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ABSTRACT

This thesis investigates the usage of integrated force method in the analysis of statically
indeterminate space truss. Computer codes are written to generate the equilibrium
equations and then calculate the unknowns as: internal forces, nodal displacements,

deformations and support reactions.

The first two programs of space truss analysis find the member forces in statically
indeterminate cases. These two programs are based on integrated force method (IFM)
which recently developed as solution approach. The main step of integrated force
method is obtaining of compatibility condition and the difference between these
programs is related to the calculation of compatibility condition. In the first program null
space of equilibrium equation is used to find the compatibility condition and in the

second program singular value decomposition is used.

The third program is based on displacement method termed dual integrated force
method. In this method the main step is generation of global stiffness method which is
assembled by the matrix multiplication of the equilibrium equation, its transpose and the
diagonal matrix of the inverse of the flexibilities of members. In this method

displacements are primary unknowns and internal forces can be back-calculated.

Keywords: equilibrium equation, integrated force method, dual integrated force method.



0z

Bu tezde Bilesik Kuvvet Metodunu kullanarak statik belirsiz uzay kafes kirisler
incelenmektedir. Gelistirilmis analiz paketleri denge denklemlerini elde edip daha sonra
eleman u¢ noktalarindaki kuvvetler, diigim noktalarindaki deplasmanlar, eleman

deformasyonlar1 ve mesnet reaksiyonlarmi hesaplar.

Ik iki program statik belirsiz uzay kafes kiriglerin eleman kuvvetlerini bulur. Bu iki
program son yillarda gelistirilmis Bilesik Kuvvet Metodunu (IFM) kullanmaktadir.
Bilesik Kuvvet Metodunda en 6nemli islem uygunluk sartlarinin elde edilmesidir ve
yazilmis olan programlarm bibirinden farki da uygunluk sartlarinin hesaplanmasidir. Bu
iki analiz paketi siras1 ile Null Space ve Singular Value Decomposition yontemlerini

kullanarak uygunluk matrislerini elde eder.

Bir ilave analiz paketi de deplasman yontemini kullanan Cift Bilesik Kuvvet Metodudur
(IFMD). Bu metodda global rijitlik matrisi denge denklemleri, diyagonal fleksibilite
matrisinin tersi ve denge denklemleri transpozunun matris ¢arpimi kullanarak elde edilir.
Cift Bilesik Kuvvet Metodudunda ana bilinmeyenler diiglim noktalarmdaki
deplasmanlardir ve eleman u¢ noktalarindaki kuvvetler deplasmanlar kullanilarak daha

sonra hesap edilir

Anahtar kelimeler: Denge Denklemleri, Bilesik Kuvvet Metodu, Cift Bilesik Kuvvet

Metodu.
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Chapter 1

INTRODUCTION

1.1 Introduction

While a building is constructed, it is necessary to be in equilibrium and stable.
Otherwise the built structure will fail. For this aim, according to the concept of
Newton’s Law, internal forces should be equal to the sum of exterior forces and
imported loads. Therefore, to design the structure and evaluate the member section and
supports conditions and other properties of building the equilibrium equation of structure
should be assembled. (S. N. Patnaik, D. A. Hapkins, and G. R. Halford, 2004), (West,

1993)

For the constructions and buildings with large scales, attempting to write equilibrium
equations and calculating unknowns will be very hard and time consuming. Therefore,

utilizing computer programs is unavoidable to solve the problems.

In this thesis, structures which are studied are space trusses. Automatic generation of the
equilibrium equations are carried out and later used to obtain unknown member forces

by adopting the Force Method.

In determinate truss, numbers of unknowns are same as number of equation, then only

with generation of equilibrium equation and straightforward solution will be enough to



determine the unknown forces of the structure. Whereas for indeterminate truss, only
with generation of equilibrium equation it is not possible to solve the unknowns and
needs additional equation set to obtain the unknowns. (S. N. Patnaik, D. A. Hapkins, and

G. R. Halford, 2004), (Saouma, 1999)

This study to solve the indeterminate structures used a method which is known as
Integrated Force Method (IFM). To give whole concept of this method (IFM) and make

the readers familiar, a brief history of Integrated Force Method is presented.

Navier (1785-1836) tried to calculate the four reactions of four-leg table and he wrote
the equilibrium equation, but there were three equations with four unknowns. Then
Navier found that structure is indeterminate and he could not solve the problem. The
main and important point to solve this problem was a need of an additional equation to
make the Navier’s (3x4) rectangular equation matrix to square. This additional equation
was called compatibility condition (1x4) matrix which was identified by Patnaik and his

research group. (S. N. Patnaik, D. A. Hapkins, and G. R. Halford, 2004)

Coupling the Navier’s (3x4) rectangular equilibrium equation matrix with Patnaik’s
(1x4) compatibility condition matrix created a new analysis method for indeterminate
structures with the name of Integrated Force Method which is used in this thesis. In this
method (IFM) after generation of equilibrium equation matrix, two methods that have
been used to obtain the compatibility condition are algebraic methods of: (S. N. Patnaik,
D. A. Hapkins, and G. R. Halford, 2004)

e Null Space



Singular Value Decomposition

In the usage of Integrated Force Method the general steps are:

(@]

o

o

Generation of equilibrium equation matrix,

Generation of compatibility condition matrix,

Coupling the equilibrium equation with compatibility condition to assemble the
[S] matrix,

Use [S] matrix to obtain internal forces.

1.2 Purpose of This Study

The main purpose of this study is the analysis of space trusses to evaluate the internal

forces directly by using of integrated force method with generating equilibrium

equations and compatibility condition with computer codes.

The principal motivation of this study is developing the force method analysis,
because in the consideration of the state of art it is discovered that there are many
computer codes which are based on stiffness method but a few computer codes
are available that are based on integrated force method.

Other motivation of this study is the process of the analysis of integrated force
method. Methods like stiffness and displacement, the primary unknowns are the
displacement, and then internal forces are back calculated whereas in integrated
force method internal forces can be obtained directly.

In majority universities in the related courses to the structural analysis, only two
dimensional structures are discussed, because analyzing of three dimensional
structures are very hard to evaluate manually and consumes a lot of time.

Whereas larger structures it is impossible to analyze without any computer



program. Then this study can be helpful to analyze the space trusses more
quickly and easily in the basic structural analysis courses.

e Other purpose is making students and readers familiar with integrated force
method, because a few books and documents are available which are written in
details about this method and the using of equilibrium equation.

e As another purpose of this research it can be expressed that a few computer
codes exist which are used to generate the equilibrium equation automatically
and solve the assembled equilibrium equation by using of null space and singular
value decomposition methods.

e In this study the computer software used for writing the codes and programs to
analyze the structure in Mathematica. Then it also emphasis that Mathematica is
not related only to mathematic courses but it can be used in the structure analysis
courses and other relevant engineering fields.

1.3 Research Problems

The questions which this study attempt to answer, are:
e In which way computer codes must be written to collect and generate the
equilibrium equation,
e How equilibrium equation can be utilized to analyze the space truss,
e Which properties and relations of matrix course can be used to generate
equilibrium equations matrix and obtain compatibility condition matrix,
e What are the main differences between the integrated force method and other

analysis methods like stiffness.



1.4 Objectives of Research
The study intentions summary is as following:
e To introduce a new method which can be helpful in structural analysis of space
truss
e To analyze different space trusses with written computer codes that generates
equilibrium equation and puts in matrix format.
e To help students in space truss analysis to avoid a lot of time consumption to
analyze.
e To make the examples practical and establish closer relationship between
theoretical truss and the actual one.
e To analyze the large trusses quickly which need to generate the big matrix of
equilibrium equations and solving it.
1.5 Summary of Thesis
This thesis consists of 7 chapters:
Chapter 1 is an introduction giving:
e Brief introduction of integrated force method
e Purpose of this study
e Research problems

e Objectives to researches.

Chapter 2 gives basic and necessary information about generation of equilibrium
equation. For this aim, a determinate space truss is solved and all of the relations and

formulas are presented step by step.



Chapter 3 explains the three methods which are used in this thesis for writing the
computer codes as:

e Integrated Force Method via Null Space

e Integrated Force Method via Singular Value Decomposition

e Dual Integrated Force Method
In chapter 4, how the equilibrium equations can be generated automatically by written
computer codes, is explained. In this chapter an example is solved to better illustrate the

computer codes and at each step the related relations and equations are presented.

In chapter 5, the written computer codes to solve generated equilibrium equation in
chapter 4 are explained by using an example of indeterminate space truss. Also in this
chapter three algorithms for each of the three methods are expressed. In these algorithms

needed formulation for each step has been placed.

In chapter 6, there are six illustrative examples which are indeterminate cases with
different number of nodes and members and also with different degree of indeterminacy
and support conditions. Two first examples are solved by IFM via null space, the
examples 3 and 4 are solved by IFM via singular value decomposition and last two
examples are analyzed by using of dual integrated force method (IFM). At the end of
solution of each example to prove and compare the obtained unknowns, the result of

Mastan software for that truss is presented.

In chapter 7, summary of research and conclusions are expressed, then some directions

for possible future researches are recommended.



Finally the used sources and publications during this study are provided at References

section.



Chapter 2

BACKGROUND INFORMATION

2.1 Introduction

In this chapter some data are presented about the previous works done on integrated
force method. Also some primary and basic information are expressed about space truss
structures and their general characteristics. Then it is intended to explain how the
equilibrium equation must be written in truss analysis and how generated equations can

be solved.
2.2 Previous Works Done by Integrated Force Method

After Navier, who wrote the equilibrium equation for four-leg table but because of the
indeterminacy nature of structure he could not solve it. Patnaik attempted to find a
method to solve this problem with force method by using equilibrium equation. This
issue led to development of integrated force method. Patnaik was one of the few
researchers that worked and toiled on force method especially on integrated force
method. He has collected his approaches and made them like a book which helped to
write this thesis and is the main reference of this study. But in this collection of
Patnaik’s book there a few examples on plane truss where space truss was not discussed

and explained in detail. (S. N. Patnaik, D. A. Hapkins, and G. R. Halford, 2004)



Patnaik continued to study on integrated force method and tried to constitute this method
with other subjects for example he has considered behavior of initial deformation in
integrated force method. Later Patnaik and his research group developed structural
analyzing of finite elements by using integrated force method for two dimensional
structures in which space framed structures have not been discussed. Nonlinear
analyzing of structures by this method (IFM) was another subject that has been studied
by other researchers. (S. N. Patnaik, D. A. Hapkins, and G. R. Halford, 2004), (N. R. B.

Krishnam Raju, and J. Nagabhushanam, 2000)

Other recent researches by integrated force method are related to Eastern Mediterranean
University’s Civil Engineering department. One of the students studied on analyzing of
two dimensional truss structures and later other student has worked on two dimensional
analyses of frame structures. (S.Khosravi, 2005), (S.Kamkar, 2010)
2.3 Description of Space Truss
Space truss is a kind of structures that often are analyzed base on equilibrium. This type
of structure (space truss) consists of four members at least and all of the joints are pins
which are not capable to transmit moment. Generally, stability of space truss is realized
by forming of joined four-face units.
2.3.1 Assumptions in Space Truss
To analyze the space truss in this study some assumptions are intended:

e The members are connected together with pin joints without friction.

e All of the loads and reactions subjected to space truss only and only applied on

nodes.



e The central axis of each member is straight and it is coincident with connecting
line between the end nodes of member.

e Intruss the subjected loads are concentrated type (not distributed load)
2.3.2 Stability and Determinacy of Space Truss
Each nodes of a space truss consists of intersecting forces in which three moment
equations are satisfied automatically. Therefore, only three independent force
equilibrium equations must be written for each node. The condition that is essential but
not enough to be determinate truss is written as:

b+r=3j 2.1

Where
b: is the number of members which is equal to number of unknown forces
r: is the number of support’s reactions
j: is the number of joints or nodes
If b + r < 3j, truss is unstable
If b + r = 3j, truss is determinate 2.2
If b + r > 3j, truss is indeterminate
2.4 Generation of Equilibrium Equation for Space Truss
As it was explained above, for each node of space truss three equilibrium equation must
be written. To analyze a member of space truss which consist of two nodes, six
equilibrium equations are written. To explain the method of assembling the equilibrium
equation, a part of space truss shown in Figure 1 is used and member i-j is separated

from structure as shown in Figure2.
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According to Figurel, node i is a support indicator in which reaction Ri has been
resolved to its three components. Node j is a joint indicator in the structure in which
subjected load Pj has been resolved to its components. The axial force Fij is assumed to
be tension force that affects in nodes | and j as a member force. All the forces are shown

in positive direction.

Figure 1. Separated Part of Space Truss
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Figure 2. Member i-j of Truss
Figure 2 shows the separated member i-j with its end nodes coordinates in global
coordinate system. At the end member i, force Fij is resolved to its parameters Xij, Yij

and Zij in the direction of X, Y and Z respectively. These parameters can be written as:

XX,
Xij =F,(——) =Fi li
L,
Yy,
Yii=F ( L) = Fij mij 2.3
L,
z,Z,
Zij= Fy( I‘_ ) = Fij nij

1
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In this terms quantities lij, mij and nij are the direction cosines which indicate the angles
between member i-j and axes X, y and z respectively. Also at the j end, the force Fji in

way shown is resolved to its components Xij, Yij and Zij as written below:

Xji=F ( J) Fiji lji

IJ

Yji= F ( J) Fji mji 2.4

IJ

Zji=F ( J) Fji nji

IJ
Where: lji, mji and nji are the direction cosines of member. By checking the equations 2.3
and 2.4 it is observed that :
lii = -lij miji = -Mij Nji = -Nij
Also since the member is under tension it can be written: Fji =Fij  then the relations

below can be concluded:

Xiji = Fijj ( IIJ)
Yii = Fij ( mu) 2.5
Zji = Fij (-nij)

The length of the member Lij can be calculated by following formulation:

Lij= \/ x =X, ) (YY) (zj—zi)z) 2,6
X - X,

|, =L
L,
Y, -,

mij: 2.7
L,
Z,-7

nij: L
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Now, according to structure in Fig.1 and stated relations the equilibrium equation for
member i-j can be generated:

Xig + Xih + Xij + Xik + Rix=0

Yig+ Yih+ Yij+ Yik + Riy=0

Zig+ Zih+ Zij+ Zik+ Riz=0 2.8

Xijh + Xji + Xjk + Xji+ Px =0

Yih+Yiji+ Yik+Yj+Py=0

Zihn+ Zji+ Zik + Zjt + Piz=0

According to equations 2.7, a general formulation for a truss that consists of n nodes can

be determined as :

. —-lig -1lin -1ik -1ij . . . Y . Fig
. —TMig -Msh -TbEk —TEj . . . oo =100 Fin
. —Thig -Ndh -Tbk  —Tdj . . . . . -1 .. Fix
1li3 -13n =13k =13 .. . . . Fi3 .
Mij -Mgh -Tgk -TMIE .. . . P Fin Pix 29
iy -Mjh -Mjk -Mih .. . . P Fik | = | P3y
Fit Pz
Rix
Ry
Rix

Also the equation 2.8 can be written in abbreviated form as:

[D]{{E}}:{P} 2.10

In which: [D] is the matrix of direction cosines or universal statics matrix,

14



{F} is member forces vector,

{R} is support reactions vector

{P} is load vector that presents subjected external loads.

In equation 2.9 support reaction vector {R} can be eliminated temporarily from the
equation, after obtaining of member forces they can be back calculated if they are

needed.
2.5 Evaluation of Unknown Forces in Space Truss

While assembling of equilibrium equations of space truss two cases may exist:

e If the equilibrium equation matrix is square then the structure is determined.

e Ifthe equilibrium equation matrix is rectangle then the structure is indeterminate.
2.5.1 Calculation of Forces for Determinate Space Truss by Using the Generated
Equilibrium Equations
By using of equilibrium equation the determinate space truss’s member forces can be
obtained easily only with linear solution of following relation:

[D1{F} = {P} 2.11
This relation can be computed manually but there is need to know related solving
methods of matrix and be familiar attributes of some special matrices. It also can be
solved by some computer software like Mathematica intended software to this study.
In this software first two factors of matrix [D] and vector {P} must be entered, then by
inserting of command of “LinearSolve” the forces will be calculated.
To realize better for this method an example is solved. In this example as shown in

Figure 3 internal forces and support reactions are to be obtained obtain.
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b(0,5,0)

a(0,5,5)

e(5,2,2)

SOKN

d(0,0,5)

Figure 3. Eight-Member Determinate Space Truss

According to the Figure3 and relation 2.1 and 2.2 this truss is determinated because:
3(5)=8+T7,
nodes =5, member =28, reastions=7.

Then for truss of Figure 3 equations 2.3 — 2.6 are produced as Table 1.
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Table 1. Direction Cosines of Example Truss

Member | (Xj — Xi) (yj —i) (zj-zi) Lij lij mij Nij
|j M m m m

Ae 5.0 -3.0 -3.0 6.56 0.762 -0.457 -0.457
Ea -5.0 3.0 3.0 6.56 -0.762 0.457 0.457
Be 5.0 -3.0 2.0 6.16 0.812 -0.487 0.325
Eb -5.0 3.0 -2.0 6.16 -0.812 0.487 -0.325
Ce 5.0 2.0 2.0 5.74 0.871 0.348 0.348
Ec -5.0 -2.0 -2.0 5.74 -0.871 -0.348 -0.348
De 5.0 2.0 -3.0 6.16 0.812 0.325 -0.487
Ed -5.0 -2.0 3.0 6.16 -0.812 -0.325 0.487
Ab 0 0 -5.0 5.0 0 0 -1.0
Ba 0 0 5.0 5.0 0 0 1.0
Bc 0 -5.0 0 5.0 0 -1.0 0
Cb 0 5.0 0 5.0 0 1.0 0
Cd 0 0 5.0 5.0 0 0 1.0
Dc 0 0 -5.0 5.0 0 0 -1.0
Da 0 5.0 0 5.0 0 1.0 0
Ad 0 -5.0 0 5.0 0 -1.0 0

After substitution of quantities of Tablel and loads in relation 2.8 the equilibrium

equations in matrix form is produced as:

-0.762
0.45%7
0.457

0

[— I —

-1

0
0.762
-0.457
-0.451

0 0 0 0 0 0
1 0 0 0 0 0
o0 0 0 0 0 1}
0 0 0 0 0 0
0 1 -0.812 0 0 0
0 0 0.48%7 0 0 0
0 0 -0.325% -0.871 0 0
0 -1 0 -0.345 0 0
0 0 0 -0.348 -1 0
0 0 0 0 0 -0.812
-1 0 0 0 0 -0.325
0 0 0 0 1 0.4387
0 0 0.%12 0.8711 0 0.8512
0 0 -0.437 0.348 0 0.325
0 0 0.32% 0.345 0 -0.487

I

[
| =
o

1
|"'===

1
[— N — I — I —]
1
[— N — N — I — ]

1
H======

Fte
|

|
juy

3

1]
[— S I — I — I — I — I B

After linear solve for generated matrix the unknown forces and support reactions can be

obtained as:
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Fa -12.0
Fe 26.24
Fad 8.0
F. 12.0
F. 36.96
F. -34.44
F 12.0
{F} )
=[D]I{P}=1{F, ;=1-24.64 kN
{R}
R, -20.0
Ry, 20.0
R, -30.0
R, 30.0
sz 00
R 30.0
“1 1200
Rdz

2.5.2 Calculation of Forces for Indeterminate Space Truss by Using the Generated
Equilibrium Equations
When generated equations matrix of equilibrium is rectangular, it means that truss which
is analyzed is indeterminate and it cannot be solved by using of equilibrium equations
only.
To obtain the forces by written equations in indeterminate truss, there are some methods
as following:

e Force Method

e Displacement Method
In displacement method presented by Navier (S. N. Patnaik, D. A. Hapkins, and G. R.
Halford, 2004), Primary unknowns are displacements of nodes and the member forces
are back calculated. Two approaches in displacement method are:

e Direct Stiffness Method

18



e Dual Integrated Force Method
Direct Stiffness method is not discussed in this thesis, because there are a lot of sources
and computer codes based on this method.
Dual Integrated Force Method is one of the intended analyzing method in this research
and is explained in detail in chapter three.
In the force method, member forces are taken as primary unknowns. There are two
principal approaches in this method that are:

e Classical Force Method

e Integrated Force Method
In classical force method when structure is indeterminate, some members can be “cut” to
make a stable and determinate structure. Then by using of related equations and relations

member forces are obtained.

The main approach of force method that is used in this thesis is Integrated Force
Method. In chapter three complete explanation of this method is presented but here a

brief review is inscribed.

After generation of equilibrium equation in indeterminate space truss, since the matrix is
rectangular an additional equation should be produced. This additional equation termed
compatibility condition and it makes the equilibrium equation matrix square. In this
research the additional compatibility condition equation is achieved by using two
methods:

e Null Space

e Singular Value Decomposition
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Then the steps to use of integrated force method are:
e Assembling of equilibrium equation
e Writing of compatibility condition
e Coupling the equilibrium equation with compatibility condition to obtain [S]

matrix given by:

{ % }
[S]= 2.12
[C] [G]

e Evaluation of forces by using of:

{[C][A][GJ{F} ) {ZR} 213

2.6 Transformation Matrix in Space Truss
When elements of a space truss have been oriented in different direction, there is a
necessary need to transform the member relations from their local coordinate system to

global coordinate system. Transformation matrices in space truss structures are obtained

by:
Cosf, Cosé, Cosb, 0 0 0
T= 2.14
0 0 0 Cosd, Cosf, Cosb,
Where:
Cosb, = X, =%,
L
Cos6, = .Y 2.15
Cosb, = 2~
L=\/(X2—Xl)2+(Y2 _Y1)2+(ZZ_Zl)2 2.16
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Chapter 3

METHODOLOGY

3.1 Introduction

In structure to analyze the relation of [S]{F}= {P} is used. In determinate structure
matrix [S] is square (m x m) and it can be solved directly. Then internal forces are

obtained and displacements can be back-calculated if needed.

