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ABSTRACT 

Researchers and students sometimes need to deal with large volumes of data, causing 

them to have difficulty in the analysis and interpretation of these data. In the 

statistical analysis of high dimensional data, it is required to reduce the dimension of 

data set without losing any important information.  One way of achieving this goal is 

the use the principal component analysis (PCA). The PCA objectives are to extract 

an important part of information from the data set, reducing the size of data with no 

damage to data and information. This is achieved by finding a new set of 

independent (uncorrelated) variables called principal components which are obtained 

as a linear combination of the original variables. The calculation of PCs means the 

computation of eigenvalues and eigenvectors for a positive-semidefinite symmetric 

matrix. The first PC has the largest proportion of variance of the data, and the second 

component has the second largest proportion of variance and is orthogonal to the first 

principal component. Remaining PCs represents the remainin variance in descending 

order, and each PC is orthogonal to its prdecesor. After computing the PCs, the first 

several PCs that represents the large part of variation are selected for use in further 

analysis. Finally, discussion of correlation between the PCs and original variables 

and determine which variable has more influence on each PC. 

 

 

Keywords: Principal Component Analysis (PCA), orthogonal matrix, eigenvalue, 

eigenvector, singular value decomposition (SVD), covariance, correlation.  
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ÖZ 

Araştırmacılar ve öğrenciler çalışmalarında büyük veri kitleleri ile çalışmak 

durumunda kalabilirler. Bu durum verilerin analizinde ve yorumunda güçlükler 

yaratabilir. Büyük boyutlu verilerin istatistiksel analizinde verideki önemli bilgileri 

kaybetmeden veri boyutu indirgemesi yapılması gereksinimi vardır. Bu amaca 

ulaşmanın yollarından bir taneside temel bileşenler analizi (TBA) dir. TBA’nın 

amacı verideki önemli bilgi içeriğini çıkarmak, veri boyutunu indirgerken veriye ve 

içerdiği bilgiye hasar vermemektir. Bu hedefe ulaşırken temel bileşenler (TB) denen, 

mevcut değişkenlerin lineer bir kominasyonu olan,  birbirinden bağımsız yeni 

değişkenler tanımlanır. TB’lerin hesabında prensip olarak pozitif-yarıkesin simetrik 

bir matrisin özdeğer ve özvektörlerinin hesabı gerekir. Birinci TB verideki salınımın 

(varyasyonun) en büyük kısmını, ikinci TB birinciye orthogonal olub verideki 

salınımın ikinci en büyük kısmını temsil eder. Benzer şekilde geriye kalan TB’lerde 

azalan oranda salınımı temsil eder ve her biri kendinden önce gelene ortogonaldir. 

TB’lerin saptanmasından sonra, verideki salınımın büyük kısmını temsil eden ilk 

birkaç TB, daha ileri analiz ve yorumda kullanılmak üzere seçilir. TB’ler ile verideki 

değişkenler arasındaki ilişki ve hangi değişkenlerin TB üzerinde daha büyük etkisi 

olduğu incelenir. 

 

 

Anahtar kelimeler: Temel bileşenler analizi (TBA), ortogonal matris, özdeğer, 

özvektör, tekil değer ayrışımı (TDA), kovaryans, korelasyon. 
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Chapter 1 

1 INTRODUCTION 

At the beginning of a statistical study, the researchers often collect a set of data. 

When the data set and the variables involved are large, processing, analysis and 

interpretation becomes very demanding. Hence, the principal component analysis 

PCA method studied in this thesis provides an alternative by finding a set of linear 

combinations of the variables representing the data.  

Initial foundations for PCA was defined by Karl Pearson (1901) [1], and it is now 

used in many scientific fields. PCA ingredients used to find the most influential 

variables of data (a combination form) and that illustrate a greater part of the variance 

in the data. 

PCA is a technique used in statistical analysis to transform a large number of 

correlated variables to a smaller number of uncorrelated (orthogonal) components 

which is called principal components, while maintaining the important information 

of the original data, and this makes the data easier to understanding and 

representation. 

In the third chapter some mathematical concepts which are important to 

understanding the PCA technique are introduced. Fourth chapter begins discussing 

the reduction of the dimensions geometrically, followed by the Mathematics of PCA 

and its properties are discussed.  Third part of the chapter discusses the interpretation 
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of PCA and the correlation between PCs and the original variables and the methods 

of how to choosing the number of PCs that provides the best explanation of 

population data. In the final part of chapter 4, a data set is used to highlight the 

theoretical concepts of PCA in application, as well as interpretation of the results.  
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Chapter 2 

2 LITERATURE REVIEW 

According to Jolliffe (2002) [2], the first description of the PCA was given by Karl 

Pearson in (1901). In his article ”On lines and planes of closest fit to systems of 

points in space,” [1], he also discussed the geometrical representation of the data and 

the best lines representing data. He concluded that “The best-fitting straight line to a 

system of points coincides in direction with the maximum axis of the correlation 

ellipsoid”. Also he pointed to the possibility of the using of analysis of several 

variables. 

Jolliffe (2002), Hotelling (1933; 1936) and Girshick (1939) provided significant 

contributions to the development of PCA. 

 Hotelling (1933) started with the ideas of factor analysis, enabling the determination 

of a smaller set of uncorrelated variables which represent the original variables. He 

also chose the component which maximizes the total variances of original variables 

[3]. In a further study, Hotelling gave the accelerated version of power method for 

finding PCs [4]. 

Girshick (1939) illuminated the asymptotic variances and covariance of the 

coefficients of PCs [5]. 
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Anderson (1963) discussed the PCA from the theoretical point of view [6]. However, 

the use of PCA remained limited until the development of computers. Parallel to the 

rapid developments in the computer hardware and software in 1960s resulted in  a 

significant contribution to PCA.  

Rao (1964) found new ideas for the use, techniques and interpretation of PCA [7]. 

Gower (1966) disscused the relation between the PCA and other statistical 

techniques [8]. Jeffers (1967) disscused the practical side of PCA through a practical 

application in two case studies of PCA [9]. 
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Chapter 3 

3 SOME MATIMATICAL AND STATISTICAL 

CONCEPTS 

In this chapter some basic mathematical and statistical concepts that will be required 

to understand the Principal Components Analysis (PCA) and related topics in 

subsequent chapters are introduced.  

3.1 Matrix Algebra Concepts 

3.1.1 Eigenvalue and Eigenvector 

In many statistical applications matrix algebra is widely used. Hence, some basic 

ideas on matrix algebra are given below to facilitate the understanding of the 

statistical methods introduced in the following chapters. Let A be any square matrix 

of size n n . If there exist a non-zero vector x and scalar λ such that  

                                           Ax x                                               (3.1)                                                                                    

then the vector x is called eigenvector of A corresponding to the eigenvalue  [10]. 

3.1.2 Orthogonal Matrix  

An n n  matrix A is called orthogonal if T

nA A I . 

3.1.3 Singular Value Decomposition (SVD) 

Let A be a m n  matrix of real-values of data and with rank = r. The SVD of  matrix 

A is the factorizing of A into the multiplication of three matrices. 
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T

A = UDQ                                    (3.2) 

where U is a m m  matrix with orthogonal columns. The columns of U are referred 

to the left singular vectors and ( T
U U = I ), while Q is an n n  orthogonal matrix, 

the columns of Q (or rows of 
T

Q ) are referred to the right singular vectors 

( )T
Q Q = I , and D is a m n  rectangular diagonal matrix defined as 

                       
( , )

0                        

i i j
d i j

i j

 
 


 

where 1,2,...,  and 1,2,...,i n j p  , the values ( , ) id i j   in the main diagonal of D 

is known as the singular values of A [11]. 

3.1.4 Quadratic Form 

Let A be n n  matrix. Then, the function ( ) : nf x  definded by  

( )f x  Tx Ax  

is called the quadratic form of A. 

3.2 Statistical Concepts 

To understand the statistical concepts, suppose that a random sample is taken from 

population. 

3.2.1 The Population Moment, Mean and Variance  

Let X be a random variable with p.d.f. ( )f x . The thk  moment about the origin of a 

r.v. X, denoted by k , is the expected value of kX ;  

                                            ( ) ( )k k

k E X x f x dx




                                  (3.3) 
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when X is continuous and                               

                             ( ) ( )k k

k

x

E X x f x        k=0, 1, 2, 3…    (3.4) 

when X is discret. The first moment when (k=1) ( )E X   is called the population 

mean.  

The thk  moment about the mean is called the central thk  moment of a random 

variable X, and is defined as the expected value of  ( )kX   given by 

                                ( ) ( ) ( )k kE X X f x dx 




                             (3.5) 

When k=2, we have the variance 2

X  and can also be expressed as 

         2 2 2 2( ) ( ) ( ( ))X E X E X E X                     (3.6) 

The standard deviation  is the value that gives information on how the values of the 

random variable are deviating from the population mean, and is given by the square 

root of the variance.   

3.2.2 The Sample Moment, Mean and Variances  

Assume we have a sequence of random samples ,1 2 3 pX ,X ,X ,... X , the rth sample 

moment for any n of random samples is given by 
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1

1 p
r r

p i

i

X X
p 

    1,2,3,...p              (3.7) 

The first sample moment is called the average and is defined by 

                                      
1

1 n

n i

i

X X
n 

       1,2,3,...n            (3.8)  

Each of random samples has numerical average value
nx , which is defined by 

                                      
1

1 n

n i

i

x x
n 

                                         (3.9) 

where ix  is the observation value of iX . 

