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ABSTRACT 

Renewal equations and renewal type equations are frequently encountered in several 

applications when regenerative arguments are used in the modeling. These equations 

which are Volterra type integral equations contain the renewal function in the kernel 

which is a key tool in renewal processes. Analytical solutions of the renewal 

equations are possible only for a very few cases. Although several approximations 

for the renewal function are available, the use of any method depends on the 

characteristics of the underlying distribution function such as skewness, kurtosis, 

modes, and singularities. Further, all the approximations proposed so far presuppose 

the knowledge of the underlying distribution function. This thesis proposes non-

parametric approximations to several renewal functions based only on the first few 

moments of the distribution function. The renewal functions considered are one-

dimensional renewal function, g-renewal function, and two-dimensional renewal 

function. The approximations are compared with the actual values wherever 

available and with benchmark approximations. Examples from areas such as 

reliability, queuing theory, and warranty models are developed to illustrate the 

efficacy of the approximations.  

 

 

 

 

Keywords: Renewal Function, G-renewal Function, Two-dimensional Renewal 

Function, Moments Based Approximation, General Repair, Renewing Warranty.  
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ÖZ 

Modellemede tekrar üretilmiş ispatlar kullanıldığı zaman, çeşitli uygulamalarda, 

yenilenen denklemler ve yenilenen denklem çeşitlerine sıklıkla rastlanmaktadır. 

Volterra tipi tümlevsel denklemler olan bu denklemler, yenileme surecinde önemli 

bir araç olan kernel içerisinde yenileme fonksiyonu içermektedirler. Yenilenen 

denklemlerin sayısal çözümleri sadece bir kaç durumda mümkündür. Yenilenme 

fonksiyonları için çeşitli yaklaşımlar bulunmasına rağmen herhangi bir metodun 

kullanımı temel dağilim fonksiyonunun çarpıklık, basıklık, doruk ve tutarsizlık gibi 

özelliklerine bağlıdır. Ayrıca şimdiye kadar önerilen tüm yaklaşımlar, temel dağılım 

fonksiyonunun bilinmesini varsaymışlardır. Bu tez çeşitli yenileme fonksiyonuna, 

dağılım fonksiyonunun sadece ilk bir kaç momentine göre, parametrik olmayan 

yaklaşımlar öneriyor.  Dikkate alınmış yenilenen fonksiyonlar tek boyutlu,  g-

yenilenen ve iki boyutlu yenilenen fonksiyonlardır. Yaklaşımlar, varsa gerçek 

değerlerle, yoksa en iyi karşılarştırmalı denektaşıyla kıyaslanmıştir.  Yaklaşımların 

etkinliğini göstermek için örnekler güvenirlilik,  kuyruk kuram ve teminat modelleri 

alanlarında geliştirilmiştir.    
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Chapter 1 

 INTRODUCTION 

Stochastic processes deal with techniques of quantifying the dynamic relationships 

amongst a sequence of random variables. “Currently in the period of dynamic 

indeterminism in science, there is hardly a serious piece of research, which, if treated 

realistically, does not involve operations on stochastic processes” [Neyman (1960)]. 

With randomness being an integral part of the majority of phenomena around us, 

stochastic models play a crucial role in modeling problems of natural and 

engineering sciences. These models can be used to analyze the variability inherent in 

biological and medical sciences like the variability of neural spike trains or mutation 

of genes. They are very useful in modeling phenomena in diverse areas from 

economics and psychology to electronics and computer science. Such models provide 

the modeler with new perspectives and information. Newer processes continue to 

grow to suit the needs of the modeler. However, fundamental processes such as 

Markov processes, renewal processes, and branching processes score over others in 

terms of versatility of applications. 

Renewal theory arose from the study of “self renewing aggregates” and was first 

introduced as a generalization of Poisson process. Renewal processes play a key role 

in the grand scheme of stochastic processes because of its theoretical structure as 

well as application in diverse areas such as man power studies, reliability, 
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replacement and maintenance, inventory control, queuing theory, and simulation to 

mention a few. First, they are useful in removing the stronger distributional 

assumptions that are needed to build Markov models such as geometric distribution 

and exponential distribution of the discrete and continuous time Markov models, 

respectively. Secondly, renewal processes form the basis for providing a unifying 

theoretical framework for studying the limiting behavior of specialized stochastic 

processes. In this regard key renewal theorem plays an important role. Finally, 

renewal processes lead us to important generalizations such as renewal reward 

processes, regenerative processes, and Markov regenerative processes. Specific 

mention must be made of renewal reward processes, which play a very useful role in 

the computation of vital performance measures such as long run costs and revenues.  

One of the key tools in the analysis of renewal processes as well as in applications is 

the renewal function. It simply gives us the expected number of renewals in an 

arbitrary time interval. This function is very important in renewal processes because 

it completely characterizes the process. The renewal function can at best be 

expressed as the solution of an integral equation known as the renewal equation. 

Apart from the renewal equation, renewal type equations occur in various different 

situations from using the renewal argument. Feller (1966) gave a number of 

examples of phenomena satisfying renewal type equations. Keyfitz (1968) 

considered use of renewal type equation in demography, Bartholomew (1973) in 

social processes, Bartholomew (1976), Bartholomew and Forbes (1979) in manpower 

studies, and Sahin (1990) in inventory models.  

The renewal equations or renewal type equations, which are so important in 

applications, are not easy to use in practice.  These integral equations contain the 
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renewal function whose explicit evaluation is possible only in very few select cases. 

Hence, approximations to determine the renewal function becomes the lone option 

for workers in this area and the need for simple and efficient approximations have 

been felt more than ever. In this thesis, our endeavor has been to develop such 

approximations for a few important renewal functions and apply them to problems in 

diverse areas such as queuing theory, reliability, and warranty cost analysis. In order 

to understand the renewal functions under consideration and the theory behind them, 

we present in this sequel some basic ideas on renewal theory as well as review the 

existing literature on approximations to the renewal functions. We wish to mention 

that part of the material of the following subsections can be found in the references 

cited at the beginning of them.  

1.1 One-dimensional Renewal Processes [Tijms (2003) and Medhi 

(1994)]  

Renewal theory began as the study of some particular problems connected with the 

failure and replacements of components. However, the wealth of applications of the 

theory has led to a phenomenal hand in hand growth of the theory and applications.  

Let ���, � � 1,2, … 
 be a sequence of non-negative independent random variables. 

Assume that ����� � 0
 � 1. Let the random variables be continuous and 

identically distributed with a distribution function ��. �. Since �� is non-negative, it 

follows that ����� exists and let us denote 

����� �  � � ����� �  ���                  (1.1) 

where µ may be infinite. Whenever µ �  ∞, 1 µ⁄  shall be interpreted as 0.  
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Let �� � 0, �� � ��   �!   …   ��, � " 1 and let ����� � ����� # �
 be the 

distribution of ��, � " 1; 
����� � %1     &' � " 00     &' � � 0( 

Define the random variable )�*� � +,-��: �� # *
. The process �)�*�, * " 0
 is 

called a renewal process with distribution F. Among the various statistical 

characteristics of the random variable )�*�, such as mean, variance, and 

autocorrelation function, the most sought after measure is the mean function. In 

several optimization procedures wherein the objective function is the long run 

average measure, the mean function plays an important role. The function /�*� �
�0)�*�1 is called the renewal function of the process with distribution �. It is clear 

that  

�)�*� " �
 2 ��� # *
                (1.2) 

The distribution of )�*� is given by 

-��*� �  ���)�*� � �
 � ���*� 3 ��4��*�               (1.3) 

where ���*� is the � fold convolution of ��*� with itself. This can be seen by 

observing that  

���)�*� � �
 � ���)�*� " �
 3 ���)�*� " �  1
 � ����� # *
 3 �����4� # *

� ���*� 3 ��4��*�. 

The expected number of renewals is computed by noting that  

/�*� � �0)�*�1 � ∑ � -��*���6� �  ∑ �����*� 3 ��4��*�
 �  ∑ ���*���6� ���6�
 ∑ ����� # *
��6� .                 (1.4) 
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Taking Laplace transform on both the sides of (1.4), the above relation can be 

conveniently cast in the form 

 /7�+� � 87�9�90�:87�9�1                                           (1.5) 

where /7�+� and '7�+� are the Laplace transforms of /�*� and '�*� respectively. 

From (1.5) we have the relation  

'7�+� �  9 ;7�9��49 ;7�9�                  (1.6) 

(1.5) and (1.6) together show that /�*� and ��*� can be determined uniquely one 

from the other. Note that /�*� � �0)�*�1 is a sure function and not a random 

function or stochastic process. The renewal density <�*�∆* is defined as the 

probability of the occurrence of one or more renewals in a very small time 

interval �*, *  ∆*�. It can be easily shown that <�*� is the derivative of the renewal 

function /�*�. To see this we observe that   

<�*� � lim∆AB�  ���C�D C� <C�D �D�DEFG+ &� �*, *  ∆*�
∆*   

          �  H lim∆AB�
����AI �D�DEFG CJJ,�+ &� �*, *  ∆*�
∆*  �

�6�
 

          � H lim∆AB�
'��*�∆*  C�∆*�∆*  �

�6�
 

           � ∑ '��*���6� �  ∑ �K��*� � /L�*���6�               (1.7) 

The function <�*� also specifies the mean number of renewals to be expected in 

narrow interval near *. Note that  <�*� is not a probability density function.  Taking 

Laplace transform on both sides of (1.7) and using (1.5), it is readily seen that  

<7�+� �  87�9��:87�9�                 (1.8) 
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An integral equation can be obtained for the renewal function /�*�, which is given 

below: 

/�*� � ��*�   � /�* 3 �������A�                 (1.9) 

To prove (1.9) we first condition on the duration of the first renewal �� to get  

/�*� � �0)�*�1 �  M ��)�*�|�� � �
 ������
�  

Consider � O *; given that �� � � O *, no renewal occurs in [0, t], so that 

�0)�*�|�� � �1 � 0. 

Consider  0 # � # *; given that the first renewal occurs at � �# *�,  the process starts 

again at epoch  �, and the expected number of renewals in the remaining interval of 

length �* 3 �� is �0)�* 3 ��1, so that 

�0)�*�|��1 � 1  �0)�* 3 ��1 � 1  /�* 3 �� 

Thus considering the above two equations, we get  

/�*� �  M�1  /�* 3 ��
����� � ��*�   M /�* 3 �������A

�

A

�
 

The equation (1.9) is called the integral equation of renewal theory (or simply 

renewal equation) and the argument used to derive it, is known as "renewal 

argument".  

The renewal equation (1.9) can be generalized as follows: 

P�*� � Q�*�   � P�* 3 �������, * " 0,A�              (1.10) 
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where Q and � are known and P is unknown. The equation (1.10) is called a renewal 

type equation.  A unique solution of P�*� exists in term of Q and � which will be 

formally stated as below. 

If P�*� � Q�*�   � P�* 3 �������, * " 0A�  then  

P�*� � Q�*�   � Q�* 3 ���/���A�                (1.11) 

where /�*� �  ∑ ���*���6� . 

To prove (1.11), we first take Laplace transform on both sides of (1.10) to get  

P7�+� � Q7�+�  P7�+� '7�+�  

so that P7�+� � R7�9��:87�9� � Q7�+� S1  87�9��:87�9�T �  Q7�+�01  + /7�+�1        (1.12) 

Inverting the Laplace transform on both sides of (1.12), we get (1.11). The solution 

P�*� is unique, since a function is uniquely determined by its Laplace transform. 

The renewal equation (1.9) satisfied by the renewal function is a Volterra integral 

equation. The closed form solution of this equation is not available, excepting a very 

few cases in which the renewal process is driven by exponential or gamma 

distributions. In view of the importance of the renewal function in practical 

applications, several approximations for the same have been proposed. We will very 

briefly review some approximations, which in our view have contributed to the state 

of art.  

(i) Methods of Substitution 

Bartholomew (1963) was one of the earliest to provide an approximate 

solution of the integral equation of the renewal theory. Using the identity  
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��U� �  � <�U 3 *��V�*��*W�             (1.13) 

in the renewal equation, he derived an expression for the renewal density 

purely in terms of the distribution function ��*� (where �V�*� is the 

survivor function of T). Deligonul (1985) further improved 

Bartholomew’s approximation that was quite robust for renewal densities 

with high degree of skewness. Smeitink and Dekker (1990) proposed an 

approximation by replacing the original distribution function ��. � by 

another distribution function �X�. � with the same mean and variance 

as ��. �. Politis and Pitts (1998) gave an approximation, which was on the 

lines of Smeitink and Dekker by approximating a density whose output is 

not known analytically by another density with easy output. They 

obtained explicit formulae for their approximations, which in many cases 

can be easily implemented on computer algebra software.  

(ii) Riemann-Stieltjes methods 

These methods are based on evaluating the renewal equation (1.9) using 

direct numerical Riemann-Stieltjes integration. Xie (1989) proposed such 

a method by partitioning the total interval into subintervals and using the 

midpoint method in numerical analysis, he recursively computed the 

value of the renewal function. This method is particularly useful when the 

probability density function has singularities. Ayhan et al (1999) also 

proposed a direct Riemann-Stieltjes integration method. However, instead 

of directly computing the integral they provided bounds on the renewal 

function by simply computing the lower and upper sums of the Riemann-

Stieltjes integral. Xie et al (2003) obtained upper bounds and the error 

terms when some direct Riemann-Stieltjes integration methods are used. 
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(iii) Bounds  

These methods investigate asymptotic behavior and bounds of the 

solutions to renewal equations. Bounds by themselves are interesting 

problems in many areas like upper bound on the reliability function, ruin 

probabilities, etc. Tighter and tighter bounds take us closer to the actual 

value. Marshall (1973) defined a sequence of “best” linear bounds which 

were sharpest bounds and when iterated converges monotonically to the 

renewal function /�*� for all *. Daley (1976) in a classic paper showed 

that the renewal function Y��� �  ∑ �������  satisfies Y��� #  Z�4  
 [ Z! ���!� for a certain constant [ independent of �, where Z �
1 ����⁄ . He further showed that [ # 1.3185649 … . Li and Luo (2005) 

studied upper and lower bounds for the solutions of Markov renewal 

equations and applied them to a shock model as well as an age dependent 

branching process under Markovian environment. Ran et al (2006) 

studied analytical and numerical bounds on the renewal function based on 

a simple iterative procedure. They also studied some interesting 

monotonicity properties and approximation error.  

(iv) Methods of moment matching 

One can approximate a general distribution function ���� by a phase type 

distribution and compute the renewal function for the approximated 

distribution. This approach leads to tangible results because the structure 

of phase type distribution gives rise to a Markovian state description for 

which the solution of the renewal equation is possible. The phase type 

distributions mainly used in the literature are Coxian-2 distributions (b!) 

and mixture of exponentials (c!).  
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Marie (1980) developed a two-moment approximation for the case [! O
1 where [! is the square of coefficient of variation given by μ! μ�!⁄ . He 

also gave formulas to approximate general distribution with  [! O 0.5 by 

a two-stage phase type distribution with certain parameters. Whitt (1982) 

analyzed the general problem of fitting distribution functions by matching 

the moments.  He empirically showed that if the coefficient of variation is 

small, then the impact of the third moment is not significant and hence 

there is no need to include the third moment in the representation of the 

original distribution by matching the moments. Altiok (1985) studied the 

problem of approximating a general distribution by a phase type 

distribution matching the first three moments. He showed that a three 

moment fit by Coxian-2 distribution is always possible when e! O 2 

and ef O f! e!!, where e! � 1   [!and ef �  μf μ�f⁄ . Lindsay et al 

(2000) showed how to approximate a univariate distribution with mixtures 

of known distribution functions. Cui and Xie (2003) approximated the 

Weibull distribution with normal distribution by equating the first two 

moments. Bux and Herzog (1977) developed a procedure based on a 

mathematical programming approach and fitted a Coxian distribution with 

uniform rates at all phases. They used the restriction that this distribution 

to be within a certain tolerance range with the original distribution as well 

as the equality of the first two moments in the constraint set. Their 

objective function was to minimize the number of phases. 
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Other directions in which research has extended include Pade’ approximations [Garg 

and Kalagnanam (1998)], Power series expansions [Smith and Leadbetter (1963)], 

and Laplace transform methods [Abate (1995)].  

Among the numerous approximations available, no one can be termed as an “all 

weather approximation” in the sense that it can be used for every distribution 

function. The use of a particular method depends on the characteristics of the 

underlying distribution function in terms of skewness, kurtosis, modes and 

singularities to provide a good approximation. Further every one of the methods in 

the literature assumes the explicit form of the distribution function ��. � to be known 

a priori. This is a very restrictive assumption because in many practical situations we 

may not know the form of the distribution function, but make suitable assumptions 

on it. Typical examples are the failure distribution of components in reliability theory 

and arrival and service distributions in queuing theory. In such cases, we can collect 

data on the realization of the random variable � from which efficient estimators of 

the various moments of � could be computed. The objective of the present work is to 

provide an easy to evaluate but accurate all weather approximation for the evaluation 

of the renewal function based on the first three moments of � and requires no 

knowledge on the distribution function.  

1.2 G-renewal Process [Kijima (1989) and Kijima et al (1988)] 

G-renewal processes were first introduced by Kijima in the context of optimal repair 

and replacement of deteriorating systems. The progressive degradation of systems is 

often reflected in increased production cost and lead-times as well as lower product 

quality. Thus, optimality issues of maintenance such as repair and replacement of 

systems are of vital importance. The simplest maintenance policy is to replace, the 
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system on failure by a new and identical one. With such a policy in place the number 

of failures can be modeled as a renewal process. However for systems consisting of 

many components, each having their own failure mode, a replacement is a luxury 

whereas repair or replacement of only the failed component is a more viable option. 

In this regard, the maintenance policy of minimal repairs is appealing to both 

researchers and practitioners. Minimal repairs restore the system to the condition that 

it was in just prior to failure, rendering the failure counting process as an non-

homogeneous Poisson process. However, in practical situations, maintenance 

operations may not conform to either of these two extreme actions but may result in 

an intermediate level. Such maintenance operations are referred to as general repairs. 

We present below a general repair model that will lead us to g-renewal functions.  

Consider a system, which is subject to failures. At each failure, a repair activity, 

which requires negligible amount of time, is performed on the system. Let a new 

system be put in operation in * � 0. Let )�*� be the number of failures until time *. 

The failure process )�*� is modeled as follows. Let g� be the virtual age of the 

system immediately after the �AI repair and ��4� , the time between �AI and 

 ��  1�AI failure since * � 0. Then the distribution of ��4� given  g� � h is 

distributed according to  

��0��4� # � | g� � h1 � i�j4k�:i�k��:i�k�              (1.14) 

where ���� is the lifetime distribution of a new system (new systems are assumed to 

have the virtual age g� � 0). We define a partial sum process by �� � ∑ �l�l6�  

with �� � 0. �� may be referred to as the real age of the system at the �AI failure 

since it is the elapsed time since the system was put in operation. It is easy to see that  

��0)�*� " �1 �  ��0�� # *1                                                                                (1.15) 
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It remains to specify the mechanism of the virtual age process �g�; � " 0
. Let F� 

represent the degree of the �AI repair. It is assumed that the �AI repair can remove 

only damages incurred during the �AI lifetime. That is, it reduces the additional age 

�� to F� �� . Accordingly, the virtual age after the �AI repair becomes g� �  g�:�  
 F� ��. Furthermore, we assume that each repair is of the same degree, sayF� �  m. 

The virtual age g�, then can be specified by  

g� �  m �� �  ∑ m �l�l6�                (1.16) 

Thus, the process  �g�; � " 0
 is a time homogeneous Markov process and so 

is ���; � " 0
. 

We note that if m # 1 then g� #  �� meaning that the system is rejuvenated by the 

repair. If m " 1 then g� "  �� so that the repair damages the system more. Our 

interest is restricted to improving systems only, so that we assume that  0 # m # 1 in 

what follows. If m � 1 we have g� �  ��, so that the real age and virtual age coincide 

implying that a minimal repair is performed. Also if m � 0 then,  g� �  0, which 

implies that the system is renewed by each repair and hence the resulting failure 

process is an ordinary renewal process. The difference  �� 3  g� may be considered 

to represent the degree of rejuvenation by the repairs. 

