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ABSTRACT 

The contamination of a desired signal by noise (undesired signal) is a main problem 

encountered in many applications. The digital filters with fixed coefficients exhibit 

satisfactory performance in cancelling the noise when the desired signal has 

stationary characteristics. However, when the desired signal has changing 

characteristics, there may be a performance degradation in eliminating the noise by a 

digital filter with fixed coefficients. As a remedy to this, adaptive noise cancellation 

method is used. In the adaptive noise cancellation method, the coefficients of the 

digital filter are updated by using an adaptive algorithm, until a minimum error is 

obtained. 

In this thesis, the principles of adaptive noise cancellation have been studied by using 

an adaptive line enhancer (ALE) configuration. The ALE configuration is simulated 

by using Simulink of Matlab and is implemented by using a digital signal processor 

(TI TMS320C6416T) in real time.  

The performance of ALE under different signal to noise ratio, number of filter 

coefficients, and step size of the adaptive algorithm has been studied extensively. 

When step ‎size is small it leads to a good estimation of the sinusoidal signal, but the 

convergence ‎speed slows down. The ALE output becomes more accurate when 

more ‎coefficients are used in the filter. When SNR value ‎is increased the estimation 

becomes more successful resulting in a small error at the ‎ALE output. 

Keywords: Adaptive Filters, Adaptive Noise Cancellation, Least Mean Square 

Algorithm, Adaptive Line Enhancer, Signal to Noise Ratio 
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ÖZ 

Birçok uygulamada, istenen bir sinyalin gürültü tarafından kirlenmesi karşı karşıya 

kalınan bir problemdir. İstenen sinyalin durağan bir yapısı olduğu durumda, sabit 

katsayılı sayısal süzgeçler gürültüyü yok etmek için yeterli bir performans sergilerler. 

Bununla birlikte, istenen sinyalin durağan bir yapısı olmadıgı durumda, sabit 

katsayılı sayısal süzgeçler gürültüyü yok etme işleminde bir performans azalması 

ortaya çıkmaktadır. 

Bu probleme çare olarak, uyarlanabilir gürültü yoketme metodu kullanılır. 

Uyarlanabilir gürültü yoketme metodunda, sayısal süzgeçin katsayıları uyarlanabilir 

bir algoritma vasıtasıyla hata sinyalinin değeri minimum olana kadar 

güncellenmektedir. 

Bu tezde, uyarlanabilir gürültü yoketme metodunun prensipleri uyarlanabilir kanal 

yükselticisi kullanarak çalışılmıştır. Uyarlanabilir kanal yükselticisinin Matlab'ın 

Simulink ortamında benzetimi yapılmış ve buradaki Simulink modeli sayısal sinyal 

işlemcisine (TI TMS320C6416T) yüklenerek, gerçek zamanda Matlab'dan bağımsız 

olarak kendi başına çalışması sağlanmıştır. 

Uyarlanabilir kanal yükselticisinin farklı sinyal gürültü oranı, süzgeç katsayı sayısı, 

ve uyarlanabilir algoritmanın adım büyüklüğü altındaki performansı ayrıntılı olarak 

çalışılmıştır. Adım büyüklüğü küçük olduğu zaman, istenen sinüs sinyalinin kestirimi 

iyi olur, fakat yakınsama hızı yavaşlar. Süzgeçteki katsayıların sayısı artırıldıkça, 

ALE çıkışı (istenen sinüs sinyali) daha doğru olar. Sinyal gürültü oranı artırıldıkça,  
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sinyal kestirimi daha başarılı olur ve ALE çıkışındaki hata sinyalinin küçülmesine 

neden olur. 

Anahtar Kelimeler: Uyarlanabilir Süzgeçler,  Uyarlanabilir Gürültü Yoketme, Enaz 

Ortalama Kare Algoritması, Uyarlanabilir Kanal Yükselticisi, Sinyal Gürültü Oranı. 
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Chapter 1 

1 INTRODUCTION 

1.1 Introduction 

In recent years of the last century there has been increased interest in adaptive filters 

for various signal processing applications. Adaptive filters have various 

configurations. The adaptive filter (ADF) configuration, known as adaptive line 

enhancer (ALE) has been previously proposed by Widrow et al. (Widrow, et al., 

1975) for separating a correlated component from uncorrelated components. The 

ALE structure has been successfully applied to spectral estimation by Griffiths 

(Griffiths, 1975) and to interference refusal by Symons (Symons, 1978). The steady-

state response of the ALE under multiple sinusoids has been studied by Zeidler et al. 