3.2.2(a) The Properties of Sample Moment  

a) The expected value of r

nX  

         
,

1 1 1

1 1 1
[ ] [ ] [ ( )]

n n n
r r r

n i i i r

i i i

E X E X E X
n n n


  

                  (3.10) 

If the r.vs  ;  1, ,iX i n  are identically distributed, then 

                                     [ ] .r

n rE X                                         (3.11) 

In the case of r=1 the expected value of  nX  is the mean (  ).  

b) The ( )r

nVar X , where we have 1 2, ,..., nX X X  samples 

               
2

1 1

1 1
( ) ( ) ( ).

n n
r r r

n i i

i i

Var X Var X Var X
n n 

                 (3.12) 
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When samples are independent, 

                        
2

1

1
( ) ( ).

n
r r

n i

i

Var X Var X
n 

                             (3.13) 

If the samples are independent and identically distributed (i.i.d.), then 

                            
1

( ) ( )r

n rVar X Var X
n

                              (3.14) 

when r=1 

                                
21

( ) ( )nVar X Var X
n n


                          (3.15) 

3.2.3 The Sample Variance  

The sample variance of n random samples is denoted by 2s and given by  

                              

2

2 2 21

1

( )
1

1 1

n

i n
i

i

i

X X

s X nX
n n







  
 


                 (3.16) 

The expected value of sample variance is 

2 2 2 2

1 1

1 1
( ) ( ) ( )

1 1

n n

i i

i i

E s E X X EX nE X
n n 

 
       

   

Since 2 2 2( )iE X     then  
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2

2 2 2 2 21
( ) ( ) ( )

1
E s n n

n n


   

 
     

  
        (3.17) 

Hence 2s  is an unbiased estimator of 2 . The purpose of division by 1n  in 

equation (3.16) is to ensure that 2S is an unbiased estimator for the variance 2 . 

Division by n instead of 1n  will introduce a negative bias methodically producing 

too-small estimator for 2  

3.2.3(a) Properties of Variance and Covariance 

,

( ) ( )                                              (3.18)

( ) ( )                                                              (3.19)

( ) ( ) ( , ) ( ,

i j

T T

i j X X

i j

T

Var X Var X a a

Var X b Var X

Var X Y Var X Cov X Y Cov Y

 

 

   

a a a

A A A

) ( )                

( , ) ( , ) ( , )                                          

( , ) ( , )                                                        T

X Var Y

Cov X Y Z Cov X Z Cov Y Z

Cov X Y Cov X Y



  

A B A B

   

3.2.4 Covariance 

The covariance is a measurement tool between two random variables and is defined 

as 

                           cov( , ) ( ) ( ) ( )
i ji j X X i j i jX X E X X E X E X           (3.20) 

Statistically the sample covariance is  

                    , 1

( )( )

cov( , )
1i j

n

i j

i j

i j X X

X X X X

X X s
n



 

 



                (3.21) 

The covariance between a random variable iX  and itself is the variance 
2

iX of the 

variable.  
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3.2.5 Covariance Matrix 

 If the r.v. X, is p-dimensional e.g.,  1 2 ...
T

pX X X X  , then theoretical 

covariance among all elements is given by the covariance matrix Σ . 

1 1 1

1

. . .

. . . . .

. . . . .

. . . . .

. . .

p

p p p

X X X X

X X X X

 

 

 
 
 
 
 
 
  
 

Σ

 

and the covariance matrix of the sample is denoted by S  

1 1 1

1

. .

. . . .

. . . .

. .

n

n n n

x x x x

x x x x

s s

s s

 
 
 


 
 
 
 

S

 

 S is an unbiased estimator ofΣ . To show this, assume r.v.s 

   1 2 1 2, ,...,  and , ,...,
T

T

n nX x x x X x x x   
 
are given  

 

1

1

1

1
( )            

1

1
( ) ( )

1

1
( ) ( ( ) ( ) ( ))

1

1 1

1

1
( 1)

1

n

i i

i

n

i i

i

n

i

E E x x nxx
n

E x x nE xx
n

n V x E x E x
n

n n n n
n n

n
n



 







    
  

    
  

 
     

  

 
     

  

  








S

Σ

Σ Σ

Σ Σ
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3.2.6 Correlation Coefficient  

Correlation Coefficient  is a measure of the linear relationship between two random 

variables. ( 1 1)    

If the correlation between two variables is positive, then an increase (decrease) in the 

value of one variable corresponds to an increase (decrease) in the value of the other. 

Similarly a negative correlation would mean an increase (decrease) in the value of 

one variable will correspond to an decrease (increase) in the value of the other. The 

case of independence when there is no relation between two variables the correlation 

is zero. The correlation coefficient denoted by  , and is computed by (2.22) [12]. 

                    
cov( , )

( , )
var( ) var( )

XY

X Y
corr X Y

X Y
                       (3.22) 

Statistically 

                  1

2 2

1 1

( )( )

( , )

( ) ( )

n

i i

i
XY

n n

i i

i i

x x y y

corr X Y r

x x y y



 

 

 

 



 

                (3.23)   

To prove this formula, let X and Y be two random variables with bivariate normal 

distribution with joint probability density function  

2 2

2

1
2

2(1 )

2
( , )

2 1

X X Y Y

X X Y Y

x x y y

X Y

e
f x y

   


   

  

           
                     




             (3.24) 
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for x   and y   where 0X  , 0Y   and 1 1   . Consider a 

set of paired data  , : 1,2,...,i ix y i n   where ix  and iy  are values of r.v. from 

bivariate normal population with the parameters , , ,X Y X Y     and  . The 

estimation of these parameters require the likelihood function given by 

                              
1

( , )
n

i i

i

L f x y


                                 (3.25) 

Maximization of L starts with differentiation of   ln L with respected to 

, , ,X Y X Y     and  . Equate the result to zero and then solve the system of 

equations for all parameters. Let us deal with 
ln

X

L






 and 

ln

Y

L






 equated to zero.  

1 1

2 2

2 ( ) 2 ( )
ln 1

2(1 )

n n

i X i Y

i i

X X X Y

x y
L

  

    
 

 
  

    
   

  

 
 

1 1

2 2

2 ( ) 2 ( )
ln 1

2(1 )

n n

i X i Y

i i

Y X Y Y

x y
L

  

    
 

 
  

    
   

  

 
 

then 

1 1

2

( ) ( )
ln

0

n n

i X i Y

i i

X X X Y

x y
L

  

   
 

 


   


 
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1 1

2

( ) ( )
ln

0

n n

i X i Y

i i

Y X Y Y

x y
L

  

   
 

 


   


 
 

By solving this equation system for X and Y , the maximum likelihood estimates 

for these parameters are obtained as  

X x          Y y   

Subsequently, by equating 
ln ln

,  
X Y

L L

 

 

 
 and 

ln L






 to zero, substituting x  and y  

in place of X  and Y and Solving the system of equations  

2

1

( )

ˆ

n

i

i
X

x x

n
 






 , 

2

1

( )

ˆ

n

i

i
Y

y y

n
 






 

                 1

2 2

1 1

( )( )

ˆ

( ) ( )

n

i i

i

n n

i i

i i

x x y y

x x y y

n n

 

 

 



 



 

             (3.26) 

are obtained. 

3.2.7 Correlation Matrix 

Let 1( , , )T

nX X X be n-dimensional random sample, the correlation between r.vs 

 and i jX X  is denoted by 
i jx xr  and given by 
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1

2 2

1 1

( )( )

( , )

( ) ( )

i j

n

ik i jk j

k
i j x x

n n

ik i jk j

k k

x x x x

corr X X r

x x x x



 

 

 

 



 

 

Obtained 
i jx xr values can be represented in ( )n n  matrix form 

 

1 1 1

1

. .

. . . .

. . . .

. .

n

n n n

x x x x

x x x x

r r

r r

 
 
 


 
 
 
 

R
 

3.2.8 Relation Between the Correlation Matrix and Covariance Matrix 

The correlation matrix R formula can be rewrite in algebra matrix  

cov( , )
( , )

var( ) var( )i j

i j

X X i j

i j

X X
r corr X X

X X
   

1 1
                                = cov( , )

var( ) var( )
i j

i j

X X
X X              (3.27) 

Let D be a diagonal matrix such that the diagonal elements are the same as those of 

the covariance matrix S i.e. ( ii iid s ). From (3.27) the relation between the 

correlation matrix and the covariance matrix is given by (3.28) [13].  

                             -1/2 -1/2
R = D SD                                  (3.28)  
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Chapter 4 

4 PRINCIPAL COMPONENT ANALYSIS 

Principal component analysis (PCA) is a technique used in statistics to facilitate the 

easy analysis of multivariate data. It works by extracting the important information 

from the data set and to expressing this information as a set of new orthogonal 

variables called principal components (PCs). 

4.1 Geometry of Dimension Reduction 

Assume that ( )n pX  is the data matrix composed of p variables and n observations. 

Each row
1 2( , ,..., )i i i ipx x xx , 1,2,3,...,i n  is a vector in p-dimensional space Figure 

4.1. 

 
Figure ‎4-1: Cloud of n points (variable) in n   

 

Each column 1 2( , ,..., )j j j njx x xx  1,2,3,...,j p   is a vector in n-dimensional space 

Figur 4.2. 



17 

 

 
Figure ‎4-2: Cloud of n points (observation) in p  

 

4.1.1 Fitting p-dimensional Point (observation) Cloud  

Let X be represented by n-point (observation) cloud in p-dimensional space. The 

question is how to reduce the cloud into r-dimensional subspace such that r p . The 

simplest case when r=1, the problem is how to project the n-point cloud into one-

dimensional subspace. Let L be the line of projection, it’s direction is given by the 

unit vector pu . For any vector of points pix , let 
ix  is the projection along 

the direction u. 
i i iε = x - x  is the error vector (figure 4.3). The mean squared error 

(MSE) is given by [14]. 