 At time * O 0, the nearest time epoch of failure before * is �n�A� (if no 

failure, �n�A� � 0). Let ��*� be the failure rate of the system of age t. At the )�*�AI 

repair (the 0AI repair means replacement), the virtual age of the system is gn�A� so 

that the failure rate at that time is ��gn�A��, while the real age is �n�A�. No 

rejuvenation occurs during the interval  0�n�A�, *� (note that * " �n�A� almost surely). 
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Hence, at time *, the failure rate of the system becomes ��gn�A�  * 3 �n�A��. 

Since g� �  m ��, we have  

�0)�U�1 �  � �o�p* 3 �1 3 m��n�A�qr�*W�              (1.17) 

Further let sA��� denote the probability distribution function of �n�A�, so that, 

 sA��� �  ��0�n�A� # �1. Conditioning on �n�A�, it is easily seen that  

<�*� � ��*���0)�*� � 01   � ��* 3 �  m���sA���A�                                        (1.18) 

Suppose that the �AI failure occurs at time �. This means that �� � � and g� � m�. 

The conditional life distribution t�*|g� � m�� of ��4� is then given from (1.14) by  

t�*|m�� �  i�A4uj�: i�uj��:i�uj�                                                                                       (1.19) 

It is well known that  

��o� � �n�A� # �  ��r � <�*��1 3 t�* 3 �|m��
 ��                                      (1.20) 

It follows from (1.18) through (1.20) that  

<�*� �  '�*�   � <�*� 8�A:j4uj��:i�uj�  ��,     * " 0.A�                                                   (1.21) 

Define  

v�*|�� �  8�A4uj��:i�uj�  ,     *, � " 0,                                                                              (1.22) 

so that '�*� � v�*|0� and 

w�*|�� �  � v�h|���h � t�*|m��.A�                                                                      (1.23) 

Note that w�*|�� for any fixed � is a distribution function. It is readily seen that  
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<�*� � v�*|0�   � <��� v�* 3 �|����A�              (1.24) 

and the set of distribution functions w�*|�: � " 0
 satisfies all the conditions needed 

for the Volterra integral equation (1.24) to have a unique solution. Equation (1.24) is 

called the g-renewal equation and the function <�*� satisfying the integral equation 

is called a g-renewal density and  /�*� the g-renewal function. 

Observation: If the degree of repair m � 0, then the function v�*|�� becomes '�*� 

and it is independent of �.  In this case, the g-renewal equation (1.24) reduces to 

ordinary renewal equation. On the other hand if m � 1, then v�* 3 �|�� �
'�*� �V���⁄  so that the solution of the renewal equation (1, 24) turns out to be <�*� �
��*�, the failure rate. Thus, the failure counting process )�*� is a non-homogeneous 

Poisson process with mean function x�*� �  � ��*��*A� .  

For a general repair model, Kijima (1989) discussed various monotonicity properties 

of the process ��, the time for the �AI failure with respect to stochastic orderings of 

general repair �ml
. He also obtained an upper bound for  ����� when a general 

repair is used. Kaminskiy and Krivtsov (2000) used a g-renewal process as a model 

for statistical warranty claim prediction. They showed that warranty claim prediction 

based on g-renewal process provided a higher accuracy as compared to ordinary 

process or non-homogeneous Poisson process. Kaminskiy (2004) obtained simple 

bounds on the g-renewal function with increasing failure rate underlying distributions 

and compared the new bounds with some known bounds for the renewal process. 

Dimitrakos and Kyriakidis (2007) considered the average cost optimal policy of a 

general repair model and developed an efficient special purpose policy iteration 
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algorithm. They generated a sequence of improving control-limit policies. They also 

provided strong numerical evidence that the algorithm converges to the optimal 

policy. Matis et al (2008) discussed optimal price and prorate decisions for combined 

warranty policies when a general repair model is used. Kaminskiy and Krivtsov 

(2010) have considered g-renewal process as a repairable system model and 

discussed the properties and statistical estimation of the model parameters for the 

case of exponential and Weibull underlying distributions.  

As already seen, when m � 0 the general repair model collapses to an ordinary 

replacement model so that the g-renewal function becomes an ordinary renewal 

function. On the other hand if m � 1 general repair model coincides with minimal 

repair model so that the g-renewal function is nothing but the mean function of the 

inhomogeneous Poisson process x�*� �  � ��*��*A� . However, for the case 0 � m �
1, in view of the structure of the g-renewal equation, it is not possible to obtain a 

closed form solution of the g-renewal function. The methods of Laplace transforms 

and power series expansions used in the case of one-dimensional renewal process are 

not applicable because of the kernel v�*|�� appearing in g-renewal equation (1.24). 

Numerical solutions are unwieldy to employ since the g-renewal equation contains a 

recurrent infinite system. In view of the importance of the g-renewal function and its 

application in reliability and the non-availability of useful approximations in 

estimating them, this thesis proposes a couple of useful approximations. An optimal 

replacement problem with general repairs is developed which uses the computation 

of g-renewal functions to obtain optimal replacement periods.  
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1.3 Two-dimensional Renewal Processes [Hunter (1974(a), 1974(b), 

and 1977)] 

There has been a steady growth in the one-dimensional renewal theoretic models and 

their applications to wide ranging areas. A natural extension of the one-dimensional 

models to higher dimensions has led to the development in multidimensional models 

and in particular two-dimensional renewal processes. However, such an extension is 

fraught with pitfalls such as ���, h�   �V��, h� is not equal to unity as in the one-

dimensional case. Again, in the one-dimensional case the failure rate Z�*� is defined 

as Z�*� � '�*�/�V�*� which gives rise to the differential equation 

� G� '�*� �* �  Z�*�⁄  with the solution '�*� �  D: � z�{�|{}~ . However, in the two-

dimensional case, the bivariate failure rate Z�*, ,� is given by Z�*, ,� � '�*, ,�/
�V�*, ,� where '�*, ,� �  �!��*, ,� �* ⁄ �,. Unlike the one-dimensional case, the 

solution of the partial differential equation 
��i�A,{��A �{ �  Z�*, ,��V�*, ,� has not been 

found yet. Hunter (1974(a), 1974(b), and 1977) in a series of three classic papers 

built up the edifice of two-dimensional renewal theory. We present here the basics of 

two-dimensional renewal processes in a run up to the two-dimensional renewal 

equation, which is the focus of our study. 

  

Let ����, ���
, � � 1, 2, …,  be a sequence of independent and identically distributed 

non-negative bivariate random variables with common joint distribution function 

���, h� � ����� # �, �� # h
.             (1.25) 

 

Let �� � ������, ���!�� � �∑ ��, ∑ �����6���6� . The sequence of bivariate random 

variables ����, ���
 is known as a bivariate renewal process. Each of the marginal 
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sequences, ���
 and ���
 are (univariate) renewal processes. In order to distinguish 

between the different renewal processes, we shall say that an �-renewal occurs at the 

point � on the �-axis if ����� � � for some �, a �-renewal occurs at the point h on the 

�-axis if ���!� � h for some �, and an ��, ��-renewal occurs at the point ��, h� in 

��, �� plane if ����� � � and ���!� � h for some �. 

 

Define  

)j��� � max��: ����� # ��, 
)k�!� � max��: ���!� # h�, 

)j,k � max��: ����� # �, ���!� # h�. 
 

Thus associated with a bivariate renewal process we have various counting 

processes. Firstly, )j���
 and )k�!�

 are the univariate renewal counting processes for 

the �-renewals and the �-renewals. We call the random pair �)j���, )k�!�� the 

bivariate renewal counting process. Secondly, )j,k records the number of ��, ��-

renewals that occur in the closed region of the positive quadrant of the ��, �� plane 

bounded by the axes and the lines � � � and � � h. We call )j,k the two-

dimensional renewal counting process. 

1.3.1 The Distribution of ��,� 

For �, h " 0, and � " 0, 
���)j,k � �� �  ����, h� 3  ��4���, h�.                                                              (1.26) 

Since )j,k � min�)j���, )k�!�� we observe that 

�)j,k " �� � �)j��� " �� � �)k�!� " �� � ������ # �, ���!� # h�. 
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Thus ���)j,k " �� � ����, h� along with ���)j,k � �� �  ��{)j,k " �
 3
���)j,k " �  1
 proves the result. 

1.3.2 The Two-dimensional Renewal Function and Renewal Density 

In analogy with the univariate theory, we define the two-dimensional renewal 

function, /��, h� �  ��)j,k�. For all �, h " 0, one can easily show that  

/��, h� �  ∑ ����, h�.��6�                (1.27) 

There are various ways of establishing this result. In particular, from (1.26) 

�o)j,kr �  ∑ ���)j,k " �� �  ∑ ����, h���6���6�             (1.28) 

 

Just as the probability generating function of  )j,k provides information concerning 

)j���
 and )k�!�

, the univariate renewal functions can be obtained from /��, h�, since 

from �S)j���T �  ∑ ��������6�  , �S)k�!�T �  ∑ ��!�h���6� , (for �, h " 0� and equation 

(1.27), /���� � /��, ∞� and /!�h� � /�∞, h�. Furthermore, from (1.27), we 

observe that  

/ 77 ���, h� �  ∑ ��4���, h� � /��, h� 3  ���, h���6�            (1.29) 

where the operator 77 denotes convolution with respect to � and h. From (1.29) we 

obtain the "integral equation of two-dimensional renewal theory",  

/��, h� � ���, h�   � � /�� 3 ,, h 3 P� ���,, P�.k�j�            (1.30) 

This is analogous to the well-known integral equation of one-dimensional renewal 

theory: 

/���� � �����   M /��� 3 ,�����,�j

�
 

From (1.27) or (1.30) we can derive an expression for /7�-, v�the bivariate Laplace-

Stieltjes transform of /��, h�: 
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/7�-, v� �  i7��,���:i7�� ,��                                                                                             (1.31) 

 

A similar expression holds for the univariate Laplace-Stieltjes transform of  /����: 

/�7�-� � ��7�-�1 3  ��7�-� 

It should be remarked that knowledge of the two-dimensional renewal 

function /��, h� implies complete knowledge of all aspects of the two-dimensional 

renewal process. This is obvious from (1.31), and expressions for the higher order 

moments of  )j,k can be found in terms of /��, h�. If we assume ���, h� to be 

absolutely continuous then we can define the two-dimensional renewal density 

function  

<��, h� �  ��
�j  �k /��, h� �  ∑ '���, h���6�              (1.32) 

 

Thus, from (1.30) we obtain the "two-dimensional renewal density integral equation" 

<��, h� � '��, h�   � � <�� 3 ,, h 3 P� '�,, P� �, �P;k�j�           (1.33) 

which upon taking bivariate Laplace transforms, yields  

<7�-, v� �  87��,���: 87��,��                (1.34) 

 

Note that <7�-, 0� �  <�7�-� and <7�0, v� �  <!7�v�, the Laplace transforms on the 

univariate renewal densities,  <���� and <!�h� respectively. It can be shown that  

<���� �  � <��, h� �h��  and <!�h� �  � <��, h� ���� . 

 

The theory of multidimensional stochastic processes has been developed mainly by 

the Russian school of probability and applied to several interesting areas like cascade 

showers, seismicity, and neural activity. Kotz et al (2000) have studied several 
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models of continuous multivariate distributions and their applications. Bivariate 

exponential distributions, very much like their one-dimensional analog are simple to 

use but versatile in applications. Various bivariate exponential distributions have 

been proposed in the literature (see Kotz et al (2000) for details). One form of the 

distribution with desirable characteristics was introduced by Downton (1970) in the 

context of reliability theory. The bivariate exponential density function is given by 

 '��, h� �  z� z��:� D�:���������� ���0! � z� z� j k�:� 1              (1.35) 

where Z� � 1 μ� O 0,⁄  Z! � 1 μ! O 0,⁄  and 0 # ¡ � 1. ���. �is the modified Bessel 

function of the first kind of �AI order. 

 

The advantage of using this form of the bivariate exponential distribution is that this 

is one of the very few joint distributions whose explicit form of the double Laplace 

transform of the two-dimensional renewal function is known. It is given by  

/7�-, v� �  ����¢��4¢��4��:��¢�¢����               (1.36) 

Analogous to the one-dimensional elementary renewal theorem, Hunter (1974(b)) 

gave the following results for two-dimensional renewal function. 

limAB� /�*, *� �  �£¤¥ �¢�,¢��               (1.37) 

limAB� ;�¢�A,¢�A�A � 1                 (1.38) 

limAB� /�μ�*, μ!*� � * 3 ¦§ A!¨   C√*              (1.39) 

where ¦ �  §�ª�¢��!  �ª�¢��! 3 2¡ ª�ª�¢�¢� 

 

Hunter (1977) proposed a collection of upper and lower bounds for the two-

dimensional renewal functions. Chen et al (2010) in their two-dimensional renewal 



22 
 

risk model, were interested in finite time ruin probabilities which requires the 

computation of two-dimensional renewal functions. However, they considered only 

asymptotic formula. One of the major applications of two-dimensional renewal 

theory has been in the area of two-dimensional warranty policies (Murthy et al 

(1995)). A two-dimensional warranty, which is the natural extension of the one-

dimensional warranty, is characterized by a region in two dimensions with the two 

axes representing age and usage. The theory requires heavy usage of two-

dimensional renewal functions.  

 

Approximations to one-dimensional renewal function have received considerable 

attention in the literature. However, strangely there has been practically no attempt to 

provide efficient approximations to two-dimensional renewal functions although 

their occurrences in applications are quite frequent. Iskandar (1991) has provided a 

two-dimensional renewal function solver, which is a computational procedure with a 

computer program to solve the two-dimensional renewal integral equation.  We wish 

to observe that even the only available approximation requires the explicit form of 

the joint distribution function ���, h�. In our view, this is very restrictive because in 

practical applications, presupposing the joint distribution may lead to erroneous 

conclusions. However, past data records might provide us with good estimates of the 

statistical characteristics of the two variables. This thesis develops an efficient 

approximation to the two-dimensional renewal function based only on the first two 

moments of the variables and their correlation coefficient. The proposed 

approximation is checked for accuracy with the benchmark approximation of 

Iskandar for several bivariate distributions. We also consider two-dimensional 

renewal warranty models as applications to apply our approximation procedure.  
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The layout of the thesis is as follows. In chapter 1 we provide the basics of renewal 

processes needed for the approximations of the renewal functions that are developed 

in this thesis. In chapter 2 a moment based non-parametric approximation to the one-

dimensional renewal function is presented. Numerical comparison of our 

approximation with the benchmark approximations of Deligonul (1985), Deligonul 

and Bilgen (1984), Bartholomew (1963), Xie (1989), and Giblin (1983) are made. 

Some illustrations are provided to show the performance of our approximation. An 

application of the moment based approximation developed in chapter 2 in the form of 

computing the performance measures in queuing systems is presented in chapter 3. 

This chapter also proposes an alternative procedure of approximation by matching 

moments for the calculation of the performance measures. Numerical illustrations are 

also provided.  Chapter 4 provides a couple of approximations for the computation of 

g-renewal function of which one is based on Riemann integrals. In chapter 5 we 

develop an optimal system design model which uses the computation of the g-

renewal function using the methods developed in chapter 4. In chapter 6 we develop 

an approximation for the two-dimensional renewal function. Apart from numerical 

examples, we discuss a two-dimensional warranty model in which the warranty costs 

are developed using our approximation. In conclusion, the last chapter makes some 

interesting observations and scope of the proposed work. 

 

 

 

 

 



24 
 

Chapter 2 

MOMENTS BASED APPROXIMATION TO THE 

RENEWAL FUNCTION 

2.1 Introduction 

There are many applications like reliability, queuing theory, and inventory theory in 

which renewal equations are encountered. Since a closed form expression for the 

solution of the renewal equation is not available, in most cases bounds, numerical 

and approximation methods have been employed. Researches have been done in 

several directions to find simpler approximations to the renewal function. These 

include Laplace transform methods [Abate(1995)], approximations [Bartholomew 

(1963),  Deligonul (1985), Smeitink and Dekker (1990), and Politis and Pitts (1998)], 

Pade’ approximations [Garg and  Kalagnanam (1998)], power series expansions 

[Smith and Leadbetter (1963)], Riemann-Stieltjes integration methods [ Xie (1989) 

and  Xie et al (2003)] and bounds [Daley (1976), Ayhan et al (1999), Li and Luo 

(2005), and Ran et al (2006)] to mention a few. Early approximations to the renewal 

density can be traced to Bartholomew’s work (1963) which was later on improved by 

Deligonul (1984). Interestingly Bartholomew’s approximation provided good results 

for small values of t while not so good matching for lager values of t whereas 

Deligonul's approximation provided good match for larger values of t and not so 

good approximation for smaller t. Smeitink and Dekker (1990) provided an 

interesting approximation by approximating the original distribution function F(t) by 
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another distribution function )(ˆ tF  with the same mean µ  and variance σ 2  as that of 

F(t).  Amongst renewal function approximation for distribution function F(t), 

Weibull distribution has attracted the attention of researchers in the recent past. This 

is because “the Weibull distribution describes in a relatively simple analytical 

manner a wide range of realistic behavior and its shape and scale parameters can be 

readily determined with graphical or statistical procedure. On the other hand, there 

are no closed form analytical solutions for the Weibull renewal function except for 

the special case of exponential distribution” [Cui and Xie (2003)]. Cui and Xie 

(2003) proposed some approximations based on normal approximation of Weibull 

distribution. Jiang (2008) studied a series truncation approximation for computing the 

Weibull renewal function by approximating the Weibull distribution function by a 

mixture of n-fold convolution of gamma and normal distribution functions.  Jin and 

Gonigunta (2009, 2010) in a couple of papers used exponential approximation to 

Weibull distribution and generalized exponential approximation to Weibull and 

gamma distributions. Min Xie and his team of researchers (1989, 2003) have 

proposed several approximations using numerical Riemann-Stieltjes integration 

method. Another interesting approach in the determination of renewal functions is to 

provide bounds. Stone (1972) provided an upper bound for the renewal function in 

terms of the mean and variance, which was subsequently improved by Daley (1976). 

Ayhan et al (1999) provided tight upper and lower bounds for renewal function based 

on Riemann-Stieltjes integration. Upper and lower bounds for the solutions of 

Markov renewal equations for some special cases under specific marginal conditions 

and in an alternating environment were studied by Li and Luo (2005).  Ran et al 

(2006) studied analytical bounds based on a simple iterative procedure. They 

provided some convergent analytical results and investigated bounds and 
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approximations for a recursive algorithm for numerical computation. However all 

these methods make use of the distribution function F(t) of the renewal process 

which is assumed to be known. In practical applications like reliability and queuing 

theory, this assumption may not hold. At best, one might be in possession of the 

statistical characteristics of the underlying distribution. There are a number of cases 

where the moments of a distribution are easily obtained, but theoretical distributions 

are not available in closed forms [Lindsay et al (2000)]. Alternatively, from the 

observed sample data efficient estimators for the various moments of the underlying 

distributions could be calculated. Thus, a more appropriate problem would be the 

computation of the renewal function based only on the moments of the distribution 

without recourse to the distribution function. 

In this chapter we first propose an approximation for the evaluation of the renewal 

function based on the first three moments of the distribution function F(t). The 

proposed method requires no knowledge of the explicit form of F(t) and is applicable 

when the first three moments of F(t) are finite and known. It is applicable both for 

distributions with coefficient of variation smaller than one (smaller dispersion) and 

for distributions whose coefficient of variation is greater than one (larger dispersion) 

and is easy to carry out. The method produces exact results of the renewal function 

for certain important distributions like mixture of two exponentials and K2(Coxian-2) 

used widely in applications. We also propose an iterative procedure to improve the 

approximation, which is shown to converge to the value of the renewal function. 