(Zeidler, J., Satorius, Chabries, & Wexler, 1978). The response of the ALE to a 

chirped and Doppler shifted sinusoid has been analyzed by Treichler (Treichler, 

1980). The signal to noise ratio (SNR) performance of ALE using the least mean 

square (LMS) algorithm has been studied by Nehorai and Malah (Nehorai, 1980). 

The optimized lattice-form of ALE for a sinusoidal signal has been derived by Reddy 

et al (Reddy, Egardt, & Kailath, 1987).  

Multiplicative noise models are also considered in some signal processing 

applications (Swami, 1994). Mounir Ghogho studied the analytic behavior of the 

LMS-ALE for sinusoids corrupted by multiplicative and additive noise (Ghogho, 

1998). Fenglin and Chris studied the frequency properties of an ALE (Fenglin & 
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Chris, 2004). Asaad used white and color noise cancellation using adaptive feedback 

cross-coupled line enhancer filter. Saed et al studied new ALE based on singular 

spectrum analysis (Saeid, Tracey, & Abolghasemi, 2012). 

This thesis talks about the overall problem of separating a signal that has been 

corrupted by the noise. The separation process is performed by using an ALE with 

LMS algorithm. The performance of ALE for one and two sinusoidal signal case is 

investigated under different parameters such as signal to noise ratio, filter length and 

step size of the LMS algorithm. Simulation results obtained from Simulink and 

experimental results obtained from a DSP  in real time are presented. 

1.2 Adaptive Filtering  

The purpose of an adaptive filter (ADF) is to remove the noise from a signal, which 

is corrupted by a noise. The ADF has variable characteristics whose coefficients 

cannot be specified in advance. The coefficients are altered mechanically and 

intelligently by an adaptive algorithm. This algorithm has an important role of 

supporting ADF to be applied in fields where the exact filtering operation required is 

unidentified or is non-stationary (M.Kuo & Lee, 2001). 

ADFs are usually classified under two categories: finite-impulse-response (FIR) adaptive 

filter (M.Kuo & Lee, 2001); this filter’s impulse response has a finite duration since it 

goes to zero after a finite time, and infinite impulse-response (IIR) adaptive filter 

(M.Kuo & Lee, 2001); it has an internal feedback mechanism and continues to respond 

indefinitely. IIR adaptive filters have diverse applications and they are beyond the scope 

of this thesis. 
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The ADF have various configurations as shown in the Figure 1.1 (Ifeachor & Jervis, 

2002) :  

(i) Adaptive noise canceller (ANC).  

(ii) System-modelling (or system identification). 

(iii) Adaptive-line-enhancer (ALE). 

The ANC configuration which is shown in Figure 1.1(i) has two input signals b(k) 

and x(k). The signal b(k) is assumed to be b(k) = s(k)+n(k). The s(k) is uncorrelated 

with x(k) and n(k), and n(k) is correlated with x(k). The signal x(k) is processed by 

ADF to produce an estimate  ̂   . The estimate of signal s(k) can be obtained by 

subtracting  ̂    from b(k). 

The system modelling configuration which is shown in Figure 1.1(ii) requires three 

modules to perform its task. 

i. System input (noise signal).  

ii. An unknown system module that is an IIR filter. 

iii. An adaptive FIR filter module where the FIR filter has L coefficients that are 

adjusted by means of the LMS algorithm. 

The three modules are conFigured as shown in Figure 1.1 (iii). From this 

configuration we can determine how closely the impulse response of the FIR model 

approximates the impulse response of the unknown system after the LMS algorithm 

has converged. The discussion about the ALE is given in section 1.2.2. 
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Figure ‎1.1: Some Configurations of the ADF 
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1.2.1 Adaptive Algorithms 

Adaptive algorithms are used to update the weights,      (coefficients)  of the ADF 

and reduce the error signal, e(k), of the ADF according to some performance 

measures. These measures are convergence rate, minimum mean square error (MSE), 

computational complexity, stability, robustness, and filter length (number of 

weights). 

There are several categories of adaptive-algorithms (Dhull, Arya, & Sahu, 2011) : 

i. Least-Mean-Square (LMS) Algorithm. 

ii. Recursive-Least-Squares (RLS) Algorithm . 

iii. Kalman-Filter(KF) Algorithm. 

The LMS algorithm is the most efficient algorithm in terms of memory storage and 

calculations. In addition, the LMS algorithm has been the least suffering in terms of 

the numerical stability problem when compared with the problem inherent in RLS, 

and KF algorithms. This makes LMS algorithm is one of the first choices in several 

applications. However, the RLS algorithm is the best in terms of convergence 

properties. The LMS algorithm will be explained in chapter 3.  

