

table 4
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Table 4: Example 4.4 the correlation between original variable X,and PCs
Y,Y, and Y,

p
variables Iy, v, v, v, z rxin
j=1
X, 0.9596 0.0973 -0.0514 0.0484 0.935284
X, 0.1499 0.4903 -0.6609 -0.3157 0.799319
X, 0.5156 0.4527 -0.0361 -0.3653 0.605528
X, 0.9752 -0.0169 0.0828 0.0279 0.958935
Xs 0.9249 -0.1493 0.1463 0.0110 0.899255
Xs 0.9053 0.1555 0.1510 0.0376 0.867963
X, 0.9560 0.0647 0.1657 0.0807 0.952091
Xg 0.1601 -0.6365 0.2233 -0.6318 0.879798
X, 0.3441 -0.5179 -0.5715 -0.2014 0.753799
X1 0.4307 -0.4085 -0.4419 0.4895 0.787261

From table 4: we can see that the first PC has a positive high correlation with

X1, Xy, X5, X and X, Thus these variables are well explained by first PC. This

property is clearly visible in Figure 4.14, as all the correlation values pertaining to
these variables lie on the right hand side on the circle. The second PC is well

described by the difference between the sum of X, and X, and the sum of X, and X,

The position of these variables on Figure 4.14 clearly indicates this.

Figure 4.15 shows the same correlation regarding the second PC as in Figure 4.14.

X,, X, and X, have negative effect on the third PC as they are below the 0 line on
the vertical axis. In Figure 4.16 it is clear to see that the variables X,,X, and X, lie

on the left hand side on the circle, this means these variables have negative

correlation with 3 PC. The 4" PC depicts the difference between X,, and the sum

of X, X, X, and X, .
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Figure 4-16 Example 4.4 Correlation between original variables X,and PCs Y,, Y, .

The theory given in 4.5 (Duality Relations) is applied to the data in Appendix A
shows the relationship between the variables (X, X,, ...... , X;p) and the
representation of universites (obsevations) in two dimensions. PCs obtained from
X" X (Figure 4.17) and from XX (Figure 4.18). It indicates that for Harvard Uni. it

has the highest full-time equivalent value for Technician and Librarians ( X, and X, ).

Similarly Yale Uni. has the largest number of serials ( X, ) at end of year.
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Figure 4-17 Some outliers universities explanation by
the first and second PC
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Figure 4-18 Staff, and operating expenditures of
Uni.s (variables) in 2-dimension
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Chapter 5

CONCOLUSION

High dimensional data has been reduced by finding an orthogonal transformation.
This transform generated a new set of uncorrelated variables called principal
components that are combination of the original variables without losing the

importance of information inherent to the data.

The first component has the largest possible variance, i.e. it represents the largest
proportion of the total variance. Second PC has the second largest variance and so
on. After the PCs are computed, examine the correlation between the original

variables and these components.

PCA is regarded as a data reduction technigue. This means, the use of the first few
PCs that represents the great majority of variation in the data (preferably over 80%),
facilitates the analysis of a large data set with many variables by only analyzing the

first few PCs.

An application example with 10 variables with 60 observations for each variable are
studied, and it is found that the first 4 PCs represented 84% of the total variation in
the data set. This greatly reduces the load of work in the further analysis of the data.
Interpretations of the correlation between the variables and the PCs give a good idea

about the variables that have high influence on the PCs.
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Appendix A: Table 5 Data of Example 4.4

Collections. staff. and operating expenditures of the 60 largest college and Uni. libraries: Fiscal year 2008 [25].