2 2

1

1 1
MSE ( )

p

ip p

  
n

i i i

i=1

u ε = x - x  
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Figure ‎4-3: The projection of a point on the direction 

The MSE (u) optimization is  

  

2 2

1

1

1

1

1 1
MSE ( )

1
               =

1
               =

1
              = 2

1
              = 2

p

i

p

i

p

i

p

i

p p

p

p

p

p











 

  

 







n

i i i

i=1

T

i i i i

2 T

i i i i

T2 T T T T

i i i i i

2 T T

i i

u ε = x - x

(x - x )(x - x )

( x - 2x x - (x ) x )

x - (u x )(x u) + (u x )u (u x )u

x - x (u   

 

 

1

1

1

2

1 1

2

1

1
              = 2

1
               =

1 1
               =

1 1
               = (

p

i

p

i

p

i

p p

i i

i

p

p

p p

p p







 



 
  
 









 

T
T T

i i i

2 T T T T T

i i i i i

2 T T

i i i

T T

i i i

T T

i i i

x )u + (u x )u (u x )u

x - x (u x )u + (u x )(x u)u u

x - x (u x )u

x u (x x )u

x u x x
1

)
p p

i

  u
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Details of how to reduce MSE (u) by finding pu  with 1u that maximizes

TT
u X Xu  are given in Theorems (4.2) and (4.3).  

Theorem 4.1: A p p  symmetric matrix A  is orthogonally diagonalizable and can 

be written as  

                                  
1

p

j

j




T T

j jA = ΓΛΓ η η                              (4.1) 

where 1 2( , ,..., )pdiag   Λ , i  being the eigenvalues of A, and ( ,..., ) 1 2 pΓ η ,η η   

is an orthogonal matrix of eigenvectors 
jη of A [15]. 

Theorem 4.2 (The Principal Axes Theorem): Let T
A = ΓΛΓ be defined as in 

theorem 4.1, associated with the quadratic form Tx Ax , then the change of variable 

x = Γy  transforms the quadratic form Tx Ax  into the quadratic form T
y Λy  [16]. 

                           
1 1 2 2

( )

        ...

T

T T

p py y y  



     

T

T

x Ax Γy AΓy

y Γ AΓy y Λy
           (4.2) 

Theorem 4.3: Let ( ) Tf x  x Ax  be the quadratic form of the p p  symmetric matrix 

A  and 1 2 ... p      be the eigenvalues of A. Then the maximum value of ( )f x  

is 1 . Hence, it occurs when x is a unit eigenvector corresponding to 1 . Generally  

   
1 2

:max 1:max 1

max ... min
TT

T T

p
xx

  


    
xxxx

xAx xAx  , 
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The vector which maximizes (minimizes) T
xAx under the constraint 1T xx  is the 

eigenvector of A which corresponds to the largest (smallest) eigenvalue of A  [16]. 

1

:   By Theorem 4.1

                                                 

By the Principal Axes theorem  , set  then  

                                                   ( ) (

p

j

j

T T








T T

j j

Proof

A = ΓΛΓ η η

x = Γy

y y Γy Γ

1 1 2 2

1 1 1 2 1

) 1 

                                   ( ) ...

                                                          ...

                                       

T T T

p p

p

f x y y y

y y y

  

  

  

     

   

T T

y y Γ Γy x x

x Ax y Λy

1 1 2

1 1

1 1

1

                   ( ... )

                                                          

Thus,  ( )  for all  with 1. Let  be the eigenvector of  

which corresponds to  , the

p

T

T

y y y

f x



 





   

 

 

y y

x x x η A

1 1 1

1 1 1

n 

                          

                                                            

Thus, 

                                        ( )      f



  



   T T T

1 1 1 1 1 1 1

Aη η

η η Aη η η η η

 

Hence, the vector u which maximizes TT
u X Xu is the eigenvector of TX X that 

corresponds to the largest eigenvalue. 

The point cloud coordinates on a straight line are given by new factorial variable 1z  

                                  1 z Xu                                      (4.3) 
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This factor is a linear combination of the original variables       1 2
, ,...,

p
x x x , with 

coefficients represented by the vector u, i.e.  

              
     1 1 21 2

... p p
u x u x u x   z                     (4.4) 

In 2-dimensional subspaces, the projection of a point cloud onto a plane is 

represented by best linear fitting of 
1 2 and u u (

1 2 and u u  are orthogonal), i.e.  

               
1 1

1 1
, 1

max T

u u
u X Xu  and 

2 2

1 2

2 2
, 1

0

max
T

T





u u

u u

u X Xu                (4.5) 

Theorem 4.4: The second factorial axis 2u , is the eigenvector of TX X corresponding 

to the second largest eigenvalue of  TX X  [17]. 

The representation of the n-point cloudin two-dimensional subspace is given by 1z  

and 2z figure (4.4) such that  

1 1z Xu  and 2 2z Xu  

 

 

 

Figure ‎4-4 Representation of 1 2, ,..., nx x x  individuals in 2-dimensional subspace 
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In r-dimensional sub space 2 r p  , the factor directions are 
1 2, ,..., ru u u  which 

denote the eigenvectors of TX X  corresponds to thelargest eigenvalues

1 2 ... r     . The coordinates for representing the point cloud of individuals on 

r-dimensional subspace are given by 1 1 2 2, ,... z Xu z Xu and
r rz Xu , 

1 2( , ,..., )T

r r r nrz z zz  

                                                
1

p

ir im mr

m

z x u


                                     (4.6) 

4.1.2 Fitting n-dimensional Point (variable) Cloud  

Let X be represented by a p point (variable) cloud in n-dimensional space. The aim is 

to reduce the cloud into q-dimensional subspace such that q n . Algebraically, this is 

the same case as p-dimensional point cloud (replace X  by T
X ).  

The representation of p variables in q-dimensional subspace is done by the same 

technique of the n individuals; the q-subspace is spanned by orthonormal 

eigenvectors 1 2, ,..., qv v v  of TXX  corresponding to the eigenvalues 
1 2 ... q      

respectively. Representation of the p variables on the thk  axis are given by the 

factorial variables 

                                                   1,2,...,T

k k k q w X v       (4.7) 

where 1 2( , ,..., )k k k kpw w ww  

In 2 dimensional subspace the thj  variable is represented as in Figure 4.5. 

 

 

 

 



23 

 

 

 

 

 

 

 

 

 

Figure ‎4-5: Representation of  thj  variable in tow dimensional subspace 

4.1.3 Subspaces Relationships 

Illustration of the duality relationship between two models, requires the consideration 

of the equations of eigenvector in n  

                                             1,2,...,T

k k k k r XX v v      (4.8) 

where ( ) ( )Tr rank rank XX X . Multiplying (4.8) by T
X we get 

 T T T

k k kv vX XX X  

                                       T T T

k k kv vX X X X                           (4.9) 

From (4.9), each eigenvector ( T

kvX ) of  T
X X  is corresponding to an eigenvector 

kv  of TXX .  
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Now consider the equations of eigenvectors in p  

 

 

 

                1, 2,...,                                    4.10

Multiplying 4.10  by  

                                               

                                         

T

k k k

T

k k k

k r



 



X Xu u

X

X X X u X u

XX      

   

 

            4.11

Particularly,  assume that  ,  by rewriting 4.11

                                                                      4.12  

T

k k k

k k

T

k k k











Xu Xu

v Xu

XX v v

 

This implies that the non-zero eigenvalues of TX X  are eigenvalues of TXX as well. 

The relation between the eigenvectors kv  and ku  is given in Theorem 4.5. 

Theorem 4.5 : (Duality Relations) Let r be the rank of X. For k < r, the eigenvalues 

k  of  TX X  and TXX  are the same and the eigenvectors ( ku  and kv respectively) 

are related by 

1
k k

k
v Xu                    (4.13) 

1 T

k k

k
u X v                 (4.14) 
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4.2 Mathematics of PCA 

PCA is a procedure that seeks an r-dimensional basis that best captures the variance 

in the data. The vector that has the largest variance is called the first principal 

component. The orthogonal vector that captures the second largest variance is called 

the second principal component, and so on.  

4.2.1 Data Pre-treatment 

Prior to starting PCA procedure, data are often pre-treated to transform it into 

suitable form for analysis.  

Variables frequently have different numerical units, and different range. For example 

when there are two variables, the first one being a persons’ weight and the second 

variable is the height, the weight has large range so it has a large variance, but the 

height has small range, then it has small variance. Since PCA is a method of 

maximum variance projection, it follows that the variable which has large variance 

will contribute more than the variable with low-variance [18]. 

4.2.1(a) Unit Variance (UV) Scaling  

In the data matrix each element of a column is divided by the column standard 

deviation, see figure (3.6) and figure (3.7). 
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Figure ‎4-6 Unit Variance (UV) scaling processing 

 

Figure ‎4-7 Unit Variance (UV) scaling 

 

4.2.1(b) Mean-centering  

The second method of pre-treatment of data is mean centering. In this process the 

mean of each scaled variable are computed and subtract from the UV scaled data. 

 

Columns (variables) 

R
o
w

s 
(o

b
se

rv
at

io
n
s)

  

 

UV scaling 

 

         1

Standard deviation ofeach variable

................... pS S
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Figure ‎4-8 UV Scaling and Mean-centering 

4.2.2 Centering a Data Matrix Algebraically 

Let X be n p  data matrix (p variables and n observations). The “center of gravity" 

of the columns is a vector 
1 2( , ,..., )px x xx  in 

p
 of the means 

jx  of the p variables 

(columns) which given by: 

1

2

1.