The RLS algorithm was proposed in order to provide superior performance compared 

to those of the LMS algorithm and its variants, with few parameters to be predefined, 

especially in highly correlated environments. In the RLS algorithm, an estimate of 

the autocorrelation matrix is used to decorrelate the current input data. Also, the 

quality of the steady-state solution keeps on improving over time, eventually leading 

to an optimal solution (Haykin, 2002).  



6 

Even though the RLS algorithm has very good performance in such environments, it 

actually suffers from its high computational complexity. Also, In RLS algorithm, the 

forgetting factor has to be chosen carefully such that its value should be very close to 

one in order to ensure stability and convergence of the RLS algorithm. However, this 

in turn poses a limitation for the use of the algorithm because small values of 

forgetting factor may be required for signal tracking if the environment is non-

stationary (Sayed, 2008). 

The KF is a mathematical technique widely used in the digital computing of control 

systems, navigation systems, and outer-space vehicles. The KF extracts a signal from 

a long sequence of noisy or incomplete technical measurements. The KF, and its later 

extensions to nonlinear problems, represents one of the most widely applied products 

of modern control theory. The KF uses elements of estimation theory to obtain the 

best unbiased estimator of a state of a dynamic system using previous measurement 

knowledge. Previous algorithms suffer from the computational limitation of using all 

previous information to estimate the state of the system at the next time step. In 

contrast, the Kalman algorithm makes use of the previous time step information and 

makes a-priori and a-posteriori predictions which are corrected using the new 

measurement (Kalman, 1960). The RLS and KF algorithms are beyond the scope of 

this thesis. 

1.2.2 Concept of Adaptive Filters as Adaptive Line Enhancer  

In this section it will be described how it is possible to get a narrowband signal (s(k)) 

which is contaminated by a wideband noise (n(k)). Usually, the n(k) has larger power 

than the power of s(k) (M.Kuo & Lee, 2001) which results in negative decibels (dB) 

of signal to noise ratio (SNR). The configuration of an ALE is shown in the Figure 

1.2.  
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 The input signal of ALE is assumed to be b(k) = s(k)+n(k). The input signal of the 

ADF is the delayed version of b(k). The amount of delay must be chosen such that 

n(k) is de-correlated and s(k) is correlated. The ADF produces an estimate of s(k) 

which is denoted by  ̂   . The ADF is called linear prediction filter because it 

predicts the recent sample of s(k) from its previous samples and at the same time 

weakens  the wideband signal. The error signal at the output of ALE can be written 

as 

e(k) = b(k)-y(k) = s(k) + n(k) -  ̂             1.1 

It is clear that error signal is a wideband noise and the output of the ADF is 

narrowband signal. Because of its ability to enhance sinusoidal signal in the presence 

of noise, this scheme is therefore called adaptive line enhancer (Vinay & Jone, 

1996), (Bose, 2003). 

 
 

Figure ‎1.2: The Structure of the ALE 
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1.3 Objective of the Dissertation 

The main objective of this dissertation is to implement a real-time noise cancellation 

application by using ALE configuration. The ALE configuration is simulated using 

SIMULINK of the MATLAB, and is implemented by using a DSP card (Texas 

Instruments (TI) TMS320C TMS320C6416T Digital Signal Processor) in real-time.  

The performance of ALE under different signal to noise ratio, number of coefficient, 

and step size, has been studied extensively. Simulation and experimental results are 

presented and discussed. 
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Chapter 2 

2 ADAPTIVE NOISE CANCELLATION 

2.1 Basic Principles of Adaptive Noise Cancellation 

Adaptive noise cancelation (ANC) is an alternative technique of estimating signals 

corrupted by additive noise. The ANC is greatly useful in many applications which 

are listed below (Widrow, et al., 1975) . 

i. Cancelling 60Hz Interference in Electrocardiography. 

ii. Cancelling the Donor ECG in Heart Transplant Electrocardiography. 

iii. Cancelling the Maternal ECG in Fetal Electrocardiograph. 

iv. Cancelling Noise in Speech Signals. 

v. Cancelling Antenna Sidelobe Interference. 

vi. Cancelling Periodic-Interference without an External Reference Source. 

vii. Adaptive Self Tuning Filter. 

The ANC configuration and its two input signals are b(k) and x(k) are shown in Figure 

2.1. The signal b(k) is assumed to b(k) = s(k) + n(k). The signal s(k) is uncorrelated 

with x(k) and n(k) , and n(k)  is correlated with x(k). The signal x(k) , which is a 

measure of the contaminating signal, is processed by the ADF to produce an 

estimate  ̂   . The estimate of signal  ̂    can be obtained by subtracting  ̂    from 

b(k) as follows.  
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           ̂               ̂     ̂    (2.1) 

Hence, it is obvious from equation (2.1) that the ANC scheme removes noise from 

b(k) and produces the estimate of desired signal s(k). 