However the iterative procedure uses the distribution function F(t). When this is not 

known, we propose that the unknown distribution function F(t) can be approximated 

by a K2 distribution by fitting the first three moments [Heijden (1988) & Altiok 

(1985)]. In the region where a three-moment fit is not possible, a procedure for fitting 
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the first two moments exactly and matching the third moment as close as possible has 

been suggested. Finally, an optimal replacement problem is used to illustrate the 

computations and efficacy of the proposed method.  

2.2 Notations used 

T: random variable denoting the inter-arrival time between successive renewals of a 

stationary renewal process 

f(t): density function of T 

F(t): distribution function of T 

N(t): number of renewals occurring during the interval (0,t) 

M(t): renewal function of the renewal process whose inter arrival time of events is 

specified by T 

µ'1= µ, µ'2 and µ'3: first three raw moments (about the origin) of T 

σ : standard deviation of T 

C: coefficient of variation of T given by σ/µ 

Φ 2 = C
2
 + 1    

Φ 3: coefficient of skewness of T given by µ'3/µ
3 

«7�¬�: Laplace Transform of the function f(t) 

Ek-1,k: mixture of Erlangean distributions 

2.3 The Moment Based Approximation 

Consider the renewal counting process {N(t); t≥0} whose renewal function is defined 

as the mean number of renewals in [0,t] so that M(t) = E[N(t)]. M(t) can be 

expressed as:  

M(t) = ∑
∞

=1n

F
(n)

 (t) ,t≥0                           (2.1) 
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where F(n)
 (t) denotes the n-fold convolution of F(.) with itself, recursively defined 

as: 

F
(n)

 (t) = ∫
t

0

 F
(n-1)

 (t-u) dF(u) ,t≥0, n≥2,              (2.2) 

with F
(1)

 (t) = F(t). Note that F
(n)

 (t) is the probability of n or more renewals 

occurring in the interval [0,t]. It is well-known that  

M(t) = t/µ+ (µ'2 - 2µ
2
)/2µ2

 + o(1) as t → ∞               (2.3)  

While the right hand side of (2.3) is an asymptotic result, we now propose the 

following approximation to the renewal function: 

Theorem 1. Suppose that the raw moments µ'n = E(T
n
); n = 1, 2, 3 of T exist and are 

known. Then, the following result holds for renewal function M(t): 

M(t) = t/µ + (µ'2 -2µ
2
)(1 – 

ts
e 0 ) / (2µ2

) + o(1)                        (2.4) 

where s0 = 6 µ(µ'2 -2µ
2
) / (3µ'2

2
 - 2 µ µ3').               (2.5) 

Proof: 

The renewal density m(t) = M'(t) satisfies the integral equation: 

m(t) = f(t) + ∫
t

0

m(t-u)f(u)du                           (2.6) 

Applying Laplace Transform to both sides of (2.6) we have: 

<7�+� �  87�9��:87�9�                                       (2.7) 

Noting that <7�+� has a singularity at s=0, we approximate it by a rational function 

as follows: 

<7�+)   ®9   ¯9:9~                                         (2.8) 

Inverting (2.8) and integrating we obtain: 
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/�*�  °* 3 ¯��:±²~}�9~                                        (2.9) 

In order to obtain A, B and +�, we proceed as follows. It is known that '7�+�, the 

Laplace transform of a density function admits the power series expansion 

'7�+� �  ∑ �:��³9³
�! ��́��6�                                    (2.10) 

Using (2.10) and (2.8) in (2.7) and comparing the coefficient of s0, s1 and s2 on both 

sides we obtain after some algebra 

A=1/µ 

B = -s0(µ'2-2µ
2
)/2µ

2 
 and 

s0 = -6µ(µ'2 - 2µ
2
)/(2µµ'3 - 3µ'2

2
) 

Thus an approximation for the renewal function is: 

Mo(t) = t/µ + (µ'2-2µ
2
)(1-

ts
e 0 )/(2µ

2
)                        (2.11) 

where +� is given by (2.5). The rational function approximation (2.8) clearly shows 

that the above approximation for the renewal function is of o(1). This completes the 

proof.                Q.E.D. 

Note 1: For the applicability of the approximation, it is necessary that +�  must be 

less than or equal zero. To get an intuitive meaning of this condition we proceed as 

follows. Let e! � ¶�·¶� and ef � ¶·̧
¶¸. Now +� # 0 implying either 

% 6���!K 3 2�!� " 0F��  3�!K 3 2��fK # 0( or % 6���!K 3 2�!� # 0F��  3�!K 3 2��fK " 0(. Now it can be easily established 

that the first set of conditions imply Φ2 ≥2 and Φ3≥
2

3
Φ2

2
 where as the second sets of 

conditions lead us to Φ2≤2 and Φ3≤
2

3
Φ2

2. Since Φ2 and Φ3 are measures of 
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coefficient of variation and skewness respectively, we observe that given the 

distribution F, the applicability of the method can be determined using its coefficient 

of variation and skewness. Figure 2.1 plots the regions in which the condition is 

satisfied. 

 

Figure 2.1: Plot of Feasible Regions for the Approximation 

Note 2: When F(t) has decreasing failure rate (DFR), the bounds for M(t) (Ross 

1996) are  

t/µ ≤ M(t) ≤ t/µ + (µ'2 -2µ
2
)/(2µ2

). We observe that the approximation Mo(t) improves 

the upper bound and gives a tighter bound. 

Note 3: Employing analysis similar to that of the proof of Theorem 1, the following 

approximations for the variance of N(t) and E[N(t)
3
] can be derived.  

Var[N(t)]≈ 
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where 2

2
2

2

2'

µ

µµ
υ

−
=  and 2

2
2 ' µµσ −= . 

Proposition 1. The condition that +� is non-positive which is necessary for the 

approximation to hold is satisfied by many standard distributions like uniform, 

gamma, mixture of exponentials, lognormal, Ek-1,k , k≥2 (see section 2.5) and 

Weibull. In addition, s0 is non-positive for the following distributions under the stated 

conditions: 

Truncated Normal pdf with α>0: 

0,0,))]/(1)(2[()( ]2/)([1 22

>≥−−= −−− ββαφπβ βα
tetf

t  

where ∫
∞−

−=
x

y
dyex

)2/( 2

)2/1()( πφ . 

Inverse Gaussian pdf with 1<λ/µ< 3  

0,0,0,)2/()( ]2/)([2/13 22

>>>= −− λµπλ µµλ
tettf

tt . 

Note 4: Comparing the exact expression for the renewal function [Sahin (1990), 

Smeitink and Dekker (1990)], simple algebra shows that the approximation Mo(t)  is 

exact for several distributions like exponential, mixture of two exponentials, and 

Erlang with two phases, and K2. We wish to mention that these distributions in 

general and K2 in particular have wide applicability in modeling arrival and service 
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distributions in queuing theory, life times in reliability analysis and approximation of 

probability distributions to evaluate multimedia systems. Thus, the evaluation of the 

exact values of the renewal function for such important distributions using simple 

computations assumes significance. 

We give below a summary of the procedure to approximate the mean number of 

events M(t) given the sample data. 

Step 1: Compute the first three moments ,, 21 µµ ′′ and 3µ′ from the given sample data. 

Step 2: Calculate +� based on (2.5). 

Step 3: If +� >0, this method is not applicable. 

Step 4: If +�≤0, go to step 5. 

Step 5: Approximate the renewal function M(t) using (2.4). 

To illustrate the above procedure we present an example and compare our results 

with benchmark approximations. In step1, set the first three moments as 

,6,2 21 =′=′ µµ  and 33 =′µ  (the choice of the moments was motivated in order to 

make a comparison with Xie (1989) and others). In step2, +� is evaluated as -4. Since 

+� is negative we proceed to step 5. In step5, we compute Mo(t) the approximation to 

renewal function for various values of t as shown in Table 2.1.   

In order to make a comparison of the values obtained using ours with other 

benchmark approximations, we have chosen the moments in our example as the 

moments of the gamma distribution of order 2 with scale parameter equal to one. In 

this case, we have the closed form solution )12(25.0)( 2tettM −+−= . In Table 2.1 
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along with M0(t) obtained using our approximation we also present the results 

obtained using the following benchmark approximations: 

)(ˆ tM RS : RS method of Xie (1989) without using the known distribution function 

F(t). 

MRS(t): RS method of Xie (1989) using the known distribution function F(t). 

MG(t): Generating function algorithm of Giblin (1983).  

MDB(t): Results obtained using the cubic spline Galerkin solution of Deligonul and 

Bilgen (1984). 

M(t): Exact values of the renewal function. 

Table 2.1: Values of Renewal Function for Gamma Distribution 

 

A similar computational procedure was carried out for Weibull and Truncated 

Normal distributions. In Tables 2.2 and 2.3, we have compared the values of M(t) 

using our approximation Mo(t) with the actual values for Weibull and Truncated 

Normal distributions [Baxter(1981)], and those of  Smeitink and Dekker (1990) and 

Bartholomew (1963). Excepting for values of * very close to the origin, it can be seen 

that our approximation works at least as good as or better than theirs. Also it should 

be mentioned that our method is very simple to evaluate.  
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Table 2.2: Values of Renewal Function for Weibull Distribution 

 

Table 2.3: Values of Renewal Function for Truncated Normal Distribution 

 

2.4 Iterative Procedure to Improve the Approximation 

In this section we present an iterative procedure to improve the approximation to the 

renewal function specified by Mo(t). However this procedure uses the distribution 

function F(t) of the renewal process. In cases where F(t) is unknown, there exist 

methods to approximate theoretical univariate distributions with mixtures of phase 

type distribution by matching the first two or three moments. We will indicate this in 

section 2.5.  

Proposition 2.  

(i)An iterative procedure based on Mo(t)  whose nth  iterate Mn(t) is given by  

Mn(t) = ∑
=

n

i 1

F
(i)

(t) + υ F
(n)

(t) + t/µ - ∑
−

=

1

1

n

i

F
(i)

*Fe(t) – υ F
(n)

*g(t)                    (2.14)  

where g(t)=
ts

e 0  and Fe(t) is the equilibrium distribution given by 

Fe(t) = ∫
t

0

(1-F(u))du /µ                          (2.15) 
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and * is the convolution operator defined as F*G(t) = ∫
t

0

F(t-u) dG(u) 

(ii) Mn(t) converges to M(t) as n → ∞.  

(iii) Further if F(t) is NBUE (new is better than used in expectation), then the 

sequence of Mn(t) is monotonically non-increasing in n for any fixed t and converges 

to M(t). 

Proof: 

(i) Our approximation Mo(t) to the renewal function is given as:  

Mo(t) = t/µ + υ (1-g(t))                         (2.16) 

where υ  = (µ'2 -2µ
2
)/2µ

2 
and g(t) = 

ts
e 0 . 

The renewal function M(t) satisfies the renewal equation 

M(t) = F(t) + ∫
t

0

M(t-u)dF(u)                          (2.17) 

Substituting (2.16) in (2.17) results in  

M1(t) = F(t) + ∫
t

0

[t/µ - u/µ +  υ (1-g(t-u))] dF(u) 

         = F(t) + υ  (1-g(t))*F(t) + t/µ - Fe(t)                        (2.18) 

where Fe(t) is the equilibrium distribution and g*F(t) is the convolution of g(t) with 

F(t). 

Substitution of /��*� of (2.18) in the renewal equation (2.17) we obtain /!�*�. 

Repeating this process n times we obtain  
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Mn(t) = ∑
=

n

i 1

F
(i)

(t) + υ (1-g(t))*F
(n)

(t) + t/µ - ∑
−

=

1

1

n

i

F
(i)

*Fe(t)                     (2.19) 

(ii) The convergence of Mn(t) to M(t) as n → ∞ for any t can be established 

by observing that  

∑
=

n

i 1

F
(i)

(t) → M(t),     ∑
=

n

i 1

F
(i)

*Fe(t) = t/µ,      F
(n)

(t) and F
(n)

*g(t)  → 0 as n → ∞. 

(iii)Monotonicity property is shown by induction as follows. The fact that M1(t) ≥ 

Mo(t) can be seen by observing that υ (1-g(t))≥ υ (1-g(t))*F(t) and F(t) – Fe(t) ≤0. 

The latter can be established from the fact that when F(t) is NBUE (new is better 

than used in expectation) then the mean residual life time  

E[T-t | T ≥ t] = µ≤
−

−∫
∞

))(1(

))(1(

tF

duuF
t                         (2.20) 

       ⇒ ))(1(

))(1(

tF

duuF
t −≤

−∫
∞

µ
 

       ⇒ )(

))(1(

1 tF

duuF
t ≥

−

−
∫
∞

µ
 

        ⇒ )(

))(1())(1(
0 tF

duuFduuF
t ≥

−−− ∫∫
∞∞

µ
 

        ⇒ )(

))(1(
0 tF

duuF

t

≥

−∫
µ

 

        ⇒ Fe(t) ≥  F(t)                          (2.21) 
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Thus the result is true for n=1. Let the result be true for n=m. Then  

Mm(t) ≥ Mm-1(t) so that  

∑
=

m

i 1

F
(i)

(t) + υ F
(m)

(t) + t/µ - ∑
−

=

1

1

m

i

F
(i)

*Fe(t) – υ F
(m)

*g(t) ≥ ∑
−

=

1

1

m

i

 F
(i)

(t) + υ F
(m-1)

(t) + 

t/µ - ∑
−

=

2

1

m

i

 F
(i)

*Fe(t) - υ F
(m-1)

*g(t)                                    (2.22) 

Convoluting both sides of (2.22) with F and adding F(t)-Fe(t) to both sides, we obtain 

∑
+

=

1

1

m

i

 F
(i)

(t) + υ F
(m+1)

(t) + t/µ - ∑
=

m

i 1

 F
(i)

*Fe(t) - υ F
(m+1)

*g(t) ≥ ∑
=

m

i 1

 F
(i)

(t) + υ

F
(m)

(t) + t/µ - ∑
−

=

1

1

m

i

 F
(i)

*Fe(t) - υ F
(m)

*g(t) 

This implies that Mm+1 (t) ≥ Mm(t), completing the proof.          Q.E.D. 

At this juncture, we would like to mention that the monotonicity property is desirable 

from the computational aspects. The NBUE property of F(t) is only a necessary 

condition and in practical applications the convergence of the sequence of iterates is 

much faster.  

2.5 Approximation of Distribution Functions through Moment 

Matching 

In this section we turn our attention to the fitting of a distribution function whose first 

three moments match the corresponding moments of a given distribution F(t). 

Extensive literature is available on this aspect. However, we shall confine our 

attention to the problem of fitting a K2 distribution to the given distribution F(t). The 

probability density function of K2 distribution is given by 
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f(t) = 
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where λ1 and λ2 are positive and 0<p≤1. The renewal function of this distribution 

function is given by  

M(t) = )1(
))1((

))(1(

)1(
))1((

2
21

121

21

21 21 tp
e

p

pp
t

p

λλ

λλ

λλλ

λλ

λλ +−−−
+−

−−
−

+−
                    (2.24) 

Since the renewal function of the K2 distribution has the same form as that of 

approximation Mo(t), we have chosen to fit a K2 distribution to F(t). Altiok (1985) 

showed that a three moment fit by K2 distribution is always possible when Φ2>2 and 

Φ3>
2

3
Φ2

2. This region is exactly the region-I in Figure 2.1 where the proposed 

method is applicable. Thus, we can use the fitted K2 distribution to improve the 

approximation. On the other hand in region-II where Φ2≤2 and Φ3 ≤
2

3
Φ2

2, a three 

moment K2 fit may not be possible and hence we propose the following procedure. 

We divide the region-II into two parts according as 1<Φ2≤
2

3
 and 

2

3
<Φ2≤2. It is 

well known that if the coefficient of variation is small, then the impact of the third 

moment is not significant and hence there is no need to include the third moment in 

the representation of the original distribution by matching the moments [Whitt 

(1982)]. Thus in the region 1<Φ2 ≤
2

3
 we use a two moment fit with an Ek-1,k 

distribution and K2 distribution is a particular case of Ek-1,k distribution.  In the region 

2

3
<Φ2≤2, we adopt the following procedure in which a K2 distribution is fitted by 
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matching the first two moments exactly while the third moments are matched as 

closely as possible which is given in the following  theorem. 

Theorem 2. Given the first three raw moments ,, 21 µµ ′′ and 3µ′  of a distribution 

function F(t), the parameters p, λ1, and λ2 of the K2 distribution whose first two 

moments exactly match 1µ ′  and 2µ′  and whose third moment matches 3µ′  as closely 

as possible (in the sense of squared differences) are given by: 

)1(

1(2211
2

1

)2

21 C

C

+′

−+
==

µλλ
                        (2.25) 

2

22

1

)1(2)1(
1

C

CC
p

+

−+−
=−                         (2.26) 

where 
2

1

2
122

µ

µµ

′

′−′
=C

 is the square of the coefficient of variation of F(t) such that 

0.5≤C
2
<1.  

Proof: 

Equating the first three moments of the K2 distribution given in (2.23) with the three 

given moments 21,µµ ′′ , and 3µ′  after setting γi=1/λi ,i = 1, 2 and q = 1-p we obtain 

1µ ′ = 1γ  + q 2γ                            (2.27) 

2µ ′  = 2 1γ 2 
+ 2q ( 1γ 2

 + 1γ 2γ )                                  (2.28) 

3µ′ = 6 1γ 3
 + 6q 2γ  ( 1γ 2

 + 2γ 2
 + 1γ 2γ  )                       (2.29) 

From (2.27) we have q = 
2

11

γ

γµ −′
                        (2.30) 

Substituting the value of q from (2.30) in the equations (2.28) and (2.29) we obtain 

2 1µ ′  ( 1γ + 2γ ) – 2µ ′  = 2 1γ 2γ                          (2.31) 
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3µ′  = 6 1µ ′  ( 1γ 2
 + 2γ 2

 + 1γ 2γ ) – 6 1γ 2γ  ( 1γ  + 2γ )                      (2.32) 

Thus, the proposition reduces to the nonlinear optimization problem specified as 

follows: 

Min Ф2
( 1γ , 2γ )= [ 3µ′  - 6 1µ ′  ( 1γ 2

+ 2γ 2
+ 1γ 2γ ) + 6 1γ 2γ  ( 1γ + 2γ )]

2                               (2.33) 

subject to the constraint (2.31) along with γ1≥0and γ2≥0. We first ignore the non-

negativity constraints and apply Lagrangean multiplier method. The necessary 

conditions reduce to 

Ф( 1γ , 2γ ) [-2 1µ ′ 1γ  – 1µ ′ 2γ  + 2 1γ 2γ  + 2γ 2
] – τ( 1µ ′ - 2γ ) = 0         (2.34) 

Ф( 1γ , 2γ ) [-2 1µ ′ 2γ  – 1µ ′ 1γ  + 2 1γ 2γ  + 1γ 2
] – τ( 1µ ′ - 1γ ) = 0                     (2.35) 

where τ is the Lagrangean multiplier. Assuming that the third moments do not match 

exactly, (2.34) and (2.35) yield  

( 1µ ′ - 2γ )[-2 1µ ′ 2γ – 1µ ′ 1γ +2 1γ 2γ + 1γ 2
]=( 1µ ′ - 2γ )[-2 1µ ′ 1γ – 1µ ′ 2γ +2 1γ 2γ + 2γ 2

]   

       (2.36) 

The above equations give 1γ  = 2γ  or 1γ  = 1µ ′  or 2γ  = 2µ ′ . The last two possibilities 

are ignored as they correspond to the case C
2 

= 1. Thus, the parameters of the K2 

distribution are as given in (2.25) and (2.26). 

The solution 
)1(

)1(22
2

1

2

21
C

C

+′

−−
==

µ
γγ in (2.25) is neglected because it leads to

0
2

1
1 ≤−′=

γ

γ
µp . 