.

T

n

p

x

x

n

x



 
 
 
  
 
 
 
 

x X 1  

where n1  is n n  unit matrix.  

The covariance matrix S can be written as 

 

 

1 1 1

1 1                             =

T

n n

T

n n n

n n n

n n

  

 

   



T T T T

T

S X X xx X X X 1 1 X

X I 1 1 X
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Hence,  1 T

n n nnI 1 1  is a centering matrix denoted by H. Rewriting the covariance 

formula  

                                      1n T
S X HX                                       (4.15) 

is obtained. 

Note that H is symmetric and idempotent 2 )(H H . Then the standardized data 

matrix is denoted as X  and given by 

                                
1/2 1/2n 

 X HXD                                     (4.16) 

where ( )
i iX Xdiag sD  

4.2.3 Relationship Between SVD and PCA 

Let cX  be the centered matrix of X n p data matrix. By (2.2) the SVD of cX  given 

as 

                                 T

c X LΔQ                                         (4.17) 

 Now calculate the matrix T

c cX X   

   

2

          

          

                                                       (4.18)
c

T
T T T

c c

T T T

T T

T







 X

X X LΔQ LΔQ

QΔ L LΔQ

QΔ ΔQ

QΔ Q
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Where 
2

cX
Δ  is n n  matrix with diagonal entries 2

i  for 1,2,...,i p  (3.2). 

Since 
cX  is centered data matrix, the covariance matrix 

1 T

c c
n

Σ X X  by theorem 

(4.2). This can be decomposed as   T
Σ U ΛU  then 

 

          

                                                           (4.19)

T

c c n

n

n







T

T

X X Σ

U ΛU

U Λ U

 

By (4.18) and (4.19), Q  (right singular vectors) are the same of the eigenvectors of 

matrixΣ , additionally, the singular values of cX  are related with the eigenvalue of 

Σ . 

2

2

                         1,2,...,

i i

i
i

n

i p
n

 






 
 

4.2.4 Standardized Linear Combinations (SLC) 

A simple way to reducing dimension is to weigh all variables equally. This is 

undesirable, since all of the elements of vector x are measured with equal importance 

(weight). A more suitable approach is to study a weighted average, namely  

Let 1 2( , ,..., )T

px x xx  be a vector, and 1 2( , ,..., )T

p    weighting vector. Then 

             
1

p
T

j j

j

x 


x      so that   
1

1
p

i

i




                    (4.20) 
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Equation (4.20) is called a standardized linear combination (SLC). The goal is to 

maximize the variance of the projection
1

p
T

j j

j

x


δ x , i.e., to choose δ  such that 

          
   : 1 : 1
max ( ) max ( )T TVar X Var X
   

  
 

                    (4.21) 

The weighting vector δ  in (4.21) is found through the spectral decomposition of the 

covariance matrix, by Theorems (4.2) and (4.3). The direction δ  is given by the 

eigenvector
1η  of the covariance matrix ( )VarΣ X  that corresponds to the largest 

eigenvalue 1 . 

The SLC with the maximum variance obtained from maximizing (4.21) is the first 

PC T

1 1y = η X . In orthogonal direction to 
1η  we compute the SLC with the second 

highest variance T

2 2y = η X , the second PC. 

By processing in this way the result for r.v. X with ( )E X   and 

( ) TVar X  Σ ΓΛΓ  the PC transformation can be defined as 

                                      ( )                                         (4.22)TY X  Γ  

The variable X was centered in order to obtain a PC variable Y with mean equal to 

zero.  

The next numerical example explains how to calculate the PCs from covariance 

matrix. 
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Example (4.1): Let 1 2 3,   and X X X  be the r.vs. and X data matrix  

125 137 121

144 173 147

105 119 125

154 149 128

137 139 109

 
 
 
 
 
 
 
 

X  

The sample mean x  of X is  133  143.4  126 
T

 

Covariance matrix S  of  X is 

356.5 290 68.25

290 390.8 191

68.25 191 190

 
 

  
 
 

S  

The ordered eigenvalues of S  from the highest to the lowest are (729.3961, 

183.8405, 24.0634) and the eigenvectors is the columns of next matrix corresponds 

to the eigenvalues respectively 

0.6163 0.6355 0.4651

0.7146 0.2031 0.6694 .

0.3310 0.7449 0.5793

  
 

  
  

Γ  

Then the first eigenvector 1η which corresponding to the largest eigenvalue is the 

first column of Γ  
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0.6163

0.7146

0.3310

 
 

  
 
 

1η  

The PC transformation is  

( )Y X TΓ X  

1 1

2 2

3 3

133

143.4

126

y x

y x

y x

     
    

     
         

T

1

T

2

T

3

η

η

η

 

1 1 2 3

2 1 2 3

3 1 2 3

0.6163( 133) 0.7146( 143.4) 0.3310( 126)

0.6355( 133) 0.2031( 143.4) 0.7449( 126)

0.4651( 133) 0.6694( 143.4) 0.5793( 126)

y x x x

y x x x

y x x x

     

      

      

 

 

 The first PC is 1y  which corresponds to the largest eigenvalue and the second PC is 

2y  is orthogonal to 1y and corresponds to second largest eigenvalue.   

4.2.5 PCs in Practice 

The PCs are obtained from the SVD of the covariance matrix.  In the principal 

component transformation, the estimator   is replaced by x  and Σ  is replaced by 

S. Spectral decomposition of the covariance matrix can be written as   

                                      T
S = GLG                                         (4.23) 

Then the PCs are obtained by  
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                                 ( )T

nY X x 1 G                                    (4.24) 

where
1 2( , ,..., )pdiagL  is the diagonal matrix of eigenvalues of S and 

1 2 pG = (g ,g , ...,g ) is a matrix of orthogonal eigenvectors 
jg of S. 

If all original p variables are uncorrelated (orthogonal, independent), then the 

variables themselves are the PCs. Hence S would have the form 

11 0

0 pp

s

s

 
 

  
 
 

S  

and the eigenvalues 
j
 of the covariance matrix S will be  

                  1,2,..., .j jjs j p   

Correspondingly the normalized eigenvectors 
jg  which have 1 in thj  position and 

zeros else where are 

(0,0,...,1,0,...,0)                1,2,...,T

j j p g  

Thus the thj  PC is  

                1,2,...,T

j j j j p  z g X x  
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As another illustration, in the covariance S or correlation matrix R, a distinguishing 

pattern may be identified, from which formulation of the principal components can 

be deduced. For example, if one of the variables has the highest variance compared 

with others, this variable will dominate the first component, accounting for the 

majority of the variance. 

Generally, the PCs are computed from S rather than R, specially if the PCs are used 

in farther computation. However, in some cases, the PCs will be more interpretable if 

calculated from R [19].  

After centering the data matrix T

c n X X 1 x , T

c cX X  is the covariance matrix which 

is used in PCA. When the variables are measured with different unit, the data must 

be standardized by dividing each variable (each column) by column standard 

deviation (4.15) (Figure 4.6). In this case T

 X X  is equal to correlation matrix R. 

Then the analysis referred to correlation PCA [19].  

The next simple bivariate example explains how the principal components are 

changed when computed from original data, centered data and standardized data.  

Example 4.2: Dtat given in Table 1 represents the number of engineers in various 

disciplines with monthly salary, years of experience and working hours 

1

2

3

Experience(  )

Salary

Work hours

X in years

X

X






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     Table 1 Engineering salary  

Engineering competence 
Experience 

(years) 

Salary 

(IRD per month) 

Work hour 

(hours/ day) 

CAE Analyst 10 900,000 6 

Design Engineer 10 900,000 5 

Purchase Engineer 11 850,000 8 

SCM Enigneer 8 850,000 7 

Quality Engineer 11 850,000 5 

Production Engineer 9 750,000 9 

Maintenance Engineer 12 750,000 6 

Mechatronics Engineer 10 800,000 8 

OEM Sales Engnineer 9 950,000 7 

Engineer 12 800,000 5 

Application Engineer 10 800,000 9 

Service Engineer 13 600,000 6 

Homologation Engineer 10 850,000 9 

Management 8 800,000 7 

Electronics & Comunication 11 800,000 5 

Lead final Assembly Line 11 800,000 8 

RAMS Engineers Electrical 10 700,000 6 

Structural Design Engineers 9 600,000 7 

Configuration Engineers 10 600,000 7 

Aerospace Stress Engineer 12 550,000 8 

  

PCs from raw, centered and the standardized data matrices are computed for 

comparison. 