In indeterminate structures the generated equilibrium matrix of structure is rectangular
with dimension of (m x n), where m is number of equilibrium equations (EE) and n is
the number of unknown forces. In this condition that [S] matrix is not a square an
additional equation termed Compatibility Condition must be generated. The methods
this study utilizes to solve the indeterminate space truss structures by using of
equilibrium equation are:
e Integrated Force Method
o Null Space
o Singular Value Decomposition
e Displacement Method

o Dual Integrated Force Method
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3.2 Integrated Force Method (IFM)

Base of the new force method which has been expanded is essentially equation below:

3.1

Equilibrium Equation {Forces) = Mechanical Load
Compatibility condition Initial Deformation

Where, equilibrium equation (EE) and compatibility condition (CC) are coupled
together. This method is termed as Integrated Force Method (IFM). Indeterminate space
truss analysis, objective of this study, has need of the same EE and CC. Since integrated
force method uses both equilibrium equation and compatibility condition, this method
can be expanded systematically and can construct dependable solutions even for large
structures with complicated topology. (S. N. Patnaik, and D. A. Hopkins, 1998), (S. N.

Patnaik, D. A. Hapkins, and G. R. Halford, 2004)

The equilibrium equations are generated base on forces, but compatibility condition is
written in term of deformations and displacements. Then there is need to write the
compatibility condition in terms of forces because it must be coupled to equilibrium

equation which is base on forces.
Therefore the governing formulation of integrated force method is:

LCJ[A][GJ{F} ) {ZR} >

Matrix [A] is equilibrium equation,

Where:

Matrix [C] is compatibility condition,

Matrix [G] is unconnected flexibility,
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Vector {F} is internal forces,
Vector {P} is external loads and
Vector {0R} is initial deformations.
Also the equation 3.2 can be written as:
[SKF}={P*} 3.3
In equation 3.3 matrix [S] is square and is produced by coupling of equilibrium
equation, compatibility condition and flexibility matrix. In vector {P*} number of rows
is equal to number of rows of vector of external loads. Therefore, in the cases that there

is not any initial deformation, to balance the equation, zero should be placed.

In integrated force method in which primary unknowns are member forces,
displacements if are needed can be calculated by: (S. N. Patnaik, D. A. Hapkins, and G.
R. Halford, 2004)

{X}=DIIGIIF] 3.4
Where:
Vector {X} is nodal displacements,

Matrix [J] is transpose matrix of inversed [S]

.
3=[[sT"] 3.5

Matrix [G] is unconnected flexibility matrix and

[F] is member forces which have been calculated.

3.2.1 Assembling of compatibility condition in IFM

In indeterminate structures, to solve the equation 3.2 compatibility condition should be

generated and then couple with equilibrium equation. In integrated force method, as
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Patnaik explained and utilized, compatibility condition should be written as following
steps: (Patnaik S. , 1999)

e The relations of deformation-displacement (DDR) must be derived

e The displacements must be eliminated from deformation displacement relation

To write deformation-displacement relation, energy theory in structures is used as:

IE:%{F}T (B 3.6

W:%{P}T{X} 3.7

Here the nodal displacements are corresponding to the external loads. Then, according to
conservation of work-energy:
IE=W 3.8

The equations 3.6 and 3.8 can be written as:

SR (B =5 1P X) 39
By substituting equilibrium equation (EE) 3.2 into equation 3.9 it can be expressed as:

(FY ({B-[AT (x3})=0 3.10
And also equation 3.10 can be expressed as:

(=1 1X) 311

Because internal forces {F} are not null vector. Equation 3.11 indicates m deformation

in terms of n displacement. Now, according to step 2 of writing of compatibility
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condition (CC), displacements must be eliminated from equation to obtain p= m — n
compatibility condition:

[C]{B}={0} 3.12
The CC has ( m—n) rows and columns.
3.2.2 Null Property of Equations
By using of equations 3.11 and 3.2 null property of equilibrium equation can be proved
and subsequently compatibility condition can be obtained. According reference (Patnaik
S., 1999), (S. N. Patnaik and K. T. Joseph, 1986) , if deformations are removed between

equations 3.11 and 3.12, compatibility condition can be generated as:
[CI[AT {X}={o} 3.13
In equation above, since displacements are subjective and not null vector, its coefficient

can be withdrawn, then:
[CI[A] ={o} 3.14
or [A][c] ={0} 3.15
Thus, when equilibrium equation is generated and compatibility condition is
written, the null property of them must be examined by using of equation 3.14 or
3.15.
3.2.3 Assembling of Compatibility Condition by Using of Null Space
According to references (S. N. Patnaik and K. T. Joseph, 1986), compatibility condition
is obtained by null space of equilibrium equation (EE) and then this compatibility

condition (CC) and EE are coupled. As it was mentioned before the used software this

study is Mathematica and finding of null space of matrix is one of the several built in
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commands in this software. Then to find null space of equilibrium equation, it should be
written as: NullSpace [A] (EE matrix).

3.2.4 Assembling of Compatibility Condition by Using of Singular Value
Decomposition (SVD)

Another alternative to calculate the compatibility condition is utilizing of singular value
decomposition termed as [M] matrix which is (S. N. Patnaik and K. T. Joseph, 1986),

(Patnaik S. , 1999):

[M]=|[1-(AT (AT )| 316

In which:
[T is identity matrix and number of its columns and rows are equal to number of

members,

[A]T is transpose of equilibrium equation,
([A]T )pinv is the Moore-Penrose pseudo inverse of [A]T which is obtained by:
(AT )™ =([ATLAT) ] 347
Then singular value decomposition (SVD) is applied to matrix [M] to obtain:
[M]=[M,][M,][M, ] 3.18
Where: [M,]and [M, ] are orthogonal matrix and number of their columns and rows are

equal to number of element,

[M,] is obtained as:

[Mg]:{g 8] 3.19
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In which, [M,] is square matrix,
A=diag (A, A,,..... Ap)

And p is degree of indeterminacy and
A=A, 2. 2Ap>0

According to references (Patnaik S. , 1999), (S. N. Patnaik and K. T. Joseph, 1986), it

can be written as:

[M]:[Mu]{[[NOS]]} 3.20

[C]=[Ns][G] 3.21
Where: [C] is compatibility condition matrix and will be calculated by equations

3.20and 3.21 and [NS] is null space matrix of equilibrium equation.
3.3 Dual Integrated Force Method (IFMD)

According to references (S. N. Patnaik, and D. A. Hopkins, 1998), (S. N. Patnaik, D. A.
Hapkins, and G. R. Halford, 2004), Patnaik formulated and expanded the dual integrated

force method. In this method termed (IFMD), main equation is:
(K] X} = (P 322
Where: [K] is Pseudo Stiffness matrix and is generated by:
[K],y =[AI[G]*[AT 3.3
In which:
[A] is equilibrium equation matrix,
[G]_1 is inverse of flexibility matrix which is a block diagonal matrix and each block is

unconnected flexibility matrix for each member,
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[X] is vector of displacements and

[P] is external loads or applied loads.

In truss structure flexibility matrix will be obtained as:

fob 3.24
E.A
f 0
f
[G]= . 3.25
0 i

The governing formulation for load vector is:

(Pl ={(P}+([ANLC]* {£°))} 3.26
Where, vector {,6’0} is initial deformation and its rows and columns are equal to number
of total degree of freedom, but in this thesis initial deformation of supports are not
considered and the vector {,6’0} will be zero. Then equation 3.25 in this thesis can be
written as:

{P}.., ={P} 3.27

After assembling of {K} matrix and finding displacements with equation 3.22, the

ifmd
internal forces can be calculated by:

{Fi=[c]"[A] {x} 3.28
The similarity between integrated force method and dual integrated force method is

using of equilibrium equation matrix [A], but difference between these two methods is
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that primary unknowns in integrated force method is internal forces however in dual

integrated force method primary unknowns are displacements.
3.4 Overview of Solution Approach

As it was explained, the governing equation to analyze structure is:

[A] {F} ={P} 3.29
This section discusses how equilibrium equation [A] is utilized to fine the internal
forces. It also presents an overview of computer programming process with algorithms.
3.4.1 Overview of Usage of Equilibrium Equation
The truss structures are either determinate or indeterminate, equilibrium equation is used

in both cases.

In determinate truss structures, writing of equilibrium equation is enough to solve the
unknowns which are member forces, because number of equilibrium equations is equal
to the number of unknowns. After obtaining internal forces the deformation and the
displacements can be calculated. Therefore in determinate truss structures finding of

deformations and displacements are straightforward after finding internal forces.

In indeterminate truss structures number of equilibrium equations is not equal to the
number of unknowns, because number of members (unknowns) is more than the number
of unrestrained degree of freedom. For overcoming this problem some additional

relations must be supplied.

In structural analysis, displacement method and force method are two main and

important methods which are used to find displacements and forces, respectively. In
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displacement method primary unknowns are nodal displacements and in force methods

primary unknowns are member forces (internal forces).

The methods which are used in this thesis are shown in Figure 4. As shown in Figure
dual integrated force method which is one of displacements method is used to find
displacements and integrated force method one of force methods is used to calculate

internal forces as primary unknowns.

As it was explained, compatibility condition is need in integrated force method and it is

generated by null space or singular value decomposition.
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Usage of Equilibrium Equation

Dreterrminate  Structure

Indeterrmnate Structure

l l

Displacement Iethod Force Method

| l

Integrated F Method
Dual Integrated Force ggrated rorce Ietho

singular Value Decomposition Mull Space

Figure 4.Classification of Usage of Equilibrium Equations

3.4.2 Overview of Computer Programming with Algorithms

When the space truss structures are in large scale, hand calculation are not practical and
it consumes much time and at the end of calculation, results may be obtained that are
not correct or exact. Therefore, there is a need to automate the solving procedure shown

in Figure 4. In this section shown methods in Figure 4 is discussed in algorithm models.

31



3.4.2.1 Integrated Force Method
For integrated force method the main steps are: generation equilibrium equation, finding
compatibility condition, coupling compatibility condition and equilibrium equation to

find internal forces.

Generated Equilibrium
Equation

[ sihgular Value [ Iull Space J

Decomposition

Mlatro:

l

Compute Compatibility
Condition

|

[ Couple Compatibility Condition J

-
Tnconnected Flembility ]

with Equilibrium Equations

Appled Load
Wector

molve For Internal Forces ]

|

[ =molve For Displacetments J

Figure 5. Overview of Integrated Force Method Programming
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3.4.2.2 Dual Integrated Force Method

For dual integrated force method the main steps are: generation of equilibrium equation,

generation global [K]ifm , matrix and then solve for displacements.

Generated Equilibrium
Equation

TThncomected
Flezbility Mfatriz

Tenerate Global
[E Jifmd Ilatrix

Applied Load
Wector

Solve For Displacetments

Solve For Internal
Forces

Figure 6. Overview of Dual Integrated Force Method Programming

The presented procedures above are for indeterminate space truss and in determinate

cases calculation of internal forces are straightforward as shown in Figure 7.
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{enerated Equilibrium
Equation

Applied Load
Wector

solve For Internal
Forces

Figure 7. Overview of Determinate Structure Analysis
3.5 Programming
Actual programming for the expressed methods consists of:
e Matrix Operations
e Matrix Decomposition
e Solution of Linear System of Equation
e Making Scatter Plot of Matrix

e Import and Export of Data

Using Symbolic and Numerical Mathematics

Therefore one of the ways to overcome these equations is using of computer algebra

system like Mathematica 8 which is used in this thesis.
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Mathematica software is numeric and symbolic computational engine, programming
system, documentation system, graphics system, programming language and strong

connectivity to other applications.

Other attribute of this software is being easy to use. Usually Mathematica is worked on
its notebook interface and also results are visible in notebook interface. Mathematica has
capability to present programs and its result in slides. For this purpose, it has toolbar
with buttons to navigate between slides. This software has import and export filters for
over 40 popular formats including DOC and JPEG. It is possible to open a file to read

data form, and return an input stream object.

Additional packages for specialized analysis include:
e Linear Algebra ‘Matrix Manipulation’
e Statics
3.5.1 Desired Features of the Programs for Integrated Force Method
In the survey of the state of the art, it was discovered that Patnaik used the following
steps to obtain the compatibility condition:
e Writing of deformation displacement relations
e Eliminating the displacement

e Obtain the compatibility condition

In this study, two alternative algebraic methods are utilized to obtain the compatibility
condition of space truss. After generation of equilibrium equation the following

techniques will be used:
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e Null space property of equilibrium equation matrix and flexibility matrix are
combined
e Singular value decomposition of equilibrium equation matrix and flexibility

condition are combined

3.5.2 Desired Features of the Programs for Dual Integrated Force Method

In the documentation and computer codes which were written previously, the main
accent is generation of global stiffness matrix, however in the computer codes supplied
by this thesis, the global stiffness matrix in dual integrated force method is written easily
by using of generated equilibrium equation and manipulation capabilities of the algebra
system of Mathematica 8 software. In the written programs in this study the global
stiffness matrix is generated in only one command line. Therefore, by using of
Mathematica 8 some programming advantages can be helpful.

3.5.3 Other Attributes of the Prepared Analysis Packages for IFM and IFMD

e Easy to use: there is no need to read or learn any documentation for the first time
users, because the programs are easy to operate and use.

e Simple: in the comparison with the existing computer codes packages of
structural analysis the running and understanding of analyzing procedure of
prepared package for this study is simple.

e Transparent Theory: the theory of methods and used relations and equations are
displayed in each of level of analyzing.

e Results: the analyzing results of each section are presented separately, then if
user is suspicious of the result, a quick review of procedure is possible to find the

mistake.
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e Educational: the programs are like tutorial, because all of the theories and
formulation at each section of procedure for IFM via null space, IFM via singular

value decomposition and also IFMD are introduced step by step to users.

37



Chapter 4

AUTOMATIC ASSEMBLY OF EQUILIBRIUM

EQUATIONS (EE) AND SOLUTION ALGORITHMS

4.1 Introduction

In this chapter the technique which is used to generate equilibrium equation is discussed.
Also an example will be solved manually to show how this technique can be used in
space truss structures. Then the process of solving of space truss is described step by
step in algorithms and required relations and formulations are placed in these algorithms.
4.2 Formulation of Equilibrium Equations

In chapter two, basic concept of equilibrium equation and how it can be written, were
explained. In this section a systematic method of assembling the equilibrium equations is
established. This issue will be helpful to supply a computer code to write the equilibrium

equations automatically.

To illustrate technique, consider space truss with four members as shown in Figure 8.

Also the data of truss has been expressed in table 2.
According to section 2.3 and relation 2.1 the number of degree of indeterminacy is:

(4+12) - 5(3) =1

And the only free degree of freedom (dof) exists at node number five.
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%
z
e 2

Figure 8. Space Truss with Four Members

Table 2. Nodal Data of Space Truss

Node Coordinate (m) Applied Load (kN) Restraints
Number X y z X y z X y z
1 0 0 0 0 0 0 Fixed | Fixed | Fixed
2 5 0 0 0 0 0 Fixed | Fixed | Fixed
3 5 5 0 0 0 0 Fixed | Fixed | Fixed
4 0 5 0 0 0 0 Fixed | Fixed | Fixed
5 2 1.5 2.4 5 -5 -5 Free Free Free

Then equilibrium equation is written attention to free body diagram of truss. Therefore,

according to relations 2.14 and 2.15 the length and the direction cosines of members are:
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For element 1:

L, =2’ +1.5% +2.42 =3.465
CosO, = _2 . 0.577
3.465

Cosé), = % =0.433

Cosb, = % =0.700

For element 2:

L, = /(-3)2 + (L.5)? + 2.4% = 4.124

Cosf, = ﬁ; =-0.727

Cos6), = % =0.363

Cosd, = % =0.582

For element 3:

L, = \/(-3)? +(-3.5) + 2.4* =5.197

Cosf, = % =-0.577

Cost, = ;’—957 =-0.673

Cosb, = % =0.461

For element 4:

L, =/(2)? +(-3.5) + 2.4% = 4.700

Coso, = % =0.425

Cos6), = % =-0.745

Cosb, = % =0.510

Then, according relations above member’s data can be collected as shown in Table 3:
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Table 3. Member Data of Space Truss

Element connectivity Cosine Direction
Length
Number | Start Node | End Node I m; n;
1 1 5 3.465 0.577 0.433 0.70
2 2 5 4.124 -0.727 0.363 0.582
3 3 5 5.197 -0.577 -0.673 0.461
4 4 5 4.700 0.425 -0.745 0.510

Where: Cosé, , Cosé, and Cos@, are replaced by the terms of I., m. and nij

ij? ij
respectively. These terms are the same direction cosines which are expressed at chapter

2 and equation 2.7.

According to section 2.6, to transform the coordinate of internal forces from local

system to global system in each member, a transformation matrix A' is used:

.| my on, 0O 0 O
A= 4.1

And also to convert basic truss force to elemental equilibrium equations in local system,

matrix f'is used:

g :m 42

In addition to form element equilibrium equations in global system, B' is needed which

is obtained by:

B'=(4) B' 43
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Therefore, for each element it can be written:

B =(2) B’=

B* =(4")

The superscript T indicates transpose of matrix. Note that the numbers from1 to 15 used

in the row numbers of matrix (ﬂ,i)T B

B2 =(2?) B?=

[0.577
0.433
0.70

0

0

0

[-0.727
0.363
0.582

T B4 — 0.510

freedom for each node as:

Node 1: 1, 2, 3

Node 2: 4,5, 6

0 ]
0

0 -1
0577 | 1

0.433
0.70 |

0
0

0
—0.727

0.363
0.582 |

0
0.425

-0.745
0.510 |

42

1[-0.577]
2| -0.433

-0.70
0.577
0.433
0.70 |

410727 ]
5| -0.363
6| —0.582
~0.727
0.363

15| 0.582 |

7[ 0577
0.673

9| -0.461
0577
0673
15| 0.461

10[-0.425]
0.745
~0.510
0.425
~0.745
15| 0.510 |

indicate the global numbering of degree of



Node 3: 7, 8,9
Node 4: 10, 11, 12

Node 5: 13, 14, 15

Therefore, according to equations 2.4 to 2.9 can be written and then the equilibrium

equations for space truss can be assembled directly by transferring each entry from

(ﬂi)T B' to overall equilibrium equations [A].this is carried out according global degree

of freedom:

[-0.577 0 0 0 -1 0 0 0 0O OO O O O O O A
—0.433 0 0 0 0 -1 0 0 0 OO O O O 0 O i
-0.70 0 0 0 0 0 -1 0 0 0O 0 O O O O O E

0 0.727 0 0 0 0 010 0 0 0 0 OO0 O R
0 -0.363 0 0 0 0 0O 0O-1 0 0 0 0 O O0 O R
0 —0.582 0 0 0 0o 0 0 0O -1 0 0 0 0 00O FF;Z
0 0 0.577 0 0 0o 0 0O 0O 0O-1 0 0 0 00O R3
0 0 0.673 0 0 0o 0o 0o 0O OO0 -2 0 0 00O R4
00 0 -0.461 0 o 0 0o 0 0O 0O OO -1 0 0 O R5
0 0 0 -0425 0 0 0O O O O O O O -1 0 o0 RG
0 0 0 0745 0 0 O O O O O O O O -1 0 R7
0 0 0 -0510 0 0 0 O O O O O O 0O 0 = R8
0.577 -0.727v -0577 042 0 O O O O O O O O O O O K
0433 0363 -0673 -0745 0 0 O O O O O O O O O O l;lo
| 070 0582 0461 0510 0 0O O O O O O O O O O O] Ril
L 12 ]

But according to section 2.4, the equilibrium equations can also be written only for free
degree of freedom, which means that reactions can be eliminated. Therefore to three
degree of freedom and four elements, the equilibrium equation matrix above is reduced

to:
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0.577 -0.727 -0.577 0.425 E 5
0.433 0.363 -0.673 -0.745 F2 = -5
0.70 0582 0461 0.510 FS -5
4
Equilibrium Internal Applied
Equation Forces Loads
[A] {F} {P}

Now the matrix of equilibrium equation is generated and this matrix [A] will be used to
couple with some additional equations to generate the final square equilibrium equation,
matrix [S] and then by using of relation 3.3, internal forces will be calculated.

4.3 Algorithm for Automatic Assembly of Equilibrium Equations

In this section the method by which computer codes can be written to generate the
reduced equilibrium equations automatically, is explained. Following steps are used to

generate the equilibrium equations matrix:

Step 1: Writing of X, Y and Z coordinates of element at the each end according
to the element connectivity,
e Step 2: Use equation 2.6 and 2.7 to calculate the length and direction cosine of

each member.

e Step 3: Use relations 4.1 and 4.2 to obtain the matrixes ' and B'.

e Step 4: Use equation 4.3 to obtain B' matrix.
e Step 5: Establish the 3jxm zero matrix( j is number of joints and m is number of

elements)
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Number of members

e (00 .- O
o
b .
G
(b}
& 4.4
5
& |0 0 --- 0
e Step 6: Place each B' into the columns of the zero matrix:
Number of members
B B’ B"

£ 0 10! 0!
o | [ | | |
S oA b
g | 100
o BEIRES L 45
< A .
g L9010

If a degree of freedoms corresponds to a restrained degree of freedoms then no entry is
made into that row.
e Step 7: Rows which are containing complete zero entries will be deleted,
e Step 8: The resulting matrix has a size of:
(3j — number of restraints) x m 4.6
These following steps are used for the truss shown in Figure 8.
Step 1: The nodal data has been written in Table 2.