Clearly 0≤q≤1 if C
2≥0.5. Thus, the solution (2.25) and (2.26) is acceptable when 

0.5≤C
2≤1 and the third moments cannot be matched.          Q.E.D. 
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In Table 2.4, we continue with our illustration using Weibull distribution. In this 

table M1(t) shows the values of the renewal function using the iterative procedure 

once. However we assume here that the distribution function F(t) is known to be 

Weibull and is used in (2.18). We observe that the iteration has taken us very close to 

the exact value with the relative error not exceeding 0.5%. M1
m
 (t) is computed using 

a two moment fit with an Ek-1,k distribution for F(t) since Φ2 lies in the region 1<Φ2 ≤

2

3
. In this case, the iteration improves the approximation Mo(t) but this cannot be 

guaranteed for all distributions. However one can be sure that successive iterates will 

take it closer to the actual value but could prove to be computationally costly.    

Table 2.4: Values of Renewal Function for Weibull Distribution and Using Moment 
Matched Ek-1,k Distribution 

 

2.6 An Optimal Periodic Replacement Problem 

We present below an optimal replacement problem to test the approximation. 

Consider a system subject to randomly occurring shocks. Each shock increases the 

operating cost by c/unit time. There is a fixed cost rate a/unit time of operating the 

system and a fixed cost of replacement c0. The system is replaced at periodic instants 

of time T0, 2T0, 3T0, etc with identical copies of the same. It has been shown [Abdel-

Hameed (1986)] that the long run average cost/unit time is given as follows: 

0

0

0

0

0

0

)(

)(
T

cdttMcaT

TA

T

++

=
∫
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where M(t) is the renewal function corresponding to the shock arrival process. 

The optimal replacement time ∗

0T  is given as the unique solution of the integral 

equation: 
c

c
dttMTM

T

0

0

0

0

))()((∫
∗

=−
∗

.  

Let us consider the case when the moments of the shock arrivals distribution are

,12,3 21 =′=′ µµ  and 603 =′µ . Using our approximation Mo(t) to M(t) given in (4) the 

optimal Ť and the cost optimal A(Ť) are computed and given in Table2.5. With a view 

to make a comparison with the optimal solution using the exact expression for M(t), 

we have chosen the values for the moments as the moments of the gamma 

distribution of order three with scale parameter equal to one (f(t) = t
2 

e
-t
 /2, t≥0), so 

that the renewal function M(t) in this case is given by  

3

1
)35.0sin(

9

3
)35.0cos(

3
)(

5.15.1 −
++=

−−
t

t
e

t
e

tM
tt

                     (2.37) 

Using (2.37) the optimal T ٭ and the optimal cost A(T٭) have been computed and 

presented in Table 2.5. These values along with the relative error for certain values of 

c0/c are shown in Table 2.5. It is noted that the relative errors are very small. A 

comparison of the relative errors using our formula with those obtained using the 

approximation of Deligonul (1985) shows that our method works efficiently with 

minimal labor in such replacement problems. 
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Table 2.5: Comparison of Optimal Replacement Times and Costs 

Co/C 

Exact Value 
Approximate 

 Value Relative 
 Error 

Approximate Value 
(Deligonul) Relative 

Error 
T٭ C(T٭) Ť A(Ť) Ť A(Ť) 

1.66667 3.373 48.3546 3.371 48.2118 0.30% 3.3 49.0298 1.40% 

2.5 4.044 41.5575 4.038 41.4752 0.20% 4 42.225 1.61% 

3.33333 4.620 37.1889 4.611 37.1392 0.13% 4.5 37.8127 1.68% 

5 5.598 31.6507 5.590 31.6307 0.06% 5.5 32.171 1.64% 

2.7 Block Replacement Problem 

The most commonly used replacement policy implies replacement of failed item as 

and when it fails by a similar new one. Besides this replacements policy there are 

other policies, which are used in replacement problems. Two most important such 

replacement policies are age and block replacement policies. Under an age 

replacement policy, items are replaced upon failure or when it reaches an age T*, 

whichever is earlier.  Under the block replacement policy, the item is replaced upon 

failure and also preventively at periodic times T, 2T, etc. The cost of failure and the 

cost of preventively replacement are [8 and [�respectively.  One can easily derive 

the average cost as  

Q�*� �  [�   [8 /�*�*     , * O 0 

“Sufficient, but not necessary conditions for the existence of a unique minimum of 

Q�*� are that  [� [8 �  0.5 �1 3 [!�⁄  and that  <�*� � �/�*�/�*  is strictly 

increasing in *. The latter is true for example, Weibull distributions with [! � 1 , 

with * up to about µ” [Berg (1980)].   In Table 2.6, for select values of shape and 

scale parameters of Weibull distribution and the ratio of the cost [8/[� , we present 
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the optimal preventive replacement times T*, and the corresponding average cost per 

unit time. These results which are calculated using our moments based 

approximation to the renewal function are compared with the results obtained using 

Smeitink and Dekker’s (1990) recursive simple  approximation  and the exact values 

of /�*�. It is to be noted that our method with minimal computations efforts provides 

very accurate results. 

Table 2.6: Optimal Preventive Replacement Times and Corresponding Average Cost 

Distribution [8/[� 

Smeitink and 

Dekker (1990) 
Exact Values 

Moments Based 

Approximation 

Weibull (with [! � 1) U¹  Qº U7 Q7 UX Q» 

Shape parameter =1.5 

Scale parameter = 1 

5 0.75 5.084 0.75 5.179 0.75 5.1641 

10 0.4 8.355 0.4 8.520 0.39 8.4892 

20 0.24 13.534 0.25 13.740 0.23 13.6974 

Shape parameter =2 

Scale parameter = 1 

5 0.53 4.284 0.5 4.308 0.51 4.2501 

10 0.34 6.166 0.35 6.220 0.34 6.1275 

20 0.23 8.831 0.25 8.920 0.23 8.7576 

2.8 Conclusions 

This chapter proposes a nonparametric method for the approximation of the renewal 

function. The method is easy to evaluate and gives exact values for some important 

distributions (see note 6). An iterative procedure has also been suggested to improve 

the approximation which requires the usage of the distribution function F(t). Moment 

matching procedures are spelt out to approximate F(t). Since our approximation 

includes Φ3, the skewness coefficient, we hope that the method will be robust even 

for highly skewed distribution functions. We wish to observe that when there is no 
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information on the distribution function excepting the moments one can also resort to 

maximum entropy distributions as an approximation. Work in this direction is in 

progress. 
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Chapter 3 

MOMENTS BASED APPROXIMATIONS TO 

PERFORMANCE MEASURES IN QUEUING SYSTEMS 

3.1  Introduction 

The growth of queuing theoretic applications has been phenomenal ranging from 

communication and multimedia systems to inventory and reliability theory. This has 

led to a sustained interest in the methods of evaluation of the performance measures 

in queuing theory. In the case of non-Markovian queues, the computations of these 

measures involve the arrival and/or service distributions explicitly. However in 

practical applications like management, optical and communication networks, the 

specific forms of these distributions might not be known and at best one might be in 

possession of the  moments of the underlying distribution only. Thus, computation of 

performance measures based on the first two or three moments of the arrival and/or 

service distributions are very useful. Whitt-I (1984) in a classic expose discussed 

approximations using extremal distributions giving the upper and lower bounds for 

the performance measures in a GI/M/1 system. Smith (2011) proposed a two-moment 

approximation for the probability distribution of M/G/1/K systems and extended it to 

the analysis of M/G/1/K queuing networks. Sohn and Lee (2004) conducted a Monte 

Carlo simulation based on a designed experiment in order to relate performance 

measures such as the mean and the expected maximum number of requests in queue, 

and the mean and expected maximum time in queue to the degree of LRD in arrival, 

traffic intensities in G/G/1 queue. Recent works on such systems with working 
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vacations for the server have immense applications in ATM machines and internet 

systems such as optical nets, electric nets and communication nets [Li et al (2008), 

Chae et al (2009) and Baba (2005)]. In these applications, the arrival epochs could be 

observed or at worst simulated. Thus, our motivation in this chapter has been to 

obtain approximations to the performance measures of a GI/M/1 system using only 

the first three moments of the arrival distribution without recourse to the arrival 

distribution explicitly. 

In this sequel, we will discuss our problem with specific reference to a GI/M/1 

queuing system, even though our methods work in similar situations for other non-

Markovian queues as well. Consider a GI/M/1 queue whose traffic intensity is        

ρ= E(service time)/E (arrival time), C2 is the squared coefficient of variation of inter-

arrival time, L is the expected equilibrium queue length and σ is the steady state 

probability that a customer will have to wait to commence his service. It is well 

known that 

L = ρ/(1-σ)                 (3.1) 

where σ is the unique root in the open interval (0, 1) of the equation 

Ф(µ(1-σ)) = σ                  (3.2) 

with µ=1/E(service time) and Ф(s), the Laplace-Stieltjes Transform of the inter-

arrival distribution function say � given by: 

Ф(s)= ( )∫
∞

−
0

)(exp tdFst                            (3.3) 

We note that the evaluation of the performance measures σ and L require the prior 

knowledge of the inter-arrival distribution function � and not just the moments of �. 

As remarked in the beginning of this section, many queuing applications are likely to 
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produce the moments of � and not the distribution itself. Thus, the problem is to find 

σ and L on the basis of the first few moments of � only. Whitt-I (1984) showed that 

there is a considerable reduction in the range of possible values of σ and L when the 

third moment is also used as compared to two moments of �. Our endeavor in this 

chapter is to propose simple and accurate methods to evaluate σ and L based on the 

first three moments of the distribution function � in the absence of any knowledge on 

the form of �. In section 3.2 we propose a non-parametric method based only on the 

first three moments of � without recourse to approximating � by another distribution 

function. Numerical illustrations are provided to compare the values of σ and L using 

the present method with their exact values. The method is seen to provide exact 

results for certain important arrival distributions like Erlang of order 2, Coxian (K2), 

mixture of two exponentials, and exponential distribution. We also provide two 

optimization illustrations to obtain economic performance measures in the 

application of GI/M/1 queuing systems. 

Approximations of probability distributions by phase type distributions by matching 

moments up to a certain order has attracted the attention of researchers because of the 

necessity and their wide applicability. Among the various members of the family of 

phase type distributions that has been studied, mixtures of two exponential 

distributions known as c! distributions play a key role in many approximations used 

in queuing theory. These distributions are log convex in nature and can approximate 

highly skewed distributions reasonably accurately. It is well known that an arbitrary 

probability distribution � can be approximated by c! (mixture of two exponentials) 

distribution whose first three moments match the corresponding moments of � if and 

only if m1, m2, and m3, the first three moments of � satisfy the conditions m1≥0, 
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Ф2=m2/m1
2
 = C

2
 +1 ≥ 2, and Ф3 =m3/m1

3
 ≥ (3/2) Ф2

2. However, Karlin and Studden 

(1966) have shown that m1, m2, and m3 are the moments of some probability 

distributions on the positive real line if and only if m1≥ 0, Ф2≥ 1, and Ф3≥ Ф2
2. Thus 

in the region where exact three moment matching is not possible researchers have 

used adhoc methods to find the approximating H2 distribution (See Figure 3.1). 

 

Figure 3.1: Region of Three Moment Matching (Region-I: Exact Three Moment 
Match Possible, Region-II: Exact Three Moment Match Not Possible, Region-III: 
Infeasible Region for Three Moments of a Distribution Function) 

Lopez-Herrero (2002) in the absence of information on the service distribution used 

the maximum entropy principle approach to estimate the true distribution of the 

number of customers served during the busy period in an M/G/1 retrial system. Whitt 

(1982) suggests “a procedure to replace m3 by something slightly larger than (3/2) 

m2
2/m1”. In section 3.3 we suggest a simple nonlinear programming method in which 

the first two moments are matched exactly while the third moments are matched as 

close as possible. This method works in the entire region of possible values of (m1, 

m2, m3) and provides exact three-moment match wherever possible. The 
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approximated c! distribution with the given three moments of the inter arrival 

distribution is then used to calculate σ and L. Numerical illustrations are provided to 

validate the approximation and computation of the performance measures.  

3.2  A Non-parametric Method 

We observe from (3.2), that the computation of the performance measures σ and L in 

the GI/M/1 system requires the use of Ф(s), the Laplace Transform of the density 

function ' corresponding to the distribution function �. However, without the prior 

knowledge of � and armed with only the first three moments of  �, an approximation 

to Ф(s) is obtained from the following proposition. 

Proposition 3. Suppose that the first three moments m1, m2, and m3 of the 

distribution function � exist and are known. Then the following approximation to the 

Laplace transform of the distribution function � holds. 

Ф�+�  ®�9:9½�4¯99�9:9½�4 ®�9:9½�4¯9                           (3.4) 

where 
31
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Proof: 

In the classical renewal theory, the renewal density <�*� of a renewal process with 

interval density '�*� satisfies the integral equation: 

m(t) = f(t) + ∫
t

0

m(t-u)f(u)du                (3.5) 

Applying Laplace transform to both sides of (3.5) we obtain the Laplace Transform 

of <�*� as: 

m*(s) = Ф(s) /(1- Ф(s))                (3.6) 
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where Ф(s) is the Laplace transform of the density function '. 

It is well known that [Ross (1996)] <7�+� can be approximated by a rational function 

and has a singularity at s=0. Thus, we approximate <7�+� by: 

m
*
(s)≈ A/s + B/(s-s0)                  (3.7) 

In order to obtain A, B and s0, we proceed as follows. It is known that Ф(s), the 

Laplace transform of the density function '�*� admits the power series expansion 

Ф(s) = n

n

nn

m
n

s
∑

∞

=

−−

0

1

!

)1(
                (3.8) 

where mn is the nth order moment about the origin of f. Using (3.8) in (3.6) and (3.7) 

and comparing the coefficient of s
0, s

1 and s
2 on both sides we obtain after some 

algebra 

A=1/m1 

B = -s0(m2-2m1
2
)/2m1

2  and 

s0 = -6m1(m2 – 2m1
2
)/(2m1m3 – 3m2

2
)               (3.9) 

Substituting these values in (3.7) and using (3.6) we obtain (3.4). We note that for 

(3.4) to hold s0 must be non-positive.            Q.E.D. 

Note1: For the approximation to hold, it is necessary that s0 must be less than or 

equal zero. Simple calculations show that this condition implies that Ф2>2 and 

Ф3≥(3/2)Ф2
2 or Ф2<2 and Ф3≤(3/2)Ф2

2 (see Figure 3.1). 

Note2: It is to be observed that the error in the approximation (3.4) is of o(1) as s 

→0. 
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Note3: The condition that s0 is non-positive which is necessary for the approximation 

to hold is satisfied by many standard arrival distributions like uniform, gamma, 

mixed exponential, lognormal, Coxian (K2), mixture of Erlangean, and Weibull. Also 

s0 is non-positive for truncated normal and inverse Gaussian probability density 

functions under certain conditions. 

Using (3.4) in equations (3.2) and (3.1) with the values of m1, m2, and m3, the 

performance measures σ and L could straightaway be obtained. To illustrate the 

efficiency of the proposed method we present in Tables 3.1 and 3.2 the values of σ 

and L computed using (3.4) for certain choice of the set {m1, m2, m3}. The triplet (m1, 

m2, m3) is chosen from the regions I and II where three-moment match is possible 

and where it is not. In order to compare the approximations with exact values we 

have considered the values of the moments of commonly used arrival distributions 

namely gamma and PH4 distributions. The values of σ and L are calculated for 

various values of traffic intensity ρ. Whitt-I (1984) calculated the maximum relative 

error in the computation of the performance measure L using the formula  

MRE (in L) = (Lu-Ll)/Ll                (3.5) 

where Lu and Ll are the upper and lower bounds of L. In order to calculate Lu and Ll 

he used extremal two point distributions approximating the distribution function F. 

Tables 3.1 and 3.2 also present the upper and lower bounds for σ and L given two and 

three moments and the corresponding maximum relative errors specified in (3.5). It 

can be seen that our method captures the values of σ and L with low relative errors.  
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Table 3.1: Approximations for σ and L with PH4 Inter-arrival Distribution. 

PH4(Hyper exponential) ρ=0.5 ρ=0.7 ρ=0.9 

Case-I 

Exact 
σ 0.54207 σ 0.73870 σ 0.91790 

L 1.09187 L 2.67891 L 10.96224 

Nonparametric 

method 

σ 0.54157 σ 0.73583 σ 0.91792 

L 1.09068 L 2.67717 L 10.96491 

  Relative Error 0.11% 0.06% 0.02% 

C2= 1.517 
Matching moments 

with H2 distribution 

σ 0.54157 σ 0.73853 σ 0.91792 

L 1.09068 L 2.67717 L 10.96491 

m1= 19.997 Relative Error 0.11% 0.06% 0.02% 

m2= 1006.48 Upper 

(2 moments) 

σ 0.68342 σ 0.78823 σ 0.92330 

m3= 101021.195 L 1.57938 L 3.30547 L 11.73403 

  

Region- I 

  

Lower 

(2 moments) 

σ 0.20319 σ 0.46700 σ 0.80690 

L 0.62750 L 1.31332 L 4.66080 

MRE (in L) 151.69% 151.69% 151.76% 

Upper 

(3 moments) 

σ 0.68342 σ 0.78823 σ 0.92330 

L 0.57938 L 3.30547 L 11.73400 

Lower 

(3 moments) 

σ 0.42194 σ 0.71530 σ 0.91730 

L 0.86496 L 2.45873 L 10.88270 

MRE (in L) 82.60% 34.44% 7.82% 

Case-II 

Exact 
σ 0.77892 σ 0.89250 σ 0.96900 

L 2.261625 L 6.51163 L 29.03226 

Nonparametric 

method 

σ 0.76586 σ 0.89113 σ 0.96901 

L 2.135475 L 6.42699 L 29.04163 

  Relative Error 5.58% 1.30% 0.03% 

C2= 5.821 
Matching moments 

with H2 distribution 

σ 0.76587 σ 0.89110 σ 0.96900 

L 2.13557 L 6.42792 L 29.03226 

m1= 20.004 Relative Error 5.57% 1.29% 0.00% 

m2= 2729.4164 Upper 

(2 moments) 

σ 0.88318 σ 0.92186 σ 0.97170 

m3= 836216.8692 L 4.28009 L 8.95828 L 31.80212 

  

Region- I 

Lower 

(2 moments) 

σ 0.20319 σ 0.46700 σ 0.80690 

L 0.62750 L 1.31332 L 4.66080 

MRE(in L) 582.08% 582.11% 582.33% 

Upper 

(3 moments) 

σ 0.88318 σ 0.19286 σ 0.97170 

L 4.28009 L 8.95828 L 31.80212 

Lower 

(3 moments) 

σ 0.58466 σ 0.87540 σ 0.96880 

L 1.20383 L 5.61798 L 28.84615 

MRE(in L) 255.54% 59.46% 10.25% 
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Table 3.2: Approximations for σ and L with Gamma Inter-arrival Distribution (Note 
that in Case II, a 3 Moment Fit of H2 Distribution is Not Carried Out as C2

<1). 