S =
G s . Full-time- Operating 3 >

45 2 = ° equivalent expenditures (in 2 2 o

3 = % S staff thousands) L = D

E | 85| g g s = z
Institution = ET S = = > | 48

2 | g8 | ¢ 5 % g g |55

8, S5 | S S g | g s | s |g | §|g8

5 o = ] @ 2 8 ) 4 n ] S 45

~ e o o o) c S o = 8 o « o o 2

c2| E5 | Ex S s | & £ £2 (83 8 |§3

S| =28 | z¢8 Z et 3 S Sz |2 O | g
Harvard Uni, (MA) 1 16,250 | 1,167 110,628 |1,229 |418 | 117,884 |62,798 | 168 | 39,748 | 5,468
Yale Uni, (CT) 2 12,284 | 840,000 | 295,557 | 735 175 | 92,248 35,781 | 111 | 14,900 | 1,970
Uni, of California, Berkeley 3 11,020 | 610,920 | 87,876 487 92 48,020 24,305 | 77 27,502 | 2,100
Uni, of lllinois at Urbana- 4 |10,933 |319533 | 109,803 |473 |113 |40571 |20,088 |144 |85632 |6,214
Champaign
ﬁg\'/‘j”;%‘ﬁ(“”" inthe Cityof 15 | 9596 | 703121 |132,740 |616 |161 |56,089 | 27,240 |108 |s8Lss2 | 3,557
Uni, of Texas at Austin 6 9,447 593,450 | 56,847 528 130 | 43,850 20,773 | 120 | 87,115 | 20,693
Uni, of Michigan, Ann Arbor | 7 9,175 701,019 | 69,457 570 169 | 52,395 25,853 | 168 | 73,543 | 2,884
Stanford Uni, (CA) 8 8,558 419,515 | 33,903 680 151 | 78,377 41,382 | 105 | 20,100 | 3,074
XEBE?ZSCallfornla, Los 9 |8467 |495238 |175207 |596 |125 |53,154 |28,197 |97 |64072 |1,843
Uni, of Wisconsin, Madison 10 7,934 766,032 | 54,164 553 229 | 43,282 23,459 | 148 | 110368 | 2,640
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Cornell Uni, (NY) 11 | 7,750 |391,897 |89,000 |549 |118 | 46,798 | 22,667 | 146 | 98,000 | 1,497
Uni, of Chicago (IL) 12 | 7,745 |851,880 | 76,607 |323 |68 |34,680 |12,638 | 146 | 3388l | 779
Indiana Uni,, Bloomington 13 | 7,618 | 631,617 | 103228 |445 |94 | 36,282 | 16,061 | 168 | 90,061 | 2,446
Uni, of Minnesota, Twin Cities | 14 | 6,878 | 307,082 | 85,075 | 394 |93 | 40,734 | 18,118 | 100 | 36,527 | 2,300
g;‘r'{]gl‘:g’vasr"”gto”’ Seattle |15 | ggaq |387281 |61847 |458 |135 |36814 | 19,345 | 138 S1000 12128
Princeton Uni, (NJ) 16 | 6,779 | 763158 |51,746 |410 |97 |48970 |18,789 |116 | 13492 | 671
gﬁ;pg‘; Hiol'lrth Carolina at 17 |6,017 |510,110 |60,713 |452 |143 |41124 |18,944 |146 |60214 |2,543
Ohio State Uni,, Main Campus | 18 | 6,016 | 269,097 | 78,903 | 396 |62 | 35833 | 16,642 | 168 | 39,030 | 1,476
Duke Uni, (NC) 19 |5829 |144,939 | 61964 |369 |117 |37,331 | 16,444 | 161 | 9250 | 2,638
Uni, of Pennsylvania 20 5,756 340,446 | 61,676 370 111 | 37,599 16,991 | 111 | 38,589 | 5,000
Uni, of Pittsburgh, Main 21 | 5657 |591,468 |59141 |382 |120 |32907 |12,539 | 118 |sa789 | 2,587
Campus (PA)

Ezrr‘:;h’?’a”'asme Uni, Main |5, 15355 |42083 |88,668 |608 |134 |47.686 |24.437 |168 |46247 | 3,549
Uni, of Arizona 23 | 5266 | 645463 | 24466 | 239 |54 | 24676 | 9471 | 142 | 42916 | 531
g;‘r']'qgl‘:;’"g'”'a’ Main 24 |5158 |374731 | 163,032 |379 |101 |35930 |16,921 |149 |76424 | 2,886
Rutgers Uni,, New 25 5081 |195296 |74,031 |305 |66 |23918 |13,651 |108 |53419 | 1,216
Brunswick/Piscataway

New York Uni, 26 | 5073 |545025 | 67,960 |458 |58 | 44,603 |20,703 | 119 | 51,500 | 2,156
Northwestern Uni, (IL) 27 | 4,843 | 264,066 |82,822 |344 |97 |29,147 |12518 | 126 | 28218 | 1,427
Michigan State Uni, 28 | 4,839 | 66350 |83460 |265 |71 |23482 |10,714 | 148 | 42367 | 850
Uni, of Kansas 29 | 4799 |321,320 | 60,838 |228 |54 |19,543 |9,105 | 140 | 42,000 | 2,350
Uni, of lowa 30 | 4,791 | 486,760 | 59,442 |281 |98 |27,620 |12,335 | 113 | 36,273 | 1,610
Uni, of Oklahoma, Norman 51 | 4700 | 6ag929 [52522 |158 |37 | 16253 |4,396 |117 | 2930 | 523