Step 2: The member data has been written in Table 3.

Step 3: A" and B' are:

45



Step 4:

e 0577 0433 070 O 0 0
1o 0 0 0577 0.433 0.70
12_‘—0.727 0.363 0582 0 0 0
10 0 0 -0.727 0.363 0.582
13_‘—0.577 0673 0461 O 0 0

Lo 0 0 -0577 -0.673 0461
14_‘0.425 ~0.745 0510 O 0 0
1o 0 0 0425 -0.745 0510
B'-B?—B —B'=|
1
The E matrixes are:
(0577 0 | 1[-0.577]
0433 0 2| -0.433
o (AI)T - 070 0 |[-1] 3| -0.70
- | o o0577| 1| 13| 0577
0 0433 14| 0.433
0 070 15 0.70 |
[-0.727 0 41 0.727
0.363 0 5| -0.363
= (iz)T . 0.582 0 -1] 6|-0.582
B 10 —0.727|| 1 | 13| -0.727
0 0.363 14| 0.363
0 0.582 | 15/ 0.582 |
[-0.577 0 7 0577 |
0673 0 8| 0.673
B | 0 -0577| 1| 13|-0577
0 ~0.673 14| —0.673
0 0.461 15| 0.461 |
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Step 5:

B*=(2') B*=

0425 0
0745 0
0510 0
0 0425
0  -0.745
0 0510 |

Generate zero matrix:

1
I

© 00 N O O b W N -

e ol
W N = O
O O O O OO O OO OO OO OO O -

[EEN
SN
O O O O O O O O O O oo oo oo~

O O O O O O O O OO OO oo o w
O O O O OO O O O O o o o o o +

-
a1

[-0.425 |
0.745

—0.510
0.425

—0.745

| 0.510 |

Step 6: PutB' in to zero matrix as explained in section 4.3.
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N

B! B2 B? B
1 0 0 0 0
21 0 0 0 0
3] 0 0 0 0
4] 0 0 0 0
5/ 0 0 0 0
6| 0 0 0 0
71 0 0 0 0
8| 0 0 0 0
9| 0 0 0 0
10| 0 0 0 0
1] 0 0 0 0
12| o 0 0 0
13/ 0577 -0.727 -0.577 0.425
14/ 0.433 0363 -0.673 -0.745
15| 0.70 0582 0461 0510 |

Step 7: Delete the rows with all zero entries.

B B B B*
13[0.577 —0.727 -0577 0.425
14/0.433 0363 -0.673 -0.745
15/ 0.70 0582 0461 0510

4.4 Solution Algorithms

As it was expressed in chapter 2 and 3, this study uses the integrated force method and
dual integrated force method to analyze the space truss structures. In the both of methods
the beginning step of analysis procedure is generation of equilibrium equation and it is
same at both of them. The difference between these methods starts after writing of
equilibrium equation matrix. This section presents the algorithms of methods which are

used in this thesis and intended computer codes are based on these algorithms.
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4.4.1 Integrated Force Method via Null Space

In integrated force method, null space property of the equilibrium equation is used to
obtain the compatibility condition. Then obtained compatibility condition and
equilibrium equation are couples together to generate the square matrix [S]. Finally this
square matrix is utilized to calculate the unknowns by using of equation 3.2. The
procedure of integrated force method via null space is shown in Figure 11.Applying this
method the equilibrium equation and unconnected flexibility matrix for space truss

illustrated in Figure 8 are obtained as shown in Figure 9 in scatter plots form.

@ NG
Figure 9. Figure (a); Matrix Plot of EE Figure (b); Matrix Plot of Flexibility

Also the scatter plot of coupled equilibrium equation with compatibility condition matrix

is shown in Figure 10.

1 2 3 4

Figure 10. Matrix Plot of Coupled EE and CC via Null Space
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Generate [A]

|

[ns]=Mull space [4]

l

Element Flesbility
L

AR

Compute [C]m IFM
[C=lns][G]

F

¥

Unconnected Flesmbility Ifatre:
[G]= diag ()

Couple[A] and [C]

Y

MWodify Applied Force{F}

=olve for nternal
forces{F}
[4]

[©] [,

¥

Solve for Deformations

)
(8} =[3(#)

b

Solve for Displacements

{3= 11 [G] [F]

Figure 11. Algorithm of Integrated Force Method via Null Space




4.4.2 Integrated Force Method via Singular Value Decomposition
Another method to find the compatibility condition in the integrated force method is

using of singular value decomposition outlined in section 3.2.4. When equilibrium
pinv
equation is generated, matrix ([A]T) , is obtained with equation 3.17. Then matrix

[M] is calculated by using of equation 3.18. Then the singular value decomposition

(SVD) of the matrix [M] is carried out to obtain matrices [M,],[M,] and [M,]. Then

compatibility condition can be calculated by equations 3.20 and 3.21. This procedure of

integrated force method is shown in Figure 13.

Applying this method to the truss shown in Figure 8, the equilibrium equation and
flexibility matrix will remain same. Then scatter plot of them will be same as null space
method. Also the scatter plot of couples equilibrium equation and compatibility

condition is shown in Figure 12.

1 2 3 4
T T T T

L L L L
1 2 3 4

Figure 12. Matrix Plot of Coupled EE and CC via SVD
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Generate [4]

l

([T )™ = (4] [47) (4]

¥

[36)=] [2)- L4F ([T |

¥

Tze Singular Value
Decomposition

[2]=[0,][34,][24,T

Element Flembility

r

Obtain [ns] From ' AR

:

[M]=[Mu][[[ |

L J

Tnconnected Flembility IWlatrez

Compute [C]m IFIM | [G]= diag (&)

[CCHCIG]

h 4

Couple [4A] and [C]

Modify Applied Force{F}

I

Zolve for Forces {F}

[[C][ﬂ][eﬂ{“ =7

&

¥
Solve for Deformations | Solve for Displacements
(8 =[ali#) (C=[116] [F]

Figure 13. Algorithm for Integrated Force Method via SVD
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4.4.3 Dual Integrated Force Method
The procedure and equations for the dual integrated force method is shown in Figure 15.

After generation of equilibrium equation in dual integrated force method by using of

equation 3.23 the matrix [K]_ is assembled. To obtain the [K].  inverse of flexibility

matrix is used. Then the nodal displacements are obtained by equation 3.22. Finally the

internal forces can be calculated by equation 3.28.

In this method the scatter plot of equilibrium equation remains same because the element

and nodal numbering system are same and the scatter plots of flexibility matrix and

[K].., matrix is shown in Figure 14.

1 1 1 Ll 1 1 1

(@) (b)

Figure 14. Figure (a); Matrix Plot of Flexibility and Figure (b); Plot of Pseudostiffness
Matrix
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Fenerate Equilibriugm Element Flembility
Equation [4] 1= i

AR

3

Theonnected Flembility Wlatros

[ e = [ANGT (4]
[G]= diag (£)

&

l

solve for Displacements

[K] X} :{P} Apphed Force{P}

F 3

Solve for Deformations

{8 =[4] {x}

¥

=olve for mnternal

forces{E}

(Fy=[GT [4] (%)

Figure 15. Algorithm for Dual Integrated Force Method
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Chapter 5

SPACE TRUSS ANALYSIS PACKAGE

5.1 Introduction

The main and principal purpose of this study is to establish a computer code to analyze
the indeterminate space truss structures base on integrated force method, because
majority of existing computer codes and analysis software are based on stiffness method
and during the survey of the state of the art for this thesis, the computer codes for space

truss analysis with integrated force method were not found.

Three packages of computer codes are written for this study to analyze the indeterminate
space truss structures. Each package uses different theories which were explained in
chapter 3. Then the space truss analysis packages are:

e Package 1: Integrated Force Method via Null Space

e Package 2: Integrated Force Method via Singular Value Decomposition

e Package 3: Dual Integrated Force Method.

In this chapter, to introduce the all of three programs an indeterminate space truss as
Figure 16 is discussed as a simple illustrative example. Also how these programs can be

used and how the data of structures should be entered are illustrated in this chapter.
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After that all sections and steps of analysis procedure in these packages are shown and

explained.

Figure 16. Space Truss with Six Members and Four Nodes

The package consists of three main common phases as:
e Data Input Phase

e Calculation and Reporting Phase

The space truss of Figure 16 has 6 members with 4 nodes and the coordinates of nodes

and member connectivity are shown in Table 4 and 5 receptively. The area for each

member is A= 0.0025 m2 and modulus of elasticity is E =2x10°kN/m2. Only one

external load which enters in node 3 is applied to truss.
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The structures of the matrices assembled for this truss will be illustrated by using of their
matrix plot. Each matrix plot displays the nonzero entries in color and according to value

of the nonzero entries the matrix plot colors change

Table 4. Nodal Data of Truss Structure of Figure 16

Node Coordinates Applied Loads (kN) Restraints
Number X y z X y z X y z
1 0 0 0 0 0 0 Fixed | Fixed | Fixed
2 0 3.5 0 0 0 0 Free Free | Fixed
3 1 2 4 0 100 0 Free Free Free
4 5 35 0 0 0 0 Fixed | Fixed | Fixed

Table 5. Elemental Data of Truss Structure of Figure 16

Element Connectivity
Number Start Node End Node

1 1 2

2 2 3

3 1 3

4 3 4

5 2 3

6 1 4

5.2 Data Input Phase

This phase describes the problems. Data input phase is depicted to assist in
demonstration of general input of truss (number of nodes and elements), geometry of

truss (member connectivity, coordinates of nodes and restraints of joints), properties of
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elements and materials (member area and modulus of elasticity) and loading case (joint

loads). A diagram of skeleton of input phase is shown in Figure 17.

Nodes Data Input

Properties and
Material Input

Modulus of
Number of elasticity
Nodes
Area
Coordinate of
nodes
Input Data

Number of ' Joint Applied
Members Loads

Member Degree of

Incidence Freedom

7y Loads Input

Element Data

Input Restraint

Table

Figure 17. Input Phase skeleton Diagram

5.2.1 Interface of Data Input Phase

The user interface of data input phase consists of following sections:
e Nodes Data Input
e Element Data Input

e Restraint Data Input
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e Loads Data Input

e Properties and Material Input
When these five sections are completed by user, data input phase is completed and
program can be run.
5.2.1.1 Nodes Data Input
In this part the user should give number of nodes and coordinates as shown in Figure 18.
This part includes n x 4 matrix. The first column of this matrix shows the number of
each node. Second, third and fourth columns of this matrix show X, Y and Z coordinates

of node respectively.

4 4 » M 20f12

- INPUT DATA

~m NUMBER OF NODES

Off [General: :spelll]

noden = 4;
~m X-Y-Z COORDINATES

0.

3.5
2.

3.5

cord =

= W NP
Ol k| OO

(S ol ] R

Figure 18. Nodes Numbers and Coordinates

5.2.1.2 Element Data Input
In this step of procedure user enters the element information like number of elements

and connectivity to indicate geometry of truss. This part has m x 3 matrix in which m is
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equal to number of members and the first column shows number of element, second
column shows number of starting node and third column shows the number of end node

of each element. (Figure 19)

H <« » M 20f12

~ INPUT DATA

+m NUMBER OF NODES
v u X-Y-Z COORDINATES

~m ELEMENT CONNECTIVITY

m==6;

inc =

] k] B W] W N

RN W RPN

| ] | W N B

Figure 19. Element Number and Connectivity

5.2.1.3 Restraint Data Input

This part is indicates freedom condition of joints which includes n x 4 matrix. Where
first column shows the number of joints, second, third and fourth columns show
condition of supports and degree of freedom of in x, y and z axes directions to be free or
restrained in each node. Each nodes of space truss has three degree of freedom along
three axes of x, y and z. Then to specify the degree of freedom O will be replaced at the
related direction of axes to show that there is not any restraint and at the supports and
nodes in which there is restraint condition 1 will be replaced in the related direction

(Figure 20).
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4 4 4 M 2of12

- INPUT DATA

~» NUMBER OF NODES

v X-Y-Z COORDINATES

+u ELEMENT CONNECTIVITY
-l RESTRAINT TABLE

O=free and l=restrained

freet =

s W NP

RO Ol

RO O

RO R
-

Figure 20. Freedom Conditions of Joints

5.2.1.4 Loads Data Input

In this part user should define the point loads (concentrated load). In truss structures the
external loads are applied at the joints. Then in this step there is n x 4 matrix in which
first column shows number of joint, second, third and fourth shows x, y and z axes
direction. Then if there is any load applied at joint, in front of number of that node value
of load should be entered in the related direction of axes and if there is no applied point
load at a node or some axes direction of node, then the value of zero should be entered.

(Figure 21).
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4 1 » M Zof12

- INPUT DATA

+u NUMBER OF NODES
vu X-Y-7 COORDINATES
vu ELEMENT CONNECTIVITY

vl RESTRAINT TABLE

-l APPLIED FORCES

110.] 0. |0.
20.] 0. |o.

applfres = | 5551700, (0. |’
a/0.] 0. |o.

Figure 21. Applied Loads at Joints
5.2.1.5 Properties and Material Input

In this part the value of modulus elasticity are entered. The value that used in this study
is E=2x10% and its unit is KN/m2. Also this part contains the values of member section
area. The used sections area for all members may change. This package has flexibility in

that structure problems consist of different member area (Figure 22).
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14 4 » M 20f12

- INPUT DATA

vu NUMBER OF NODES
vm X-Y-Z COORDINATES
vu ELEMENT CONNECTIVITY

+l RESTRAINT TABLE

vl APPLIED FORCES
~m MODULUS OF ELASTICITY AND CROSS-SECTION AREA

Ee=2.><103;

A ={0.0025, 0.0025, 0.0025, 0.0025, 0.0025, 0.0025};

Figure 22. Material and Section Property of Members
5.3 Calculation and Reporting Phase
This phase tries to calculate the structures similar to hand calculation which were
explained in chapter 4. Therefore, the user can see each step of calculation like the way
students do in exam papers. Also user can see related computer codes to the solving and

analyzing steps and formulations at each level.

In the calculation phase the computer codes for generation of equilibrium equations is
same for all of three methods intended for this study. The formulas and algorithm of

writing of generation was explained in chapter 4 and 5.
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After generation of equilibrium equation matrix the computer codes will vary for the
three methods. Then the computer codes for calculation phase, after assembling of
equilibrium equation consists of following parts:

e |FM via Null Space

e |FM via Singular Value Decomposition

e Dual Integrated Force Method
5.3.1 Computer Codes for Assembling of Equilibrium Equation Matrix
The computer codes which are written to generate of equilibrium equation matrix can be
divided into three parts generally:
At the first part the computer codes are written to read the input data of truss like node
coordinates and freedom condition and element section area and connectivity to obtain

the member length and direction cosines as shown in Figure 23 by using of 2.6 and 2.7:

The second part of this section is related computer codes to calculate and write the
elemental transformation matrix and then elemental equilibrium equations (Figure 24).

The used relations for this purpose are:

0 0 0 I, m n
1]
B —

1
E_(m) B'
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4 1 3 M 30f12

- EQUILIBRIUM EQUATIONS

- 4 THE COMPUTER CODE

Off[General::spell]

kmem = {};
Lmem = {};
bgmem = {};
bmem = {};
tmem = {};

Off[General::spell]

Do[
minecb = ine[[i, 2]];
mince = ina[[i, 3]1];
dtabl = {3+minch -2, 3+minck -1, 3 +minchb,

3+mince -2, 3+xmince-1, 3 xmince};
xd = cord[[mince, 2]] - cord[[minckh, 2]];
yvd = cord[[mince, 3]] - coxrd[[minck, 3]];
zd = cord[[mince, 4]] - coxrd[[minck, 4]];
If[freet[[minckh, 2]] == 1, ReplacePart([dtabl, 0, 1]1]1;
If[freet[[minch, 3]] == 1, ReplacePart[dtabl, 0, 2]];
If [freet[[minck, 4]] == 1, ReplacePart[dtabkl, 0, 3]];
If[freet[[mince, 2]] == 1, ReplacePart[dtabkl, 0, 4]]1;
If[freet[[mince, 3]] == 1, ReplacePart[dtabl, 0, 5]];
If[freet[[mince, 4]] == 1, ReplacePart([dtabl, 0, 6]];
Lm = 8grt [:ccl2 +yd2 + zdz] H

xd
ldeo = — ;
Lm
yd
mde = — ;
Lm
zd
nde = — ;
Lm
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Figure 23. Computer Codes for Find the Length and Direction Cosines of members

-1y
Sk
t_(ldc|mdc|ndc| Z | P4 | P4 .
"\ z | z | z |1de|mdec|nde/’

b

bg = Transpose[t] .b-;
AppendTo [bmem, b] ;
AppendTo [Lmem, Im] ;
AppendTo [tmem, t] ;
AppendTo [bgmem , bg]

Print["b =", i, " ", MatrixForm[b]]:-
Print["i ='I"I'! i_, " 'I"I'! ldc, " 'I"I'! mdc, " 'I"I'!
ndc, " n] H
Print["bg =", i, " ", MatrixForm[bg]]:-
Print [minchb, "---", mince],
(i, 1, m];
Limem

{3.5, 4.38748, 4.58258, 5.85235, 5., 6.10328}

rest = 0;
Do[If[freet[[i, 2]] == 1, rest =rest + 1] ;

If[freet[[i, 3]] == 1, rest =rest + 1] ;
If [freet[[i, 4]] ==1, rest =rest + 1],

{i, 1, noden}]

rest

7

dof = Table[]j]j, {11, 1, 3 *xnoden}]
{1, 2, 3,4, 5,6, 7,8,9, 10, 11, 12}
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Clear [kk]

kk=0;

Do
¢jl=3%1i-2;
cj2=3%xi-1;
cj3 =3%1i;
Print[i, "
If[freet[[i, 2]]
If[freet[[i, 2]]
If[freet[[i, 2]]
If[freet[[i, 3]]
If[freet[[i, 3]]
If[freet[[i, 3]]

If[freet[[i, 4]] ==

If[freet[[i, 4]]
If[freet[[i, 4]]
{i, 1, noden}]

1 1 2 3

2 4 5 3

3 7 3 G

4 10 11 12
dof

", e]l,

" "! 032! " H, cj3] ;

=1, dof[[3#i-2]] =0];

kk = kk + 17 ;
dof[[3%1-2]] = kk] ;
dof[[3%1i-1]] =0];
kk = kk + 1] ;
dof[[3%1i-1]] =kk];
dof[[3%1]] =0];

kk = kk + 1] ;
dof[[3%1]] = kk],

{¢, 0,0, 1,2,0,3,4,5,0,0, 0}

8 =Table[0., {sr, 1, 3xnoden - rest}, {sc, 1, m}]~’

mi=20;

Figure 24. Writing of Elemental Transformation Matrix and Equilibrium Equation

Third part of this section includes computer codes to store and assemble all of the

elemental equilibrium equations to one matrix which is termed global equilibrium

equation matrix as shown in Figure 25. Also the final equilibrium equation matrix is

shown in Figure 26.
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(*STORE [bg] INTO [S] #)

Do[

nodel =inc[[1, 2]]:

nedeZ =inc[[1, 3]];

kl =3#*ncdel -2;

k2 =3 xncdel -1;

k3 = 3 xnedel;

mi=mi+1;

cl=3xsmi-2;

c¢2=3xmi-1;

c3=3xmi;

Print[i, "---", k1, ":", k2, ":", k3];

k4 =3 xnode2 -2;

k5 =3 xnode2 - 1;

k6 = 3 xneode? ;

Print[i, "---", k4, ":", k5, ":", k6] ;

kel =dof [ [k1]] -

ke2 =dof [ [k2]] -

ke3 =dof[[k3]]-

Print[i, "...", kel, ":", ke2, ":", ke3];

kcd =dof[[k4]] -

ke5 =dof [ [k5]] -

kc6 =dof[[k6]] -

Print ["member =", mi, cl, ":", c2, ":", c3];

Print[i, "...", ked, ":", ka5, ":", ke6] ;

Print[i, """, bgmem[[i]][[1, 1]], ":",
bgmem[[i]]1[[2, 1]], ":", bgmem[[i]][[3, 1]1]~

If[kecl #0, S[[kel, 1]] =8[[kel, 1]] +bgmem[[1]][[1, 1]1]1]~
If[kc2 #0, 8[[ke2, 1]] = 8[[ke2, i]] +bgmem[[i]][[2, 1]11]~-
If[ke3 £0, S[[ke3, 1]] =8[[ke3, i]] +bgmem[[i]][[3, 1111~
If[kcd £ 0, S[[kcd, i]] =8[[ked, 1]] +bgmem[[i]][[4, 1]1]1]~-
If[kc5 #0, S[[ke5, 1]] =8[[ke5, 1i]] +bgmem[[i]][[5, 1]11]~-
If[ket £ 0,

S[[kc6, i]] =8[[ke6, 1]] +bgmem[[i]][[6, 1]]1],

{i, 1, m}]

Figure 25. Assembling of Elemental Equilibrium Equation into Global Matrix
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aq THE EQUILIBRIUM MATRIX

MatrixForm[S]
0. -0.227921 0. 0. -1. 0.
1. 0.341882 0. 0. 0. 0.
0. 0.227%21 0.218218 -0.683486 0. 0.
0. -0.341882 0.436436 -0.256307 0. 0.
0. 0.911685 0.872872 0.683486 0. 0.