GAMMA ρ=0.5 ρ=0.7 ρ=0.9 

Case-I 

Exact 
σ 0.73911 σ 0.85242 σ 0.95297 

L 1.91653 L 4.74319 L 19.13469 

Nonparametric 

method 

σ 0.72789 σ 0.85082 σ 0.95292 

L 1.83749 L 4.69232 L 19.11640 

  Relative Error 4.12% 1.07% 0.10% 

C2= 3.3333 

  

Matching moments 

with H2 distribution 

σ 0.72793 σ 0.85086 σ 0.95295 

L 1.83776 L 4.69358 L 19.12859 

Relative Error 4.11% 1.05% 0.03% 

m1= 0.45 Upper 

(2 moments) 

σ 0.81612 σ 0.87700 σ 0.95540 

m2= 0.8775 L 2.71916 L 5.69106 L 20.17937 

m3= 3.0273 Lower 

(2 moments) 

σ 0.20319 σ 0.46700 σ 0.80690 

  L 0.62750 L 1.31332 L 4.66080 

Region - I MRE(in L) 333.33% 333.33% 332.96% 

  Upper 

(3 moments) 

σ 0.81612 σ 0.87700 σ 0.95540 

  L 2.71916 L 5.69106 L 20.17937 

  Lower 

(3 moments) 

σ 0.63907 σ 0.84200 σ 0.95270 

  L 1.38531 L 4.43038 L 19.02748 

  MRE(in L) 96.29% 28.46% 6.05% 

Case-II 

Exact 
σ 0.49619 σ 0.69739 σ 0.89904 

L 0.99243 L 2.31317 L 8.91442 

Nonparametric 

method 

σ 0.49629 σ 0.69740 σ 0.89905 

L 0.99264 L 2.31332 L 8.91530 

  Relative Error 0.02% 0.01% 0.01% 

C2= 0.9804 
Upper 

(2 moments) 

σ 0.59765 σ 0.73086 σ 0.90250 

L 1.24270 L 2.60088 L 9.23077 

m1= 0.51 Lower 

(2 moments) 

σ 0.20319 σ 0.46700 σ 0.80690 

m2= 0.5151 L 0.62750 L 1.31332 L 4.66080 

m3= 0.77801 MRE(in L) 98.04% 98.04% 98.05% 

  Upper 

(3 moments) 

σ 0.59765 σ 0.73086 σ 0.90250 

Region - II L 1.24270 L 2.60088 L 9.23077 

  Lower 

(3 moments) 

σ 0.45049 σ 0.69026 σ 0.89885 

  L 0.90990 L 2.25996 L 8.89768 

  MRE(in L) 36.58% 15.09% 3.74% 
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Eckberg (1977) obtained sharp bounds on the Laplace Stieltjes transform of the 

distribution function of a random variable in terms of various partial characterization 

of the random variable. The random variable itself was assumed to be defined over 

the interval (0, b] where b possibly could be infinite. In Table 3.3 we present the 

upper and lower bounds of σ [see equation (3.2)] obtained using Eckberg’s sharp 

bounds as well as the value of σ using our approximation. We wish to observe that 

our approximation falls within the bounds of Eckberg (1977) and hence is an 

improvement over his results.  

Table 3.3: Comparison of the values of σ using Eckberg’s (1977) bounds and our 
approximation 

Distribution moments 

ρ = 0.667 ρ = 0.9 

b = ∞ b = 10 

Non- 

parametric 

method 

b= ∞ 

b = 10 

Non- 

parametric 

method 

m1 m2 m3 C2 ¾¿ ¾À ¾¿ ¾À σ ¾¿ ¾À σ 

0.4500 0.4275 0.6199 1.1111 0.7242 0.6710 0.7118 0.6710 0.68270 0.9085 0.9049 0.90530 

0.3500 0.4720 1.1053 2.8543 0.8490 0.8000 0.8489 0.8000 0.81386 0.9499 0.9470 0.94726 

0.5703 1.7556 8.6139 4.3986 0.8921 0.8646 0.8921 0.8646 0.87276 0.9642 0.9626 0.96272 

3.3 Inter-arrival Distribution Approximation by Matching Moments 

Approximating general distributions by phase type distributions are important in 

queuing theory because their structure leads to Markovian state description and 

consequently analytical tractability. Although several phase type distributions have 

been used in the literature, two distributions that are prime candidates for such 

approximations because of their simplicity and suitability are mixtures of two 

exponentials (c!) and Coxian (b!) distributions. In this section we take up the former 

for analysis as these distributions provide a fairly accurate match when the C2 is large 

which is true for arrival distributions in a queuing system. Further, in some of the 
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examples discussed by Whitt-III (1984), the maximum relative error (MRE) when 

two moments are fitted was found to be 200 percent while working with mixtures of 

exponentials reduced the MRE to 50 percent and also specifying the third moment 

reduced the MRE to 5 percent. Thus, a three moment match using H2 distributions 

for inter-arrival distributions seem to provide useful results.  

Using empirical study, Bere (1981) showed that when the service time distribution is 

approximated using the first two of its moments, the third moment has a considerable 

effect on the probability distribution of the number of customers in an M/G/1 queue 

if C2>1. He also showed that the probability distribution of the number of customers 

and the average number of customers in λ(n)/G/1/N system are highly sensitive to the 

third moment of the service time distribution if C2>1. Altiok (1985), in justifying the 

inclusion of third moment in matching refers to Bere’s empirical work. Whitt (1982) 

empirically showed that the effect of the third moment on the average number in the 

system in a GI/G/1 queues becomes considerable as C2 increases. If the service time 

distribution C2<1, the impact of third moment is not significant. Since the present 

work deals with matching an H2 distribution with three moments, we confine our 

attention to the range C2>1 only. 

It is well known that a necessary condition that three numbers m1, m2, and m3 can be 

the first three moments of a distribution function F provided m1≥0, m2/m1
2≥1, and 

m3/m1
3≥ m2

2
/m1

4. Further, if the first three moments exist for a distribution F, then an 

H2 distribution exists with these three moments if and only if in addition to these, the 

condition m3/m1
3
 ≥ (3/2) m2

2
/m1

4 holds. These regions are clearly exhibited in Figure 

3.1. The parameters p, µ1, and µ2 of H2 [see (3.6)] when (m1, m2, m3) falls in region-I 

where the three moments can be matched exactly are well documented. However, 
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when these moments fall in region-II so that the three moments cannot be matched 

exactly, methods suggested in the literature are recipes in nature. Whitt (1982) 

suggests “if m3 turns out to be too small when attempting an H2-fit, one procedure is 

to replace m3 by something slightly larger than (3/2) m2
2
/m1”. Altiok (1985) suggests 

the use of m3 = 3m2
2
/2m1 + εm1

3 but does not indicate how to calculate the 

perturbation parameter ε. In the following algorithm, we propose a goal programming 

procedure of matching the first two moments exactly and matching the third moment 

as close as possible in region-II. This procedure subsumes region-I as a particular 

case. It is to be noted that region-III is an infeasible region for the existence of (m1, 

m2, m3).  

Given the first three moments of a distribution function F, say m1, m2, and m3 which 

are assumed to be finite, the parameters p, µ1 and µ 2 of the H2 distribution whose first 

three moments either match m1, m2 and m3 exactly or match the first two moments 

exactly and matches the third moment as closely as possible in the sense of squared 

differences are given by the following algorithm.  

Step 1: Find optimal p using the Golden section method [Rao (2009) and Kambo 

(1991)] to solve the following one dimension problem: 
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Step 2: Using the value of p found in step1 compute: 
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Step 3:  Using the value of p found in step1 compute:  
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The steps of the algorithm are justified using the following arguments. 

Consider the following probability density function of mixture of two exponentials 

(H2 distribution): 
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The first three moments of the above distribution function are: 
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From (3.7) we have  
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Substituting (3.10) in (3.8) and after simple algebra 
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We have two cases. First we consider  
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We know that  
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1 2 ≥−
−
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p
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Also µ1>0 implies that 
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By substituting (3.12) and (3.13) in (3.10) results in  
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The third parameter p is obtained by matching the third moment as close as possible. 

Thus, we minimize  
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In the second case, we set  
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Using algebra similar to the first case results in  
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and the third parameter p is determined by solving  
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It is easily seen that cases 1 and 2 lead to the same result but with the roles of - and 

1 3 - interchanged. 

In Tables 3.1 and 3.2, we continue with our PH4 and gamma inter-arrival 

distributions introduced in section 3.2. As illustrations, we fit H2 distributions for 

these two distributions by matching the moments specified by the algorithm. The 

performance measures σ and L obtained by using the fitted H2 distribution in (3.1), 

(3.2), and (3.3) are given in Tables 3.1 and 3.2. Attention is drawn to the MRE for 

these measures when three moments are matched [Whitt-I (1984)] and the actual 

relative error in using the approximated H2 distributions. Extensive calculations show 

that when relative error is used to compare, fitted H2 distributions provide slightly 

better approximations than the non-parametric method for increasing C
2. We also 

wish to point out that these two methods improve in accuracy for increasing ρ as they 

should be.  

3.4 Two Optimization Illustrations 

3.4.1  Illustration 1 

In practice, queuing managers are generally interested in optimizing for the model 

parameters under their control by minimizing the operating cost or maximizing the 

business profit. In the first illustration, we will be interested in obtaining the optimal 

service rate in a cost minimization problem for a GI/M/1 queuing system. The 

objective cost function consists of two components, which are the cost due to 

customers waiting in line known as the delay cost, and the service cost rate. Thus, the 

cost function to be minimized is given by: 

C(µ) = c1 (λW) + c2 µ               (3.19) 
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where λ and µ are the arrival and service rates respectively,  W is the expected 

waiting time of a customer in the system, c1 is the expected cost per unit time of a 

customer’s wait and c2 is the service cost rate. Using Little’s formula, (3.19) reduces 

to  

C(µ) = c1 L + c2 µ               (3.20) 

The optimal µ* of the above objective function was computed using our non-

parametric method introduced in section 3.2 by assuming only the first three 

moments of the arrival distribution and the cost rates. However in order to compare 

our results with the exact values, the moments were chosen so as to correspond to 

Coxian (K2) and Inverse Gaussian distributions commonly used in queuing theory. 

The results are presented in Tables 3.4 and 3.5. When the Coxian arrival distribution 

was used, our method provided the exact values of µ* whereas in the case of Inverse 

Gaussian distribution the relative errors were significantly small.  

Table 3.4: The Optimal Service Rate µ* with Coxian Inter-arrival Distribution (The 
Optimal µ* Computed Using Our Method and Using the Coxian Distribution Exactly 
Match). 

 

P=0.8, λ1=2, λ2=0.2  

(m1=1.5, m2=11.5, m3=167.25 

 and s0=-0.6, A=0.6667, B=0.9333) 
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µ=2.22 µ=1.667 µ=1.333 µ=1.111 µ=0.952 µ=0.833 µ=0.741   

22.9 17.87 15.33 14.35 14.86 17.91 29.74 c1=1, c2=10 

11.79 9.54 8.667 8.793 10.1 13.74 26.04 c1=1, c2=5 

5.127 4.54 4.667 5.459 7.242 11.24 23.81 c1=1, c2=2 
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Table 3.5: The Optimal Service Rate µ* with Inverse Gaussian Inter-arrival 
Distribution 

 

L=1, M=2  

(m1=2, m2=12, m3=152 and s0=-0.273, A=0.5, B=0.136) 

C(μ) 

A
c

tu
a

l 

µ=1.667 µ=1.25 µ=1.00 µ=0.833 µ=0.7143 µ=0.625 µ=0.5556   

17.126 13.255 11.193 10.215 10.213 11.76 18.505 c1=1, c2=10 

8.793 7.005 6.193 6.048 6.642 8.635 15.727 c1=1, c2=5 

3.793 3.255 3.193 3.548 4.499 6.76 14.061 c1=1, c2=2 

A
p
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x
im
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ti
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n

 
(N

o
n

-p
a

ra
m

e
tr

ic
) 

17.139 13.265 11.198 10.213 10.206 11.75 18.505 c1=1, c2=10 

8.806 7.015 6.198 6.046 6.635 8.625 15.727 c1=1, c2=5 

3.806 3.265 3.198 3.546 4.492 6.75 14.061 c1=1, c2=2 

Relative Error =  0.16% 0.03% 0.07%       

3.4.2 Illustration 2 

In the second illustration, we consider an optimization problem in a GI/M/1 queue 

with working vacation for the server. These problems have wide applications in 

internet systems such as optical, electrical and communication nets [Li et al (2008)]. 

We consider a single server queue system, which has the general arrival process. The 

working vacation and vacation interruption are connected and the server enters into 

vacation when there are no customers and he can take service at the lower rate during 

the vacation period. If there are customers in the system at the instant of a service 

completion during the vacation period, the server will come back to the normal 

working level no matter whether the vacation ends. Otherwise, he continues the 

vacation. The performance measures L, the mean queue length and P(J=0) and 

P(J=1) which are the state probabilities of a server in the steady state have been 

derived by Li et al (2008). We refer the reader to their paper for the relevant 

expressions. Li et al (2008) considered the problem of optimizing the service rate η 

during the server’s vacation period for a given cost structure. Let cw represent the unit 

time cost of every waiting customer, and c1 and c2 are the service costs per unit time 
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during the normal working level and vacation period, respectively. The expected net 

cost function to be optimized can be seen to be  

min: Z = cw L + c1 µ P(J=1) + c2 η P(J=0)            (3.21) 

where µ  is the service rate during the service period. The optimal service rate η* was 

computed using our non-parametric method of section 3.2 for certain values of the 

model parameters and cost parameters. We have used the Coxian arrival distribution 

and its moments used in Illustration 1 to obtain the optimal service rate η*. However, 

the Inverse Gaussian distribution could not be used as the objective function (3.21) 

loses its convexity and becomes monotonic. We have used Erlangean of order 2 

[used by Li et al (2008)] in its place. Figures 3.2 and 3.3 present the values of η 

versus the associates cost. The optimal η* and the corresponding cost obtained using 

our method are very close to the exact values. 

 

Figure 3.2:  (cw=4, c1=15, c2=10, Θ=1, ρ=0.65, and Coxian Distribution Parameters 
are p=0.8, λ1=2, λ2=0.2) Optimal Service Rate η* during Servers Vacation Period 
with Coxian Inter-Arrival Distribution. 
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Figure 3.3: (cw=4, c1=15, c2=10, Θ=1, ρ=0.65, and Erlangean Distribution Parameters 
are K=2, L=2.5) Optimal Service Rate η* during Servers Vacation Period with 
Erlangean of Order 2 Inter-Arrival Distribution. 

3.5 Conclusions 

This chapter introduces two methods for the evaluation of performance measures in a 

GI/M/1 queuing system in the absence of information on the arrival distribution and 

when only the first three moments are known. The first method is non-parametric as 

it does not use the distribution function whereas the second method uses an c! 

distribution obtained by moment matching procedure. This procedure involves the 

computationally economical Golden section method. We wish to note that a Coxian 

(b!) distribution is also a good phase type distribution for consideration. It is worth 

pursuing the regions (Ф2, Ф3) in which each of these approximations score over the 

others in terms of relative errors. The usefulness of the methods in optimization 

procedures has been illustrated with examples. 
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Chapter 4  

APPROXIMATIONS TO G-RENEWAL FUNCTIONS 

4.1 Introduction 

Renewal function is a key tool used in many applications like reliability, queuing 

theory, inventory theory and financial engineering. However, researchers have been 

hampered by the non-availability of a closed form expression for the solution of the 

renewal equation. In this regard the literature has extended in several directions 

which includes Laplace transform methods, approximations, power series methods, 

Riemann-Stieltjes integration methods, Pade’ approximations  and bounds. A 

similar function known as g-renewal function, first introduced by Kijima and 

Sumita (1986) has been found to be extremely useful in reliability analysis. 

Maintenance of systems on failure can be broadly classified into one of the 

following: Replace on failure in which case the failures can be modeled as a 

renewal process. Minimally repair the system so that it is restored to the condition 

that it was in just prior to failure. In this case, failures can be represented by a non-

homogeneous Poisson process whose intensity function is the failure rate. The most 

interesting possibility is to perform a ‘general repair’. The system after a general 

repair is returned neither to a good as new state nor bad as old state but to an 

intermediate   state, which is better than old but worse than new. General repairs 

encompass replacement and minimal repair as special cases. 
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Let the distribution function and density function of the failure time of a new 

system be ( )tF and ( )tf  respectively and the failure counting process be

( ){ }0; ≥ttN . The expected number of failures observed in the interval ( )t,0  is 

denoted by ( ) ( )[ ]tNEtM = . It is well known that when systems are replaced on 

failures, the renewal function can be obtained as the solution of the renewal 

equation 

( ) ( ) ( )∫ −+=
t

xdFxtMtFtM
0

)(                                         (4.1) 

 

Analytical solutions of the above integral equation are known only for exponential 

and gamma distributions whereas various approximations are available in the 

literature (Deligonul (1985), Xie (1989), Marshall (1973), and Kambo et al (2011)). 

When systems on failure are maintained by a general repair policy, Kijima et al 

(1988) and Kijima (1989) showed that the corresponding renewal function known 

as g-renewal function is given as the solution of the g-renewal equation  

( ) ( ) ( ) ( )∫ −+=
t

gg dxxmxxtQtQtM
0

|0|                                        (4.2) 

where ( ) ( )∫=
t

dyxyqxtQ
0

||                                           (4.3) 

and ( ) ( )
( )

0,,
1

| ≥
−

+
= xt

xF

xtf
xtq

θ

θ
                                         (4.4) 

The function ( )tmg  is the corresponding g-renewal density, which satisfies the 

equation  

( ) ( ) ( ) ( )∫ −+=
t

gg dxxxtqxmtqtm
0

|0|                                           (4.5) 
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θ  is known as the parameter of degree of repair (parameter of rejuvenation). It is 

readily seen that if 0=θ  the rejuvenation is perfect so that the general repair model 

coincides with the replacement model. On the other hand if 1=θ  the present model 

collapses to the minimal repair model. The closed form solution of the g-renewal 

equation given by (4.2) is not available for the case 10 <<θ . The methods of 

Laplace transform and power series expansion fail because of the kernel ( )xtq | . 

Numerical solutions are difficult to obtain since the equation contains a recurrent 

infinite system. In view of the importance of the g-renewal functions and the 

unavailability of useful methods in obtaining them, it seems worthwhile to look for 

approximations to g-renewal functions, which are simple to execute and yield fairly 

accurate results. Matis et al (2008) have considered a repairable product under a 

non-renewing combined warranty policy that is subject to a displaced log linear 

demand function of the product price and pro-rata period length. They derived 

expressions for the manufacturer’s long-run average profit per unit time under 

replacement, minimal and general repairs that involves numerical computation of 

the g-renewal function. Dampener (1997) has considered renewal type equations for 

a general repair process by generalizing Kijima’s general repair model. Dimitrakos 

and Kyriakidis (2007) proposed an improved algorithm for the computation of the 

optimal repair/replacement policy under general repairs based on the embedding 

technique of Tijms (1994). Kaminiskiy and Krivstov (2000 and 2010) have 

discussed the properties and statistical procedures for the estimation of the process 

parameters of a g-renewal process. Simple bounds on the cumulative intensity 

functions of g-renewal processes were provided by Kaminiskiy (2004). In this 

chapter we propose two methods for obtaining approximations to the g-renewal 

function. The first method is based on a simple approximation and is very easy to 
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execute, but provides results with acceptable accuracy. The second is a method of 

successive approximation based on direct numerical Riemann integration requiring 

some computational efforts.  

 

We also use an optimal replacement problem of a system subject to failures and 

general repairs as an illustration of the proposed methods. Optimal replacement 

time and the optimal cost are computed numerically with the proposed methods and 

compared with the exact values.  

4.2  Approximations to the G-renewal Function 

The g-renewal densities and the corresponding renewal functions were first 

encountered in the analysis of systems, which are maintained on failure by general 

repairs.  More specifically it was assumed that if a system of age t  fails, then a 

general repair reduces the age of the system to m*. If 0 # m # 1 , the system is 

rejuvenated by the repair whereas if 1>θ  the repair damages the system more. If 

( )tmg  is the renewal density of system failures then it can be established that  

( ) ( ) ( )
( )∫ −

+−
+=

t

gg dx
xF

xxtf
xmtftm

0
1

)(
θ

θ
                                              (4.6) 

where ( )tf  is the failure time density of a new system. Equation (4.6) can be 

interpreted in the following way: the failure at time t  is the first failure (which 

corresponds to the first term) or a subsequent failure (in this case, the last failure 

before t  occurs at x  and the general repair rejuvenation reduces the age to xθ  

followed by a failure at time t ) given by the second term.  