Campus
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Uni, of Georgia 32 | 4637 128694 |80748 |315 |81 |24451 |10106 |137 |17,700 | 1,910
Arizona State Uni, at the 33 4422 |302266 |87566 |332 |93 28571 |12266 |149 | 75265 | 2,053
Tempe Campus

Uni, of Florida 34 | 4288 |280238 |71336 |402 |85 |29731 |13.905 |111 |56.209 | 1587
Uni, of Southern California 35 4,084 267,657 | 70,066 374 75 38,393 17,149 | 159 |53534 | 1,173
Louisiana State Uni, and

Agricultural & Mechanical 36 4,067 346,389 | 101,738 | 192 52 15,874 — 113 | 32,228 | 712
College

Texas A & M Uni, 37 3934 |461225 |86737 |359 |85 |34150 |12.329 |146 |49.683 | 880
Uni, of Colorado at Boulder | 38 | 3,928 | 175377 | 55519 |216 |58 | 21454 |8693 | 104 |40532 | 1,374
Uni, of South Carolina, 39 3885 |91.940 [21505 [275 |71 |19743 |7975 |140 |31415 |2969
Columbia

Johns Hopkins Uni, (MD) 40 | 3878 3’003’18 74701 |338 |80 |[32881 [13282 |120 |19373 | 1,593
\(’I‘\’Aag)“”gto” Uni,inSt.Louls |4y 13841 |382,891 |69400 |266 |93 |32366 |10.219 |120 |30000 | 1,409
Brown Uni, (RI) 42 | 3825 |284749 |60499 |208 |55 |19862 |9162 |112 |20064 | 510
Brigham Young Uni, (UT) 43 | 3,743 | 337546 |69.361 |383 |85 |27.167 |12.126 |105 |82238 | 3,070
SUNY at Buffalo (NY) 44 | 3,720 |369,721 |80431 |242 |60 |19.972 |10339 |168 | 26,000 | 562
Uni, of Kentucky 45 | 3720 |406,014 |73251 |287 |79 |21414 |8257 |135 |s57.316 |1.734
Miami Uni, (OH) 46 | 3,718 |511,114 | 91229 |146 |41 |9.488 4652 | 168 | 28.862 | 1529
g;rlk of Maryland, College 47 |3717 |88393 42393 |258 |119 |32.156 |12.600 |162 | 47982 |5.186
Uni, of Rochester (NY) 48 | 3,701 |51134 |28561 |207 |89 |24850 |8949 |119 |4478 | 1,004
Uni, of Cincinnati, Main 49 3632 |459542 |86363 |185 |49 |21466 |7.729 |95 |26700 | 1,600
Campus (OH)

Uni, of Hawaii at Manoa 50 3,559 193,133 | 55,276 237 64 17,860 9,108 135 |31,380 | 1,791
Uni, of Nebraska, Lincoln 51 3,554 321,180 | 46,865 187 49 12,633 6,465 96 15,004 | 1,000
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Uni, of Missouri, Columbia |52 | 3,494 | 25434 | 38,364 | 198 |55 |17.025 |6,386 | 114 | 36426 | 1,374
Florida State Uni, 53 | 3484 | 477476 | 62,093 | 250 |67 | 18563 | 7,090 | 142 |37531 | 1,219
gg{;?gﬁam“"a StaeUni,at 15, 13477 | 201497 |67,995 |268 |98 |23206 | 10,960 | 146 | 37,649 | 718
Wayne State Uni, (M1) 55 | 3,454 | 206,736 | 20,384 | 247 |53 | 20802 | 9,349 | 142 | 38599 | 916
Uni, of Notre Dame (IN) 56 3,393 |2,205 |82,866 | 260 |60 | 24077 | 10,306 | 126 | 19191 | 497
Uni, of Utah 57 3373 | 132850 | 48,777 | 370 |69 | 26290 | 12877 | 123 | 39.724 | 3,680
Uni, of California, San Diego | 58 | 3,373 | 231,216 | 34,800 | 367 |63 | 30,748 | 16,330 | 114 |51347 | 880
Uni, of Connecticut 59 3,368 338,682 | 71,371 152 61 16,262 9,420 114 | 51,539 | 303
Uni, of California, Davis 60 | 3354 |504,736 |50442 |231 |53 | 18652 |9,568 |95 |33978 | 1,129
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Appendix B: Matlab Code of Example 4.4