Dimensions[S]

{5, 6}

MatrixRank[S]

5

Figure 26. Assembled Global Equilibrium Equation

Also scatter plot of global equilibrium equation is shown in Figure 27.

.\4 THE SCATTER PLOT OF EQUILIBRIUM MATRIX

MatrixPlot [S]
1 2 3 4 5 o

Figure 27. Scatter Plot of Equilibrium Equation
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5.3.2 Computer Codes to Solve Generated Equilibrium Equations (EE) with Null
Space Method

In this section after generation of global equilibrium equation according to the algorithm
of Figure 4 the analysis procedure continues with null space property of integrated force
method. For this purpose, first the flexibility condition is calculated as shown Figure 28

by using of equation 3.24 and 3.25:

Li
*TEA

4 4 4 M 40f12

~ UNCONNECTED FLEXIBILITY MATRIX

Aq THE COMPUTER CODE

Imem[[i]]

F =DiagonalMatrix [Table[
A[[i]] xEe

i, 1, m}”

{{7.x107%, 0., 0., 0., 0., 0.}, {0., 8.77496x107°, 0., 0., 0., 0.},
[0., 0., 9.16515x10°%, 0., 0., 0.}, {0., 0., 0., 0.0000117047, 0., 0.},
{0., 0., 0., 0., 0.00001, 0.}, {0., 0., 0., 0., 0., 0.0000122066} |

a4 UNCONNECTED FLEXIBILITY MATRIX

Print["F = " MatrixForm[ F]]
F =
7.x107° 0. 0. 0. 0 0.

0. 8.77496x107° 0. 0. 0. 0.
0. 0. 5.16515x10°° 0. 0. 0.
0. 0. 0. 0.0000117047 0. 0.
0. 0. 0. 0. 0.00001 0.
0. 0 0. 0. 0. 0.0000122066

Figure 28. Flexibility Matrix
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The scatter plot of flexibility matrix is shown in Figure 29.

n4 THE SCATTER PLOT OF UNCONNECTED FLEXIBILITY MATRIX

MatrixPlot [F]
1 2 3 4 5 6

1 1
2 12
3 13
4 14
5 5
a 5

Figure 29. Scatter Plot of Flexibility Matrix

Then the compatibility condition is written by using of null space property of

equilibrium equation as shown in Figure 30.
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nlsp = NullSpace[8] ;

MatrixForm [nlsp]

Dimensions [nlsp]

{1, ¢}
cc=nlsp.F;

MatrixForm[cc]

Dimensions[S]

(5, ¢}

MatrixPlot [cc]

1 2 3 4 5

(0. 0. 0. 0. 0. 1.

)

(0. 0. 0. 0. 0. 0.0000122066)

=

[

~ COMPATIBILITY CONDITIONS (CC)

Figure 30. Compatibility Condition Matrix

Now, the generated equilibrium equation and obtained compatibility condition are

coupled (Figure 31). Then the S matrix of space truss structure shown in Figure 16 is

obtained.

In this step by using of equation 3.3 internal forces and member end forces can be

calculated as shown in Figures 32 and 33, respectively:

[SHF}= {P*}
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. COPULE COMPATIBILITY CONDITIONS WITH
EQUILIBRIUM EQUATIONS (IFM MATRIX)

4 THE IFM MATRIX

ifm = Join[8, cc]
Dimensions [ifm]
{6, 6}
MatrixQ[ifm]

True

MatrixForm[ifm]

0. -0.227921 0. 0. -1. 0.

1. 0.341882 0. 0. 0. 0.

0. 0.227%21 0.218218 -0.683486 0. 0.

0. -0.341882 0.436436 -0.256307 0. 0.

0. 0.911e85% 0.872872 0.683486 0. 0.

0. 0. 0. 0. 0. 0.00001220686
Det [ifm]

-7.26166x107°

Aq THE SCATTER PLOT OF THE IFM MATRIX

MatrixPlot [ifm]
1 2 3 4 5 6

=

Figure 31. Coupling of EE Matrix and CC Matrix and Its Scatter Plot
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- INDEPENDENT FORCES

P = Table[0., {sr, 1, 3+«noden -rest}, {sc, 1, 1}]-

(#*FORM THE JOINT LOAD VECTOR...P...%*)

Do[kl=3%i-2;

k2=3%i-1;

k3 =3«%1;

kel =dof[[k1]] -

ke2 =dof[[k2]] -

ke3 =dof[[k3]] -

If[kecl #0, P[[kel, 1]] =P[[kel, 1]] + applfres[[i, 2]]]~
If[ke2 #0, P[[kec2, 1]] =P[[ke2, 1]] + applfres[[i, 3]]1]1;
If[ke3 #£0, P[[ke3, 1]1] =P[[ke3, 1]] + applfres[[i, 4111~
Print[i, "™ ", k1,"™ ", k2,"™ ", k3," ",kel,™ "
kez, " 7", ke3],

F

{i, 1, noden}]

(e i e e, *)
11 2 3 0 0 0
2 4 5 6 1 2 0
3 7 8 9 3 4 5
4 10 11 1z 0 0 O
MatrixForm[P]

0. 3

0.

0.

100.

0.

initial = Table[0., {sr, 1, di}, {sc, 1, 1}]
{01}

MatrixQ[P]

True

Pact = Join[P, initial]

{103, (0.3, {0.}, {1003, (0.}, {0.}}
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Pfinal = Pact

({03, (0.3, (0.}, {1003, {0.}, {0.}}

indFrcs = LinearSolve[ifm, Pfinal]
{{42.8571}, {-125.357}, {130.931}, {0.}, {28.5714}, {0.}}
Print["independent forces ", MatrixForm[indFrcs])]
42.8571
-125.35%7
130.931
0.
28.5714
0.

independent forces

Figure 32. Independent Forces of Members
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- MEMBER END FORCES

mend = 0;

endfrecs = {};

Do
mend =mend + 1;
endfrc = (indFres[[mend, 1]] xbmem[ [i]]) -

Print ["member ", i, " ", MatrixForm[endfrc]] ;
AppendTo [endfrcs, endfrec],
{i, 1, m}]
member 1 (—42.8571)
42.8571
ember 2 ( 125.357 )
-125.357
member 3 (_130'931)
130.8231
member 4 (8')
member 5 (—28.5714)
28.5714
member 6 (8')
endfrcs;

Figure 33. Member End Forces

In this package the deformation of elements is calculated by relation (Figure 34):

p=[CI{F}
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- DEFORMATIONS

B =F.indFrcs;
Print[" A= " MatrixForm|[ 3]]

0.0003
-0.0011
0.0012
0.
0.000285714
0.

Figure 34. Deformation of Elements

Here, the computer codes are written to calculate the nodal displacements by using of

equation 3.4 and 3.5 as shown in Figure 35.

OX=[[GIF]
J= [[s]l]T
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~ DISPLACEMENTS

-B THE COMPUTER CODE

invIFM = Inverse[ifm] ;
tinvIFM = Transpose [invIFM] ;

jd = Take[tinvIFM, 3 #noden - rest] ;
Dimensions []d]

{2, ¢}

Disp = jd.F.indFrcs

({-0.000285714}, {0.0003},
{-0.0011123%}, {0.0031603}, {0.000072722}}

-8 THE NODAL DISPLACEMENTS MATRIX

Print[" displacements = " Chop[MatrixForm[Disp]]]~
-0.000285714
0.0003
displacements = -0.00111239
0.0031603

0.000072722

-8 THE SCATTER PLOT OF THE DISPLACEMENTS

MatrixPlot [Disp]

1

Figure 35. Nodal Displacements Matrix and Its Scatter Plot
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In this section which is the last step of IFM via null space, the reactions of supports are

calculated by related written computer codes as shown in Figure 36.

~# THE REACTIONS MATRIX

MatrixForm|[reactions]

-28.5714
-100.
-114.286
114.286
28.5714
0.

~m@ THE SCATTER PLOT OF REACTIONS MATRIX

MatrixPlot [reactions]

1

5 5

6 6

7 7
1

Figure 36. Support Reactions Matrix and Its Scatter Plot
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5.3.3 Computer Codes to Solve Generated Equilibrium Equations (EE) with
Singular Value Decomposition Method

Almost all of the writing of computer codes for IFM via singular value decomposition
are similar to those in IFM via null space. The main difference between the null pace
and singular value decomposition is related to generation of compatibility condition. The
computer codes for this method of IFM are shown in Figures 37 and 38 in which the

equations 3.16, 3.21 are used:

[M]=|[1-(AT (AT )|
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~ COMPATIBILITY CONDITIONS (CC)

~H SINGULAR VALUE DECOMPOSITION (SVD)

Spinv = (Inverse[ (S.Transpose[8])]).8;
mm = IdentityMatrix[Length[inc]] - (Transpose[&].Spinv) ;
{u, w, v} = SingularValueDecomposition[mm] ;

Print[" u = "MatrixForm[u]]
Print[" w = "MatrixForm|[w]]
Print[" v = "MatrixForm|[v]]
u =
0. -0.197487 0.026135% -0.0549663 0.675368 0.7079360
0. 0.4403%6 0.780504 0.257782 0.311346 -0.182960
0. -0.104723 0.415747 -0.8%1825 -0.142621 0.0222535
0. -0.867854 0.358482 0.266675 -0.0150799 -0.216425
0. -0.053%9668 -0.297952 -0.253101 0.6528659 -0.64654
L 1. 0. 0. 0. 0. 0.
1. 0. 0. 0. 0. 0.»
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
Y= lo. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
ATa—
0. 0.210067 -0.086137 -0.072503 0.689827 0.686285
0. -0.596046 0.583357 0.42832 -0.062006 0.342191
0. -0.064345 0.562508 -0.822877 0.0208556 -0.0378638
0. 0.767707 0.54061 0.305575 -0.158018 0.004465907
0. 0.0841745 -0.216341 -0.201885 -0.703483 0.640675
V1. 0. 0. 0. 0. 0.

Figure 37. Computer Codes for Find Singular Value Decomposition (SVD) of EE
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~B COMPATIBILITY CONDITTONS MATRIX

¢2 = Chop[Inverse[u] .mm] ;
{row, col} = Dimensions[8] ;
cl = Take[c2, col - row, col] ;
cc=cl.F;

Print["cc=" MatrixForm[cc]]

cc= (0. 0. 0. 0. 0. 0.0000122066)

MatrixForm|[cc]

(0. 0. 0. 0. 0. 0.0000122066)

Dimensions [8]

{5, 6}

-l SCATTER PLOT OF COMPATIBILITY CONDITION MATRIX

MatrixPlot [cc]

1 2 3 4 5 6

p—t
—

Figure 38. Compatibility Condition Matrix via SVD and Its Scatter Plot

5.3.4 Computer Codes to Solve Generated Equilibrium Equations (EE) with Dual
Integrated Force Method

In this section the computer code for dual integrated force method are written which are
used to obtain displacements after generation of global equilibrium equation matrix.
According to the chapter three and algorithm of Figure 15, since the primary unknowns
are displacements the internal force will be back calculated. To start analysis of space
truss by this method flexibility matrix should be generated, but since the flexibility
matrix is same for IFMD and IFM, then computer codes is similar to that in IFM (Figure

39).
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-8 THE COMPUTER CODE

F = DiagonalMatrix [Table [

Imem[[i]]

A[[i]] xEe {

i,1,m}]]

- UNCONNECTED FLEXIBILITY MATRIX

H{7.x10%, 0., 0., 0., 0., 0.}, {0., 8.77496x10°, 0., 0., 0., 0.},

fo., 0., 9.16515%x10°°, 0., 0., 0.}, {0., 0., 0., 0.0000117047, 0., 0.},
{0., 0., 0., 0., 0.00001, 0.}, {0., 0., 0., 0., 0., 0.0000122066}}
-l UNCONNECTED FLEXIBILITY MATRIX
Print["F = " MatrixForm|[ F]]
F =
7.%x107° 0 0. 0. 0 0.
0. 8.77496x10° 0. 0. 0. 0.
0. 0. 9.16515x10°® 0. 0 0.
0. 0. 0. 0.0000117047 0. 0.
0. 0. 0. 0. 0.00001 0.
0. 0. 0. 0. 0. 0.0000122066

-8 THE SCATTER PLOT OF UNCONNECTED FLEXIBILITY MATRIX

MatrixPlot [F]
1z 3 4 5 6

1 1
2 2
3 3
4 4
5 5
3 3

Figure 39. Generation of Flexibility Matrix and Scatter Plot

After writing of flexibility matrix the Pseudostiffness Matrix [K]ifm , should be generated

by equation 3.23. The computer codes and [K]ifmd is shown in Figure 40:

(K] =[AIIG] " [A]
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- PSEUDOSTIFFNESS MATRIX

~H THE GLOBAL PSEUDOSTIFFNESS MATRIX

kifmd = 8. Inverse[ F] .Transpose[&] ;

Print["[k]ifma = 7 MatrixForm[ kifmd]]
Dimensions [kifmd]
105920. -8880.04 -5520.03 8880.04 -23680.1
-8880.04 156177. 8880.04 -13320.1 35520.Z
(K] ifwa = -5920.03 8880.04 51027.3 16478.1 4551.18

8860.04 -13320.1 16478.1 39715.3 -8921.72
-23680.1 35520.2 4551.18 -8921.72 Z17763.

{5, 3}

~8 THE SCATTER PLOT OF THE PSEUDOSTIFFNESS MATRIX

MatrixPlot [kifmd]
1 2 3 1 5

._1

12
3 13
4 4

5_. ._5

1 2 3 4 5}

Figure 40. [K]. =~ Matrix Computer Codes and Scatter Plot

Then the related computer codes are written to obtain the displacements by using of

equation 3.22 (Figure 41).

[KLMd{X}:{thd
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~ DISPLACEMENTS

~m THE COMPUTER CODE

P = Table[0., {sr, 1, 3xnoden - rest}, {sc, 1, 1}]:

Do[kl =3#i-2;

k2=3%1-1;

k3 =3%1i;

kel = dof [[k1]]

ke2 = dof[[k2]] ;

ke3 = dof [ [k3]] ;

If[kecl #0, P[[kel, 1]] =P[[kel, 1]] + applfres([[i, 2111~
If[ke2 # 0, P[[ke2, 1]] =P[[ke2, 1]] + applfres([[i, 311];
If[ke3 # 0, P[[ke3, 1]] = P[[ke3, 1]] + applfres[[i, 4]]1];
Print[i, " ",k1," ",k2," ",k3," ",kel,"
kez, ™ ", ke3d],

i

{i, 1, noden}]

11 2 3 0 0 0
2 4 5 6 1 2 0
37 8 9 3 4 5
4 10 11 12 0 0 O
MatrixForm[P]

0.

0.

0.

100.

aJ.

Dimensions[P]

{5, 1)

xdisp = LinearSolve [kifmd, P];

Figure 41. Computer Codes for Calculation of Displacements

The matrix of nodal displacements and its scatter plot are shown in Figure 42.
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~# THE NODAL DISPLACEMENTS MATRIX

Print ["displacements = " MatrixForm|[ xdisp]]
Dimensions[xdisp]

MatrixQ[xdisp]
-0.000285714
0.0003
displacements = -0.00111238
0.0031603
0.000072722
{5, 1}
True

~B SCATTER PLOT OF DISPLACEMENT MATRIX

MatrixPlot [xdisp]
1

1 1

2 2

Figure 42. Nodal Displacements Matrix and Its Scatter Plot

In this section deformation of members are obtained by equation 3.11 and related

computer codes are presented in Figure 43.

18y =[A] {x}
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~ DEFORMATIONS

deform = Transpose[8] .xdisp;

Print ["deformations = " MatrixForm[Chop[ deform]]]
Dimensions [deform]
MatrixQ[deform]
0.0003
-0.0011
. 0.0012
deformations = 0
0.000285714
0
{6, 1}
True

Figure 43. Deformation Matrix of Members

Then internal forces are calculated by equation 3.11 and 3.28 (Figure 44).
{F1=[cT[A] {X}
By =[A] {x}
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~ INTERNAL FORCES

fresIND = Inverse[F] .deform;

Print ["Independent forces= "
MatrixForm[Chop [frcsIND] ]]

Dimensicons [fresIND]

MatrixQ[frosIND]
42,8571
-125.357
130.531

Independent forcess= 0
28.5714

]
{6, 1}
True

Figure 44. Matrix of Internal Forces

Then support reactions can be evaluated (Figure 45).

88



~l SUPPORT REACTIONS MATRIX

Print["Reactions = " MatrixForm[Chop|[reactions]]]
-28.0714
-100.
-114.28%6
Reactions = 114.28¢6
28.5714
0
0

~B SCATTER PLOT OF REACTIONS MATRIX

MatrixPlot [reactions]

1

5 5

6 6

7 7
1

Figure 45. Support Reactions Matrix

In the reporting phase following results can be seen:
e Member independent forces and end forces
e Deformations of elements
e Displacements of nodes
e Support reactions

e Degree of indeterminacy
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Chapter 6

ILLUSTRATIVE EXAMPLES

6.1 Introduction

In this chapter 6 examples are presented that first two examples are solved with IFM via
null space, second pair of examples are solved by IFM via singular value decomposition
and last two examples are solved by dual integrated force method. Also to prove and
compare the results the software of Mastan is used. The obtained results by Mastan are

presented at the end of each example.

Solving Example 1 and 2 by IFM via null space
Reporting phase for IFM via null space consists of:
e Member independent forces
e Member end forces
e Deformations of elements
e Displacements
e Support reactions
6.2 Example 1
This truss consists of 12 member and 6 nodes. The nodal properties and elemental
connectivity information are shown in Tables 6 and 7. The area for all members is

A=0.003m?2 and the modulus of elasticity is E =2x10°.
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Table 6. Nodal Data of Example 1

Node Coordinate(m) Applied Load(kN) Support Restraint
Number X y z X y z X y z
1 0 0 0 0 0 0 1 1 1
2 0 2 0 0 0 0 1 0 1
3 0 1 2 0 0 0 1 1 1
4 3 0 0 0 0 -45 0 0 0
5 3 2 0 0 0 -30 0 0 0
6 3 1 2 0 0 0 0 0 0

Figure 46. Space Truss of Example 1

~~_  Fas
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Table 7. Elemental Data of Example 1

Element Connectivity Element Connectivity

Number Start Node End Node Number Start Node End Node

1 2 7 6

8

9

10

11

ol Ml wlN
N[ R RN P -
gl o b~ W
AW WN
g|lo|o| o

12

4 4 4 M S0of12

- INDEPENDENT FORCES

Print ["independent forces ", MatrixForm[indFrcs])]
12.7235% )

7.63815x 10714
5.08955
~67.5
13.5208
~11.25
~56.1249
45 .
84.1873
33.541
0.
~22.5

independent forces

Figure 47. Reporting Phase; Member Forces for Example 1.
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- INDEPENDENT FORCES

- MEMBER END FORCES

member

member

member

member

member

memnber

member

member

memnber

member

member

memnber

10

11

12

12 . 7239)
12.7239
~7.63815x 10714

7.63815x 10714 J

-5. 08955)
2.08955

:
:

¥

( i%fz)
(o |
8
:
¥
’

11.25 )
11.25

26.1245 )
56.12495

45. )

-54d. 1873)
84.1873

(—33.541)
33.541

o]

( 22.5 )
-22.5

Figure 48. Reporting Phase; Member End Forces for Example 1
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- DEFORMATIONS

0.0000424129

2.84657 x 10717
0.00001858676
~0.0003375
0.00008125
~0.00005625
~0.00035
0.000225
0.000525
0.000125
0.

\ -0.000075

Figure 49. Reporting Phase; Deformations of Elements for Example 1.
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~ DISPLACEMENTS

+B THE COMPUTER CODE

-l THE NODAL DISPLACEMENTS MATRIX

Print[" displacements = " Chop[MatrixForm[Disp]]]:;

0.0000424125
-0.0003375
0.0003058501
-0.00164135
-0.00005625
0.000230801
-0.00103783
0.000225
-0.000474939
-0.00125097

displacements =

-l THE SCATTER PLOT OF THE DISPLACEMENTS

MatrixPlot [Disp]
1

[ B e N R o M Y & B S OV R L A S

L o A T 1 B S A B A R

—

Figure 50. Reporting Phase; Nodal Displacements for Example 1.
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~- REACTIONS OF SUPPORTS

-8 THE COMPUTER CODE

~mH THE REACTIONS MATRIX

MatrixForm|[reactions]

26.25
—-20.2239

~6.83177 x 10714
56.25
25.4478
~112.5
20.2239
49.5522

~mH THE SCATTER PLOT OF REACTIONS MATRIX

MatrixPlot [reactions]

O
O

i A e N

e
A AN
= =
N
i=3

et I A N

oo
oo

Figure 51. Reporting Phase; Support Reactions for Example 1.
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6.3 Mastan Results for Example 1

To compare and prove obtained results by written computer codes, the Mastan software

is used and the results are presented below.