The eigenvalues and eigenvector of TX X  are  

1 1

2 2

3 3

1.0100                 (0.0124     0.9999       0.0082)

0.00007              (0.9870  0.0135       0.1603)

0.000012            (0.1604      0.0062   0.9870)

T

T

T







 

  

  

v

v

v

 

Thus the PCs are  
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1 1 1 2 2 3 3

2 1 1 2 2 3 3

3 1 1 2 2 3 3

0.0124( ) 0.9999( ) 0.0082( )

0.9870( ) 0.0135( ) 0.1603( )

0.1604( ) 0.0062( ) 0.9870( )

X x X x X x

X x X x X x

X x X x X x

     

     

     

X

X

X

y

y

y

 

The eigenvalues and eigenvector of the covariance matrix for the centered data 

T

c cS X X  are 

1 1

2 2

3 3

9.3341           ( 0.0093       1.0000      0.0005)

0.0041           (0.5533         0.0047     0.8329)

0.0012           ( 0.8329   0.0080     0.5534)

T

T

T







   

  

    

v

v

v

 

the PCs are 

1 1 2 3

2 1 2 3

3 1 2 3

0.0093 1.0000 0.0005X

0.5533 0.0047 0.8329X

0.8329 0.0080 0.5534X

X X

X X

X X

   

  

   

S

S

S

Y

Y

Y

 

Eigenvalues and eigenvectors of the correlation matrix after standardizing data ( *X )

* *

TR X X  are 

1 1

2 2

3 3

1.6673           (0.7144       0.5457     0.4380)

1.0282           ( 0.0084    0.6326        0.7744)

0.3046           ( 0.6997    0.5495     0.4565)

T

T

T







   

   

    

v

v

v

 

the PCs in third case are 
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1 1 2 3

2 1 2 3

3 1 2 3

0.7144 0.5457 0.4380

0.0084 0.6326 0.7744

0.6997 0.5495 0.4565

X X X

X X X

X X X

  

   

   

R

R

R

Y

Y

Y

 

4.2.6 Mean and Variance of PCs 

Let ( , )X  Σ  ,  T
Σ Γ ΛΓ  and ( )TY X  Γ be a linear transformation then the 

following properties apllies 

a) 0                          1,2,...,jEY j p     

   ( ( )) ( ) 0T T

j j jEY E X E X     η η  

b) ( )                    1,2,...,j jVar Y j p                         

       ( ) ( ( ))T

j jVar Y Var X  η  by (3.18) and (3.19)                                             

            = ( )T

j j jVar X  η  

c) ( , ) 0                i jCov Y Y i j                            

( , ) ( ) ( ) ( ) 0i j i j i jCov Y Y E YY E Y E Y    

d) Let S be the covariance matrix of original variables, and let ( )T

n x Y X 1 Γ  

The covariance matrix of the PCs is 

Y S Λ  
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where 
1 2( , ,..., )pdiag   Λ  is the eigenvalues of S, by (4.1) 

1 1 1(( ) ) ( )

                       

T T T T T T

Y n n

T

n n x x n      

 

S Y HY X 1 Γ H X 1 Γ Γ X HXΓ

Γ SΓ Λ
 

4.3 Interpreting the Meaning of the PC 

PCA produce two items of basic information for interpreting results. First one is the 

correlation coefficients between the original variables and the PCs which are used in 

interpreting the meaning of the PCs. The second one is each principal component is 

associated with an eigenvalue which converts to the proportion of the variation that 

explained by the PC. 

4.3.1 Loading: Correlation Between the r.v. X and its PC 

The covariance between the original r.v  X and the PC Y is given in [2] as 

ov( , ) ( ) ( ) ( ) ( )

                  = ( )

                  = ( )

                  =

                  =

T T T

T T

T

C X Y E XY E X E Y E XY

E XX

Var X

  





Γ μμ Γ

Γ

ΣΓ

ΓΛΓ Γ ΓΛ

                             (4.25) 

where the covariance matrix TΣ ΓΛΓ  and 1 2( , ,..., )pdiag   Λ  is the 

eigenvalues and ( ,..., ) 1 2 pΓ η ,η η . This is a matrix of orthogonal eigenvectors 
jη of 

the covariance matrix. 
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The correlation between each PC and the original variables is denoted by 
i jX Y  and 

given by  

 

1/2

1/2

1,2,...,
            

1,2,...,i j

i i
i i

ij i i
X Y ij

X X
X X j

i p

j q

  
 

 

  
   

   

        (4.26) 

Using actual data, (4.26) translates to 

               

1/2

                                       (4.27)
i j

i i

j

X Y ij

X X

r g
s

 
  

 
 

 

This correlation coefficient between the r.v X and PC is also called “loading”. Note 

that sum of squares of loadings is equal to 1. 

2

1

1

1i i

i j

i i i i

p
p

j ij X Xj

X Y

j X X X X

g s
r

s s





  


                                    (4.28) 

4.3.2 Number of PCs to be used 

Usually, only the important information is required to be drawn from a data matrix. 

In this case, the problem is to find how many components are needed to be 

considered. There are many methods to decide on the number of PCs. Four of them 

are given below. 

4.3.2(a) Scree Plot Test 

 The Cattell scree test (Cattell, 1966) is based on a graphical representation of the 

eigenvalues.  In this method, the eigenvalues are presented in descending order with 

corresponding PCs in a scatter plot and drawing the curve. Cattell's scree rule says to 
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drop all PCs after the elbow point. The logic behind this test is that the elbow point 

divides the major or important PCs (factors) from the trivial or minor PCs (factors). This 

rule is criticized because of the elbow point selection is subjective and depends on 

the researcher [20]. 

 
Figure ‎4-9  Scree plot test 

4.3.2(b) Kaiser Criterion 

This method is proposed by Kaiser (1960), it’s rule says only the PCs That 

corresponding to the eigenvalues which are greater than 1 are retained for 

interpretation [21]. Despite the ease of this method, it carries many weaknesses. One 

such weakness is in the selection of PCs that do not satisfy the majority of the 

variance. For instance, it regards a PC with an eigenvalue of 1.01 as ‘major’ and one 

with an eigenvalue of .99 as ‘trivial’ which is not a very healthy decision.  

4.3.2(c) Horn's Parallel Analysis (PA) 

This technique based on a simulation method that make a comparison between the 

observed eigenvalues with those obtained from orthogonal normal variables. A PC is 

maintained if the corresponding eigenvalue is greater than the 95th of the distribution 

of eigenvalues derived from the random data [22]. 

The algorithem of  Horn's Parallel Analysis (PA) can be explained as below. 

http://en.wikipedia.org/wiki/John_L._Horn
http://en.wikipedia.org/wiki/John_L._Horn
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Step 1: Generation of a Random Data 

i. Setting up the number of observations and variables in the original data; 

ii. Setting up the values taken by original data set (e.g. Likert scale 1-5); 

iii. Create a random data set by using SPSS or similar program. 

Step 2:Computing Eigenvalues from the Random Data Correlation Matrix 

i. Computing the eigenvalues from the random data set, either by a PCA using the 

SPSS, or any equivalent program; 

ii. Note the eigenvalues sequentially in MS Excel or similar software 

iii. Repeat Step 1 (iii) and Step 2(i)-(ii) for at least 50 times to create a set of 50 or 

more parallel eigenvalues. 

Step 3: Average Eigenvalues 

i. Find the mean, and 95th percentile of all eigenvalues generated by PCA of random 

data sets; 

ii. The result will be a vector of average (and 95th percentile) of eigenvalues. The  

number of eigenvalues is the same as the number of variables, and in decreasing 

order. 

Step 4: Compare Real Data with Parallel Random Data: 

i. Plot eigenvalues from the real and random data sets  

ii. Retain only those factors whose eigenvalues are greater than the eigenvalues from 

the random data. 

4.3.2(d) Variance Explained Criteria 

The proportion of variance of each PC is calculated by  

1 1

( )
                                  (4.29) 

( )

i i

p p

j j

j j

Var Y

Var Y




 



 
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Let 
q  be the proportion of the sum of first q eigenvalues to  

1

p

j

j




  

1 1

1 1

( )

                                (4.30)

( )

q q

j j

j j

q p p

j j

j j

Var Y

Var Y







 

 

 

 

 
 

Then the number of PCs to be considered are expected to satisfy above 70% of the 

total variation 
1

p

j

j




 . 

4.3.3 Rotation 

Most of the foundations of rotation are developed by Thurstone (1947) and Cattell 

(1978), who defends the use of rotation to make interpretation of PCs easier and 

more reliable [23]. 

 After the number of PCs has been selected, an attempt is made to facilitate 

interpretation and the analysis often based on a rotation of the selected PCs. There 

are two main kinds of rotation, orthogonal and oblique rotation.  

4.3.3(a) Orthogonal Rotation 

An orthogonal rotation method is described by a rotation matrix R, where the rows 

represents the original factors and the columns represents the new (rotated) factors. 

At the intersection of row i and column j we have the cosine of the angle   between 

the original axis and the new axis. 

1,1 1,2 1,1 1,1

2,1 2,2 1,1 1,1

cos cos cos sin

cos cos sin  cos

   

   

   
    
   

R  
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Figure ‎4-10 Orthogonal rotation in 2-dimensional space 

4.3.3(b) VARIMAX 

VARIMAX is the most popular orthogonal rotation technique, which was developed 

by Kaiser (1958) [24]. In statistics, VARIMAX rotation means changing of 

coordinates used in PCA that maximizes the sum of  variances of the squared 

loadings (squared correlations between variables and PCs). 

,

2 2 2( )
j

v q q   

Where ,jq being the loading of thj variable of matrix loadings matrix Q of PC  and 

2q  the squared mean of loading. VARIMAX simple solution implies each PC has a 

small quantity of large loading and a large number of small (or zero) loading. 

If the loadings in each column were approximately equal, the variance would be 

close to 0. As the squared loadings teands 0, the variance will approach a maximum. 

Thus the VARIMAX technique attempts to make the loadings either large or small to 

facilitate interpretation [13]. 

http://en.wikipedia.org/wiki/Statistics
http://en.wikipedia.org/wiki/Change_of_coordinates
http://en.wikipedia.org/wiki/Change_of_coordinates
http://en.wikipedia.org/wiki/Principal_component_analysis
http://en.wikipedia.org/wiki/Variance
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The VARIMAX is available in most of factor ( PC ) analysis software programs, the 

output usually includes the rotated loading matrix 


Q , the variance accounted for 

(sum of squares of each column of 


Q ), and the orthogonal rotation matrix R that 

used to obtain 
 Q QR .  

4.3.3(c) Oblique Rotation 

The aim of using the Oblique Rotation is to get a simple stracture by relocation of 

factor axes. Oblique rotations strongly recommended by Thurstone [25], since PCs 

are orthogonal, so they are used more rarely than their orthogonal rotation methods.  