 

2.2 Wiener Filter Theory in Adaptive Noise Cancellation 

The adaptive filtering algorithms depend on Wiener filter (WF) principle shown in 

Figure 2.2. The WF can be considered as the optimal filter which achieves the 

required objective. This filter has two input signals x(k) (noise) and b(k) (signal plus 

noise). It should be noted that b(k) is correlated with x(k). The signal x(k) is 

processed by WF so that the output signal is the optimal estimate of signal b(k). The 

error signal e(k) can be produced by subtracting y(k) from b(k) (Ifeachor & Jervis, 

2002), (Bose, 2003), (Kaur, 2011) as follows.  

Figure ‎2.1: Adaptive Noise Canceller Scheme 
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      ∑            

   

   

 (2.2) 

Where L represents the number of coefficients in the WF (FIR filter) and X(k) and 

weight vector   are given as 

     [

    
      

 
          

]           [

    
    

 
      

] 

The estimated value of the squared error is given as 

                                              (2.3) 

The mean square error (MSE) ( ) is obtained by taking the expectations E[.] of both 

sides of equation (2.3). 

   [     ]   [     ]    [             ]   [                    ] 

Figure ‎2.2: The Wiener Filter Configuration 
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After replacing  [     ] by   ,  [        ] by P, and  [          ] by R, the  

above equation reduces to 

                            (2.4) 

Note that the   is cross-correlation vector (with length L) and   is auto-correlation 

matrix (with size L×L). Figure 2.3 shows the plot of the MSE against the filter 

coefficients. It is clear that it looks like a bowl with a unique minimum point.  

Starting with the equation for the mean square error (equation 2.4), derive the 

Wiener-Hopf equation.  

The gradient,       of the MSE is obtained by differentiating the MSE with respect 

to the weight vector  , and setting the result to zero (Haykin, 2002):  

     
  

     
 

   

     
 

          

     
 

          

     
 

(2.5) 

Now,  

   

     
   (2.6) 

          

     
      (2.7) 

             

     
        

(2.8) 

Using these results, and equation 2.5 becomes 
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                 (2.9) 

Setting       , and equation 2.5 becomes 

     
   

     
               (2.10) 

The optimum coefficient vector is then given by 

           (2.11) 

Equation (2.11) is called the Wiener-Hopf equation or solution. The adjustment of 

the filter weights is the task of the ADF algorithm. 

 

Figure ‎2.3: The Error Performance Surface 
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2.3 Comparison of Wiener and Adaptive Filter Approaches 

Table 1: Comparison of Wiener and Adaptive Filter Approaches. 

Wiener filter (WF) Adaptive filter (ADF) 

 

i. When designing a WF a priori 

knowledge about the actual 

statistical properties of the data to be 

processed is required. Only when the 

properties match the a priori 

information on which the design of 

the filter is based, the filter is 

optimum. It may impossible to 

design the Wiener filter because this 

information is not known completely 

and an appropriate design may no 

longer be optimum. A possible 

solution to this problem is to first 

estimate the statistical parameters of 

the relevant signals and then 

compute the filter parameters 

(Geboren, 1992). 

ii. The WF solves the signal estimation 

problem for stationary signals 

(Geboren, 1992). 

iii. The WF is optimal in the sense of 

the minimum MSE (Haykin, 2002). 

 

i. The ADF relies for its operation on 

a recursive algorithm, which makes 

it possible for the filter to perform 

satisfactorily in an environment 

where complete knowledge of the 

relevant signal statistics is not 

available, or when the statistics 

slowly vary in time (Geboren, 

1992), (Haykin, 2002). 

ii. The ADF is used for estimation of 

nonstationary signals and systems, 

or in applications where a sample-

by sample adaptation of a process 

and/or a low processing delay is 

required (Geboren, 1992). 

iii. The ADF isn’t optimal filter, it 

adapts its weights, by using 

adaptive algorithm (LMS, RLS,and 

etc), until a minimum MSE 

is ‎obtained between its output  and 

the desired input signal. (Geboren, 

1992), (Ifeachor & Jervis, 2002). 
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Chapter 3 

3 THE LEAST MEAN SQUARE ALGORITHM 

3.1 Introduction  

The least mean square (LMS) algorithm is one of the simple, most successful and 

famous adaptive algorithms which can be applied easily in real-time [Said, 2008].  

The LMS algorithm which was developed by Widrow et al. (Widrow, et al., 1975), 

trains its input correlation matrix and minimizes the MSE. The ratio of maximum to 

minimum eigenvalues has an important influence on the speed of convergence. If this 

ratio is small, it would speed up the rate of convergence, and if it is large, it would 

reduce the speed rate of convergence. 