XKk KRkKkk kAKX k KKk

Time:

MASTANZ v3.3.1

08:57:42

Problem Title:
PR b b b b b b b b b g

Date:

not provided

FHEHFFHFHH AR AR A

Results of Structural Analysis

FHEHFFHF AR A

Kk kkKhkkkhkk kK

05/25/2012

General Information:
Structure Analyzed as: Space Truss
Analysis Type: First-Order Elastic

Analytical Results:

(1) Displacements at Step # 1, Applied Load Ratio = 1.0000
Deflections
Node X-disp Y-disp Z-disp

1 0.0000e+000 0.0000e+000 0.0000e+000
2 0.0000e+000 4.2413e-005 0.0000e+000
3 0.0000e+000 0.0000e+000 0.0000e+000
4 -3.3750e-004 3.0585e-004 -1.6414e-003
5 -5.6250e-005 2.3085e-004 -1.0378e-003
6 2.2500e-004 -4.7494e-004 -1.2510e-003

(1i) Element Results at Step # 1, Applied Load Ratio = 1.0000
Internal End Forces (Note: Refers to local coordinates)
Element Node Fx Fy Fz

1 1 -1.2724e+001 0.0000e+000 0.0000e+000

2 1.2724e+001 0.0000e+000 0.0000e+000

2 1 0.0000e+000 0.0000e+000 0.0000e+000

3 0.0000e+000 0.0000e+000 0.0000e+000

3 2 -5.0896e+000 0.0000e+000 0.0000e+000

3 5.0896e+000 0.0000e+000 0.0000e+000

4 1 6.7500e+001 0.0000e+000 0.0000e+000

4 -6.7500e+001 0.0000e+000 0.0000e+000

5 1 -1.3521e+001 0.0000e+000 0.0000e+000

5 1.3521e+001 0.0000e+000 0.0000e+000

6 2 1.1250e+001 0.0000e+000 0.0000e+000

5 -1.1250e+001 0.0000e+000 0.0000e+000
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7 2 5.6125e+001 0.0000e+000 0.0000e+000
6 -5.6125e+001 0.0000e+000 0.0000e+000
8 3 -4.5000e+001 0.0000e+000 0.0000e+000
6 4.5000e+001 0.0000e+000 0.0000e+000
9 3 -8.4187e+001 0.0000e+000 0.0000e+000
4 8.4187e+001 0.0000e+000 0.0000e+000
10 5 -3.3541e+001 0.0000e+000 0.0000e+000
6 3.3541e+001 0.0000e+000 0.0000e+000
11 4 0.0000e+000 0.0000e+000 0.0000e+000
6 0.0000e+000 0.0000e+000 0.0000e+000
12 4 2.2500e+001 0.0000e+000 0.0000e+000
5 -2.2500e+001 0.0000e+000 0.0000e+000
(iii) Reactions at Step # 1, Applied Load Ratio = 1.0000
Forces
Node Rx Ry Rz

1 5.6250e+001 -2.0224e+001 0.0000e+000

2 5.6250e+001 FREE 2.5448e+001

3 -1.1250e+002 2.0224e+001 4.9552e+001

Moments
Node Mx My Mz

*** No Reaction Moments Exist ***

FHAF A A
End of Results of Structural Analysis
B i i i i i

6.4 Example 2

The truss of example 2 as shown in Figure 62 consists of 18 member with 8 nodes and

the properties of nodes and members are presented in Tables 8 and 9, respectively. The

section area for members is A=0.002m*> and modulus of elasticity is

E =2x10°kN /m®.
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Figure 52. Space Truss of Example 2

Table 8. Nodal Data for Space Truss of Example 2

Node Coordinate Applied Load Restraint
Number X y z X y z X y z
1 0 0 0 0 0 0 1 1 1
2 0 4 0 0 0 0 1 1 1
3 4 0 0 0 0 0 0 0 0
4 4 4 0 0 0 0 0 0 0
5 8 0 0 0 0 0 1 1 1
6 8 4 0 0 0 0 1 1 1
7 2 2 3.5 0 0 -45 0 0 0
8 6 2 3.5 0 0 -35 0 0 0
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Table 9. Member Data for Space Truss of Example 2

Element
Number

Connectivity

Start Node

End Node

Element
Number

Connectivity

Start Node

Start Node

1

2

10

11

12

13

14

15

16

17

OO N OO Bl WN

AW OB PP WDNPE

g o o h~w b~

18

~N OO AW A WDN PP

0O 00 00| 00| OO N| NN

Bof12

Print ["independent forces

independent forces

- INDEPENDENT FORCES

4.64884 x10°19

0.533333

~1.22125%x 10718
0.706677
0.266667
-0.533333

~1.04749x 1014
-0.706677
-0.266667
-27.3385
-27.3043
-1.59002
~1.62426

1.59002

1.62426
-24.1243

-24.09

-22.8571

", MatrixForm[indFrcs] ]

100

Figure 53. Member Forces for Space Truss of Example 2.




L] 1 » M gof12

- INDEPENDENT FORCES

- MEMBER END FORCES

—4.64884 %1071
memper
[ 4.64884 x10710 ]
0.533333
member 2 ( 0.533333 )
1.22125x 10712
member 3
[ 1.22125x10715
0.706677
member 4 ( 0.706677 )
0.266667
memoer S ( 0.266667 )
0.533333
memoer 6 ( 0.533333)
1.04749 %1071
member 7
( 1. 04749x10*”]
0.706677
member 8 ( 0. 706677)
0.266667
memoer 3 ( 0. 266667)
27.3385
memoer 10 ( 27. 3385)
27.3043
member 11 ( 27. 3043)
1.59002
member 12 ( 1. 59002)
1.62426
member 13 ( 1. 62426)
1.59002
member 14 ( 1.59002 )
1.62426
member 15 ( 62426)
.1243
memoer 16 ( 24. 1243)
24.09
mempber 17 ( 5. 09)
22.8571
member 18 ( 22. 8571)

Figure 54. Member End Forces of Example 2.
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9of12

- DEFORMATIONS

4.64884 x 10720
5.33333x10°°
~1.22125x 10740
7.06677 %x107°°
3.77123 x10°°
~5.33333x107°
~-1.04749 %107
~7.06677x10°°
~3.77123%x107°
-0.000307559
~-0.000307173
~0.0000178878
-0.000018273
0.0000178878
0.000018273
-0.000271398
~-0.000271013
-0.000228571

Figure 55. Element Deformations of Example 2.
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4 4 4 M 100f12

~ DISPLACEMENTS

-8 THE COMPUTER CODE

~m@ THE NODAL DISPLACEMENTS MATRIX

7.06677x107°
0
~0.000502551

5.33333x10°°
0
~0.000502551
0.000117386

~4.33359 %107
—0.000462263
~0.000111186

4.33359x 107"
—0.000412227

displacements =

B THE SCATTER PLOT OF THE DISPLACEMENTS

Figure 56. Nodal Displacements and Its Scatter Plot for Example 2.
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14 4 » M 11of12

~ REACTIONS OF SUPPORTS

-8 THE COMPUTER CODE

~# THE REACTIONS MATRIX

MatrixForm|[reactions]

11.2552
11.96195
21.2633
11.60195
-12.1352
21.2367
-11.6019
10.85952
168.7367
-11.2552
-10.7219
168.7633

~m THE SCATTER PLOT OF REACTIONS MATRIX

MatrixPlot [reactions]

1

lzfgl2
1

Figure 57. Support Reactions and Scatter Plot of Example 2.
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6.5 Mastan Results for Example 2

AKAkKRkKkKk kAKX )k K%K

MASTANZ v3.3.1

Time: 09:14:36 Date:

Problem Title:
RS b i dh S b i db S Sb o g 4
FHAH AR FHH AR AR RS
Results of Structural Analysis

FHAH AR FHH AR AR RS

not provided

General Information:
Structure Analyzed as:
Analysis Type:

Analytical Results:

XKk KkkKhkKk Kk kK kK

05/25/2012

Space Truss
First-Order Elastic

(i) Displacements at Step # 1, Applied Load Ratio = 1.0000
Deflections
Node X-disp Y-disp Z-disp
1 0.0000e+000 0.0000e+000 0.0000e+000
2 0.0000e+000 0.0000e+000 0.0000e+000
3 7.0668e-006 -3.7754e-020 -5.0255e-004
4 5.3333e-006 0.0000e+000 -5.0255e-004
5 0.0000e+000 0.0000e+000 0.0000e+000
6 0.0000e+000 0.0000e+000 0.0000e+000
7 1.173%e-004 -4.3336e-007 -4.6226e-004
8 -1.1119e-004 4.3336e-007 -4.1223e-004
(1ii) Element Results at Step # 1, Applied Load Ratio = 1.0000
Internal End Forces (Note: Refers to local coordinates)
Element Node Fx Fy Fz
1 1 0.0000e+000 0.0000e+000 0.0000e+000
2 0.0000e+000 0.0000e+000 0.0000e+000
2 2 -5.3333e-001 0.0000e+000 0.0000e+000
4 5.3333e-001 0.0000e+000 0.0000e+000
3 3 -3.7754e-015 0.0000e+000 0.0000e+000
4 3.7754e-015 0.0000e+000 0.0000e+000
4 1 -7.0668e-001 0.0000e+000 0.0000e+000
3 7.0668e-001 0.0000e+000 0.0000e+000
5 1 -2.6667e-001 0.0000e+000 0.0000e+000
4 2.6667e-001 0.0000e+000 0.0000e+000
6 4 5.3333e-001 0.0000e+000 0.0000e+000
6 -5.3333e-001 0.0000e+000 0.0000e+000
7 5 0.0000e+000 0.0000e+000 0.0000e+000
6 0.0000e+000 0.0000e+000 0.0000e+000
8 3 7.0668e-001 0.0000e+000 0.0000e+000
5 -7.0668e-001 0.0000e+000 0.0000e+000
9 4 2.6667e-001 0.0000e+000 0.0000e+000
5 -2.6667e-001 0.0000e+000 0.0000e+000
10 1 2.733%9e+001 0.0000e+000 0.0000e+000
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7 -2.733%e+001 0.0000e+000 0.0000e+000
11 2 2.7304e+001 0.0000e+000 0.0000e+000
7 -2.7304e+001 0.0000e+000 0.0000e+000
12 3 1.5900e+000 0.0000e+000 0.0000e+000
7 -1.5900e+000 0.0000e+000 0.0000e+000
13 4 1.6243e+000 0.0000e+000 0.0000e+000
7 -1.6243e+000 0.0000e+000 0.0000e+000
14 3 -1.5900e+000 0.0000e+000 0.0000e+000
8 1.5900e+000 0.0000e+000 0.0000e+000
15 4 -1.6243e+000 0.0000e+000 0.0000e+000
8 1.6243e+000 0.0000e+000 0.0000e+000
16 6 2.4124e+001 0.0000e+000 0.0000e+000
8 -2.4124e+001 0.0000e+000 0.0000e+000
17 5 2.4090e+001 0.0000e+000 0.0000e+000
8 -2.4090e+001 0.0000e+000 0.0000e+000
18 7 2.2857e+001 0.0000e+000 0.0000e+000
8 -2.2857e+001 0.0000e+000 0.0000e+000
(iii) Reactions at Step # 1, Applied Load Ratio = 1.0000
Forces
Node Rx Ry Rz
1 1.1255e+001 1.1962e+001 2.1263e+001
2 1.1602e+001 -1.2135e+001 2.1237e+001
5 -1.1602e+001 1.0895e+001 1.8737e+001
6 -1.1255e+001 -1.0722e+001 1.8763e+001
Moments
Node Mx My Mz

*** No Reaction Moments Exist ***

FHAF A A A
End of Results of Structural Analysis
FHAH A H A

Solving Examples 3 and 4 by Integrated Force Method via Null Space
In this section examples 3 and 4 are solved by integrated force method via singular value
decomposition. The reporting phase for IFM via singular value decomposition is similar
to IFM via null space as:

e Member independent forces

e Member end forces

e Deformations of elements

e Displacements

e Support reactions
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6.6 Example 3

In this example the space truss has 10 joints and 25 member that properties of nodes and

elements are presented in Tables 10 and 11, respectively. The section area for all the

members is A=0.0025m? and modulus of elasticity is E =2x10°kN /m?.

Figure 58. Space Truss of Example 3
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Table 10. Nodal Data of Space Truss for Example 3.

Node Coordinate Applied Load Restraint
Number X y z X y z X y z
1 1.5 2.5 5 0 0 -60 0 0 0
2 3.5 2.5 5 0 75 0 0 0 0
3 35 1.5 2.5 0 0 0 0 0 0
4 1.5 1.5 2.5 0 0 0 0 0 0
5 1.5 35 2.5 0 0 0 0 0 0
6 3.5 3.5 2.5 0 0 0 0 0 0
7 5 0 0 0 0 0 1 1 1
8 0 0 0 0 0 0 1 1 1
9 0 5 0 0 0 0 1 1 1
10 5 5 0 0 0 0 1 1 1
Table 11. Elemental Connectivity of Space Truss for Example 3
Element Connectivity Element Connectivity
Number Start Node End Node Number Start Node End Node
1 1 2 14 5 8
2 1 5 15 4 8
3 1 4 16 3 8
4 1 3 17 4 7
5 1 6 18 6 7
6 2 5 19 3 7
7 2 4 20 5 9
8 2 6 21 6 9
9 2 3 22 4 9
10 4 5 23 5 10
11 5 6 24 6 10
12 3 6 25 3 10
13 3 4

108




2of12

- MEMBER FORCES

~B INDEPENDENT FORCES

independent forces

7.06769
-30.741
-24.3658
-9.89715
-1.95573
-51.3753
39.5224
-59.7251
69.2443
2.130092
6.9153
0.596746
-5.08876
-16.8524
20.8599
41.1237
-13.0978
-10.914
37.9703
-64.7808
-36.3493
-3.42906
-14.9253
-40.6242
9.82671

Figure 59. Member Forces of Space Truss for Example 3.
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4 4 4 M Bof12

- MEMBER FORCES

+B INDEPENDENT FORCES

-8 MEMBER END FORCES

member 1 ( _;.-T_ .0066??6699 )
member 2 ( _3300. .TT4411 )
member 3 ( _2244. _33665588 )
member 4 ( _99. _8899??1155 )
member 5 ( _11- _99555577*33 )
member 6 ( _5511. _33T?5533 )
member 7 ( _3399_ .55222244 )
member 8 ( _5599. _?Tzzggll )
member 9 ( _6699_ .22444433 )
member 10 ( _55_ -1133009922 )
o ( —66. .99115588 )
member 12 ( _OO_ .559966;4466 )

Figure 60. Member End Forces for Example 3.
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member 13

( 5 08876 )
member 14 ( 1166 88552244 )
member 15 ( 2200 88559999 )
member 16 ( 4411 1122337? )
member 17 ( 1133 0099?788 )
member 18 ( 1100 991144 )
mermber 19 ( 337? 99;0033 )
member 20 ( 6644 T7‘880088 )
member 21 ( 3366 33449933 )
member 22 ( 33 4422990066 )
member 23 ( 1144 99225533 )
member 24 ( 4400 66224422 )
member 25 ( ;Eijﬁii)

Figure 61. Member End Forces for Example 3 (continued).
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4 1 4 M dof12

- DEFORMATIONS

0.0000282708
-0.000165545
-0.000131214
-0.00006635921
-0.0000131194
-0.000344636
0.000265125
-0.000321601
0.000372892
0.0000205237
0.0000276632

2.38699x10°°
B= ~0.0000203551
—0.000153533
0.000136787
0.000374655
~0.000115327
~0.0000994316
0.000248988
—0.000424796
~0.000331158
~0.0000312402
~0.000135976
~0.000266391
0.0000895256

Figure 62. Element Deformations for Example 3.
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4 1 3 M 10of12

- DISPLACEMENTS

-8 THE COMPUTER CODE

~#@ THE NODAL DISPLACEMENTS

-0.0003626521
0.000637831
-0.000359737
-0.000334382
0.0019673
0.0000317329
0.000178055
0.00006817108
0.000384351
0.00019641
0.0001168159
-0.000010546
-0.000154678
0.000138682
-0.0003810995
-0.000127015
0.0000840978
-0.000375119

displacements =

Figure 63. Nodal Displacements for Example 3
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- SUPPORT REACTIONS

-8 THE COMPUTER CODE

~H REACTIONS MATRIX

3.71363
-4.67245
-15.7739
-35.5913
-10.1365
-29.2261

28.6951
-44.2412

71.2261
-26.8174
-15.949%8

33.7739

reactions =

~8 SCATTER PLOT OF REACTIONS MATRIX

1

12 12
1

Figure 64. Support Reactions and Its Scatter Plot for Example 3.
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6.7 Mastan Result for Example 3

AKAkKRkKkKk kAKX )k K%K XKk KkkKhkKk Kk kK kK

MASTANZ v3.3.1

Time: 09:33:47 Date: 05/25/2012

Problem Title:
PR b b b b b b b b b 4

not provided

FHAH AR FHH AR AR RS
Results of Structural Analysis

FHEHHH AR AR AR AR A S AR
General Information:
Structure Analyzed as: Space Truss

Analysis Type: First-Order Elastic

Analytical Results:

(i) Displacements at Step # 1, Applied Load Ratio = 1.0000
Deflections
Node X-disp Y-disp Z-disp
1 -3.6265e-004 6.3783e-004 -3.5974e-004
2 -3.3438e-004 1.9673e-003 3.1733e-005
3 1.7805e-004 8.1711e-005 3.8435e-004
4 1.9841e-004 1.1816e-004 -1.0546e-005
5 -1.5468e-004 1.3868e-004 -3.8110e-004
6 -1.2701e-004 8.4098e-005 -3.7512e-004
7 0.0000e+000 0.0000e+000 0.0000e+000
8 0.0000e+000 0.0000e+000 0.0000e+000
9 0.0000e+000 0.0000e+000 0.0000e+000
10 0.0000e+000 0.0000e+000 0.0000e+000
(1i) Element Results at Step # 1, Applied Load Ratio = 1.0000
Internal End Forces (Note: Refers to local coordinates)
Element Node Fx Fy Fz
1 1 -7.0677e+000 0.0000e+000 0.0000e+000
2 7.0677e+000 0.0000e+000 0.0000e+000
2 1 3.0741e+001 0.0000e+000 0.0000e+000
5 -3.0741e+001 0.0000e+000 0.0000e+000
3 1 2.4366e+001 0.0000e+000 0.0000e+000
4 -2.4366e+001 0.0000e+000 0.0000e+000
4 1 9.8971e+000 0.0000e+000 0.0000e+000
3 -9.8971e+000 0.0000e+000 0.0000e+000
5 1 1.9557e+000 0.0000e+000 0.0000e+000
6 -1.9557e+000 0.0000e+000 0.0000e+000
6 2 5.1375e+001 0.0000e+000 0.0000e+000
5 -5.1375e+001 0.0000e+000 0.0000e+000
7 2 -3.9522e+001 0.0000e+000 0.0000e+000
4 3.9522e+001 0.0000e+000 0.0000e+000
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8 2 5.9729%e+001 0.0000e+000
6 -5.9729%e+001 0.0000e+000
9 2 -6.9244e+001 0.0000e+000
3 6.9244e+001 0.0000e+000
10 4 -5.1309e+000 0.0000e+000
5 5.1309e+000 0.0000e+000
11 5 -6.9158e+000 0.0000e+000
6 6.9158e+000 0.0000e+000
12 3 -5.9675e-001 0.0000e+000
6 5.9675e-001 0.0000e+000
13 3 5.0888e+000 0.0000e+000
4 -5.0888e+000 0.0000e+000
14 5 1.6852e+001 0.0000e+000
8 -1.6852e+001 0.0000e+000
15 4 -2.0860e+001 0.0000e+000
8 2.0860e+001 0.0000e+000
16 3 -4.1124e+001 0.0000e+000
8 4.1124e+001 0.0000e+000
17 4 1.3098e+001 0.0000e+000
7 -1.3098e+001 0.0000e+000
18 6 1.0914e+001 0.0000e+000
7 -1.0914e+001 0.0000e+000
19 3 -3.7970e+001 0.0000e+000
7 3.7970e+001 0.0000e+000
20 5 6.4781e+001 0.0000e+000
9 -6.4781e+001 0.0000e+000
21 6 3.6349e+001 0.0000e+000
9 -3.6349e+001 0.0000e+000
22 4 3.4291e+000 0.0000e+000
9 -3.4291e+000 0.0000e+000
23 5 1.4925e+001 0.0000e+000
10 -1.4925e+001 0.0000e+000
24 6 4.0624e+001 0.0000e+000
10 -4.0624e+001 0.0000e+000
25 3 -9.8267e+000 0.0000e+000
10 9.8267e+000 0.0000e+000
(iii) Reactions at Step # 1, Applied Load Ratio
Forces
Node Rx Ry
7 3.7136e+000 -4.6724e+000 -1
8 -3.5591e+001 -1.0136e+001 -2
9 5.8695e+001 -4.4241e+001 7
10 -2.6817e+001 -1.5950e+001 3
Moments
Node Mx My

*** No Reaction Moments Exist

iigdgddtasdsddddsdndaadsaRAnAdEAEALEE
End of Results of Structural Analysis
iiigdgdstasdzddddsdadaadaaRARAREAEALEE
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.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000

.0000

Rz

.5774e+001
.9226e+001
.1226e+001
.3774e+001



6.8 Example 4

This example includes a space truss which has 12 joints and 30 members as shown in

Figure 83. The properties of nodes and elements are presented in Tables 12 and 13. The

member area section is A=0.002m? and modulus of elasticity is E =2x10°kN /m?.

F=60KN

Figure 65. Space Truss for Example 4.
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Table 12. Nodal Data of Space Truss of Example 4.