4.4 Example  

 The data in Table A.5 contians library collections, staff and operating expenditures 

of the 60 largest college and Uni. libraries: Fiscal year 2008 [26]. The following 

variables are defined on the data set. 

1X =Number of volumes at end of year (in thousands) 

2X =Number of e-books at end of year 

3X =Number of serials at end of year 

4X =Technician 

5X =Librarians 

6X =Other expenses 

7X =Salaries and wages 

8X =Public service hours per typical week 

9X =Gate count per typical week1 

                        10X =Reference transactions per typical week 
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Since the variables were measured using different units, they are standardized and  

the correlation matrix is used in PCA. The correlation matrix  

1.0000    0.1926    0.4975    0.8644    0.7801    0.8677    0.8657    0.0631    0.2709    0.4047

0.1926    1.0000    0.2063    0.0895    0.0231    0.1433    0.0700   -0.1365    0.0867    0.0155

0.4975

R

    0.2063    1.0000    0.4362    0.3050    0.4929    0.4195   -0.0193    0.0953    0.0165

0.8644    0.0895    0.4362    1.0000    0.8906    0.9534    0.9707    0.1516    0.3157    0.3657

0.7801    0.0231    0.3050    0.8906    1.0000    0.8504    0.8744    0.2453    0.2984    0.3428

0.8677    0.1433    0.4929    0.9534    0.8504    1.0000    0.9724    0.0787    0.1416    0.2947

0.8657    0.0700    0.4195    0.9707    0.8744    0.9724    1.0000    0.0902    0.2045    0.3110

0.0631   -0.1365   -0.0193    0.1516    0.2453    0.0787    0.0902    1.0000    0.2157    0.0436

0.2709    0.0867    0.0953    0.3157    0.2984    0.1416    0.2045    0.2157    1.0000    0.3408

0.4047    0.0155    0.0165    0.3657    0.3428    0.2947    0.3110    0.0436    0.3408    1.0000

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   

As seen from the correlation matrix, the linear correlation between variables ranges 

from very strong to very weak. 

The ordered eigenvalues of the correlation matrix from highest to lowest are  

 5.0787  1.3459  1.0911  0.9236  0.6705  0.5527  0.1624  0.1318  0.0259  0.0175T l  

 

The matrix G is made up of eigenvectors jg  of  R.  

    0.4104    0.0839   -0.0493    0.0504    0.0041   -0.0598   -0.8249    0.3647   -0.0324   -0.0375

    0.0665    0.4226   -0.6327   -0.3285   -0.5435   -0.0463    0.0921   -0.0039   -0.0320    0.04

G

08

    0.2288    0.3902   -0.0345   -0.3801    0.6724   -0.3918    0.1899    0.0618   -0.0278    0.0581

    0.4327   -0.0146    0.0792    0.0290   -0.0443    0.1232    0.1072   -0.3177   -0.7264   -0.3850

    0.4017   -0.1287    0.1401    0.0114   -0.1591    0.1568    0.4826    0.7193    0.0426    0.0151

    0.4242    0.1341    0.1445    0.0391   -0.0982    0.0237    0.0602   -0.3393    0.6715   -0.4469

    0.4258    0.0558    0.1586    0.0840   -0.0871    0.1312    0.0166   -0.3374    0.0255    0.8024

    0.0710   -0.5486    0.2138   -0.6574   -0.2511   -0.3702   -0.0877   -0.0864    0.0143    0.0253

    0.1527   -0.4465   -0.5471   -0.2096    0.3805    0.5171   -0.0235   -0.0755    0.1251    0.0016

    0.1911   -0.3521   -0.4231    0.5094    0.0114   -0.6154    0.1356   -0.0514    0.0164    0.0303

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   
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Table 2 lists the eigenvalues of the correlation matrix R in the first column, ratio of 

each eigenvalue to the total in the second column, and the cumulative proportion in 

the third column. From the third column it is evident that the first 4 eigenvalues 

which are the variance of the first 4 PCs, represents about 84% of the total variation 

in the data. Therefore, the use of the first 4 PCs is considered adequate for the  

representation of the data.  

Table 2 : Example 4.4 The proportion of variance of PCs 

Eigenvalue Proportion of variance Cumulated Proportion 

il  
1

 
p

i j

j

l l


  
1 1

q p

j j

j j

l l
 

   

5.0787 0.507865 0.51 

1.3459 0.134589 0.64 

1.0911 0.109109 0.75 

0.9236 0.092359 0.84 

0.6705 0.067049 0.91 

0.5527 0.055269 0.97 

0.1624 0.01624 0.98 

0.1318 0.01318 0.99566 

0.0259 0.00259 0.99825 

0.0175 0.00175 1 
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Figure ‎4-11: Example 4.4, The proportion of variance 
1

 
p

i j

j

l l


  of PCs  

The coefficients used in the computation of the first four PCs that accounts for 84% 

of total variation are given in Table 3. 

Table 3 : Example 4.4 Characteristics coefficients (weights or eigenvectors of the 

correlation matrix) for first 4 PCs for the PCA of libraries data. 

Variables 
1g  2g  3g  4g  

1X  0.4104 0.0839 -0.0493 0.0504 

2X  0.0665 0.4226 -0.6327 -0.3285 

3X  0.2288 0.3902 -0.0345 0.0290 

4X  0.4327 -0.0146 0.0792 -0.3801 

5X  0.4017 -0.1287 0.1401 0.0114 

6X  0.4242 0.1341 0.1445 0.0391 

7X  0.4258 0.0558 0.1586 0.0840 

8X  0.0710 -0.5486 0.2138 -0.6574 

9X  0.1527 -0.4465 -0.5471 -0.2096 

10X  0.1911 -0.3521 -0.4231 0.5094 

Total 2.3945 2.5772 2.4229 2.2989 
10

1 1
/i jij

g g
  0.17 0.03 0.02 0.2 
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The weights of PCs in Table 3 explain which variables are dominant in each PC. The 

first PC which accounts for 51% of total variation in the data, is highly influenced by 

the variables 1 4 5 6 7, , ,  and X X X X X , and using ( )T

j n jX x y 1 g  can be written as 

1 1 2 3 4 5 6 7 8 9 100.4104 0.067 0.228 0.433 0.402 0.424 0.426 0.071 0.1527 0.191y X X X X X X X X X X           

 The second PC accounts for 13.5% of total variation is mainly composed of the 

difference between 2 3 8 9,  and ,  X X X X . This is given by 

2 1 2 3 4 5 6 7 8 9 100.084 0.423 0.390 0.015 0.129 0.134 0.056 0.549 0.447 0.352y X X X X X X X X X X           

Similarly other PCs can be interpreted.  

Scatter diagrams for PC1 versus PC2 and PC3 versus PC4 are given in Figure 4.12 

and Figure 4.13 respectively. To highlight the effect of a variable on the PCs, the 

points on the scatter diagrams are marked as “o” if the 
1X  value involved in the 

computation of the PC is less than 
1X , and those greater than the 

1X  are marked as 

“+”. In Figure 4.12 two groups forms reasonably separate scaters mainly due to the 

high influence 
1X  has on PC1 (17% of weights assigned with PC1), compared with 

its low influence on PC2 (3% of weights assigned to PC2).  

In Figure 4.13, two groups of points are mixed as the influence of 1X  on both PC3 

and PC4 is about the same, but opposite in sign.   
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Figure ‎4-12 Example 4.4: PC1 versus PC2 of the college and Uni. Libraries data. 

 
Figure ‎4-13 Example 4.4: PC3 versus PC4 of the college and Uni. Libraries data.  

The correlation between original variable and PCs computed by (4.27) are given in 

table 4  
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Table 4: Example 4.4 the correlation between original variable iX and PCs 

1 2 3,  and Y Y Y    

variables 
1iX Yr  

2iX Yr  
3iX Yr  

4iX Yr  
1

i j

p

X Y

j

r


  

1X  0.9596 0.0973 -0.0514 0.0484 0.935284 

2X  0.1499 0.4903 -0.6609 -0.3157 0.799319 

3X  0.5156 0.4527 -0.0361 -0.3653 0.605528 

4X  0.9752 -0.0169 0.0828 0.0279 0.958935 

5X  0.9249 -0.1493 0.1463 0.0110 0.899255 

6X  0.9053 0.1555 0.1510 0.0376 0.867963 

7X  0.9560 0.0647 0.1657 0.0807 0.952091 

8X  0.1601 -0.6365 0.2233 -0.6318 0.879798 

9X  0.3441 -0.5179 -0.5715 -0.2014 0.753799 

10X  0.4307 -0.4085 -0.4419 0.4895 0.787261 

 

From table 4: we can see that the first PC has a positive high correlation with 

1 4 5 6 7, , ,  and X X X X X . Thus these variables are well explained by first PC. This 

property is clearly visible in Figure 4.14, as all the correlation values pertaining to 

these variables lie on the right hand side on the circle.  The second PC is well 

described by the difference between the sum of 2 3 and X X  and the sum of
8 9 and X X . 

The position of these variables on Figure 4.14 clearly indicates this.  

Figure 4.15 shows the same correlation regarding the second PC as in Figure 4.14.

2 9 10,X  and X X  have negative effect on the third PC as they are below the 0 line on 

the vertical axis. In Figure 4.16 it is clear to see that the variables 2 9 10,X  and X X  lie 

on the left hand side on the circle, this means these variables have negative 

correlation with 3rd  PC. The 4th  PC depicts the difference between 10X  and the sum 

of 
2 3 8 9, ,  and X X X X . 
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Figure ‎4-14 Example 4.4  Correlation between original variables iX and PCs 1 2,  Y Y  

 

 
Figure ‎4-15 Example 4.4 Correlation between original variables iX and PCs 2 3,  Y Y . 
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Figure ‎4-16 Example 4.4  Correlation between original variables iX and PCs 3 4,  Y Y . 