The LMS algorithm makes use of the steepest descent algorithm in which the 

weights are updated by using the following equation (Ifeachor & Jervis, 2002)  

                  (3.1) 

Where      is the weight,      is the true gradient vector defined by (2.9), k is the 

kth sampling instant, and   is the step size. It should be noted that the stability and 

the convergence rate depends on the value of step size. 

It is clear that in order to be able to compute       ,      needs information 

about   and   as shown in equation (2.9).  
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However, the LMS-algorithm can estimate the weights of the filter without using the 

matrix     in the Wiener-Hopf equation (2.11) by using the direct auto-correlation 

and cross-correlation computation in real-time. Then the update of weights can be 

obtained as 

                         (3.2) 

Where  

                     (3.3) 

The LMS algorithm predicts the weights, and these predictions become better as the 

filter learns the characteristics of the signal. Finally, the weights are converged to 

their optimum values. The convergence is conditional given by 

    
 

    
 (3.4) 

Where   controls the convergence rate and the stability,      is the maximum 

eigenvalue of the input data convergence matrix (Ifeachor & Jervis, 2002). 

3.1.1 Implementation of LMS Algorithm 

The computational steps for the LMS algorithm are summarized below (Dhull, Arya, 

& Sahu, 2011), (Ifeachor & Jervis, 2002) 

1. First of all, set all the weights                    to zero. 

For each sampling instant, k =1,2,... , carry out step (2) to (4) shown below: 
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2. Calculate filter output 

     ∑            

   

   

 

3. Calculate the error  

               

4. Finally, update the next weights  

                           

The flowchart of the computational steps is given in Figure 3.1. 
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Figure ‎3.1: Flowchart for the LMS Algorithm 
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3.2 Stability of LMS Algorithm 

Stability can be considered as an important performance measure for an adaptive 

system. Large step size may result in an undesired convergence of the LMS 

algorithm which may lead to an unstable operation of the adaptive system. In most 

cases, the adaptive systems are operated as marginally stable where the stability can 

be determined by the initial conditions, transfer function of the system and the step 

size (Haykin, 2002) (Boroujeny, 1998). 

3.3 Convergence Properties of the LMS Algorithm 

The convergence to the optimal weights (    ) is possible only if the step size (µ) is 

satisfied as in equation (3.4). The convergence from an initial weight (  ) to the 

     corresponds to the MSE convergence from      to     . Thus, the MSE 

convergence is moved toward its smallest value which is generally used as the 

performance criterion in adaptive systems because of its simplicity. The squared 

error e
2
(k) is non-stationary and also the weights adapt and move toward optimal 

weights through the adaptation process. The learning curve of a given adaptive 

algorithm can be obtained by plotting the MSE versus k. Since the MSE is 

considered as a performance criterion, the learning curve can be used to describe the 

transient behavior of the adaptive algorithm. 

The time constant of each adaptive mode can be computed by using the step size, and 

the eigenvalue associated with that mode. The rate of convergence is limited by the 

slowest mode. Thus the overall MSE time constant can be obtained as (Haykin, 

2002) (M.Kuo & Lee, 2001) 
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 (3.5) 

Since the mathematical relationship between      and   are inversely related, this 

means that the greatest      corresponds smaller  , resulting in a slower speed of 

convergence. On the other hand, if   has a large value,       becomes smaller 

leading to a faster convergence (M.Kuo & Lee, 2001) (Vinay & Jone, 1996). 

The maximum       keeps an estimate performance of the filter, therefore only large 

eigenvalues will make the most important influence on the time of the convergence 

(M.Kuo & Lee, 2001). The ADF error convergence may be controlled by fewer 

modes than the number of ADF weights. Consequently, the MSE often converges 

more rapidly than the upper bound of equation(3.5) would suggest.  

Because of the mathematical relationship between      and      , small valued 

     gives a large      , resulting in a slow convergence rate. If the       is very 

large, it will limit the selection of   , since small valued   can satisfy the stability 

constraint.  

If the maximum eigenvalue,      , is very large and the minimum  eigenvalue,     , 

is very small, according to equation (3.5),       will be very large, resulting in very 

slow convergence. As previously mentioned in equation (3.4), the fastest 

convergence occurs when        ⁄  . Substituting        ⁄  into equation (3.5) 

gives (M.Kuo & Lee, 2001) 
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 (3.6) 

When the input is stationary and µ is sufficiently small, equation (3.6) will lead to 

the convergence speed of the algorithm which depends on the eigenvalue spread of 

the matrix   (Asaad, 2008). 