Node Coordinate Applied Load Restraint
Number X y z X y z X y z
1 0 0 3 0 0 0 1 1 1
2 0 3 3 0 0 0 1 1 1
3 0 3 0 0 0 0 1 1 1
4 0 0 0 0 0 0 1 1 1
5 3 0 3 0 0 0 0 0 0
6 3 3 3 0 0 0 0 0 0
7 3 3 0 0 0 0 0 0 0
8 3 0 0 0 0 0 0 0 0
9 6 0 3 0 0 0 0 0 0
10 6 3 3 0 -40 0 0 0 0
11 6 3 0 0 0 0 1 1 1
12 6 0 0 0 0 -60 0 0 0
Table 13. Member Connectivity of Space Truss Example 4.
Element Connectivity Element Connectivity
Number Start Node End Node Number Start Node End Node
1 1 4 16 6 8
2 1 2 17 7 8
3 2 3 18 8 12
4 3 4 19 8 11
5 3 7 20 8 9
6 3 6 21 5 9
7 2 6 22 6 9
8 1 6 23 6 11
9 1 5 24 6 10
10 1 8 25 7 11
11 4 8 26 9 12
12 3 8 27 10 12
13 5 8 28 11 12
14 5 6 29 10 11
15 6 7 30 9 10
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Bof12

- MEMBER FORCES

~mB INDEPENDENT FORCES

independent forces

L I T T G B

27.65903
57.0829
-69.7563
3.75718
71.6651
-60.0744
-30.8884
0.
0.

0.
1.70231
0.

0.
29.1861
-73.3674
3.757186
68.0539
-29.392¢6
0.

0.
51.8786
11.4854
-8.12141
-8.12141

-43.1214 ,

Figure 66. Member Forces of Space Truss for Example 4.
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Bof12

- MEMBER FORCES

B INDEPENDENT FORCES

~# MEMBER END FORCES

member

member

menber

member

member

member

member

member

member

menber

member

member

member

1

10

11

12

13

(o)
(o)
(o)
(o)
(o)
(-27-6003
[
.
g

-57. 0829)
57.08259
69.7563 )
69.7563
1

-3.75718
3.75718

-71.665 )
71.66501

60.0744 )
60.0744

g
.
( 30.8684 )
¥

30.8684

)

Figure 67. Member End Forces for Example 4.
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member 13

member 14

:
]

member 15

C)C) OC) DO

-1.70231
member 16 ( 1.70231 )
member 17 (O )

0.
member 18 (O )
0.

-259.18461
member 13 ( 26,1861 )

T3.3674
member 20 ( 73. 36?4)

-3.75718
member 21 ( 3.75718 )

68.0539
member 22 ( 68.0539 )

29.352¢6
member 23 ( 29.3926)
member 24 (O )

0.
member 25 (O )
0.

-51.878%8
member 26 ( 51.8786 )

-11.4854
member 27 ( 11,4854 )

8.12141
memkber 28 ( 5 12141)

8.12141
member 29 ( 5 12141)

43.1214
member 30 ( 15 | 1214)

Figure 68. Member End Forces for Example 4 (continued).
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4 4 4 M 9of12

- DEFORMATIONS

[ e T o N e B
a &  n

0.0002937
0.0004268121
-0.0007396877
0.0000261789
0.000760123
-0.000450558
-0.000327621
0.

0.

0.
0.00001680557
0.

0.
0.000309565
-0.000776179
0.00002681789
0.000721821
-0.000311755
0.

0.
0.000385089
0.000121621
-0.0000609106
-0.0000609106
-0.0003605911

Figure 69. Deformations of Elements for Example 4.
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4 | 4 M 100712

- DISPLACEMENTS

-8 THE COMPUTER CODE

~# THE NODAL DISPLACEMENTS

0.0000281789
-0.00147447
-0.00152553
0.000428121
-0.00147447

-0.0000127673
0
0.0000127673
-0.0000127673
-0.000450558
displacements = 0.0000127673
-0.00152553

0.0000563577
-0.00286704
-0.00313296
0.000428121
-0.00322795

-0.0000609106

-0.00045055%6

0.0000609106
-0.00352205

Figure 70. Nodal Displacements for Example 4.
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4 4 4 M 11012

-~ SUPPORT REACTIONS

-8 THE COMPUTER CODE

~l REACTIONS MATRIX

¢ -5.10693
49,3251
E0.6749
-57.0829

0
o]
2.2614

reactions = -21.8414
-19.58
60.0744

¥
0
-0.146035
12.5163
. 28.9051

~l SCATTER PLOT OF REACTIONS MATRIX

108410

15 415

Figure 71. Support Reactions for Example 4.
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6.9 Mastan Results for Example 4

AKAkKRkKkKk kAKX )k K%K

MASTANZ v3.3.1

Time: 09:28:26 Date:

Problem Title:
PR b b b b b b b b b a4

not provided

FHEHFFHFHH AR AR A
Results of Structural Analysis

gttt E R L L LD
General Information:
Structure Analyzed as:

Analysis Type:

Analytical Results:

(i) Displacements at Step # 1, Applied Load Ratio = 1.0000
Deflections
Node X-disp Y-disp Z-disp
1 0.0000e+000 0.0000e+000 0.0000e+000
2 0.0000e+000 0.0000e+000 0.0000e+000
3 0.0000e+000 0.0000e+000 0.0000e+000
4 0.0000e+000 0.0000e+000 0.0000e+000
5 2.8179e-005 -1.4745e-003 -1.5255e-003
6 4.2812e-004 -1.4745e-003 -1.2767e-005
7 0.0000e+000 1.2767e-005 -1.2767e-005
8 -4.5056e-004 1.2767e-005 -1.5255e-003
9 5.6358e-005 -2.8670e-003 -3.1330e-003
10 4.2812e-004 -3.2279e-003 -6.0911e-005
11 0.0000e+000 0.0000e+000 0.0000e+000
12 -4.5056e-004 6.0911e-005 -3.5221e-003
(1i) Element Results at Step # 1, Applied Load Ratio = 1.0000
Internal End Forces (Note: Refers to local coordinates)
Element Node Fx Fy Fz
1 1 0.0000e+000 0.0000e+000 0.0000e+000
4 0.0000e+000 0.0000e+000 0.0000e+000
2 1 0.0000e+000 0.0000e+000 0.0000e+000
2 0.0000e+000 0.0000e+000 0.0000e+000
3 2 0.0000e+000 0.0000e+000 0.0000e+000
3 0.0000e+000 0.0000e+000 0.0000e+000
4 3 0.0000e+000 0.0000e+000 0.0000e+000
4 0.0000e+000 0.0000e+000 0.0000e+000
5 3 0.0000e+000 0.0000e+000 0.0000e+000
7 0.0000e+000 0.0000e+000 0.0000e+000
6 3 -2.7690e+001 0.0000e+000 0.0000e+000
6 2.7690e+001 0.0000e+000 0.0000e+000

XKk KkkKhkKk Kk kK kK
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10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

30

(1ii)

Forces
Node
1

=

[

=

}_\
OO OO WU OWWWEFE ONOWOW-JWOJTOYoY (Ul U WOowddowHF OO ODN

=
O

12
10
12
11
12
10
11

9
10

O 00O RFPUUOOONNDNMDNMNOOO WWIINDNDNO OO O

I

Reactions at Step # 1,

Rx

.7083e+001
.7083e+001
.9756e+001
.9756e+001
.7572e+000
.7572e+000
.1665e+001
.1665e+001
.0074e+001
.0074e+001
.0888e+001
.0888e+001
.0000e+000
.0000e+000
.8422e-014
.8422e-014
.8818e-016
.8818e-016
.7023e+000
.7023e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.9186e+001
.9186e+001
.3367e+001
.3367e+001
.7572e+000
.7572e+000
.8054e+001
.8054e+001
.9393e+001
.9393e+001
.1316e-014
.1316e-014
.0000e+000
.0000e+000
.1879e+001
.1879e+001
.1485e+001
.1485e+001
.1214e+000
.1214e+000
.1214e+000
.1214e+000
.8121e+001
-4.

8121e+001

-5.1069e+000

oNoNoNeoNoNoNoNoNoNoRoNoNoNoNoBoNoNoNoNoNoNohNoNoNolBololNoNoNoloNoNoNoNoNoloBoNoNeolNolololNolNoNeNelNo]

Applied

Ry
4.9325
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.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000

Load Ratio

e+001

oNoNoNeoNoNoNoNoNoNoRoNoNoNoNoloNoNoNoNoNolohNoNoNoBololNoNoNoloNoNoNoNoNeololoNoNolNololololNoNeNelNo]

1.

.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000

0000

Rz

5.0675e+001



2 -5.7083e+001 0.0000e+000 0.0000e+000
3 2.2614e+000 -2.1841e+001 -1.9580e+001
4 6.0074e+001 0.0000e+000 0.0000e+000
11 -1.4604e-001 1.2516e+001 2.8905e+001
Moments
Node Mx My Mz

*** No Reaction Moments Exist ***

FHEF A R
End of Results of Structural Analysis
S i i

Solving Examples 5 and 6 with Dual Integrated Force Method
In this section the examples 5 and 6 are solved by dual integrated force method and the
reporting phase in this method consists of:
e Nodal displacements
e Element deformations
e Member independent forces
e Member end forces
e Support reactions
6.10 Example 5
In this example the space truss consists of 16 joints and 39 elements. The properties of

truss are presented in Tables 14 and 15. The section area of members is A=0.0015m?

and the modulus of elasticity is E =2x10°kN /m?.
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Table 14. Nodal Data of Space Truss of Example 5.

Restraint

Applied Load

-25

40

10

Coordinate

12
12
12
12

X

Node
Number

10
11
12
13
14
15
16
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Table 15. Element Data of Space Truss of Example 5.

Element Coordinate Element Coordinate
Number Start Node End Node Number Start Node End Node
1 1 2 21 7 12
2 2 3 22 8 9
3 3 4 23 5 9
4 1 4 24 6 10
5 1 3 25 7 11
6 1 6 26 8 12
7 2 7 27 9 10
8 4 5 28 10 11
9 3 8 29 11 12
10 1 5 30 9 12
11 2 6 31 9 11
12 3 7 32 9 14
13 4 8 33 10 15
14 5 6 34 11 16
15 6 7 35 12 13
16 7 8 36 9 13
17 5 8 37 10 14
18 5 7 38 11 15
19 5 10 39 12 16

20 6 11

130




4 4 3 M Gaf11

- DISPLACEMENTS

-8 THE COMPUTER CODE

~B THE NODAL DISPLACEMENTS MATRIX

¢ 0.00355298
0.00574146
0.00111459
-0.00141711
0.00574146
-0.00171459
-0.00148828

0.010984
-0.00248501
0.00334848
0.010934
0.0000850094
0.00181124
0.00304351
0.00104382
-0.00143067
0.00311468
-0.00131049
-0.00152366
0.00644014
-0.00202285
0.00158491
0.00650231
0.000285514
0.000555124
0.00080185
0.00067515
-0.000568517
0.000594845
-0.000741816
-0.00104867
0.00247331
-0.00119152
0.00034564
0.00291365

. 0.000258184

displacements =

Figure 73. Nodal Displacements of Example 5
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4 1 » M Bof11

- DISPLACEMENTS

-8 THE COMPUTER CODE
B THE NODAL DISPLACEMENTS MATRIX
~B SCATTER PLOT OF DISPLACEMENT MATRIX

MatrixPlot [xdisp]

1
1gl

100410
20520

30130

36L136

Figure 74. Scatter Plot of Nodal Displacements for Example 5.
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4 1 + M Tof11

- DEFORMATIONS

f 4]
-0.0000711709
4]
-0.000204504
0.000142342
-0.000142342
0.000142342
0.000408008
0.000924325
0.00007117089
-0.000404504
-0.000462162
-0.000204504
0.0000711709
-0.0000929852
-0.000462162
-0.000226329
0.0000436488
-0.00018599
deformations = 0.0001859%
0.000880676
0.000452657
0.00036867
-0.00056867
-0.00083133
0.0000313297
0.0000929952
-0.0000801507
-0.000440338
-0.000213484
-0.0000256891
-0.000160301
0.000160301
0.000906365
0.000426968
0.000&7515%
-0.000741816
-0.001191%2
\ 0.000258184

Figure 75. Member Deformation for Example 5.
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9of 11

- INTERNAL FORCES

Independent forces=

v 15.3638

0]
-5.33781
0]
-15.3378
7.54881
-7.543881
7.54881
21.6909
45,0197
5.33781
-30.3378
-34.6622
-15.3378
5.33781
-6.97464
-34.6622
-16.9746
2.31482
-9.86363
9.86363
46,7045
24.0058
27.6503
-42.6503
-62.3497
2.34973
6.97464
-6.0113
-33.0254
-16.0113
-1.36237
-8.50126
8.50126
48.0673
22.6434
50.6362
-55,.6362
-89.3638

Figure 76. Member Forces for Example 5.
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Gor11

- INTERNAL FORCES

- MEMBER END FORCES

member 1 ( 8 )

member 2 ( _55 3333778811 ]
member 3 ( 8 )

member 4 ( _1155. _33337—;3 g )
member b ( _77_ -5544888811 J
member 6 ( _?7 5544888811 )
member 7 ( _77 -5544888811 J
member 8 ( _2211. .66;90099l J
member 9 ( _4499 00119977 ]
member 10 ( _55_ 3333778811 J
member 11 ( _3300. _333377?8 )
memloer 12 [ _3344- _66662 222 J
member 13 ( _1155. _333377‘88 ]
member 14 ( _55_ -3333778811 )
member 15 ( _66- _99774466;1 4 J
member 16 ( _3344. .6665 222 )
member 17 ( _1166- _9977?466 J

Figure 77. Member End Forces of Example 5.
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member 18 -2.31482

( 2.31482 J
member 19 ( 99 8866336633 )
member 20 ( S 8866336633 J
member 21 ( 466_ 77004499 )
member 22 ( 2244 00005588 J
member 23 ( 2277 66550033 J
member 24 ( 4422 _665 50033 )
member 25 ( 662 2- _33449977 J
member 26 ( 22 334499??33 J
member 27 ( 66 997?4466;4 J
member 28 ( 66 O[)111133 )
member 29 ( 3333 0022551 4 J
member 30 ( 1166 00111133 )
member 31 ( 11 33662 23377 )
member 32 ( 88 5500112266 J
member 33 ( 88 5500112266 )
member 34 ( 488_ -00667‘?33 J
member 35 ( 2222 66443?114 )
member 36 ( 5500 66336622 J
member 37 ( 5555 66336622 J
member 38 ( 8899 33663388 )
member 39 ( 1199 33663388 J

Figure 78. Member End Forces of Example 5.
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14 4 4 M 100f 11

- SUPPORT REACTIONS

-8 THE COMPUTER CODE

~l SUPPORT REACTIONS MATRIX

Reactions

-16.0113
0
-66.6475
0
-6.0113
61.6475
5.0113
0
83.3225
0
-33.9887
-33.3525

~B SCATTER PLOT OF REACTIONS MATRIX

1

.

5

Out{88]=

12

12

Figure 79. Support Reaction for Example 5.
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6.11 Mastan Results for Example 5

AKAkKRkKkKk kAKX )k K%K

Time:

10:14:48

Problem Title:
PR b b b b b b b b b 4

MASTAN? v3.3.1
Date:

not provided

FHAH AR FHH AR AR RS
Results of Structural Analysis

FHEHFFHFHH AR AR A

General Information:

Structure Analyzed as:
Analysis Type:

Analytical Results:

Xk kk kK Kk kK

05/25/2012

* *

Space Truss
First-Order Elastic
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(i) Displacements at Step # 1, Applied Load Ratio = 1.0000
Deflections
Node X-disp Y-disp Z-disp
1 3.5530e-003 5.7415e-003 1.1150e-003
2 -1.4171e-003 5.7415e-003 -1.7150e-003
3 -1.4883e-003 1.0984e-002 -2.4850e-003
4 3.3485e-003 1.0984e-002 8.5009e-005
5 1.8112e-003 3.0435e-003 1.0438e-003
6 -1.4307e-003 3.1147e-003 -1.3105e-003
7 -1.5237e-003 6.4401e-003 -2.0228e-003
8 1.5849e-003 6.9023e-003 2.8951e-004
9 5.5912e-004 9.0185e-004 6.7515e-004
10 -9.6852e-004 9.9485e-004 -7.4182e-004
11 -1.0487e-003 2.4733e-003 -1.1915e-003
12 3.4564e-004 2.9136e-003 2.5818e-004
13 0.0000e+000 0.0000e+000 0.0000e+000
14 0.0000e+000 0.0000e+000 0.0000e+000
15 0.0000e+000 0.0000e+000 0.0000e+000
16 0.0000e+000 0.0000e+000 0.0000e+000
(1ii) Element Results at Step # 1, Applied Load Ratio = 1.0000
Internal End Forces (Note: Refers to local coordinates)
Element Node Fx Fy Fz
1 1 5.6843e-014 0.0000e+000 0.0000e+000
2 -5.6843e-014 0.0000e+000 0.0000e+000
2 2 5.3378e+000 0.0000e+000 0.0000e+000
3 -5.3378e+000 0.0000e+000 0.0000e+000
3 3 0.0000e+000 0.0000e+000 0.0000e+000
4 0.0000e+000 0.0000e+000 0.0000e+000
4 1 1.5338e+001 0.0000e+000 0.0000e+000
4 -1.5338e+001 0.0000e+000 0.0000e+000
5 1 -7.5488e+000 0.0000e+000 0.0000e+000



10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

- =

[

=

}_\
O J OO WUILWON-TJIFOOO U JUITU JJoOoUlTod JwoyNDUTEFE WU I O W
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o N

10
10
11
11
12

12

11

.5488e+000
.5488e+000
.5488e+000
.5488e+000
.5488e+000
.1691e+001
.1691e+001
.9020e+001
.9020e+001
.3378e+000
.3378e+000
.0338e+001
.0338e+001
.4662e+001
.4662e+001
.5338e+001
.5338e+001
.3378e+000
.3378e+000
.9746e+000
.9746e+000
.4662e+001
.4662e+001
.6975e+001
.6975e+001
.3148e+000
.3148e+000
.8636e+000
.8636e+000
.8636e+000
.8636e+000
.6705e+001
.6705e+001
.4006e+001
.4006e+001
.7650e+001
.7650e+001
.2650e+001
.2650e+001
.2350e+001
.2350e+001
.3497e+000
.3497e+000
.9746e+000
.9746e+000
.0113e+000
.0113e+000
.3025e+001
.3025e+001
.6011le+001
.6011e+001
.3624e+000
.3624e+000
.5013e+000

oNeoNeoNoNoNoNoNoRoRoNoNoNoNoRoNoNoNoNoRohNoNoNoNolNolNoNoNoNoBoRoNoNoNololoNoNoNoNololoNoNoNololoNolNoNoNololNolNe)
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.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000

oNeoNeoNoNoNoNoNoRoRoNoNoNoNoloNoNoNoNoRohNoNoNoNoNoNohNoNoNoBoRoNoNoNololoNoNoNolNololoNoNoNololoNolNoNoNololNolNe)

.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000



14

33 10

15

34 11

16

35 12

13

36 9

13

37 10

14

38 11

15

39 12

16

(iii) Reactions

Forces

Node

13 -1

14 0

15 6

16 0
Moments
Node

-8.5013e+000
-8.5013e+000
8.5013e+000
-4.8067e+001
4.8067e+001
-2.2643e+001
2.2643e+001
-5.0636e+001
5.0636e+001
5.5636e+001
-5.5636e+001
8.9364e+001
-8.9364e+001
-1.9364e+001
1.9364e+001

at Step # 1, Applied Load Ratio =

Rx

.6011e+001
.0000e+000
.0113e+000
.0000e+000

Mx

*** No Reaction Moments Exist

FHAF AR A A
End of Results of Structural Analysis
B i i i i
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0.0000e+000 0.0000e+000
0.0000e+000 0.0000e+000
0.0000e+000 0.0000e+000
0.0000e+000 0.0000e+000
0.0000e+000 0.0000e+000
0.0000e+000 0.0000e+000
0.0000e+000 0.0000e+000
0.0000e+000 0.0000e+000
0.0000e+000 0.0000e+000
0.0000e+000 0.0000e+000
0.0000e+000 0.0000e+000
0.0000e+000 0.0000e+000
0.0000e+000 0.0000e+000
0.0000e+000 0.0000e+000
0.0000e+000 0.0000e+000
1.0000
Ry Rz
.0000e+000 -6.6648e+001
.0113e+000 6.1648e+001
.0000e+000 8.3352e+001
.3989%e+001 -5.3352e+001
My Mz

* Kk Kk



6.12 Example 6
This example of space truss consists of 32 nodes and 96 members. The properties of

joints and members are presented in Tables 16 and 17. And also, the section area for

members is A=0.002m?* and the modulus of elasticity is E =2x10°kN /m?.

Figure 80. Space Truss of Example 6.
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Table 16. Nodal Data of Space Truss of Example 6.