The theory given in 4.5 (Duality Relations) is applied to the data in Appendix A 

shows the relationship between the variables 1 2 10( , ,  . . . . . . , )X X X  and the 

representation of universites (obsevations) in two dimensions. PCs obtained from 

TX X  (Figure 4.17) and from TXX  (Figure 4.18). It indicates that for Harvard Uni. it 

has the highest full-time equivalent value for Technician and Librarians (
4 5 and X X ). 

Similarly Yale Uni. has the largest number of serials (
3X ) at end of year. 
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Universitie

s 
PC1 PC2 

Harvard 3.3403 -
0.3187 

Yale 1.8513 1.3715 
Columbia 1.688 0.2845 

Texas 1.0027 -0.836 

Stanford 1.0783 0.3161 

   

Figure  4-17 Some outliers universities explanation by 

the first and second PC 

 

 
 

variables PC1 PC2 

1X  0.9249    0.0973 

2X  0.1499    0.4903 

3X  0.5156    0.4527 

4X  0.9752   -0.0169 

5X  0.9053   -0.1493 

6X  0.9560    0.1555 

7X  0.9596    0.0647 

8X  0.1601   -0.6365 

9X  0.3441   -0.5179 

10X  0.4307   -0.4085 

Figure ‎4-18 Staff, and operating expenditures of  

Uni.s (variables) in 2-dimension 
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Chapter 5 

5 CONCOLUSION 

High dimensional data has been reduced by finding an orthogonal transformation. 

This transform generated a new set of uncorrelated variables called principal 

components that are combination of the original variables without losing the 

importance of information inherent to the data. 

 The first component has the largest possible variance, i.e. it represents the largest 

proportion of the total variance. Second PC has the second largest variance and so 

on. After the PCs are computed, examine the correlation between the original 

variables and these components. 

PCA is regarded as a data reduction technique. This means, the use of the first few 

PCs that represents the great majority of variation in the data (preferably over 80%), 

facilitates the analysis of a large data set with many variables by only analyzing the 

first few PCs.  

An application example with 10 variables with 60 observations for each variable are 

studied, and it is found that the first 4 PCs represented 84% of the total variation in 

the data set. This greatly reduces the load of work in the further analysis of the data. 

Interpretations of the correlation between the variables and the PCs give a good idea 

about the variables that have high influence on the PCs. 
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Appendix A: Table 5 Data of Example 4.4 

  Collections. staff. and operating expenditures of the 60 largest college and Uni. libraries:   Fiscal year 2008 [25]. 

Institution 
R
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L
ib
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ri

an
s 

O
th

er
 e

x
p
en

se
s 

S
al
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ie

s 
an

d
 

w
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es
 

Harvard Uni, (MA) 1 16,250 1,167 110,628 1,229 418 117,884 62,798 168 39,748 5,468 

Yale Uni, (CT) 2 12,284 840,000 295,557 735 175 92,248 35,781 111 14,900 1,970 

Uni, of California, Berkeley 3 11,020 610,920 87,876 487 92 48,020 24,305 77 27,502 2,100 

Uni, of Illinois at Urbana-

Champaign 
4 10,933 319,533 109,803 473 113 40,571 20,988 144 85,632 6,214 

Columbia Uni, in the City of 

New York 
5 9,596 703,121 132,740 616 161 56,089 27,240 108 81,862 3,557 

Uni, of Texas at Austin 6 9,447 593,450 56,847 528 130 43,850 20,773 120 87,115 20,693 

Uni, of Michigan, Ann Arbor 7 9,175 701,019 69,457 570 169 52,395 25,853 168 73,543 2,884 

Stanford Uni, (CA) 8 8,558 419,515 33,903 680 151 78,377 41,382 105 20,100 3,074 

Uni, of California, Los 

Angeles 
9 8,467 495,238 175,207 596 125 53,154 28,197 97 64,072 1,843 

Uni, of Wisconsin, Madison 10 7,934 766,032 54,164 553 229 43,282 23,459 148 110,368 2,640 
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Cornell Uni, (NY) 11 7,750 391,897 89,000 549 118 46,798 22,667 146 98,000 1,497 

Uni, of Chicago (IL) 12 7,745 851,880 76,607 323 68 34,680 12,638 146 33,881 779 

Indiana Uni,, Bloomington 13 7,618 631,617 103,228 445 94 36,282 16,061 168 90,061 2,446 

Uni, of Minnesota, Twin Cities 14 6,878 307,082 85,075 394 93 40,734 18,118 100 36,527 2,300 

Uni, of Washington, Seattle 

Campus 
15 6,844 387,281 61,847 458 135 36,814 19,345 138 

116,00

0 
2,128 

Princeton Uni, (NJ) 16 6,779 763,158 51,746 410 97 48,970 18,789 116 13,492 671 

Uni, of North Carolina at 

Chapel Hill 
17 6,017 510,110 60,713 452 143 41,124 18,944 146 60,214 2,543 

Ohio State Uni,, Main Campus 18 6,016 269,097 78,903 396 62 35,833 16,642 168 39,030 1,476 

Duke Uni, (NC) 19 5,829 144,939 61,964 369 117 37,331 16,444 161 9,250 2,638 

Uni, of Pennsylvania 20 5,756 340,446 61,676 370 111 37,599 16,991 111 38,589 5,000 

Uni, of Pittsburgh, Main 

Campus (PA) 
21 5,657 591,468 59,141 382 120 32,907 12,539 118 84,789 2,587 

Pennsylvania State Uni,, Main 

Campus 
22 5,355 42,083 88,668 608 134 47,686 24,437 168 46,247 3,549 

Uni, of Arizona 23 5,266 645,463 24,466 239 54 24,676 9,471 142 42,916 531 

Uni, of Virginia, Main 

Campus 
24 5,158 374,731 163,032 379 101 35,930 16,921 149 76,424 2,886 

Rutgers Uni,, New 

Brunswick/Piscataway 
25 5,081 195,296 74,031 305 66 23,918 13,651 108 53,419 1,216 

New York Uni, 26 5,073 545,025 67,960 458 58 44,603 20,703 119 51,500 2,156 

Northwestern Uni, (IL) 27 4,843 264,066 82,822 344 97 29,147 12,518 126 28,218 1,427 

Michigan State Uni, 28 4,839 66,350 83,460 265 71 23,482 10,714 148 42,367 850 

Uni, of Kansas 29 4,799 321,320 60,838 228 54 19,543 9,105 140 42,000 2,350 

Uni, of Iowa 30 4,791 486,769 59,442 281 98 27,620 12,335 113 36,273 1,610 

Uni, of Oklahoma, Norman 

Campus 
31 4,702 649,929 52,522 158 37 16,253 4,396 117 21,930 523 
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Uni, of Georgia 32 4,637 128,694 80,748 315 81 24,451 10,106 137 17,700 1,910 

Arizona State Uni, at the 

Tempe Campus 
33 4,422 302,266 87,566 332 93 28,571 12,266 149 75,265 2,053 

Uni, of Florida 34 4,288 280,238 71,336 402 85 29,731 13,905 111 56,209 1,587 

Uni, of Southern California 35 4,084 267,657 70,066 374 75 38,393 17,149 159 53,534 1,173 

Louisiana State Uni, and 

Agricultural & Mechanical 

College 

36 4,067 346,389 101,738 192 52 15,874 — 113 32,228 712 

Texas A & M Uni, 37 3,934 461,225 86,737 359 85 34,150 12,329 146 49,683 880 

Uni, of Colorado at Boulder 38 3,928 175,377 55,519 216 58 21,454 8,693 104 40,532 1,374 

Uni, of South Carolina, 

Columbia 
39 3,885 91,940 21,505 275 71 19,743 7,975 140 31,415 2,969 

Johns Hopkins Uni, (MD) 40 3,878 
2,003,18

4 
74,701 338 80 32,881 13,282 120 19,373 1,593 

Washington Uni, in St, Louis 

(MO) 
41 3,841 382,891 69,400 266 93 32,366 10,219 120 30,000 1,409 

Brown Uni, (RI) 42 3,825 284,749 60,499 208 55 19,862 9,162 112 20,064 510 

Brigham Young Uni, (UT) 43 3,743 337,546 69,361 383 85 27,167 12,126 105 82,238 3,070 

SUNY at Buffalo (NY) 44 3,720 369,721 80,431 242 60 19,972 10,339 168 26,000 562 

Uni, of Kentucky 45 3,720 406,014 73,251 287 79 21,414 8,257 135 57,316 1,734 

Miami Uni, (OH) 46 3,718 511,114 91,229 146 41 9,488 4,652 168 28,862 1,529 

Uni, of Maryland, College 

Park 
47 3,717 88,393 42,393 258 119 32,156 12,600 162 47,982 5,186 

Uni, of Rochester (NY) 48 3,701 51,134 28,561 207 89 24,850 8,949 119 4,478 1,004 

Uni, of Cincinnati, Main 

Campus (OH) 
49 3,632 459,542 86,363 185 49 21,466 7,729 95 26,700 1,600 

Uni, of Hawaii at Manoa 50 3,559 193,133 55,276 237 64 17,860 9,108 135 31,380 1,791 

Uni, of Nebraska, Lincoln 51 3,554 321,180 46,865 187 49 12,633 6,465 96 15,004 1,000 
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Uni, of Missouri, Columbia 52 3,494 25,434 38,364 198 55 17,025 6,386 114 36,426 1,374 