3.4  Definition of Mean Square Error 

Firstly, the mean square error, (MSE) is defined as 

       [     ]                        

This equation was defined before in equation (2.4). Since the computation of      

requires information about   and  , then it is estimated. The estimated gradient 

  ̂      results in the gradient estimation noise. The gradient of the true       , 

after the ADF algorithm converges, the gradient becomes zero       , but the 

estimated gradient   ̂    . As it was indicated in equation (3.1), perturbing the 

gradient drives the weight vector      away from the optimum weight (    ) 

solution. Consequently, the estimation of the gradient noise avoids from remaining at 

the weight of the optimum solution in steady state. The result is that the weight is 

changed randomly about the optimum weight solution. Because the optimum weight 

solution corresponds to the MSE of the minimum point, when the weight moves 

away from the optimum weight solution, it causes a large MSE compared to the 

value of the minimum for it. Thus this will result in excess noise at output of the 

ADF (Ikuma & (Louis) Beex, 2008) (M.Kuo & Lee, 2001). 
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The noise in the weight vector causes excess MSE after convergence. This excess 

MSE is defined as   

         
   

 
           (3.7) 

It is clear that the excess MSE           is directly proportional to µ. It corresponds 

to the worst performance of the steady state after convergence for the biggest µ 

(Miyagi & Sakai, 2005). However, according to equation (3.5) the larger µ results in 

faster convergence (M.Kuo & Lee, 2001). There is a design trade-off between the 

convergence speed, and the        . 

Also, it is clear from equation (3.7) that the        , is directly proportional to the 

filter length (L). The biggest L results in larger noise, and also, implies a smaller   

leading to a slower convergence. Finally, the biggest L means the characteristics of 

the filter are the best. The finite precision of the error will be influence by a chosen 

   and L (M.Kuo & Lee, 2001). 
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Chapter 4 

4 ADAPTIVE LINE ENHANCER 

4.1 Introduction 

The ALE structure is shown in Figure 4.1. The input signal, b(k), which is 

converted ‎into a digital signal from an analog signal b(t), consists of a narrowband 

signal s(k) ‎and a broadband noise n(k). In the ALE structure, there are two input 

channels. One ‎of them is treated as desired signal channel to the ADF. The other 

channel drives ‎through a de-correlation delay (D) which is applied as a reference 

input signal to the ADF. ‎The ADF adapts its weights, by using LMS algorithm, until 

a minimum MSE is ‎obtained between its output y(k) and the desired input signal b(k) 

(Saeid, Tracey, & ‎Abolghasemi, 2012), (Fenglin & Chris, 2004). When the 

adaptation process is ‎completed, the ALE operates like a bandpass FIR filter having 

a peak in its ‎frequency response at the frequency of the sinusoid. It should be noted 

that in the ‎case of two sinusoids, there exists two peaks. The noise outside the 

frequency band ‎of the signal is cancelled. ‎ 

The performance of the ALE for a given application is determined by 

four ‎parameters. These are filter length (L), signal to noise ratio (SNR),  step ‎size (µ), 

and delay (D).‎‎ It is important to note that D should be greater than de-correlation 

time of the ‎broadband signal n(k) and less than the de-correlation time of the 

narrowband signal ‎s(k) for the correct operation of the ALE.‎ 
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The ALE concept can also be applied to a number of problems such as suppression 

of ‎narrowband interference in a broadband signal, and adaptive self-tuning 

filter. ‎However, these applications are beyond the scope of this thesis.‎ 

 

 

4.2 ALE Using FIR Filter 

The ADF in the ALE is usually a finite impulse response (FIR) filter as shown 

in ‎Figure 4.2. The input b(k) consists of sinusoids, s(k), and white noise n(k).‎ 

The operation of ALE can be explained as follows. The delay D de-correlates 

the ‎noise components of b(k) and introduces a small phase shift between the 

sinusoidal ‎components. The ALE has a transfer function equivalent to that of a ‎band-

pass filter with center frequency equal to the frequency of sinusoidal components. In 

this case, the noise ‎component of the delayed input is blocked. The ALE can be used 

to estimate and ‎track instantaneous frequencies. 

The transfer function of FIR within the ADF framework can be written as 

         
    

     
  ∑    

  

   

   

 (4.1) 

Where       {    }         {      }. 