4.2.1 A Simple Approximation 

By integrating the g-renewal equation, we obtain equation (4.2) satisfied by the 

renewal function ( )tM g . The following identity then holds 
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( )

( ) ( )
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g dxxmxxtQ

tQ
                                              (4.7) 

where w�*|�� was given in (4.3) and wV�*|�� � 1 3 w�*|��. Using (4.7) in the g-

renewal density equation (4.5) we obtain 
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Note that ( )tmg  tends to 1/� as t  tends to infinity, where µ  is the mean of the 

distribution function ( )tF . By ignoring the path ( )tmg  for finite values of t  so that 

<R�*� �  1/� for all *, we obtain our approximation for ( )tmg  as  
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Integrating both sides 
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dxxxuquQ

tQtM
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g ∫
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∫

−
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+=
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|0|

0|                              (4.10) 

The right hand side of (4.10) gives us an approximation for the renewal function as 

it contains only terms of the distribution function ( )tF  and density function ( )tf . It 

can be easily seen that if the failure time distribution is exponential so that 

( ) ( )xtexxtq −−=− λλ|  then it is easy to see from (4.10) that ( ) ttM g λ= . 

 

In order to check the accuracy of approximation (4.10), we use the following 

conditional density function as an illustration: 
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( ) ( ) ,1)|( btaxxta eebaexxtq −−+− −+=−  ,0, >ba  0, ≥xt                   (4.11) 

This choice of the conditional density function is motivated by the fact that for such a 

choice of the kernel, the exact solution of the g-renewal equation is known. 

In Table 4.1 we present the values of the renewal function for various values of t  

using our approximation (4.10) and compare it with the exact values of the same. The 

parameters a  and b  of (4.11) have been chosen to be 1 and 2 respectively. It is to be 

noted that the relative errors of the approximation do not exceed 1.32%.  

4.2.2 Method of Successive Approximation Based on Riemann Integrals 

We start with equation (4.2) for the renewal function. Partition the interval ( )t,0  into 

n  equal sub intervals ( )ii tt ,1− , ni ≤≤1 of length ∆ . Then equation (4.2) can be 

written as 
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Using the approximations  
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The renewal function ( )tM g at 1−= ntt  is obtained from (4.2) as  

( ) ( ) ( ) ( )∫
−
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Subtracting (4.14) from (4.13)  
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Substituting for ( )
( ) ( )

∆

−
=
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1
1

ngng
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tMtM
tm  in (4.15) and rearranging the terms, we 

obtain the required approximation as  
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       (4.16) 

 

We wish to observe that the error in the computation of the renewal function in each 

of the subintervals is of ( )∆o . However, for large values of t , the approximation sums 

over more subintervals leading to the accumulation of the errors. As an illustration, 

we use the conditional density function given in (4.11) to compute the values of the 

g-renewal function using the method of successive approximation given in (4.16). 
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We observe that the relative error is an increasing function of time and that for small 

and medium values of time the accuracy of the approximation is good. 

Table 4.1: Values of the Renewal Function Using the Two Approximations 

Time Exact Value 
Simple approximation Successive approximation 

Approximate 
Value 

Relative 
Error 

Approximate 
Value 

Relative 
Error 

0.1 0.1002 0.1002 0.00% 0.1001 0.10% 

0.3 0.3037 0.3036 0.03% 0.3034 0.10% 

0.5 0.515 0.5149 0.02% 0.5145 0.10% 

0.7 0.7368 0.7362 0.08% 0.736 0.11% 

0.9 0.9704 0.9689 0.15% 0.9692 0.12% 

1.1 1.2165 1.2134 0.25% 1.2149 0.13% 

1.5 1.7465 1.7377 0.50% 1.7438 0.15% 

2.5 3.2722 3.2363 1.10% 3.2646 0.23% 

3.5 5.0135 4.9471 1.32% 4.9975 0.32% 

4.5 6.884 6.7967 1.27% 6.8558 0.41% 

5.5 8.8229 8.7249 1.11% 8.7787 0.50% 

7.5 12.7834 12.6787 0.82% 12.695 0.69% 

10 17.7756 17.6698 0.60% 17.6097 0.93% 

4.3 An Illustration 

Consider a system, which is subject to failures. When the system fails at an age say 

x , a general repair activity, which reduces the age of the system to xθ , 10 << θ  is 

carried out and this activity requires negligible time. The system is periodically 

replaced by a new one after every T  time units. Let the replacement and general 

repair costs be 0C and 1C  respectively. It is easy to see that the long-run expected cost 

( )TC  per unit time is given by  

     ( )
( )

0,10
>

+
= T

T

TMCC
TC

g
                        (4.17) 

and the optimal  *T  is such that ( ) ( )
1

0*** *
C

C
TMTTm gg =− . 
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Let us use conditional failure time density function given by (4.11) so that 

( ) ataetq −=0|  and ( ) atetQ −−=10| .  

In Table 4.2, we provide the optimal solution *
T  and ( )*

TC  corresponding to (4.17) 

for various values of the ratio [� [�⁄ . In the computation of the optimal values, the 

renewal function values ( )tM g  were obtained using the two proposed 

approximations. While the cost of replacement 0C
 
was fixed at 2, the cost of general 

repair 1C  was allowed to increase. Such a choice has an effect of decreasing the 

optimal replacement time *T and accordingly increase the long-run expected cost

( )*TC . We observe that both the methods perform satisfactorily in the determination 

of optimal *T  and ( )*TC . In particular the method of successive approximation 

works well for smaller values of [� [�⁄ . 

Table 4.2: Optimal Replacement Time T* and Optimal Cost C(T*) (a=1, b=2, C0=2) 

Cost 
Ratio 

Exact Values Simple Approximation Successive Approximation 

C0/C1 T* C(T*) Ť* C(Ť*) 
Relative error 

∆C(T) 
Ť* C(Ť*) 

Relative error 
∆C(T) 

2.00 5.77 1.9676 5.43 1.9679 0.015% 6.01 1.9677 0.005% 

1.80 4.78 2.1436 4.68 2.1437 0.005% 4.86 2.1436 0.002% 

1.60 4.13 2.3551 4.13 2.3551 0.000% 4.17 2.3551 0.001% 

1.33 3.46 2.7200 3.51 2.7201 0.004% 3.48 2.7200 0.000% 

1.00 2.78 3.4116 2.86 3.4120 0.012% 2.79 3.4116 0.000% 

4.4 Conclusions 

In this chapter, we have proposed two approximations for the evaluation of the g-

renewal function. In view of the fact that the g-renewal equation is not amenable for 
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analytical solution and the relevance of the g-renewal function in the maintenance of 

deteriorating systems, these methods assume significance. The first approximation is 

simple to execute and the accuracy increases for increasing value of t . The second 

method based on the successive approximation is especially useful for smaller values 

of t  and applicable when the underlying distribution is highly skewed. It is worth 

investigating the type of the distribution functions for which each of the two methods 

can be usefully applied.  
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Chapter 5 

OPTIMAL SYSTEM DESIGN BASED ON BURN-IN, 

WARRANTY, AND MAINTENANCE 

5.1 Introduction 

Modern technology and industrial growth have resulted in the introduction of newer 

products at an increasing pace. Consumers focus on product characteristics such as 

functionality, reliability, and maintainability. Manufacturers on their part have 

responded in terms of product development and testing as well as warranty services. 

Thus a true picture of the design and manufacturing decisions emerges by 

considering not only the design and manufacturing costs but also the costs of 

operation and maintenance support for the product.  

Failure rates of many systems, which play an important role in system design, exhibit 

a bathtub shape.  Bathtub failure curves based on failure rate functions show three 

distinct phases namely, infant mortality period, useful period, and wear out period, 

lasting till the end of the product life cycle. In the first phase where the failure rate is 

monotonically decreasing, failures occur mainly due to defects in design and material 

or poor manufacturing quality. This period is known as infant mortality or burn-in 

period. From a customer satisfaction point of view, infant mortalities are 

unacceptable. To reduce possible damage from such early failures, manufacturers use 

a burn-in procedure, which is carried out under electrical or thermal conditions that 

approximates the working conditions in field conditions (Cha, (2001)). This is 
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because with an appropriate debugging process, early failures could be reduced/ 

avoided. Kwon et al (2010) in a recent paper have considered the optimal burn-in of 

systems with random minimal repair cost. The costs associated with this period are 

borne by the manufacturer and include the replacement cost due to burn-in failure 

and operating cost of burn-in. 

The second phase is known as the useful period during which the failure rate remains 

approximately a constant. Failures in this phase are usually associated with operator 

and/or fluctuations in operating environment. In order to gain the maximum out of 

this period where the failure rate is nearly a constant, the manufacturer while 

launching the sale of the product offers a warranty period, which overlaps with the 

second phase. Warranty contracts are an integral part of product sales and play a 

crucial role in the manufacturer’s profit and customer satisfaction and have become a 

critical segment of the industrial environment. A warranty is a contractual obligation 

offered by the manufacturer in connection with the sale of a product under which the 

manufacturer is required to repair/replace failed items during the warranty period. 

Blischke and Murthy (1994) have analyzed various warranty strategies and their cost 

implications. Warranty policies can be broadly classified as renewing or non-

renewing. In a renewing warranty policy, whenever a product under warranty fails, it 

is replaced by a new item along with a new warranty replacing the old warranty. 

Simple examples of renewing warranty are batteries and tires. Mi (1999) made a 

comparison of different renewable warranty policies. However in the case of non-

renewing policies, replacement of failed items does not alter the original warranty. 

The study of product warranty cost is important to both manufacturers and 

customers, although their cost perspectives are different. The main cost to the 

manufacturer during this period is the cost of replacement of failed items. Warranty 
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servicing with imperfect repairs of failed items have been considered by Yun et al 

(2008) and Yeo and Yuan (2009).Models based on selecting warranty conditions 

with the objective of the profit maximization have been investigated by Glickman 

and Berger (1976). 

The third phase in which the failure rate is monotonically increasing is also known as 

the post warranty period. During this phase, the maintenance of the system on 

failures wrests with the consumer who has the option of several maintenance 

policies. Prominent amongst these policies are replacement on failures, minimal 

repairs, and general repairs. Replacement on failures means that the product is as 

good as new after the maintenance action, rendering the failure counting process as a 

renewal process. Although replacements reduce the number of failures in the long 

run, these actions many a times may be neither warranted nor possible. For instance 

in a multi component series system, it may not be necessary to replace the system on 

the failure of a component whereas it may be reasonable to replace only the failed 

component. Minimal repair maintenance action restores the system to its working 

condition just prior to failure. Mathematically, consider a system with failure time 

density  '�*�. Let the system fail at time point s , and a minimal repair action is 

performed on failure. The revised failure time density of the system will be 

)()( sFstf + where �V�+� is the survivor function. While replacement and minimal 

repair are two extremes of maintenance policies, a more realistic maintenance policy 

in the form of general repairs was introduced by Kijima (1989). After a general repair 

maintenance action of a system with age s , the age of the repaired system is neither 

zero (replacement) nor s  (minimal repair) but an age in between zero and s . The 

consumer may employ any one of the three maintenance policies or a combination 
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thereof. Monga and Zuo (1998) considered optimal system design using a 

combination of minimal repairs on failures and general repairs as preventive 

maintenance actions. The main cost for the consumer in this phase is the cost of 

corrective maintenance actions and preventive maintenance actions if there are any. 

Existing models on burn-in, warranty and maintenance have been developed purely 

from the manufacturer or consumer’s perspective. In other words, models have been 

proposed which take in to account the burn-in and/or warranty period (manufacturer) 

or the post warranty period dealing with maintenance policies (consumer). Thus, 

there is a gap in the literature for models using the entire domain of the failure curve. 

If an analysis is to be performed for the whole bathtub failure rate curve then the 

periods of burn-in and warranty have a significant effect on the system cost during 

the post warranty period. Thus in this chapter we propose a system design 

optimization model which minimizes the total system cost incurred by the 

manufacturer as well as the consumer over the entire lifecycle of the system. In 

section 5.2, the model is presented and the costs under the three phases of the failure 

rate curve are derived. In section 5.3, numerical examples of the optimization 

procedures for a specific bathtub failure rate curve are explained and interesting 

observations made. Concluding remarks are made in section 5.4.  

5.2 The Model 

We consider a parallel system consisting of m  independently and identically 

distributed components with failure density )(tf  and bathtub failure rate curve Á�*�. 

The system is put through a burn-in process by the manufacturer lasting a burn-in 

period b . Burn-in is a method, which is used to filter out defective systems before 

they reach the market. During the procedure, the systems are tested under conditions 
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identical to that of field operation. Whenever the system fails during the burn-in 

period, it is discarded and a new system is taken for testing. Only those systems, 

which successfully survive the burn-in procedure, are considered to be of quality to 

reach the consumers.  

5.2.1 Cost during the Burn-in Period (0 , b ] 

The relevant costs during this period are the purchasing cost of each component 0c , 

the cost of installation of the component 1c , and the operating cost rate of each 

component 2c  and system replacement cost 3c  during the burn-in period. Let 

1)( −bN  be the number of system replacements before the successful completion of 

the burn-in process by a system. Then the total expected cost during b  is given by 

( ) ( )1)()( 3

1)(
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where ix  is the life time of th
i  unsuccessful system which fails before completing 

burn-in period. From the definition of the burn-in procedure, we note that )(bN  has 

a geometric distribution given by ( ) 1)()()( −== kbFsbsFkbNP                   (5.2) 

where )(bFs and )(bsF  are the distribution and survivor functions of the parallel 
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The successful system, which survives the burn-in, is sold in the market with a 

renewing warranty offer of periodW . This implies that systems which fail during the 

warranty period W  will be replaced with burnt-in systems with a new warranty of W

. Thus for a system to survive during the renewing warranty, should survive a period 

of length W . The reader’s attention is drawn to the analogy between renewing 

warranty and Type-II counters in counter models.  

5.2.2 Cost during the Warranty Period (b , Wb + ] 

The relevant costs during the warranty period are bC  which is the cost of a burnt-in 

system and 4c  the cost of installation of the burnt-in system in the customer’s place 

during the warranty period. Let 1)( −WNb be the number of burnt-in system 

replacements during the renewing warranty period before the successful completion 

of the warranty. Then the total expected warranty cost is given by 

( ) ( )[ ]14 −+= WNECcC bbW                          (5.6) 

 

Using an argument similar to the one used during the burn-in period, we see that  
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where ( )WsF b  is the survivor function of a burnt-in system with 
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We finally obtain  
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On successful completion of the burn-in and warranty period, the system whose age 

is Wb + , is operated during its useful life T  until it is withdrawn from the market. 

During the post warranty period, the system maintenance and its costs are borne by 

the consumer.  

5.2.3 Cost during Post Warranty Period ( Wb + , TWb ++ ] 

The relevant cost during the post warranty period is the cost of a maintenance action 

on system failure. We observe that the consumer has a choice as regards the 

corrective maintenance action that can be in the form of replacements, minimal repair 

and general repair or a combination of them. To enable the consumer to make the 

optimal choice in terms of cost considerations, we consider each of the above three 

maintenance actions separately.  

Case-I: Minimal repair 

In this case, the consumer opts to minimally repair failed systems. Minimal repairs 

restore the failed system to the condition that it was in just prior to failure. 

Mathematically if a system with failure distribution ( )tF  is minimally repaired at 

time t , then its failure rate after repair is given by ( ) ( ) ( )tFtfth = . Also it is well 

known that if system failures are maintained by minimal repairs only, then the 

number of failures is governed by a non-homogeneous Poisson process with intensity 

function ( )th . The expected number of failures in an arbitrary time ( ]t,0  in this case is 

given by  

( ) ( )∫=
t

dxxhtM
0

             (5.11) 
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Thus, the total expected post warranty cost under minimal repair strategy is given by  

( ) ( )[ ]WbMTWbMc +−++5                        (5.12) 

Case-II: Replacement 

In this case, the consumer opts to replace the failed system with a new burnt-in 

system. We know from classical renewal theory that if systems are replaced on 

failure by new systems then )(tN , the number of failures in an arbitrary interval ( ]t,0  

forms a renewal counting process. In our case, the system in use at time Wb + is of 

age Wb + whereas the burnt-in systems used for replacement are of ageb . Thus, the 

number of failures in ( Wb + , TWb ++ ] denoted by ( )TND  forms a modified 

renewal counting process (See Ross (1996)). It is well known that the renewal 

function ( ) ( )[ ]TNETM DD = satisfies the renewal equation 

( ) ( ) ( ) ( )∫ −+=
T

D xdGxTMTGTM
0

           (5.13) 

In our case ( )tG  is specified by 

( ) ( ) ( ) ( )[ ]
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WbFtWbF
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+

+

+−++
==           (5.14) 

Explicit expression for the analytical solution of equation (5.13) is not possible 

except in very few cases like exponential and gamma distribution functions. 

However, good approximations are available for the evaluation of ( )tM D  (Deligonul 

(1985), Xie (1989), Kambo et al (2011)). Thus, the total expected post warranty cost 

under replacement strategy is given by 

( ) ( )[ ]TMCc Db+6              (5.15) 
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Case-III: General repair 

The most interesting maintenance action which subsumes both replacements and 

minimal repairs is the general repair in which each maintenance action reduces the 

age of the system by a factor 10, ≤≤ θθ . Thus, if a system is maintained by general 

repairs and if a maintenance action is performed on a system with age x, then this 

action reduces the age of the system to xθ . θ  is called the rejuvenation factor. It can 

be seen that 0=θ  corresponds to replacement by a new system of age 0 whereas 

1=θ  corresponds to a minimal repair which leaves the age of the system unaltered. 

A typical sample path of the general repairs in the post warranty period is exhibited 

in Figure 5.1.  

 

Figure 5.1: Typical Bathtub Failure Rate Curve 

The expected number of failures ( )tM g  in an arbitrary time interval ( ]t,0   when the 

system is maintained under general repair policy is known as g-renewal function 
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which was first introduced by Kijima (1989). The g-renewal functions are known to 

satisfy the g-renewal equation  

( ) ( ) ( )∫ −+=
t

g dxxmxxtQtQtM
0

|)0|(            (5.16) 
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         (5.17) 

Thus, the total expected post warranty cost under general repair strategy is given by 

( )( )[ ] ( )TMccc gθ−−+ 1565             (5.18) 

where 56 cc − is the cost proportional to the degree of rejuvenations. 

Explicit expression for the solution of equation (5.16) is not possible. However, 

unlike their counterpart ordinary renewal functions, there are no approximations 

available in the literature for g-renewal functions. In order to evaluate ( )tM g  

numerically, the computational procedure based on Riemann integral sum developed 

in chapter 4 was used.   

The average total cost of the system until its useful age is the sum of the burn-in cost 

given in (5.5), the warranty cost (5.10) and the post warranty maintenance cost 

appropriate to the maintenance policy given by (5.12), (5.15), or (5.18). Thus, the 

average total costs per unit time under minimal repair, replacement, and general 

repair maintenance policies in the post warranty period respectively are given by  
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We wish to minimize the above cost functions to determine the optimal system 

design decision variables namely burn-in period *
b , warranty period *

W , the number 

of components in the system *
m , and the degree of general repair *θ . In the 

optimization procedure, we include a few possible constraints on the system like 

volume, and reliability. More specifically, we consider the following two constraints:  

Constraint 1: ∑
=

≤
m

i

i Vv
1

 

where iv  is the volume of the th
i  component and V  is the available volume. 

Constraint 2: RRs ≥  

Where Rs  is the reliability of the burnt-in system and R is the minimum required 

reliability. 
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In what follows, we illustrate the optimization procedure and present useful 

discussions of the above constrained non-linear optimization problem using a typical 

bathtub failure rate curve.  

5.3 Illustration and Discussion 

Let each component of the parallel system have the bathtub failure rate curve given 

by 

( ) ( )
b

tbc
ebtktkcth

ββλ 11 1 −− −+=            (5.22) 

This five-parameter failure rate function was introduced by Dhillon (1979). The 

motivation for such a choice comes from the fact that for a suitable choice of the 

shape parameters b  and c , one can generate different shapes of the failure rate curve 

that can be used to model electronic or mechanical devices. In our example we fix the 

values of the five parameters as follows: 1=λ , 1=β , 5.0=k , 5.1=b , 3.0=c .  