Restraint

Applied Loads

-35

-50

35

40

Coordinate

12
12
12
12
1.5
1.5
1.5

4.5

4.5

4.5

7.5
7.5
7.5

10.5

10.5

10.5

X

1.5
4.5

7.5
1.5

4.5

7.5
1.5

4.5

7.5
1.5

4.5

7.5

Node
Number

10
11
12
13
14
15
16
17
18
19
20
21

22
23
24
25
26
27
28
29
30
31

32
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Table 17. Elemental Data for Example 6

Element Connectivity Element Connectivity
Number Start Node End Node Number Start Node End Node
1 1 2 39 6 25
2 2 6 40 7 25
3 5 6 41 11 25
4 1 5 42 10 25
5 1 21 43 11 15
6 2 21 44 14 15
7 6 21 45 10 28
8 5 21 46 11 28
9 6 10 47 15 28
10 9 10 48 14 28
11 5 9 49 15 19
12 5 24 50 18 19
13 6 24 51 14 31
14 10 24 52 15 31
15 9 24 53 19 31
16 10 14 54 18 31
17 13 14 55 3 4
18 9 13 56 4 8
19 9 27 57 7 8
20 13 27 58 3 23
21 14 27 59 4 23
22 10 27 60 8 23
23 14 18 61 7 23
24 17 18 62 8 12
25 13 17 63 11 12
26 13 30 64 7 26
27 14 30 65 26
28 18 30 66 12 26
29 17 30 67 11 26
30 2 3 68 12 16
31 3 7 69 15 16
32 6 7 70 11 29
33 2 22 71 12 29
34 3 22 72 16 29
35 7 22 73 15 29
36 6 22 74 16 20
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37 7 11 75 19 20
38 10 11 76 15 32
77 16 32 87 22 25
78 20 32 88 25 28
79 19 32 89 28 31
80 21 22 90 22 23
81 24 25 91 25 26
82 27 28 92 28 29
83 30 31 93 31 32
84 21 24 94 23 26
85 24 27 95 26 29
86 27 30 96 29 32
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- DISPLACEMENTS

B THE COMPUTER CODE

~# THE NODAL DISPLACEMENTS MATRIX

0.0001645%&

-5.8138x107°
_0.000669505
0.000180408
-0.0000137148
-0.000281531
0.00147637
0.0000122176
-0.00167606
D.00147637

_5.8138x%x10°°
-0.000396862
0.00160374
-0.0000137148
-0.000305443
0.00186624
-0.00002336567
0.00074814%
0.00156004
0.000033648
-0.00184938
0.00156004
0.0000436846
-0.00118964
0.00163202

~6.83407 % 107°
-0.000398237
0.00163202

-4.5108%x10°°
0.000535%577
0.00140255
0.0000417727
-0.00147433
0.00140255
0.000152077
-0.000%63766
0.001&a0878
0.0000556728
-0.0003713a7
0.001%0878
0.0000205385
displacements = 0.000728873
0.0001385%84

Figure 81. Nodal Displacements of Example 6
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0.000152077
-0.0004613245
0.000165647
0.0000556728
-0.000Z256213
0.000545936
0.000443441
-0.000578315
0.000423144
o.000108712
-0.000581188
0.000358307
-0.000100%58
0.0000329523
0.000814352
0.000161%25
-0.00143685
0.000751875
0.0000623683
-0.00075451=
0.000756251
-0.0000121613
0.000108581
0.000853973
-0.00014z482
-0.00138384
0.000817376
-0.0000225682
-0.00055%8121
0.000764353
0.000030307
0.0000762418
0.000551122
-0.0003878
-0.000737163
0.000458025
-0.000102556
-0.000542434
0.000380223
0.0000584261
v 0.0000111715

Figure 82. Nodal Displacements of Example 6 (continued)
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- DISPLACEMENTS

-8 THE COMPUTER CODE
-8 THE NODAL DISPLACEMENTS MATRIX

~mB SCATTER PLOT OF DISPLACEMENT MATRIX

MatrixPlot [xdisp]

1
151

20820
40840

60H60

84454
1

Figure 83. Scatter Plot of Nodal Displacements for Example 6.
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-~ DEFORMATIONS

i

0.00016496
0
]
0.000012217&
-0.000359488
-0.0002242e8
0.000211582
0.0000138161
0.0000454984
0
0.0000214284
-0.0000138161
-0.0000205208
0.0000542895
-0.0000155525
0.000108393
]

8.12669 x 1078
0.00001595Z25
-0.0000748451

1.21659 x 10-¢
0.00005368
0
0.000138984
-0.0000417727
0.0000748491
0.000308129
-0.000168482
~0.000214495
0.000015448
0
0.000127374
0.000224268
~0.000293785
0.000206851
-0.000137334
6.88069 x 106
0.0000719796
-0.0000537267
~4.1619 % 107"
0.0000238366

Figure 84. Deformations of Elements for Example 6.
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0.000034052
0.0000625068
0.00020623
-0.00014z021
-0.000131806
-0.000124867
-0.000163806
0
0.00002666827
-0,00014554
0.000265522
-0.,000288465
0.000168482
-0,000180408
-0.0000233667
0.0002625
0.000293785
-0.,000160589
0.000063334
-0.,00019653
0.000018856
0

-6.15915x10°°
-0.000063334

9.89063 x 107
0.00005%96026
0.0000254497
0.0003
0.0000483669

-9.89063x10°°

-0.0000695829
0.0000311067

-0.000020938%9
-0.000165647
-0.,000171762
0.000065582%
-0.000186286

0.000288465

-0.000122792

deformations =

Figure 85. Deformations of Elements for Example 6 (continued).
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-0.0000225124
-0.0000365977
-0.0000530974
-0.000z81515
-0.000304407
-0.000255318
-0.00004635441
-0.0000849365
-0.00007929882
-0.0000648366
-0.000035628%9
-0.0000529824
-0.0000778021
0.0000887571
0.0000424683
. 0.0000681191

Figure 86. . Deformations of Elements for Example 6 (continued).

L\l 1 > M Bori1

~ CALCULATE THE DEGREE OF INDETERMINANCY

di =m + rest - 3 xnoden

1z

Figure 87. Calculation of Degree of Indeterminacy
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~ INTERNAL FORCES

21.9947
0
0
1.62902
-42.985%1
-24.4152
23.0341
1.50411
6.59978
0
2.85712
-1.50411
-2.23402
5.2102%
-2.1721¢
14.4524
0
1.08356
2.17218
-8.14854
0.13244¢6
5.684353
0
18.5312
-5.56569
9.14854
33.5448
-18.342
-23.3513
2.05974
0
16.9832
24,4152
-31.9832
22,5191
-14.5511
0.917426
9.597283
-5.84502
-0.45309
2.595
3.70711
8.33424
27.4973
-15.4613
-14.3452
-13.5938

Figure 88. Member Forces for Example 6.
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-17.8329
0
3.55503
-15.8443
28.9064
-31.4041
18.342
-24.0544
-3.11557
35.
31.9632
-17.4827
6.89454
-21.3254
2.51413
0
-0.670523
-6.8945%4
1.07676
6.48871
3.35329
40.
5.26552
-1.07¢e76
-7.57523
3.38647
-2.79185
-22.0863
-16.695
7.57523
-20.2803
31.4041
-16.3723
-3.0016%
-4.87%69
-12.413
-37.5354
-40.5876
-34.0425
-6.17822
-11.3249
-10.6651
-8.64488
-4.75053
-7.06432
-10.373%6
11.83%6
H.66244
9.08255

Independent forces=

Figure 89. Member Forces for Example 6 (continued).
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9of11

INTERNAL FORCES

MEMBER END FORCES

member

member

membe

member

membe r

member

member

membe

member

membe r

member

member

membe

member

membe r

membe

membe r

member

membe

member

membe r

member

membe

10

11

1z

13

14

15

16

17

18

15

20

21

22

23

(—21.9947]
21.5547

[_9.93852x10-ﬁ1
\ 9.93852 %1071 |

)

-1.62502
1.62902

42,5851
42,5851

(o:

¥ |
[ |
| 23]
e
& |
¥ |

-1.50411
1.50411

-5.555878
655978

)

-Z2.85712
Z.85712

1.50411
1.50411

[o:

¥ |
[ |
| 55502
ey
& |
" |

2.1721&
2.17z21&

14.4524
14.4524

[—2.89121x10’m]

| 2.89121 %101 )

—1.08356)
1.08358

—2.17216)
2.17216

(
(
SOV
(
(

—0.132446]
0.13244¢

—5.84393}
5.84353

(—1.0842x10'm]
| 1.0842 x 107 )
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Figure 90. Member End Forces for Example 6.




member 24 R

[ 18.5312 ]
member 25 ( _55- _5565 96699 ]
member 26 ( _88_ -1144885544 ]
member 27 ( _3333_ -55444488 ]
member 28§ ( _1188- _334422 ]
member 29 ( _2233- _33551133 ]
member 30 ( _22_ -005599??44 ]

[ 4.06576x107%5
member 31 |\-4.065?6x10‘15;‘

member 32 ( _1166_ -99883322
member 33 ( 72244_ -441155;22 ]
member 34 ( _3311- _99883??2 ]
member 35 ( 72222_ -55119911 ]
member 36 ( _1144- _99551111 ]
member 37 ( _00_ -991177442266 }
member 38 ( _99_ -5599772288 ]
member 39 ( 755- _8844990[?2 ]
member 40 ( _00- _4455330099 ]
member 41 ( _22_ -559955 }
member 42 ( _33_ -??00771111 ]
member 43 ( _88_ -3333442244 ]
member 44 ( _2277_ -4499??33 ]
member 45 ( _1155- _44661133 ]
member 46 ( _1144- _33449922 ]
member 47 ( _1133- _55993388 ]
member 48 ( _1177- _88332299 ]

|v ~4.51751x 10718 ‘
| 4.51751x10°1% |

-3.55503 ]
3.55503

member 4%

member 50 (

Figure 91. Member End Forces for Example 6 (continued).
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member 51 Lo.sass ]

( 15.8443
member 52 ( 2288 99006644 ]
member 53 ( 3311 44004411 ]
member 54 ( 1188 334422 )
member 55 ( 2244 00554444 ]
member 56 ( 33 11115555?7‘ ]
member 57 ( 35 )
member 58 ( 3311 99883322 ]
member 58 ( 1177 448822?7‘ ]
member &0 ( 66 8899449944 ]
member &1 ( 2211 33995544 ]
member &2 ( 22 5511441133 ]

) -14
tember €3 2.85%121 =10 ‘

| -2.8%121 % 10714

member &4 ( OO 667700552233 )
member &5 ( 66 8899449944 ]
member 66 ( 11 007766??66 ]
member &7 ( 66 4488887‘711 ]
member &8 ( 33 339933:2299 ]
member &9 ( 40 ]
member 70 ( 55 2266555522 ]
member 71 ( 11 0077667766 ]
member 72 ( 77 5577552233 ]
member 73 ( 33 333866e114”,’7 ]

Figure 92. Member End Forces for Example 6 (continued).

155




member 74 2.79185 )

( ~2.79185
member 75 ( 2222 00886633 ]
member 76 ( 1188 669999 ]
member 77 ( 77 557'?552233 )
member 78 ( 2200 22880033 ]
member 79 ( 3311 44004411 ]
member 80 ( 1166 33772233 )
member 81 ( 33 0000116666 )
member 82 ( 44 88?7996699 ]
member &3 [ 1122 441133 )
member 84 [ 33?7 55335544 )
membsr 85 ( 4400 5588??66 ]
member 86 ( 3344 00442255 ]
member 87 ( o 1177992222 )
member 88 ( 11 1 33224499 ]
member 89 ( 1100 66665511 ]
member 90 ( 88 6644448888 )
member 91 ( 44 ?755005533 )
member 92 ( ?7 0066443322 ]
member 93 ( 1100 33?’,"3366 ]
member 94 ( 1111 38339966 )
member 95 ( 55 6666224444 ]
member 96 ( 99 0038225555 ]

Figure 93. Member End Forces for Example 6 (continued).
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- SUPPORT REACTIONS

-8 THE COMPUTER CODE

~® SUPPORT REACTIONS MATRIX

-4.444495
15.59212
35.1004

-31.1%917
10.252%
14.2746

-6.959813

-15.1028
19.0662

-30.3657

-11.0712
16.55388

Reactions =

~B SCATTER PLOT OF REACTIONS MATRIX

1
101

5

l2ll12
1

Figure 94. Support Reactions of Example 6 and Its Scatter Plot.
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6.13 Mastan Results for Example 6

AKAkKRkKkKk kAKX )k K%K

Time:

10:37:17

Problem Title:
PR b b b b b b b b b 4

MASTANZ v3.3.1

Date:

05

not provided

FHAH AR FHH AR AR RS
Results of Structural Analysis

FHEHFFHFHH AR AR A

General Information:

Structure Analyzed as:
Analysis Type:

Analytical Results:

(i) Displacements at Step # 1, Applied Load Ratio = 1.0000
Deflections
Node X-disp Y-disp Z-disp

1 0.0000e+000 0.0000e+000 0.0000e+000
2 1.6496e-004 -5.8138e-006 -6.6950e-004
3 1.8041e-004 -1.3715e-005 -2.8153e-004
4 0.0000e+000 0.0000e+000 0.0000e+000
5 1.4764e-003 1.2218e-005 -1.6761e-003
6 1.4764e-003 -5.8138e-006 -9.9686e-004
7 1.6037e-003 -1.3715e-005 -3.0544e-004
8 1.8662e-003 -2.3367e-005 7.4815e-004
9 1.5600e-003 3.3646e-005 -1.8494e-003
10 1.5600e-003 4.3685e-005 -1.1896e-003
11 1.6320e-003 -6.8341e-006 -3.9824e-004
12 1.6320e-003 -4.5108e-006 5.3958e-004
13 1.4026e-003 4.1773e-005 -1.4743e-003
14 1.4026e-003 1.5208e-004 -9.6377e-004
15 1.6088e-003 5.5673e-005 -3.7137e-004
16 1.9088e-003 2.0939%9e-005 7.2897e-004
17 0.0000e+000 0.0000e+000 0.0000e+000
18 1.3898e-004 1.5208e-004 -4.6195e-004
19 1.6565e-004 5.5673e-005 -2.5621e-004
20 0.0000e+000 0.0000e+000 0.0000e+000
21 5.4594e-004 4.4344e-004 -9.7832e-004
22 4.2314e-004 1.0871e-004 -5.8119%e-004
23 3.5831e-004 -1.0096e-004 3.2952e-005
24 8.1439%e-004 1.6193e-004 -1.4369e-003
25 7.9188e-004 6.2368e-005 -7.5451e-004
26 7.5625e-004 -1.2161e-005 1.0998e-004
27 8.5397e-004 -1.4248e-004 -1.3838e-003
28 8.1738e-004 -2.2568e-005 -9.5912e-004
29 7.6439e-004 3.0307e-005 7.6242e-005
30 5.5112e-004 -3.9780e-004 -7.3716e-004
31 4.5802e-004 -1.0256e-004 -5.4243e-004

XKk KkkKhkKk Kk kK kK

/25/2012

Space Truss
First-Order Elastic
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32

(1i1)

3.8022e-004

Internal End Forces

Element Node

1

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

1

= N N N N

}_\
S O oo ovoorr R OORNE R ORE OOy

PR R RNERNDRENDRN = e RN NN )
W JOE JO Jd JW-JOWOdWwWwhs o OsODRO

-2.

2.
-6.
.6613e-016
.8422e-014
.8422e-014
.6290e+000
.6290e+000
.2989e+001
.2989e+001
.4415e+001
.4415e+001
.3034e+001
.3034e+001
.5041e+000
.5041e+000
.5998e+000
.5998e+000
.8422e-014
.8422e-014
.8571e+000
.8571e+000
.5041e+000
.5041e+000
.2340e+000
.2340e+000
.9103e+000
.9103e+000
.1722e+000
.1722e+000
.4452e+001
.4452e+001
.0000e+000
.0000e+000
.0836e+000
.0836e+000
.1722e+000
.1722e+000
.1485e+000
.1485e+000
.3245e-001
.3245e-001
.8439e+000
.8439e+000
.5527e-015
.5527e-015
.8531e+001
.8531e+001

Element Results at Step # 1,

(Note:
Fx
1995e+001
1995e+001
6613e-016

9.8426e-005

oNeoNoNoNoNoNoNoNoRoNoNoNololoNoNoNoNoNohNoNoNoNololoNoNoNoBoBoNoNoNoNoloNoNoNolNolololNoNoNolololNo]
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Fy

.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000

oNeoNoNoNoNoNoNoRoRoNoNoNololoNoNoNoNoNohNoNoNoNeololoNoNoNololoNoNoNololoNoNolNoleolololNoNolNololeolNo)

1.1171e-005
Applied Load Ratio = 1.0000

Refers to local coordinates)

Fz

.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000



25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

WR WEWE WRE PP
NOJODWMO™O W-JW

N

N N
AN I WDNDDN JOy I W W

N
~ N

11
10
11

25

25
11
25
10
25
11
15
14
15
10
28
11
28
15
28
14
28
15
19
18
19
14
31

.5697e+000
.5697e+000
.1485e+000
.1485e+000
.3545e+001
.3545e+001
.8342e+001
.8342e+001
.3351e+001
.3351e+001
.0597e+000
.0597e+000
.6629e-015
.6629e-015
.6983e+001
.6983e+001
.4415e+001
.4415e+001
.1983e+001
.1983e+001
.2519%e+001
.2519%e+001
.4951e+001
.4951e+001
.1743e-001
.1743e-001
.5973e+000
.5973e+000
.8490e+000
.8490e+000
.5309e-001
.5309e-001
.5950e+000
.5950e+000
.7071e+000
.7071e+000
.3342e+000
.3342e+000
.7497e+001
.7497e+001
.5461e+001
.5461e+001
.4349e+001
.4349e+001
.3594e+001
.3594e+001
.7833e+001
.7833e+001
.1054e-015
.1054e-015
.5550e+000
.5550e+000
.5844e+001
.5844e+001

oNeoNeoNoNoNoNoNoRoNoNoNoNoNoRoNoNoNoNoRoNoNoNoNolNoloNoNoNoBoRoNoNoNoNoloNoNoNoNololoNoNoNololoNolNoNoNololNolNe)
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.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000

oNeoNeoNoNoNoNoNoRoloNoNoNoNoloNoNoNoNoRoNoNoNoNolNolohNoNoNolBoRoNoNoNololoNoNoNolNololoNoNoNolololNolNoNoNololNolNe)

.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000



52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

15
31
19
31
18
31

w

N

N N
~ W O Wk WWwWo J 0o b

N
0 W

12
11
12

26

26
12
26
11
26
12
16
15
16
11
29
12
29
16
29
15
29
16
20
19
20
15
32
16
32
20
32

.8906e+001
.8906e+001
.1404e+001
.1404e+001
.8342e+001
.8342e+001
.4054e+001
.4054e+001
.1156e+000
.1156e+000
.5000e+001
.5000e+001
.1983e+001
.1983e+001
.7483e+001
.7483e+001
.8949e+000
.8949e+000
.1395e+001
.1395e+001
.5141e+000
.5141e+000
.8422e-014
.8422e-014
.7052e-001
.7052e-001
.8949e+000
.8949e+000
.0768e+000
.0768e+000
.4887e+000
.4887e+000
.3933e+000
.3933e+000
.0000e+001
.0000e+001
.2655e+000
.2655e+000
.0768e+000
.0768e+000
.5752e+000
.5752e+000
.3865e+000
.3865e+000
.7919e+000
.7919e+000
.2086e+001
.2086e+001
.8699%e+001
.8699%e+001
.5752e+000
.5752e+000
.0280e+001
.0280e+001

oNeoNeoNoNoNoNoNoRoNoNoNoNoNoloNoNoNoNoRoNoNoNoNolNoloNoNoNoBoRoNoNoNoNoloNoNoNolNololoNoNoNololoNolNoNoNolololNe)
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.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000

oNeoNeoNoNoNoNoNoRoNoBoNoNoNoloNoNoNoNoRoNoNoNoNolNolNohNoNoNoBoRoNoNoNoNoloNoNoNolNololoNoNoNololoNolNoNoNololNolNe)

.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000



79 19 -3.1404e+001 0.0000e+000
32 3.1404e+001 0.0000e+000
80 21 1.6372e+001 0.0000e+000
22 -1.6372e+001 0.0000e+000
81 24 3.0017e+000 0.0000e+000
25 -3.0017e+000 0.0000e+000
82 27 4.8797e+000 0.0000e+000
28 -4.8797e+000 0.0000e+000
83 30 1.2413e+001 0.0000e+000
31 -1.2413e+001 0.0000e+000
84 21 3.7535e+001 0.0000e+000
24 -3.7535e+001 0.0000e+000
85 24 4.0588e+001 0.0000e+000
27 -4.0588e+001 0.0000e+000
86 27 3.4042e+001 0.0000e+000
30 -3.4042e+001 0.0000e+000
87 22 6.1792e+000 0.0000e+000
25 -6.1792e+000 0.0000e+000
88 25 1.1325e+001 0.0000e+000
28 -1.1325e+001 0.0000e+000
89 28 1.0665e+001 0.0000e+000
31 -1.0665e+001 0.0000e+000
90 22 8.6449e+000 0.0000e+000
23 -8.6449e+000 0.0000e+000
91 25 4.7505e+000 0.0000e+000
26 -4.7505e+000 0.0000e+000
92 28 7.0643e+000 0.0000e+000
29 -7.0643e+000 0.0000e+000
93 31 1.0374e+001 0.0000e+000
32 -1.0374e+001 0.0000e+000
94 23 -1.1840e+001 0.0000e+000
26 1.1840e+001 0.0000e+000
95 26 -5.6624e+000 0.0000e+000
29 5.6624e+000 0.0000e+000
96 29 -9.0825e+000 0.0000e+000
32 9.0825e+000 0.0000e+000
(iii) Reactions at Step # 1, Applied Load Ratio
Forces
Node Rx Ry
1 -4.4445e+000 1.5921e+001
4 -3.1192e+001 1.0253e+001
17 -8.9981e+000 -1.5103e+001
20 -3.0366e+001 -1.1071e+001
Moments
Node Mx My

* Kk

No Reaction Moments Exist ***

iigdgddtasdsddddsdndaadsaRAnAdEAEALEE
End of Results of Structural Analysis
iiigdgdstasdzddddsdadaadaaRARAREAEALEE
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Chapter 7

CONCLUSION

7.1 Summary of the Work

The main aim of this study is to show usage of the integrated force method and dual
integrated force method by generation of equilibrium equation in space truss analysis.
Therefore, a computer code is written to generate the equilibrium equations
automatically as explained in Chapters 2 and 4. This assembled equilibrium equation is
used in both integrated force method and dual integrated force method to analyze

indeterminate space truss structures.