Figure ‎4.1: Structure of the ALE 
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Taking inverse z-transform of H(z) gives the impulse response of the FIR filter as 

          {                } (4.2) 

  

 

 

4.3 Steady-State Behavior 

When the LMS algorithm reaches its optimal value in the steady state, the weight 

 (k)will converge to          and the ‎ALE output will be (Fenglin & Chris, 2004) 

(Widrow, et al., 1975) equal to 

                      (4.3) 

where b is input vector of the adaptive filter. Taking z transform of equation (4.3) 

gives 

Figure ‎4.2: The Structure of the ALE with FIR Filter 
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                       (4.4) 

Therefore, the transfer function of the ALE in the steady state can be written as 

     
    

    
                (4.5) 

If the input signal has a frequency of   , then the z-transformation of optimum 

weight vector can be written as   

         
   

       
   

  ∑(
 

  
)
 

 

   

   (4.6) 

where          . 

Substituting equation (4.6) into equation (4.5) and making use of geometric series, 

the transfer function of the ALE in the steady state can be written as 

     
   

       
(
 

  
)
      (

 
  

)
  

  

    (
 
  

)
  

  
    (4.7) 

Transforming equation (4.7) into the frequency domain yields 

         
   

       
            

                  

                 
    

 

 
   

       
             

   
   

   i [(
 
 
)         ] 

    i [(
 
 
)         ] 

 
(4.8) 
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Where   is the sampling period. When     , the frequency response of the ALE 

in the steady state can be obtained as 

         
   

       
 (4.9) 

It is clear from equation (4.8) that the frequency response of the ALE varies with a 

change of the input characteristic frequency    meaning that the ALE possesses the 

property of time varying ability and frequency tracking filter functionality. It can be 

seen from equation (4.9) that the output signal of the ALE at the input frequency is 

same as the input signal with an amplitude gain of           (Fenglin & Chris, 

2004). Where A is the amplitude of the sinusoidal signal. 

4.4 The Influence of the Input SNR 

The gain of the ALE with SNR and L can be computed by using equations (4.8) and 

(4.9).  Three SNR ranges can be used to explain the enhancement function of the 

ALE (Fenglin & Chris, 2004). 

i. High SNR (SNR>0 dB) . When the power of the broadband signal (noise) is less 

than that of narrowband signal, the gain value of the optimal filter becomes one. 

In this case, the broadband signal will be suppressed to a minimum value 

according to the LMS algorithm and the narrowband signal will through the ALE. 

In such a case, the output signal power can be written as 

 [            ]   {[   
              ][         

      ]}  

   
                (4.10) 

Where         is given by 
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(4.11) 

where   is the factor vector,       is the power of the noise, and     is auto-

correlation matrix of the filter input defined as 

     [            ]   [               ]  

         (4.12) 

where     is auto-correlation matrix of signal s(k) and     is auto-correlation 

matrix of the of noise n(k). 

Substituting equations (4.10) and (4.11) into equation (4.9), and simplifying gives 

 [            ]   
    

         
 (   

     

 
) (4.13) 

Equation (4.13) shows that when b(k) passes through the ALE, the power of s(k) 

remains the same, while the noise power decreases to 
      

 
 of its original power. 

ii. Medium SNR (-10 dB < SNR < 0 dB). The gain value of the optimal filter 

changes from zero to one meaning that the narrowband signal can partially pass  

through the ALE. 

iii. Low SNR (SNR<-10 dB). The gain value of the optimal filter becomes zero. In 

this case, the ALE cannot suppress the broadband signal or equivalently, the 

narrowband signal cannot be enhanced by the ALE. As a consequence of this, the 

broadband signal causes a large value of the mean error at the ALE output. 
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4.5 The Influence of the Filter Length 

It is clear from equation (4.8) that the number of coefficients (L) in the FIR filter has an 

influence on the steady-state response of ALE. The value of L specifies how accurately a 

bandpass filter can be modeled by the ALE. In addition to this, it affects the convergence 

rate considerably. For instance, when L is large, the computation time of the whole 

system will increase which may slow down the convergence rate. When, it is small, this 

time the computation time will be decreased and the convergence rate will be faster 

(Boroujeny, 1998). On the other hand, it can affect the stability of ALE, and the MSE of 

the system. 

  



30 

Chapter 5 

5 SIMULATION AND EXPERIMENTAL RESULTS 

5.1 Introduction 

The ALE configuration is simulated by using Simulink software. The performance of 

ALE with one and two sinusoids has been studied using various values of the 

parameters. An implementation of ALE configuration using a TI TMS320C6416T 

DSP card (see the details in Appendix) has been carried out in real time. Again, the 

performance of ALE in real time has been investigated by using different values of 

the parameters. 