Such a choice results in a failure rate curve with a steep slope of decreasing failure 

rate over a short period. Typical examples of systems with such a failure rate curve 

are electronic items. The cost parameters are chosen to be 1000 =c , 11 =c ,  12 =c , 

13 =c , 104 =c . In the post warranty period the cost 35 =c  if the system is 

maintained by minimal repairs, 206 =c  if the system is maintained by replacements 

so that the cost of a general repair is ( )( ) ( )θθ −+=−−+ 11731565 ccc  if the system is 

maintained by the general repairs.  We wish to observe that the case 0=θ  

corresponds to replacements with cost of replacement 3 and similarly the case 1=θ  

corresponds to minimal repairs with the cost of minimal repair being 20. The volume 

of each component is assumed to be 100 units while the total available volume for 

the system is assumed to be 350. In the discussions we consider two cases for the 
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minimum required reliability namely 0.90 and 0.95. We present below the discussion 

on optimality for each of the post warranty maintenance operation.  

Case-I: Minimal repair 

The optimal burn-in period *
b , optimal warranty period *

W , and the optimal number 

of components  *
m when the useful life of the system was fixed at 0.7 years and 1.4 

years are given in Table 5.1. We note that when the required reliability of the system 

increases from 0.9 to 0.95, it is required that the system design becomes more 

reliable which increases the number of parallel components from 2 to 3. Also when 

the warranty period increases, in order to decrease the number of failures during this 

period, the model tries to make the system more reliable by increasing the number of 

components. The burn-in period is not affected by the changes in useful period. This 

can be attributed to the shortness of the region when the failure rate is decreasing. 

Finally, the average total cost is an increasing function of the minimum required 

reliability, warranty and the number of components.  

Table 5.1: Optimal Burn-in Period, Optimal Warranty Period, Number of 
Components and Average Total Cost for Case-I 

Burn-in Warranty # of components Required reliability Average total cost 

T = 0.7 

0.1 0.5 2 0.90 478.294 

0.1 0.6 3 0.95 582.542 

T = 1.4 

0.1 0.3 2 0.90 303.013 

0.1 0.5 3 0.95 384.785 

Case-II: Replacement 

In this case during the post warranty period the consumer opts to replace a failed 

system with a new and identical system. As expected when the minimum required 
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reliability of the system is increased from 0.9 to 0.95 the number of parallel 

components in the system is increased. However, when the useful life of the system 

is assumed to be short (T=0.7), because of the steeply increasing nature of the failure 

rate curve there is no change in the warranty period. The same case is not true when 

the useful life is longer (T=1.4). In this case, the optimal warranty period jumps from 

0.2 to 0.4. The average total cost is an increasing function of the number of 

components as well as the warranty period. Finally, the burn-in period is not affected 

by either an increase in the reliability or increase in the warranty period. This again 

can be attributed to steep slope of the decreasing failure rate over a short period. The 

results are shown in Table 5.2. 

Table 5.2: Optimal Burn-in Period, Optimal Warranty Period, Number of 
Components and Average Total Cost for Case-II. 

Burn-in Warranty # of components Required reliability Average total cost 

T = 0.7 

0.1 0.4 2 0.90 659.233 

0.1 0.4 3 0.95 820.222 

T = 1.4 

0.1 0.2 2 0.90 533.337 

0.1 0.4 3 0.95 685.359 

Case-III: General repair 

In this case the consumer neither employs minimal repair nor replacement of the 

system on failures but prefers to use a general repair mechanism with degree of repair 

θ. This means that when a system of age x fails and a general repair is employed, 

then its age on repair reduces to 10, ≤≤ θθ x . Apart from the optimal design 

parameters *
b , *

W , and *
m we also determine the optimal degree of repair *θ . The 

results are presented in Table 5.3. With the increase in the required reliability, the 

warranty period and the number of components increase while θ  remains static. 
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However, when the useful life increases from 0.7 to 1.4 there is a noticeable drop in 

*θ from 0.9 to 0.3. This is because with a longer post warranty period, in order to 

minimize the number of failures, the general repairs must be of a better quality. It is 

to be remembered that smaller values of θ implies more rejuvenation of the repaired 

system. 

Table 5.3: Optimal Burn-in Period, Optimal Warranty Period, Number of 
Components and Average Total Cost for Case-III. 

Burn-in Warranty # of components 
Degree 

of repair 

Required 

reliability 

Average total 

cost 

T = 0.7 

0.1 0.4 2 0.9 0.90 633.609 

0.1 0.5 3 0.9 0.95 783.199 

T = 1.4 

0.1 0.4 2 0.3 0.90 520.618 

0.1 0.6 3 0.3 0.95 639.721 

5.4 Conclusions  

The present work deals with an optimal system design problem wherein the objective 

function is the total cost of the system over its entire life cycle. This approach is in 

contrast with the common approach of discussing optimality issues based on specific 

phases of the failure rate curve. The present approach is especially useful in 

explaining the system design parameters for varying shapes of the bathtub failure rate 

curve. Given the failure rate of the system and the cost parameters, the manufacturer 

can decide apriori his system design parameters. Similarly, the present analysis aids 

the consumer to choose his optimal post warranty strategy. We indicate some 

possible generalizations of present work. During the post warranty period the 

customer may opt to have periodic preventive maintenances done to enhance the 

system lifetime. Next, our objective function in this study is based on the total 
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average cost per unit item sold. However, one can estimate the sales volume function 

and use the total average cost for all the items sold as the true objective function.  
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Chapter 6 

TWO-DINESIONAL RENEWAL FUNCTION 

APPROXIMATION 

6.1  Introduction 

Amongst the many stochastic processes available as a tool for modeling physical 

phenomena, the theory of renewal processes has found favor with researchers. This is 

because of the applicability and simplicity of the process and analytical tractability of 

the underlying statistical characteristics. However, a closed form solution of the 

renewal equation satisfied by the all important renewal function is not available 

excepting in the case of exponential and gamma distributions. Realizing the 

importance of the renewal function, researchers have moved in several directions to 

find simpler and yet accurate approximations.    

A natural extension of the one-dimensional renewal processes to higher dimensions 

is possible and has been dealt with by several authors. Hoshiya and Chiba (1980) as 

well as Platen and Rendek (2009) used simulation methods to analyze 

multidimensional stochastic processes. Shurenkov (1975) proposed a method of 

reducing multidimensional renewal equation to an ordinary renewal equation. 

Sgibnev (2006) derived exact asymptotic expansion for solution of multidimensional 

renewal equations. Application of multidimensional stochastic processes to several 

interesting areas like seismicity [Delic and Radojicic (2005)] and neuronal activity 

(Vaillant and Lansky (2000)) have also been made. However, the study of renewal 
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theory in two dimensions in particular has been effectively used in several 

applications. Realizing that the analysis of point patterns often arises in ecological 

studies, Newton and Campbell (1975) studied nest locations for a species of duck 

using two-dimensional renewal processes. Morgan and Welsh (1965) studied a two-

dimensional Poisson growth process. Chen et al (2009) considered asymptotics for 

the ruin probabilities of a two-dimensional renewal risk model. The study of product 

warranty using two-dimensional renewal processes has received considerable 

attention in the literature [Murthy et al (1995), Corbu et al (2008), and Manna et al 

(2008)] to cite a few. Developing the theory of two-dimensional renewal processes 

purely as an extension of one-dimensional renewal process is fraught with conceptual 

difficulties. For instance, if ���, h� and �V��, h� are the distribution and survivor 

function of ��, �� then ���, h�   �V��, h�  Â 1, as in the one-dimensional case. The 

seminal expose on two-dimensional renewal theory was presented by Hunter 

(1974(a), 1974(b), 1977) who presented a unified theory for studying renewal 

processes in two dimensions through a series of papers.  

If )j,k is the two-dimensional renewal counting process, then /��, h� � �p)j,kq is 

called the two-dimensional renewal function (Please refer to the discussion on two-

dimensional renewal processes in Chapter 1). It is well known that /��, h� satisfies 

the two-dimensional renewal equation  

/��, h� � ���, h�   � � /�� 3 ,, h 3 P� ���,, P�k�j�                                     (6.1) 

From the above integral equation, it is nearly impossible to obtain /��, h� 

analytically even for the simplest form of ���, h� excepting in the special case when 

���, h� is specified by bivariate exponential distribution. However strangely, unlike 
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its one-dimensional counterpart, there has been no attempt to provide efficient 

approximations to the two-dimensional renewal function although the use of this 

function in practical applications occurs often. To the best of our knowledge only 

Iskandar (1991) has provided a two-dimensional renewal function solver by 

obtaining values of /��, h� on a two-dimensional grid equispaced along the X and Y 

axis. The results are analogous to the one-dimensional renewal function 

approximation of Xie (1989) and Xie et al (2003). It is to be noted that even the only 

available approximation to the renewal function by Iskandar (1991) requires the 

apriori information on the joint distribution function ���, h�. However, in many 

practical applications of two-dimensional renewal processes like ecology and 

warranty models, one may not be in possession of the explicit form of ���, h�  but 

could obtain only efficient estimators of the first two moments of � and � as well as 

the correlation coefficient from observed sample data. Knowledge of the distribution 

function is a severe restriction whereas the first few moments could easily be 

obtained or estimated. Thus, the need for an approximate method to evaluate the 

renewal function based only on the first two moments and correlation coefficient of 

the variables is felt more than ever.  

In this chapter, we propose such an approximate method assuming the first two 

moments of  ���, h� to exist. The method is computationally inexpensive as it 

provides the value of /��, h� in one go and is not an iterative procedure like that of 

Iskandar (1991). As we will show later, the method provides exact results for /��, h� 

when the joint distribution function ���, h� is bivariate exponential and a good 

approximation for other distributions. The layout of the present chapter is as follows. 

In section 6.2 we give some preliminaries of two-dimensional renewal processes and 
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derive the approximation. In section 6.3 we compare the values of renewal function 

obtained using our approximation with the benchmark approximation of Iskandar for 

the bivariate exponential, Beta Stacy, and bivariate gamma distributions. Some useful 

observations are also made. Section 6.4 presents an application of the two-

dimensional renewal function. For this purpose, we have chosen two-dimensional 

warranty cost analysis as the vehicle of illustration. The last section contains some 

concluding remarks. 

6.2  Moments Based Approximation for Two-dimensional Renewal 

Function 

Bivariate renewal process is a sequence of independent and identically distributed 

non-negative bivariate random variables ���, ���, � � 1, 2, …. Let  

����� �  ∑ ����6�                                         (6.2) 

���!� �  ∑ ����6�                                         (6.3) 

)j��� � <F���; ����� # ��                                        (6.4) 

)k�!� � <F���; ���!� # h�                                        (6.5) 

)j,k � <F���; ����� # �, ���!� # h� � <&��)j���, )k�!��                                    (6.6) 

Form the above definitions we see that )j,k represents the number of renewals over 

the rectangle 00, �� Ã 00, h� for a two-dimensional renewal process with the origin 

�0, 0� being a renewal point. The renewal process is characterized by ���, ���, & �
1, 2, … with each pair having the distribution function ���� , h��. )j���

 and )k�!�
 are 

each univariate renewal counting process associated with distribution functions ����� 

and �!�h� respectively which are the marginal distributions of ���, h�. Thus 

 ����� � ���, ∞� and �!�h� � ��∞, h�. The renewal functions associated with the 
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one-dimensional and two-dimensional renewal processes are defined as /���� �
��)j���� and /!�h� � ��)k�!�� and /��, h� � ��)j,k�. The corresponding renewal 

densities are given by 

<���� �  ||j /����, <!�h� �  ||k /!�h� and  <��, h� �  ��;�j,k��j �k . From one-

dimensional renewal theory we have 

/���� �  �����   � /��� 3 ,� ����,�j�                                      (6.7) 

/!�h� �  �!�h�   � /!�h 3 P� ��!�P�k�                                       (6.8) 

To derive the corresponding renewal equation for the two-dimensional renewal 

function we first note that 

/��, h� �  ∑ ����, h���6�                                        (6.9) 

where ����, h� is the � fold convolution of ���, h� with itself.  In (6.9) we convolute 

���, h� both sides to obtain 

 / 77 ���, h� �  ∑ ��4���, h� � /��, h� 3  ���, h���6�                      (6.10) 

From (6.10) we obtain the integral equation of the two-dimensional renewal theory as 

/��, h� � ���, h�   � � /�� 3 ,, h 3 P� ���,, P�.k�j�     

The above renewal equation could also be derived using an extension of the one-

dimensional case. Since every failure over the rectangle 00, �� Ã 00, h� is a renewal 

point, conditioning on the first renewing point at � � , and  � � P we obtain  

�o)j,k| � � ,, � � Pr �  %1  /�� 3 ,, h 3 P�, , # �, P # hC,                                        C*ÁD�E&+D (                          (6.11) 

Unconditioning, we have  

/��, h� � ���, h�   � � /�� 3 ,, h 3 P� ���,, P�k�j�                                  (6.12) 
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Define the double Laplace transform of '��, h�as 

 '7�-, v� �  � � D:�jD:�k����, h�����                        (6.13) 

Taking double Laplace transform on both sides of (6.12) and simplifying, we obtain  

/7�-, v� �  i7��,���:i7��,��                                                                                   (6.14)  

In a similar manner, we can derive the double Laplace transform of the renewal 

density function as  

<7�-, v� �  87��,���:87��,��               (6.15) 

Noting that  <7�-, v� has a singularity at �-, v� �  �0, 0� we approximate it by a 

rational function of the form 

 <7�-, v�   ®�4¯�4Ä   Å�4Æ�4i��                        (6.16)  

Using /7�-, v� = <7�-, v� -v⁄  and successively inverting with respect to p and then 

q, we obtain 

/��, h�  

   ®Ä �1 3 D:Äj�¦�  ®Ä �D:Äj 3 D:Ä�Ç� Y�Ç��� 3
¦D:ÈjD:�É Ê∑ ËÌÍ:� �jÎ�Ï� �Íp2√F�qn�Ð�Í6� Ñ             (6.17) 

where F �  h� �!⁄ , Ì � � �⁄ , YÎ�*� �  �1   , * " F          0   , C*ÁD�E&+D(and  �Íp2√F�q  is the 

modified Bessel function of order Ò such that  �Íp2√F�q �  ∑ p√ÎjqÏ���Ó���
�l:��!Ô�Í4l�n�Ð�l6� . The 

number of terms )�Õ� in the summation is such that the difference between two 

successive summands is less than the pre assigned Õ. In order to obtain the constants 
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°, s, [, ¦, �, and � we proceed as follows. It is well known that the double Laplace 

transform of the distribution function '7�-, v� admits the power series expansion 

'7�-, v�  1 3 -μj 3 vμk  ��
! μj!  ��

! μk!  -vμjk                      (6.18) 

where μj, μk, μj! and μk! are the first two moments about the origin of X and � and 

μjk � �����. Using (6.18) in (6.15) and (6.16) and comparing the coefficients of 

-, v, -v, -!, -f and vf on both sides we obtain after some algebra 

° �  Ö¢�¢�� �1 3 ¢��¢��� 3 �¢�                          (6.19) 

s �  ¢�¢��p!¢��:¢��q¢�¢��p!¢�� :¢��q                           (6.20) 

[ �  !¢�p!¢��:¢��q¢���                            (6.21) 

¦ �  �¢�                             (6.22) 

� �  ¢�¢�                             (6.23) 

� �  ¢�¢��:¢�¢��¢��                            (6.24) 

Thus the approximation to /��, h� given in (6.17) is completely determined. At this 

stage, we wish to make the following observations.  

Observation 1: For the approximation to hold it is necessary that Ì �  � �⁄  must be 

greater than 0 which implies that F must be positive. This leads us to the condition 

 ¡ � ×Ø����:�
Ø����:� 

where  ¡ is correlation coefficient between the variables X and Y. 
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Further conditions for the approximation to hold are s O 0 and [ " 0. These two 

conditions imply that the region over which the approximations hold are given by 

Ùj�!� O 2 and Ùk�!� O 2 where Ùj�!�
and Ùk�!�

 are respectively given by 

Ùj�!� �  [j!  1 �  �Újμj�!  1 

Ùk�!� �  [k!  1 �  �Úkμk�!  1 

where [j and [k are coefficient of variation of X and Y, respectively. 

Observation 2: We note that in the asymptotic case we obtain /�*, *� *⁄ B 1 μj⁄  

as * B  ∞.  

6.3 Illustrations and Comparison with Benchmark Approximation 

In order to check the efficacy and accuracy of the proposed method, we compute the 

renewal function for certain special joint probability distributions ���, h� and 

compare it with the values obtained using the two-dimensional renewal function 

solver proposed by Iskandar. It is to be noted that we are hampered by the fact that 

exact values of the renewal function for any distribution other than bivariate 

exponential is not available in order to make a comparison. We choose bivariate 

exponential distribution, Beta Stacy distribution, and bivariate gamma distribution as 

illustrations.  

6.3.1 Bivariate Exponential Distribution 

Several bivariate exponential distributions are available in the literature [Kotz et al 

(2000)]. Some of them do not have an explicit form for the joint probability 

distribution while many of them impose severe restrictions on the correlation 

coefficient between the two variables. We choose the bivariate exponential density 
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[Downton (1970)] which does not have these restrictions and possess other desirable 

properties whose joint probability density is given by  

'��, h� �  z�z��:� D:�� ���� ���� �� �! �z�z�jk�:� �                       (6.25) 

where Zj �  1 μj⁄ , Zk �  1 μk⁄  and ���. � is the modified Bessel function of the first 

kind of order zero. It can be verified that the two variables � and � have the marginal 

distributions which are exponential distributions with means μj and μk. Also the 

correlation coefficient between the variables � and � is ρ. The double Laplace 

transform of the above joint probability distribution is given by  

'7�-, v� �  ���4¢���p�4¢��q:�¢�¢���                        (6.26) 

Substituting the values of the moments of the above distribution in (6.19) to (6.24) 

we note that ° � [ � 0. Thus, the approximation reduces to  

<7�-, v� �  Å�4Æ�4i��                          (6.27) 

with  

¦ �  �¢�                            (6.28) 

� �  ¢�¢�                            (6.29) 

F = μk�1 3 ¡�                           (6.30) 

Substituting (6.28) to (6.30) in (6.27), we obtain 

<7�-, v� �  �¶��4¶��4¶�¶���:����                            (6.31) 

From (6.15) we have 

'7�-, v� � Û7��,���4Û7��,��                 (6.32) 
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Using (6.31) in (6.32) we obtain '7�-, v� �  ���4¢���p�4¢��q:�¢�¢��� .This is 

precisely the same one given in (6.26). This shows that our approximation produces 

exact results for the renewal function governed by bivariate exponential distribution. 

In Table 6.1, we present the values of renewal function for bivariate exponential 

distribution with Zj � 1 and Zk � 1 computed using our method and Iskandar’s 

method as well as the exact values.  

Table 6.1: Comparison between the Values of the Renewal Function Computed 
Using our Method, Iskandar’s and Exact Values 

x y 

¡ � 0.0 ¡ � 0.5 

Exact 

value 
Iskandar’s 

Proposed 

approximation 

Exact 

value 
Iskandar’s 

Proposed 

approximation 

0.5 0.5 0.1632 0.1636 0.1632 0.2381 0.2393 0.2381 

1.0 1.0 0.4762 0.4774 0.4762 0.6143 0.6168 0.6143 

1.5 1.5 0.8403 0.8422 0.8403 1.0219 1.0257 1.0219 

2.0 2.0 1.2285 1.2311 1.2285 1.4448 1.4496 1.4448 

The following few observations with regard to Table 6.1 are in order. First, we note 

that our method gives the exact values of the renewal function. Secondly, Iskandar’s 

method always over estimates the renewal function (although by small quantity). 

This is due to the fact that the Riemannian upper and lower sums to approximate the 

integrals essentially give the upper and lower bounds.  