Florida State Uni, 53 3,484 477,476 62,093 250 67 18,563 7,090 142 37,531 1,219 

North Carolina State Uni, at 

Raleigh 
54 3,477 401,497 67,995 268 98 23,296 10,960 146 37,649 718 

Wayne State Uni, (MI) 55 3,454 206,736 20,384 247 53 20,802 9,349 142 38,599 916 

Uni, of Notre Dame (IN) 56 3,393 2,295 82,866 260 60 24,077 10,306 126 19,191 497 

Uni, of Utah 57 3,373 132,859 48,777 370 69 26,290 12,877 123 39,724 3,680 

Uni, of California, San Diego 58 3,373 231,216 34,800 367 63 30,748 16,330 114 51,347 880 

Uni, of Connecticut 59 3,368 338,682 71,371 152 61 16,262 9,420 114 51,539 303 

Uni, of California, Davis 60 3,354 504,736 50,442 231 53 18,652 9,568 95 33,978 1,129 
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Appendix B: Matlab Code of Example 4.4  

 

 

close all 

clc 

clear 

  

x=load('2013.dat'); 

[n p]=size(x) 

  

y=vertcat(ones(n/2,1),zeros(n/2,1)); 

  

h=diag(ones(n,1))-ones(n,n)./n;  % Centering Matrix 

y=mean(x);  

a=x-repmat(y,n,1);            % Substracts mean 

d=diag(1./sqrt(sum(a.*a)'/n));    

xs=h*x*d; 

xs=xs./sqrt(n); 

rr=xs'*xs 

[gamma lambda1]=eigs(rr,p,'la')    % Eigenvalues sorted by 

size from largest to smallest(Note: Command generates a 

Warning(Disregard it))  

lambda=(lambda1*ones(p,1))';         % Turns Eigenvalue matrix 

into a row vector  

w1=gamma.*sqrt(repmat(lambda,p,1))  % coordinates of food 

w=w1(:,1:2)                         % Two eigenvectors with 

highest eigenvalues 

  

z1=xs*gamma;         % coordinates of families 

pc=sqrt(n/p).*z1;    % xs' scaled by square root of p  

[f l]=size(pc) 

z=pc(:,1:4);  

aa=corr(pc); 

%pc(:,1:4) = 

rotatefactors(pc(:,1:4),'Method','varimax','Coeff',gamma) 

s=sum(lambda); 

e1=lambda/s; 

  

r=horzcat(pc,a); 

  

r=corr(r); 

r1=r(11:20,1:4); 

  

y=vertcat(ones(n/2,1),zeros(n/2,1)); 

%Plotting relative proportion of variance explained by PCs 

nr=1:p; 

figure(2) 

scatter(nr,e1,75,'MarkerFaceColor','r') 

xlabel('Index') 

ylabel('Variance Explained') 

title('colleage & uni. libraries') 

xlim([0.5 6.5]) 

ylim([-0.02 1]) 

%plot(nr,e1,'r') 
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%Plot the correlation of the original variable with the PCs. 

figure 

hold on 

  

%Plotting Eigenvalues 

subplot(2,2,4,'FontSize',10) 

gscatter(pc(:,3),pc(:,4),y,'bb','oo',7,'off') 

xlabel('PC3 ') 

ylabel('PC4 ') 

title('third vs. fourth PC') 

  

  

%Plot of the first vs. second PC 

subplot(2,2,1,'FontSize',10) 

gscatter(pc(:,1),pc(:,2),y,'bb','oo',7,'off') 

xlabel('PC1 ') 

ylabel('PC2 ') 

title('First vs. Second PC') 

  

%Plot of the second vs. third PC 

subplot(2,2,2,'FontSize',10) 

gscatter(pc(:,2),pc(:,3),y,'bb','oo',7,'off') 

xlabel('PC2 ') 

ylabel('PC3 ') 

title('Second vs. Third PC') 

  

%Plot of the first vs. third PC 

subplot(2,2,3,'FontSize',10) 

gscatter(pc(:,1),pc(:,3),y,'bb','oo',7,'off') 

xlabel('PC1 ') 

ylabel('PC3 ') 

title('First vs. Third PC') 

hold off 

  

%Plot the correlation of the original variable with the PCs. 

figure 

hold on 

xlim([-1.2 1.2]) 

ylim([-1.2 1.2]) 

line([-1.2 1.2],[0 0],'Color','k') 

line([0 0],[1.2 -1.2],'Color','k') 

title('colleage & uni. libraries') 

xlabel('First PC') 

ylabel('Second PC') 

  

circle = rsmak('circle'); 

fnplt(circle) 

  

text(r1(1,1),r1(1,2),'X1') 

text(r1(2,1),r1(2,2),'X2') 

text(r1(3,1),r1(3,2),'X3') 

text(r1(4,1),r1(4,2),'X4') 

text(r1(5,1),r1(5,2),'X5') 

text(r1(6,1),r1(6,2),'X6') 

text(r1(7,1),r1(7,2),'X7') 
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text(r1(8,1),r1(8,2),'X8') 

text(r1(9,1),r1(9,2),'X9') 

text(r1(10,1),r1(10,2),'X10') 

hold off 

  

figure 

hold on 

xlim([-1.2 1.2]) 

ylim([-1.2 1.2]) 

line([-1.2 1.2],[0 0],'Color','k') 

line([0 0],[1.2 -1.2],'Color','k') 

title('colleage & uni. libraries') 

xlabel('1st PC') 

ylabel('3rd PC') 

  

circle = rsmak('circle'); 

fnplt(circle) 

  

text(r1(1,1),r1(1,3),'X1') 

text(r1(2,1),r1(2,3),'X2') 

text(r1(3,1),r1(3,3),'X3') 

text(r1(4,1),r1(4,3),'X4') 

text(r1(5,1),r1(5,3),'X5') 

text(r1(6,1),r1(6,3),'X6') 

text(r1(7,1),r1(7,3),'X7') 

text(r1(8,1),r1(8,3),'X8') 

text(r1(9,1),r1(9,3),'X9') 

text(r1(10,1),r1(10,3),'X10') 

hold off 

  

figure 

hold on 

xlim([-1.2 1.2]) 

ylim([-1.2 1.2]) 

line([-1.2 1.2],[0 0],'Color','k') 

line([0 0],[1.2 -1.2],'Color','k') 

title('colleage & uni. libraries') 

xlabel('2nd PC') 

ylabel('3rd PC') 

  

circle = rsmak('circle'); 

fnplt(circle) 

  

text(r1(1,2),r1(1,3),'X1') 

text(r1(2,2),r1(2,3),'X2') 

text(r1(3,2),r1(3,3),'X3') 

text(r1(4,2),r1(4,3),'X4') 

text(r1(5,2),r1(5,3),'X5') 

text(r1(6,2),r1(6,3),'X6') 

text(r1(7,2),r1(7,3),'X7') 

text(r1(8,2),r1(8,3),'X8') 

text(r1(9,2),r1(9,3),'X9') 

text(r1(10,2),r1(10,3),'X10') 

hold off 

figure 

[X,Y,Z] = sphere(16); 
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xx = pc(:,1); 

y = pc(:,2); 

z = pc(:,3); 

xlabel('First PC') 

ylabel('Second PC') 

zlabel('Third PC') 

scatter3(xx,y,z,'MarkerFaceColor','g') 

  

figure 

hold on 

xlim([-1.2 1.2]) 

ylim([-1.2 1.2]) 

line([-1.2 1.2],[0 0],'Color','k') 

line([0 0],[1.2 -1.2],'Color','k') 

title('colleage & uni. libraries') 

xlabel('3rd PC') 

ylabel('4th PC') 

  

circle = rsmak('circle'); 

fnplt(circle) 

  

text(r1(1,3),r1(1,4),'X1') 

text(r1(2,3),r1(2,4),'X2') 

text(r1(3,3),r1(3,4),'X3') 

text(r1(4,3),r1(4,4),'X4') 

text(r1(5,3),r1(5,4),'X5') 

text(r1(6,3),r1(6,4),'X6') 

text(r1(7,3),r1(7,4),'X7') 

text(r1(8,3),r1(8,4),'X8') 

text(r1(9,3),r1(9,4),'X9') 

text(r1(10,3),r1(10,4),'X10') 

hold off 

  

max=load('max.dat') 

pc1=max(:,1:2) 

pc2=max(:,3:4) 

namepc1=['Harvard ' 

         'Yale    ' 

         'columbia' 

         'Taxas   ' 

         'Stanford']; 

    

   %Universities 

figure 

hold on 

title('Univesities'); 

xlabel('PC1'); 

ylabel('PC2'); 

xlim([-2 4]); 

ylim([-2 2]); 

  

line([-2 4],[0 0],'Color','r'); 

line([0 0],[-2 2],'Color','r'); 

  

for i=1:5 

    text(pc1(i,1),pc1(i,2),namepc1(i,1:3),'FontSize',12); 
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end;   

  

  

  

  

namew=['x1 ' 

       'x2 ' 

       'x3 ' 

       'x4 ' 

       'x5 ' 

       'x6 ' 

       'x7 ' 

       'x8 ' 

       'x9 ' 

       'x10']; 

    

figure 

hold on 

title('variables'); 

xlabel('PC1'); 

ylabel('PC2'); 

xlim([-0.2 1.2]); 

ylim([-0.7 0.7]); 

  

line([-0.2 1.2],[0 0],'Color','b'); 

line([0 0],[1 -1],'Color','b'); 

  

for i=1:p 

    

text(w(i,1),w(i,2),namew(i,1:3),'Color','r','FontSize',12); 

end;        

 

 