Dual integrated force method, subset of displacement method, is used to calculate nodal
displacement as primary unknowns, and then the global stiffness matrix is used.
Integrated force method is subset of force method in which two approaches are used:

e Null Space of Equilibrium Equation

e Singular Value Decomposition of Equilibrium Equation.

Therefore three computer codes are written to analyze the indeterminate space truss
structures as presented in chapter 5. The written programs have further usages for:
e Educational aims: all of the steps in the analysis process are illustrated by outputs

and results at each section of solution
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e Practical aims: since the written programs are for space truss structures, they can
be used in practical analysis.
7.2 Summary of Contributions
Written computer codes are used to:
e Write and assemble of equilibrium equations
e Obtain flexibility matrix and compatibility condition
e Assemble [S] matrix by coupling EE matrix and CC matrix
e Generate global stiffness matrix

e Analyze the space truss with three different methods

The written computer codes have following characteristics and advantages:

Characteristics:

e Flexibility of data input procedure.

e Flexibility of output procedure.

e Analysis packages are easy to run and there is no need to read any manual.

e Subroutines operation for scatter plot.

e The used relations and formulas are expressed at each section of analysis.
Advantages:

e Any indeterminate space truss with any number of nodes and elements can be

analyzed by the written computer codes
e The written computer codes are perceptible step by step and easy to use
e The analysis procedure of space truss structures are very hard and time

consuming, then these computer codes make the analysis time shorter and faster.
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7.3 Recommendations for Future Researches

e By addition of related computer codes, the nodal settlements and thermal effects
can be considered.

e These computer codes can be developed to analyze the space frame structures.

e Incorporate analysis programs for frame and beam can be added to obtain overall

structural analysis package

165



REFERENCES

E. Soyer, and A. Topcu. (2001). Sparse Self-Stress Matrices for the Finite Element

Force Method. Int. J. Numer. Meth. Engng, 50 , pp. 2175-2194.

E.Soyer. (2001). A New Numerical Technique for the Generation of Sparse and banded
Self-Stress Matrix by Using Groping of Redundants. Gazimagusa: Eastern

Mediterranean University.

KASSIMALLI, A. Matrix Analysis of structures. USA: Cengage Learning.

N. R. B. Krishnam Raju, and J. Nagabhushanam. (2000). Nonlinear structural analysis

using integrated force method. Sadhana, , Vol. 25, Part 4, pp. 353-365.

Patnaik, S. (1999). Compatibility Condition in Structural Mechanics. NASA/TM-

209175.

Patnaik, S. N. (1986). Integrated force method versus the standard force method.

Computer and Structure , vol. 22, no. 2, pp.151-163.

Przemieniecki, J. S. (1968). Theory of Matrix Structural Analysis. New York: McGraw-

Hill.

R. D. Ziemian, and W. McGuire. (2000). Matrix Structural Analysis 2 (MASTAN 2).

John Willey & Sons.

166



R. Sedaghati. (2005). Benchmark Case Studies in Structural Design Optimization Using
Integrated Force Method. International Journal of Solids and Structures 42 , pp 5848—

5871.

S. N. Patnaik and K. T. Joseph. (1986). Generation of compatibility matrix in the

integrated force method. Comp. Meth. Appl. Mech. Eng. , vol.55, no. 3, pp. 239-257.

S. N. Patnaik, and D. A. Hopkins. (1998). Recent advance in the method of forces:
Integrated force method of structural analysis. Advances Engrg. Software , vol.29, no. 3-

6, pp. 463-474.

S. N. Patnaik, D. A. Hapkins, and G. R. Halford. (2004). Integrated Force Method

solution to indeterminate structural mechanics problem. NASA/TP-207430.

S. N. Patnaik, D. A. Hopkins, and R. Coroneos. (1996). Structural optimization with

approximate sensitivities. Computer and Structures, vol. 58, no.2 , pp 407-418.

S. N. Patnaik, L. Berke, and R. H. Gallaghar. (1991). Integrated force method versus
displacement method for finite element analysis. Computer and Structure , vol.38, no.4,

pp 377-407.

S.Kamkar. (2010). Investigation of Rigid Frame by Integrated Force Method.

Gazimagusa: Eastern Mediterranean University.

S.Khosravi. (2005). Usage of equilibrium Equation in Truss Analysis. Gazimagusa:

Eastern Mediterranean University.

S.Pellegrino. (1993). Structural Computations with Singular Value Decomposition of the

Equilibrium Matrix. Int. J. Solid Structures , Vol. 30, No.21, pp.3025-3035.

167



Saouma, V. E. (1999). Matrix Structural Analysis with an Introduction to Finite

Elements. University of Colorado, Boulder.

W. McGuire, and R. H. Gallagher. (1979). Matrix Structural Analysis. New York:

Wiley.

Wang, C. K. (1983). Indeterminate Structural Analysis. Civil Engineering Series.

McGraw-Hill.

West, H. H. (1993). Fundamental of structural Analysis. John Wiley & Sons.

168



APPENDICES

169



Appendix A: Data Input and Calculation Phase for Example 1

4 1 4 M 20112

- INPUT DATA

~m NUMBER OF NODES
noden = 6;
~m X-Y-Z COORDINATE

(1
2
3
4
5
\ 6

cord =

N OO N OO

N O PN O

Wl W W Ol OO

~n ELEMENT CONECTIVITY

m=12;
r1 |12y
2 (1|3
3 (23
4 |14
51|1|5

_ 6 2|5

inc = TT5Te |’
8 3|6
9 (3|4
10|5|6
114 |6
\12 |4 |5 )

Figure 95. Input Phase; Data for Example 1
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-l RESTRAINT TABLE

O=free and l=restrained

(1111
2(1(0(1
31|11

freet = i o0loTo
5/0(0|0

\6 0|0 |0}

~Hl APPLIED FORCES

applfres =

~m MODULUS OF ELASTICITY AND CROSS-SECTION AREA

/1]0.]0.| O.
2l0. (0. o.
3]0.]0.] o.
410.[0.[-45.
5(0. 0. |-30.
\60. 0. 0.

Ee =2. xlOB;

A ={0.003, 0.003, 0.003, 0.003, 0.003, 0.003, 0.003, 0.003,

0.003, 0.003, 0.003, 0.003};

Figure 96. Input Phase; Data for Example 1(continued)
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M 4 4 M 3of12

~ EQUILIBRIUM EQUATIONS

v* THE COMPUTER CODE

‘# THE EQUILIBRIUM MATRIX

MatrixForm[S]
1. 0. 0.447214 0. 0. 0. 0.267261 0. 0. 0. 0. 0.
0. 0 0. 1. 0. 0. 0. 0. 0.801784 0. 0. 0.
0. 0 0. 0. 0. 0. 0. 0. -0.2e7Zal 0. -0.447214 -1.
0. 0 0. 0. 0. 0. 0. 0. -0.534522 0. -0.894427 0
0. 0. 0. 0. 0.83205 1. 0. 0. 0 0. 0. 0
0. 0. 0. 0. 0.5547 0. 0. 0. 0 0.447214 0. 1.
0. 0 0. 0. 0. 0. 0. 0. 0. -0.894427 0. 0.
0. 0 0. 0. 0. 0. 0.801784 1. 0. 0. 0. 0
0. 0 0. 0. 0. 0. -0.267261 0. 0 -0.447214 0.447214 0
0. 0 0. 0. 0. 0. 0.534522 0. 0 0.e%94427 0.8%4427 0

Figure 97. Calculation Phase; Equilibrium Equations Matrix for Example 1

~4 THE SCATTER PLOT OF EQUILIBRIUM MATRIX

MatrixPlot[S]

1 5 12
1103 ' 1
21 B B 12
il gt
gl B 14
5t ] 15
6l W5
71 - R
8t ] 18
ol 19

10} 110

1 5 12

Figure 98. Scatter Plot of Equilibrium Equations Matrix for Example 1
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Aq THE SCATTER PLOT OF UNCONNECTED FLEXIBILITY MATRIX

MatrixPlot [F]

1 5 12
1 ' "
5 5

12} 112

1 5 12

Figure 99. Scatter Plot of Flexibility Matrix

Ho« o ) foft?

- COMPATIBILITY CONDITIONS (CC)

MatrixForm[ce]

|a.2lu71xlu" 2979910 -2,0526810F 12970510 -8,33950 0% 45206210 8,43096 107 -1 38TRk10 - 12806 10 L L 18503710 |
| 10852210 -2, 2486107 -2, 7030400 -4, 04720 10 340000 2L 0 L0T20e 0 - L66SaRa 0t 1708600 -6.20830x 107 -2, 0608107 -3, 00T 10

Dimensions|8]
{10, 12}
MatrixPlot [cc]
1 5 12
1 . 1
2 2
1 5 12

Figure 100. Compatibility Conditions for Example 1
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A4 THE SCATTER PLOT OF THE IFM MATRIX

MatrixPlot[ifm]
1 5 12
118 | 1
[]

LT
[
I

1 5 12

12+ 12

Figure 101. Scatter Plot of IFM Matrix for Example 1

4 4« » M Tof12

~ CACULATE DEGREE OF INDETERMINANCY

di =m + rest - 3 xnoden

2

Figure 102. Calculation Phase; Degree of Indeterminacy for Example 1
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Appendix B: Data Input and Calculation Phase for Example 2

] 1 4 M 20f12

- INPUT DATA

~m NUMBEER OF NODES
noden = 8;

~m X-Y-7Z COORDINATES

~=

cord =

Ol OO Ol Ol O

Gy b ) QO | | O O
MR R ) O da O s O

W -1 G| | s W M-

Wi W
;|

Figure 103. Input Phase; Data for Example 2
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L] 1 4 M 2of12

- INPUT DATA

+vm NUMBER OF NODES

vu X-Y-Z COORDINATES

~m ELEMENT CONNECTIVITY

m= 18;

QO ~]| | U] | WP

inc =

16

17

18

oo e w sl w R W o e R R W e

W | | | | | |~ =] W] O On | D] k] s N2

~l RESTRAINT TABLE

O=free and

freet =

l=restrained

@ 1| | U] | WM

[=J=lN I ==
[=J =10l =T =T ol

(=l =10 TN ==

Figure 104. Input Phase; Data for Example 2(continued)
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4 1 4 M 20112

- INPUT DATA

+vu NUMBER OF NODES
vu X-Y-Z COORDINATES
va ELEMENT CONNECTIVITY

vl RESTRAINT TABLE

-l APPLIED FORCES

ool oOlal O

applfres =

-45.
-35.

@ =1 | O] | W N =
Ol ool Ol o|lal O
Ol ool Ol o|lal O

~1 MODULLUS OF ELASTICITY AND CROSS-SECTION AREA

Ee=2. xlOB;

A={0.002, 0.002, 0.002, 0.002, 0.002, 0.002,
0.002, 0.002, 0.002, 0.002, 0.002, 0.002, 0.002,
0.002, 0.002, 0.002, 0.002, 0.002};

Figure 105. Input Phase; Data for Example 2(continued)
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14 4 » M Tof12

~ CACULATE DEGREE OF INDETERMINANCY

di =m + rest - 3 xnoden

3

Figure 106. Calculation Phase; Degree of Indeterminacy

M 1 3 M 4of12

- UNCONNECTED FLEXIBILITY MATRIX

v4 THE COMPUTER CODE

- 4 UNCONNECTED FLEXIBILITY MATRIX

Print["F = " MatrixForm[ F]

o.o0001 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0.00001 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0.00001 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. o 0.0000L 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. o 0. 0.00001dldzl 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. o 0. 0. 0.00001 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. o 0. 0. 0. 0.00001 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. o o 0. 0. 0. 0.00001 o 0. 0. 0. 0. 0. 0. 0. 0. o
F. 0. 0. o o 0. 0. 0. 0. 0.0000131821 0. 0. 0. 0. 0. 0. 0. 0. o
= 0. 0. 0. o 0. 0. 0. 0. o 0.00001125 0. 0. 0. 0. 0. 0. 0. o
0. 0. 0. o 0. 0. 0. 0. o 0. 0.00001125 0. 0. 0. 0. 0. 0. o
0. 0. o o 0. 0. 0. 0. o 0. 0. 000001125 0. 0. 0. 0. 0. o
0. 0. o 0. 0. 0. 0. 0. 0. 0. 0. 0. 000001125 0. 0. 0. 0. 0.
0. 0. o 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 000001125 0. 0. 0. 0.
0. 0. o 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 000001125 0. 0. 0.
0. 0. o 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.00001125 0. 0.
0. 0. o 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.0000L125 0.
0. 0. o 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.0000L

a4 THE SCATTER PLOT OF UNCONNECTED FLEXIBILITY MATRIX

MatrixPlot [F]

1 5 10 15 18

10 110

1o¢ 115

18y ‘ . ‘ 1yl
1 5 10 15 18

Figure 107. Calculation Phase; Flexibility Matrix and Scatter Plot for Example 2
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MatrixPlot [cc]

15 1 8
1t 11
2t 12
3t 13
4t 14
ot 15
OF - i

15 18

Figure 108. Calculation Phase; Scatter Plot of Compatibility Condition for Example 2

-4 THE SCATTER PLOT OF THE IFM MATRIX

MatrixPlot [ifm]

1 2 10 15 18

10F 110

15¢

-
il By

115

: 418
10 15 18

Figure 109. Calculation Phase; Scatter Plot of IFM Matrix for Example 2
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Appendix C: Data Input and Calculation Phase for Example 3

4 1 4 M 20f12

- INPUT DATA

~m NUMBEERE OF NODE
noden = 10;

~m X-Y-7Z COORDINATE

cord =

Wl R P W w e
;|| wm| ;| ;
Wl W kR NN
;| | w| ;| ;| n
;| ;| ;| ;|

W 0O ~1| &y LN | W N

olo| ol o NN NN qn

| O O n
Al o O

—
[
o

Figure 110. Input Phase; Data for Example 3
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2012

- INPUT DATA

vu NUMBER OF NODE

vu X-Y-Z COORDINATE

~m ELEMENT CONNECTMTY

m=25;

inc =

(

W0 -1 O =] W N -

(Y
o

|_l
=

[
W}

=
L

[
=9

[
n

[y
(o)}

=
~]

=
00}

[y
o

M
o

M
=

M
o

W O WO |~ ~10 000 0w d 0o Wkl N

M
w

=
<

M
1=y

=
L]

\ 25

Wk OO w (k| Wik A w w O &R DR RPR PR PP

10 )

Figure 111. Input Phase; Data for Example 3(continued)




o 1 4 M Zof12

- INPUT DATA

~ 1 NUMBER OF NODE
vu X-Y-Z COORDINATE
vu ELEMENT CONNECTIVITY

~Hl RESTRAINT TABLE

O=free and l=restrained

(

—

freet =

W O <1 o | | W N =

|l I ol I el N el e e o o [ o
R RER P RO OO OO O
Rl R R RO O OO OO

—
[
o

——

-l APPLIED FORCES

1 |0.] 0. |-60.\
2 (0. |75. 0.
3 |0.] 0. 0.
4 (0. | 0. 0.
5 (0. 0. 0. .
applfrcs = e o To. 0 ;
7 ]10.] 0. 0.
8 |0.] 0. 0.
9 |0.] 0. 0.
\ 10 |0. | 0. 0.

Figure 112. Input Phase; Data for Example 3
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M 20112

- INPUT DATA

vu NUMBER OF NODE
vu X-Y-Z COORDINATE

vu ELEMENT CONNECTIVITY
vl RESTRAINT TABLE

«l APPLIED FORCES

~n MODULLUS OF ELASTICITY AND CROSS-SECTION ARFA

Ee=2.x103;

A ={0.0025, 0.0025, 0.0025, 0.0025, 0.0025, 0.0025,
0.0025, 0.0025, 0.0025, 0.0025, 0.0025, 0.0025, 0.0025,
0.0025, 0.0025, 0.0025, 0.0025, 0.0025, 0.0025, 0.0025,

0.0025, 0.0025, 0.0025, 0.0025, 0.0025};

Figure 113. Input Phase; Data for Example 3

Tof12

~ CALCULATE THE DEGREE OF FREEDOM

di =m + rest - 3 xnoden

7

Figure 114. Calculation Phase; Degree of Indeterminacy
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~8 THE SCATTER PLOT OF UNCONNECTED FLEXIBILITY
MATRIX

MatrixPlot [F]

1 5 10 15 20 25
1H ' ' ' ' 1
5t '-_. 15

10+ 110
15¢ 115
20t 120
25t . . . . 1125

1 b5 10 15 20 25

Figure 115. Calculation Phase; Scatter Plot of Unconnected Flexibility Matrix

~B SCATTER PLOT OF COMPATIBILITY CONDITION MATRIX

MatrixPlot [cc]
1 b5 10 15 20 25

Figure 116. Calculation Phase; Scatter Plot of Compatibility Conditions
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. COPULE COMPATIBILITY CONDITIONS WITH
EQUILIBRIUM EQUATIONS (IFM MATRIX)

+-m THE IFM MATRIX

-8 THE SCATTER PLOT OF THE IFM MATRIX

SPLOT = MatrixPlot[ifm]
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Figure 117. Calculation Phase; Scatter Plot of IFM Matrix
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Appendix D: Data Input and Calculation Phase for Example 4

4 1 » M

2012

- INPUT DATA

~m NUMBER OF NODE
noden = 12 ;

~u X-Y-Z COORDINATE

—

cord =

W 0O <1 | A k=] W N =

Y
o

[
=

| | | | W W W W OO O O
O W W O O W WO O W WO

O O W W O O W WO O W W
-

\ 12

S

Figure 118. Input Phase; Data for Example 4
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- INPUT DATA

~m NUMBER OF NODE
+u X-Y-Z COORDINATE

~m ELEMENT CONECTIVITY

m= 30;
1|1 ] 4\
21 ]2
3213
4 3|4
s 37
6 |3 |6
7128
g8 |16
e [1 ][5
101 |8
11| a [ 8
123 | 8
13| 5 [ 8
145 [ 6
ine - 156 | 7 ;
16| 6 | 8
17| 7 | 8
18| 8 [12
19| 8 [11
20 8 | o
215 | 9o
226 | 9
23| 6 [11
24| 6 |10
25| 7 [11
26| 9 [12
271012
28 (1112
2e (1011
309 [10)

Figure 119. Input Phase; Data for Example 4 (continued)
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- INPUT DATA

vu NUMBER OF NODE
vu X-Y-Z COORDINATE
~m ELEMENT CONECTIVITY

-l RESTRAINT TABLE

O=free and l1=restraimned

(1 |1]1|1\
2 |1]1|1
3 11|11
4 |1]/1]|1
5 10]0]|0
610|010
freet = ~ToTolo |’
8 |10/0]|0
9 10|0]|0
10|00 ]|0
11 (11|11
\12 |0 |0 |0 )

Figure 120. Input Phase; Data for Example 4 (continued)

188
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- INPUT DATA

+u NUMBER OF NODE
- m X-Y-Z COORDINATE
+u ELEMENT CONECTIVITY

~Hl RESTRAINT TABLE

-l APPLIED FORCES

applfrecs =

OOl OO OO0 OO0 O O

| =
H| o o ® 1| o vl B W N =

| OO O oo 0ol olal OO

OO0 O O o0 0 OO0 O OO

=
M

~n MODULLUS OF ELASTICITY AND CROSS-SECTION AREA

Ee=2.x103;

A=1{0.002, 0.002, 0.002, 0.002, 0.002, 0.002, 0.002,
0.002, 0.002, 0.002, 0.002, 0.002, 0.002, 0.002,
0.002, 0.002, 0.002, 0.002, 0.002, 0.002, 0.002,
0.002, 0.002, 0.002, 0.002, 0.002, 0.002, 0.002,
0.002, 0.002};

Figure 121. Input Phase; Data for Example 4 (continued)
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Tof12

- CALCULATE THE DEGREE OF
FREEDOM

di=m+ rest - 2 xnoden

S

Figure 122. Calculation Phase; Degree of Indeterminacy

~8 THE SCATTER PLOT OF UNCONNECTED

FLEXIBILITY MATRIX
MatrixPlot [F]
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Figure 123. Calculation Phase; Scatter Plot of Unconnected Flexibility Matrix




~B SCATTER PLOT OF COMPATIBILITY CONDITION MATRIX

MatrixPlot [cc]

1 10 20 30
:ﬁﬁﬁﬂ-F- llllﬁl-:
[ aemd B N
1 10 20 30

Figure 124. Calculation Phase; Scatter Plot of Compatibility Conditions

-8 THE SCATTER PLOT OF THE IFM MATRIX

SPLOT = MatrixPlot [ifm]
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1F n 71
f
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.- III
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Figure 125. Calculation Phase; Scatter Plot of IFM Matrix
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