6.3.2 Beta Stacy Distribution 

As the next illustration, we choose bivariate Beta Stacy distribution, which is a 

slightly modified version of the Beta Stacy distribution proposed by Mirham and 

Hultquist [See Johnson and Kotz (1972)]. The density function '��, h� is given by  

'��, h� �  �Ô�Ý�Þ�u�,u�� ßÎàáØ ��Ýß:u�:u���h/â��u�:���� 3 h/â�u�:�D0:�j Î⁄ �á1    (6.33) 

where � O 0, 0 � h � â�, ã, J, F, â, m�, m! O 0 and ä�. , . �  is the Beta function. 
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The statistical characteristics of the above density function are given by 

���� �  ÎÔ�Ý4�á�
Ô�Ý�                             (6.34) 

���� �  ÎØu�Ô�Ý4�á�
�u�4 u��Ô�Ý�                          (6.35) 

����� �  Î�Øu�Ô�Ý4�á�
�u�4 u��Ô�Ý�                           (6.36) 

���!� �  Î�Ô�Ý4�á�
Ô�Ý�                           (6.37) 

���!� �  Î�Ø��u�4��u�Ô�Ý4�á�
�u�4 u�4���u�4 u��Ô�Ý�                        (6.38) 

Substituting these values in (6.19) to (6.24), we note that � turns out to be zero, so 

that we use the approximation  

<7�-, v�   ®�4¯�4Ä  Å�4Æ�                         (6.39) 

where the constants °, s, [, ¦, and � are specified by  

° �  Ö¢��¢��:Ö¢�å:¢���
¢��� ¢�                            (6.40) 

s �  ¢�¢��p!¢��:¢��q¢�¢��p!¢�� :¢��q                          (6.41) 

[ �  !¢�p!¢��:¢��q¢���                           (6.42) 

¦ �  �¢�                            (6.43) 

� �  ¢�¢�                            (6.44) 

Double inversion of (6.39) with respect to - and v yields  

/��, h�   ®Ä �1 3 D:Äj�  ÅÆ 0h 3 YÆj�h��h 3 ���1  ®Ä �D:Äj 3 D:Ä�Ç� Y�Ç���(6.45) 

where  YÎ�*� �  �1   , * " F          0   , C*ÁD�E&+D(            
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The following observation with regard to the asymptotic behavior of /��, h� given 

in (6.45) is worth mentioning. Hunter (1974, Renewal theory in two-dimensions: 

asymptotic results, page 555) proved that 

limAB� ;�A,A�A �  �ÛÎjp¢�,¢�q                         (6.46) 

It can immediately be seen from (6.45) that (6.46) holds good for our approximation 

as well.  

Iskandar considered three sets of numerical values for the parameters 

F, â, ã, J, m�, and m! in his two-dimensional renewal function solver which are given 

in Table 6.2. 

Table 6.2: Parameters F, â, ã, J, m�, and m!for Three Sets of Beta Stacy Distribution 

Parameters 
Set 

I II III 

a 0.2 0.0846 0.0550 

Φ 1.1 2.6 4.0 

α 1.9 

c 2.5 m� 1.1 m! 1.1 

With the choice of the parameters as in set-II, µx turns out to be 0.1026 and µy = 

0.1334, so that �ÛÎjp¢�,¢�q � ��.�ffÖ � 7.4963. Figure6.2 plots the values of renewal 

function from which it can be seen that for large values of � �� �� the line 
;�A,A�A �

7.4963 is an asymptote to the renewal function. A similar plot of /�*, *�/* for sets I 

and III are given in Figures 6.1 and 6.3. 
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Figure 6.1: Asymptotic Nature of /�*, *�/* for Set-I 

 

 

Figure 6.2: Asymptotic Nature of /�*, *�/* for Set-II 

2.5000

2.7000

2.9000

3.1000

3.3000

3.5000

3.7000

3.9000

4.1000

4.3000

0.4 0.7 1 1.3 1.6 2

Iskandar's/t Proposed/t 1/max(Mux,Muy)

2.5000

3.5000

4.5000

5.5000

6.5000

7.5000

8.5000

0.4 0.7 1 1.3 1.6 2

Iskandar's/t Proposed/t 1/max(Mux,Muy)



104 
 

 

Figure 6.3: Asymptotic Nature of /�*, *�/* for Set-III 

As remarked earlier it is not possible to obtain the exact values of the two-

dimensional renewal function /��, h�. Thus, we are confronted with the question 

"Which of the two methods, Iskandar's or the present method provides better 

results?" From Figures 6.1 to 6.3 it is clear that Iskandar's approximation does not 

provide accurate results for large values of  . In fact for values of set-III, Iskandar’s 

rate of change in the renewal function has a negative trend for increasing values of *, 

whereas it should asymptotically approach the line 1 max �μj, μk⁄ �.  

In order to make a comparison of the values obtained using our approximation with 

that of Iskandar’s; we use the same set of values. Tables 6.3, 6.4, and 6.5 present the 

values of the renewal function using the two methods for certain values of � and h 
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Table 6.3: The Values of the Renewal Function Using the Two Methods for Set-I  

Y x 0.4 0.7 1.0 1.3 1.6 2.0 

0.4 
Proposed 

approximation 
1.2459 2.4824 2.5948 2.5948 2.5948 2.5948 

Iskandar’s 1.1745 2.1060 2.4975 2.5994 2.6181 2.6209 

0.7 
Proposed 

approximation 
1.2311 2.4410 3.6775 4.8016 4.8016 4.8016 

Iskandar’s 1.1760 2.3793 3.4890 4.2407 4.5903 4.7230 

1.0 
Proposed 

approximation 
1.2311 2.4365 3.6694 4.9059 6.1424 7.0417 

Iskandar’s 1.1760 2.3796 3.5707 4.7236 5.6980 6.4704 

1.3 
Proposed 

approximation 
1.2311 2.4365 3.6682 4.9043 6.1408 7.7895 

Iskandar’s 1.1760 2.3796 3.5708 4.7454 5.8992 7.2902 

1.6 
Proposed 

approximation 
1.2311 2.4365 3.6682 4.9040 6.1405 7.7892 

Iskandar’s 1.1760 2.3796 3.5708 4.7454 5.9046 7.4228 

2.0 
Proposed 

approximation 
1.2311 2.4365 3.6682 4.9040 6.1404 7.7891 

Iskandar’s 1.1760 2.3796 3.5708 4.7454 5.9046 7.4270 

Table 6.4: The Values of the Renewal Function Using the Two Methods for Set-II 

y x 0.4 0.7 1.0 1.3 1.6 2.0 

0.4 
Proposed 

approximation 
2.5954 2.5954 2.5954 2.5954 2.5954 2.5954 

Iskandar’s 2.4509 2.6126 2.6146 2.6146 2.6146 2.6146 

0.7 
Proposed 

approximation 
3.4533 4.8025 4.8025 4.8025 4.8025 4.8025 

Iskandar’s 3.2941 4.6033 4.7219 4.7247 4.7248 4.7248 

1.0 
Proposed 

approximation 
3.4453 6.3684 7.0430 7.0430 7.0430 7.0430 

Iskandar’s 3.3417 5.8054 6.6895 6.7753 6.7783 6.7783 

1.3 
Proposed 

approximation 
3.4445 6.3668 9.2900 9.2900 9.2900 9.2900 

Iskandar’s 3.3417 6.0620 8.1053 8.7117 8.7737 8.7764 

1.6 
Proposed 

approximation 
3.4445 6.3665 9.2897 11.5384 11.5384 11.5384 

Iskandar’s 3.3417 6.0715 8.6336 10.2520 10.6735 10.7199 

2.0 
Proposed 

approximation 
3.4445 6.3665 9.2897 12.2129 14.5364 14.5364 

Iskandar’s 3.3417 6.0715 8.7047 11.1412 12.6928 13.2006 
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Table 6.5: The values of the Renewal Function Using the Two Methods for Set-III 

y x 0.4 0.7 1.0 1.3 1.6 2.0 

0.4 
Proposed 

approximation 
2.5948 2.5948 2.5948 2.5948 2.5948 2.5948 

Iskandar’s 2.5833 2.5912 2.5912 2.5912 2.5912 2.5912 

0.7 
Proposed 

approximation 
4.8016 4.8016 4.8016 4.8016 4.8016 4.8016 

Iskandar’s 4.3662 4.6440 4.6449 4.6449 4.6449 4.6449 

1.0 
Proposed 

approximation 
5.5428 7.0417 7.0417 7.0417 7.0417 7.0417 

Iskandar’s 5.1098 6.5715 6.6112 6.6114 6.6114 6.6114 

1.3 
Proposed 

approximation 
5.5413 9.2883 9.2883 9.2883 9.2883 9.2883 

Iskandar’s 5.1822 8.1056 8.4885 8.4939 8.4939 8.4939 

1.6 
Proposed 

approximation 
5.5410 10.0374 11.5362 11.5362 11.5362 11.5362 

Iskandar’s 5.1826 8.8419 10.2190 10.2955 10.2962 10.2962 

2.0 
Proposed 

approximation 
5.5409 10.0373 14.5337 14.5337 14.5337 14.5337 

Iskandar’s 5.1826 8.9961 11.8766 12.5507 12.5799 12.5802 

We note that the difference between the two approximations increase for increasing 

values of � and h. This aspect was mentioned in the discussions on the asymptotic 

nature of  ;�A,A�A  . One possible argument could be that with increasing values of the 

arguments � and h the number of grids used in Iskandar’s method increase and 

consequently the truncation error has a cascading effect on the approximation for a 

fixed grid size.  

The surface plots and the contour maps of the renewal function /��, h� for the three 

sets of data are given in Figures 6.4 and 6.5. 
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Figure 6.4: Surface Plots of the Renewal Function /��, h� for the three Sets of Data 
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Figure  6.5: Contour Maps of the Renewal Function /��, h� for the three Sets of 
Data 
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6.3.3 McKay's Bivariate Gamma Distribution 

As the third illustration, we choose one of the earliest forms of the bivariate gamma 

distribution, which is due to McKay defined by the following joint distribution 

function 

���, h� �  ßç�è
г�Î� г�È� �Î:��h 3 ��È:�D:ßk        , y> x> 0, a, b, c> 0 

Plots of the above joint density function for a few cases have been given by Kellogg 

and Barnes (1987). The marginal distributions of � and � are gamma distributed with 

shape parameters F and F  Ì respectively. The correlation coefficient ρ�X, Y� �
 § ¤¤4í and the conditional density functions are beta distributed. An interesting 

application of this distribution in hydrology was made by Clark (1980) who studied 

the joint distribution of annual stream flow and areal precipitation. The complete 

statistical characteristics of the above joint distribution needed for our approximation 

are given by  

���� � FJ  

���!� � F�F  1�J!  

��h� � F  ÌJ  

��h!� � �F  Ì��F  Ì  1�J!  

���h� � F�F  Ì  1�J!  

All the conditions needed for the use of (6.17) to obtain the two-dimensional renewal 

function were met. Table 6.6 presents the values of the renewal function governed by 
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the bivariate gamma distribution for a specific choice of the parameters. The 

corresponding surface plot and the contour map are respectively given in Figures 6.6 

and 6.7.  

Table 6.6: The Values of the Renewal Function using the proposed method F �0.4, Ì � 0.4, F�� J � 1 

y/x 0.5 1.0 1.5 2.0 3.0 

0.6 0.3626 0.5688 0.7097 0.8016 0.8847 

1.1 0.5516     0.9213     1.2171     1.4481     1.7528 

1.6 0.6396     1.1098     1.5191     1.8679     2.3968 

2.1 0.6801 1.2079 1.6922 2.1285 2.8498 

3.1 0.7068 1.2828     1.8409     2.3754     3.3536 

 

 

 

 

 

 

 
Figure 6.6: Surface Plots of the Renewal Function /��, h� for Bivariate Gamma 
Distribution Function 

 

 

 

 

 

Figure 6.7: Contour Maps of the Renewal Function /��, h� for Bivariate Gamma 
Distribution Function 
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6.4 An Application: Two-dimensional Warranty Model 

In the present days of consumer renaissance, most of the consumer goods are sold 

with a warranty. A warranty is the expression of willingness of business to stand 

behind its products and services. Thus from the manufacturer’s point of view the 

warranty (i) reassures the consumer of the manufacturer’s resolve in terms of product 

support (ii) serves as a beacon of product reliability and (iii) provides a cutting edge 

to the product over its competitors. However, warranty servicing is a major 

component of the manufacturer’s cost. Reducing warranty cost is an issue of 

importance to the manufacturer. Blischke and Murthy (1992) have given a survey for 

various types of warranty policies. These policies can be broadly grouped in to one-

dimensional and two-dimensional policies depending on the number of variables that 

characterize the failure distribution of the product. The one-dimensional policy is 

generally characterized by age as the variable with time interval as the warranty 

period. There has been a plethora of research papers on one-dimensional warranty.  

In the case of two-dimensional warranties, the variables are generally labeled as age 

and usage and the warranty period is characterized by a region in the two-

dimensional plane. The age could be the real time while the usage can be the output 

(copies produced for a photocopier), distance travelled (kilometers for an 

automobile), the number of times or hours the product has been used (takeoffs and 

landing of the total hours flown for an aircraft) [Jack et al (2009)]. The product 

failures are characterized by a two-dimensional distribution function. More 

specifically if ��  and �� respectively represent the time interval and the usage interval 

between &AI and �& 3 1�AI failure then ���, ��� is modeled through a bivariate 

distribution function ����, h�. However, if we consider (as in the present model) non 
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repairable products, so that products are replaced on failure, then the pair 

be thought of as a sequence of independent and identically distributed random 

variables with common distribution function ���, h�. In this chapter we consider 

dimensional warranty policies proposed by Murthy 

In computing the expected warranty cost for each of these policies, we 

dimensional renewal functions. These have been evaluated using the 

proposed approximation.  

The warranty region is characterized by the rectangle

in Figure 6-8. The warranty ceases whenever a failure occurs 

first time outside the rectangle. The consumer is assured a maximum cover

î units of usage.  If the average usage rate is approximately

then the age and total usage are very close to b and î respectively

warranty ceases. If the average usage rate is low, then the warranty expires 

with the total usage at expiry well below î. On the other hand, if 

the average usage rate is high, then the warranty expires much before 

due to the total usage exceeding the limit î. Thus, for consumers with either high or 

low average usage rate, the warranty policy is not very attractive a

 

Figure 6.8: Warranty Region for Policy A 

repairable products, so that products are replaced on failure, then the pair ���, ��� can 

nd identically distributed random 

. In this chapter we consider 

dimensional warranty policies proposed by Murthy et al (1995, 

of these policies, we 

dimensional renewal functions. These have been evaluated using the 

rectangle 00, b� Ã 00, î�, 

a failure occurs  for the 

a maximum coverage for b 

approximately î b⁄ , 

respectively, when the 

warranty ceases. If the average usage rate is low, then the warranty expires at b  time 

. On the other hand, if 

before b time units 

for consumers with either high or 

not very attractive as it favors the 

 



113 
 

Let )®�b, î� be the number of failures under warranty and J�, the cost of 

replacement of failed item. The expected warranty cost per item sold under policy A 

is given by  

J��0)®�b, î�1 � J�/�b, î� 

where /�b, î� is the two-dimensional renewal function. In Table 6.7, we present the 

expected warranty cost for certain values of  b and  î when the joint distribution 

function ���, h� is chosen to be Beta Stacy distribution. 

Table 6.7: Expected Warranty Cost under Policy A with Beta Stacy Distribution. 
(F � 0.0846, Φ � 2.6, ã � 1.9, J � 2.5, F�� m� � m! � 1.1) and Replacement Cost, J� � 10  

î b⁄  0.5 1.0 1.5 2.0 

0.5 33.2327 44.1964 44.1795 44.1795 

1.0 33.2327 70.4302 92.8978 92.8966 

1.5 33.2327 70.4302 107.8885 141.6164 

2.0 33.2327 70.4302 107.8885 145.3641 

Policy B. The region of warranty under this policy is characterized by two infinite 

dimensional strips as shown in Figure 6.9. Under this policy, the consumer is 

guaranteed a coverage of at least b units of time after sale and for î units of usage. 

The warranty comes to an end at the first time when both time and usage exceed the 

limits b and î, respectively. Under such a policy, a consumer with a low average 

usage rate gets warranty coverage for well beyond b units of time and a consumer 

with a heavy usage rate is covered for a time period b with total usage well in excess 

of î when the warranty ends. As a result, this policy is favorable to low and high 

usage consumers, as opposed to the manufacturer. 



 

Let )¯�b, î� be the number of failures under warranty. The expected warranty cost 

in this case is given by 

J��0)¯�b, î�1 � J�0
where /��b� and /
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6.8, we present the expected warranty cost for certain values of 

joint distribution function 

Table 6.8: Expected 
(F � 0.0846, Φ � 2.6J� � 10 

î b⁄
0.5 

1.0 

1.5 

2.0 

Policy C. This policy is characterized by four parameters: 
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114 

Figure 6.9: Warranty Region for Policy B 

be the number of failures under warranty. The expected warranty cost 

in this case is given by  

0/��b�  /!�î� 3 /�b, î�1 
/!�î� are the one-dimensional renewal function

s of � and Y respectively, as the distribution function

8, we present the expected warranty cost for certain values of 

joint distribution function ���, h� is chosen to be Beta Stacy distribution. 

Expected Warranty Cost under Policy B with Beta Stacy 6, ã � 1.9, J � 2.5, F�� m� � m! � 1.1) and 

 0.5 1.0 1.5 2.0

 68.6302 95.4896 133.3519 171.2372

 117.3503 117.9756 133.3532 171.2398

 166.0701 166.6954 167.0823 171.2398

 214.7899 215.4152 215.8021 216.2119

This policy is characterized by four parameters: b�,
as shown in Figure 6.10. We observe that a consumer is assured of
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00, î!� brings in better coverage to a heavy user, 
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0, î�� results in a better coverage to a light user. 

policy B, the upper limits on age and usage bring in more 

from excessive warranty costs. 

Figure 6.10: Warranty Region for Policy C
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6.5 Conclusions 

This chapter proposes a new non-parametric method based only on the moments to 

evaluate the two-dimensional renewal function. The method assumes significance in 

the light of the facts that (i) the two-dimensional renewal equation has no analytic 

solution (ii) there has been no useful approximation available in the literature with 

the possible exception of Iskandar (iii) it does not require the knowledge of the form 

of the joint distribution ���, h� but requires only the first two statistical 

characteristics of X and Y and finally (iv) it is easy to evaluate and does not require 

iterative computation like Iskandar’s. Specific examples and an application in the 

form of two-dimensional warranty modeling have been presented to highlight the 

efficiency and efficacy of the proposed method.  
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Chapter 7 

CONCLUDING REMARKS 

The renewal equations and renewal type equations are encountered frequently in 

stochastic modeling whenever renewal theoretic arguments are used. The solution of 

these integral equations yields the renewal function, which is a key tool in optimizing 

the expected value criteria. However, these integral equations are not amenable for 

explicit solution and approximations are the only method in dealing with them. This 

thesis proposes several approximations to important renewal functions such as one-

dimensional and two-dimensional renewal functions and g-renewal functions. The 

notable contribution in this regard is that the proposed methods use only the moments 

of the underlying distributions and do not require the explicit form of the distribution. 

This aspect gives the approximations a big leap over the existing literature. Several 

numerical examples are provided to compare the proposed methods with benchmark 

approximation available in the literature. We wish to make specific mention of the 

optimal system design model developed in chapter 5. This is a new model and 

enables the manufacturer to choose his optimal system design parameters while 

giving the consumer an optimal choice of post warranty maintenance.  

We conclude this thesis with the question “where do we go from here?” Firstly our 

moment matching procedures have been restricted to c! distributions. A natural 

alternative to c! distributions are Coxian distributions. This is because in principle 

Coxian distribution may be used to approximate any general distribution. A detailed 
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analysis on the class of general distributions which match each of these two phase 

type distributions (Coxian and c! distributions) will provide answers to moment 

matching problems. In the same vein it is also worth pursuing the region (â!, âf) in 

which each of these approximations score over the others when computing the 

renewal function in terms of relative errors. Finally, moment based approximation 

and moment matching procedures are used when there is no knowledge on the form 

of the distribution function ����. In such a scenario, another interesting method 

could be the resort to maximum entropy distribution as an approximation for the 

unknown distribution function. Given some partial information about the random 

variable, maximum entropy principle chooses that probability distribution for the 

random variable which is consistent with the given information but has otherwise 

maximum uncertainty associated with it.  
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