close all
clc
clear

x=load ('2013.dat");
[n pl=size (x)

y=vertcat (ones(n/2,1),zeros(n/2,1));

h=diag(ones(n,1))-ones(n,n)./n; % Centering Matrix
y=mean (x) ;
a=x-repmat (y,n,1); % Substracts mean

d=diag(l./sgrt(sum(a.*a)'/n));

xs=h*x*d;

xs=xs./sqrt (n) ;

rr=xs'*xs

[gamma lambdal]=eigs(rr,p, 'la') % Eigenvalues sorted by
size from largest to smallest (Note: Command generates a
Warning (Disregard it))

lambda=(lambdal*ones(p, 1)) '; % Turns Eigenvalue matrix
into a row vector

wl=gamma.*sgrt (repmat (lambda,p, 1)) % coordinates of food
w=wl(:,1:2) % Two eigenvectors with

highest eigenvalues

zl=xs*gamma; % coordinates of families

pc=sqgrt (n/p) .*zl; % xs' scaled by square root of p

[f 1]=size(pc)

z=pc(:,1:4);

aa=corr (pc) ;

pc(:,1:4) =
rotatefactors(pc(:,1:4), "Method', 'varimax', 'Coeff', gamma)
s=sum (lambda) ;

el=lambda/s;

r=horzcat (pc, a) ;

r=corr (r);
rl=r(11:20,1:4);

y=vertcat (ones(n/2,1),zeros (n/2,1));
$Plotting relative proportion of variance explained by PCs
nr=1:p;

figure (2)

scatter (nr,el, 75, "MarkerFaceColor','r")
xlabel ('Index")

ylabel ('Variance Explained')
title('colleage & uni. libraries')
x1im([0.5 6.57])

ylim([-0.02 17)

$plot (nr,el,'r")
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%Plot the correlation of the original variable with the PCs.
figure
hold on

%$Plotting Eigenvalues

subplot(2,2,4, 'FontSize',10)
gscatter(pc(:,3),pc(:,4),y, 'bb",'00",7,'0ff")
xlabel ('PC3 ")

ylabel ('PC4 ")

title('third vs. fourth PC'")

$Plot of the first vs. second PC
subplot(2,2,1, '"FontSize',10)
gscatter(pc(:,1),pc(:,2),y, 'bb","'00",7,'0ff")
xlabel ("PC1 ")

ylabel ('PC2 ")

title('First vs. Second PC'")

%$Plot of the second vs. third PC
subplot(2,2,2, 'FontSize',10)
gscatter(pc(:,2),pc(:,3),y, 'bb",'00",7,'0ff")
xlabel ("PC2 ")

ylabel ('PC3 ")

title ('Second vs. Third PC'")

%$Plot of the first vs. third PC
subplot(2,2,3, 'FontSize',10)
gscatter(pc(:,1),pc(:,3),y, 'bb"','00",7,'0ff")
xlabel ("PC1 ")

ylabel ('PC3 ")

title('First vs. Third PC')

hold off

%Plot the correlation of the original variable with the PCs.

1,[0 0], "Color', k")
line ([0 01,[1.2 -1.2],'"Coloxr"','k")
title('colleage & uni. libraries')
xlabel ('First PC'")
ylabel ('Second PC")

21
.2 1.
2 1.
I

circle = rsmak('circle');
fnplt(circle)

text (rl(1l,1),rl(1,2),'xXl")
text (rl(2,1),rl(2,2),'X2")
text (rl(3,1),rl(3,2),'X3")
text (rl(4,1),rl(4,2),'X4")
text (rl1(5,1),rl(5,2),'X5")
text (rl(6,1),rl(6,2),'X6")
text (rl(7,1),rl(7,2),'X7")
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)

text (r1(8,1),rl1(8,2),"'X8")
text (rl1(9,1),r1(9,2),'X9")
text (rl1(10,1),r1(10,2), 'X10"
hold off

figure

hold on

x1lim([-1.2 1.2])

ylim([-1.2 1.217)

line([-1.2 1.2],[0 0], '"Color'
line ([0 0],([1.2 -1.2],'Color'

AR
AR

title('colleage & uni. libraries')

xlabel ('"lst PC'")
ylabel ('3rd PC")

circle = rsmak('circle');
fnplt (circle)

)

s k)
s k)

text(rl(1,1),r1(1,3),'X1l")
text(rl(2,1),rl1(2,3),'X2")
text (rl1(3,1),r1(3,3), 'X3")
text(rl(4,1),r1(4,3),'X4")
text (rl(5,1),rl1(5,3),'X5")
text(rl(6,1),rl1(6,3),'X6c")
text(rl(7,1),x1(7,3),"'X7")
text(rl(8,1),r1(8,3),'X8")
text(rl(9,1),r1(9,3),'X9")
text (rl1(10,1),r1(10,3), "'X10"
hold off

figure

hold on

xlim([-1.2 1.2])

ylim([-1.2 1.217)

line([-1.2 1.2],[0 0], 'Color'
line ([0 01,[1.2 -1.2],'Color'
title('colleage & uni. libraries')
xlabel ('2nd PC")

ylabel ('3rd PC")

circle = rsmak('circle');

fnplt(circle)

text(rl(l,2),rl(1,3),'X1")
text(rl(2,2),rl(2,3),'X2")
text(rl(3,2),rl(3,3),"'X3")
text(rl(4,2),rl(4,3),'X4")
text(rl(5,2),rl(5,3),'X5")
text(rl(6,2),rl(6,3),'X6e")
text(rl(7,2),x1(7,3),"'X7")
text(rl(8,2),rl(8,3),'X8")
text(rl(9,2),rl1(9,3),'X9")
text(rl(10,2),r1(10,3), "'X10"
hold off

figure

[X,Y,Z2] = sphere(16);

)
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xx = pc(:,1);
y = pc(:,2);
z = pc(:,3);
xlabel ('"First PC'")
ylabel ('Second PC")

zlabel ('Third PC")
scatter3(xx,vy,z, "MarkerFaceColor','g")

figure
hold on
xlim([-1.
ylim([-1.
line([-1. 1,10 0], "Color','k")
line ([0 O 1.2 -1.2]1,'Color',"k")
title('colleage & uni. libraries')
xlabel ('3rd PC")

ylabel ("4th PC")

2 1.27)
2 1.27)
2 1.2
1.0

circle = rsmak('circle');
fnplt (circle)

text(rl(1,3),rl(1,4),"'X1")
text(rl(2,3),rl(2,4),'X2")
text(rl(3,3),rl(3,4),"'X3")
text(rl(4,3),rl(4,4),'X4")
text(rl(5,3),rl(5,4),"'X5")
text(rl(6,3),rl(6,4),'X6e")
text(rl(7,3),x1(7,4),"'X7")
text(rl(8,3),rl(8,4),'X8")
text(rl(9,3),rl(9,4),'X9")
text(rl(10,3),rl1(10,4),'X10")
hold off

max=load ('max.dat'")
pcl=max(:,1:2)
pc2=max (:,3:4)
namepcl=["'Harvard '
'Yale !
'columbia'’
'Taxas !
'Stanford'];

%Universities
figure
hold on
title ('Univesities');
xlabel ("PC1");
ylabel ('PC2");
xlim([=-2 47]);
ylim([-2 2]);

line([-2 4],[0 0], 'Color'","
line ([0 0],[-2 2], 'Color'","

for 1i=1:5
text (pcl (i, 1) ,pcl(i,2),namepcl (i, 1:3), "FontSize',12);
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end;

namew=/['x1
'X2 \}
IX3 \}
'X4 \}
'X5 1
'X6 1
'X7 1
'X8 1
'Xg 1
'x10'7];

figure

hold on

title ('variables');
xlabel ("PC1");
ylabel ('PC2");
x1lim([-0.2 1.2]);
ylim([-0.7 0.71);

line([-0.2 1.2],[0 0], 'Color','b");
line ([0 0], [1 -1],'Color','b");

for i=1l:p

text(w(i,1l),w(i,2),namew(i,1:3), 'Color','r', 'FontSize',12);
end;
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