5.2 Simulation Results 

5.2.1 One Sinusoid  

5.2.1.1 The Influence of the Step Size  

Consider the block diagram of the ALE shown in Figure 5.1 with D=12. The input 

sinusoidal signal which is defined as s(k)=sin(2 f0/Fs), where Fs=8000Hz  and  

f0=40Hz, is shown in Figure 5.2. The Gaussian white noise, n(k), has a zero mean 

with variance equal to one. The input signal b(k)=s(k)+n(k) which has a SNR of 10dB 

is shown in Figure 5.3.  
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Figure ‎5.2:  The Input Sinusoidal Signal s(k) 

 
Figure ‎5.3: The Input Sinusoidal Signal Plus Noise b(k) 
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Figure ‎5.1: ALE Configuration with One Sinusoidal Input 
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The influence of the step size on the dynamic performance of the ALE has been 

studied by using b(k) shown in Figure 5.3. Figures 5.4, 5.5 and 5.6 show the ALE 

outputs obtained by using different step size values (µ=0.0001, µ=0.001, and 

µ=0.01), respectively. The filter length was equal to L=10.  

 
Figure ‎5.4: The Output of the ALE with µ = 0.0001 

 
Figure ‎5.5: The Output of the ALE with µ = 0.001 
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Figure ‎5.6: The Output of the ALE with µ = 0.01 

It is clear from these results that the convergence rate of the LMS algorithm is slow 

when the step size is small. But, when the step size is increased, the convergence rate 

increases considerably and y(k) tracks its reference faster. 

5.2.1.2 The Magnitude Response of the Filter 

Figures 5.7, 5.8, and 5.9 show b(k) for different SNR values equal to -10dB, 0dB, 

and 10dB, respectively. The input sinusoidal signal s(k) has a frequency of 

f0=400Hz. The sampling frequency is assumed to be Fs=8000Hz. The white noise 

(n(k)) has a zero mean with its variance is equal to one. 

  
Figure ‎5.7: Input Signal of ALE with SNR = -10dB 
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Figure ‎5.8: Input Signal of ALE with SNR = 0dB 

 
Figure ‎5.9: Input Signal of ALE with SNR = 10dB 
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      |     | 

where H(    represents the transfer function of the ALE in the frequency domain.  

The magnitude responses of the ALE obtained by different µ values are shown in 

Figures 5.10, 5.11, and 5.12. The length of FIR filter is L=128. The input signal to 

the ALE is as shown in Figure 5.9. The input signal b(k) was delayed by one sample 

(D=1). 

 
Figure ‎5.10: Magnitude Response of Filter with µ=0.01 

 
Figure ‎5.11: Magnitude Response of Filter with µ=0.001 
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Figure ‎5.12: Magnitude Response of Filter with µ=0.00001 
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Figure ‎5.13: Magnitude Response of Filter with L= 10 

 
Figure ‎5.14: Magnitude Response of Filter with L = 30 

 
Figure ‎5.15: Magnitude Response of Filter with L= 80 
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Again, it can be seen that there exists a peak at a normalized frequency of 0.1. It is 

obvious that when L is increased, the magnitude response becomes more accurate 

and the attenuation level of the filter increases. 

The magnitude responses of the ALE when b(k) has different SNR values are shown 

in Figures 5.16, 5.19, and 5.22. The outputs of the ALE corresponding to these 

results are shown in Figures 5.17, 5.20, and 5.23. The error signals of the ALE for 

the same cases are shown in Figures 5.18, 5.21, and 5.24. The step size and the filter 

length are set to 0.00001 and 128, respectively. 

 
Figure ‎5.16: Magnitude Response of Filter with SNR = -10dB 

 
Figure ‎5.17: The Output of the ALE with SNR = -10dB 
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Figure ‎5.18: The Error of the ALE with SNR = -10dB 

 
Figure ‎5.19: Magnitude Response of Filter with SNR = 0dB 

 
Figure ‎5.20: The Output of the ALE with SNR = 0dB 
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Figure ‎5.21: The Error of the ALE with SNR = 0dB 

 

Figure ‎5.22: Magnitude Response of Filter with SNR = 10 dB 

 
Figure ‎5.23: The Output of the ALE with SNR = 10dB 
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Figure ‎5.24: The Error of the ALE with SNR = 10dB 

 
Figure ‎5.25: Mean Square Error of the ALE with Different SNR values 

 

It can be easily seen from these results that the performance of the ALE is not good 

for the SNR value of -10dB. The ALE output y(k) is a distorted sinusoidal and the 

error signal e(k) is not minimized. However, when SNR value is increased (0dB and 

10 dB), the performance of the ALE increases considerably which is clearly visible 

in Figures 5.20, 5.23 and 5.25. 
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5.2.2 Two Sinusoids  

Consider the block diagram of the ALE shown in Figure 5.26 with D=1. The input 

sinusoidal signal is assumed to be s(k)=sin(2 f0/Fs)+cos(2 f1/Fs), where  Fs=8000Hz,  

f0=800Hz,  f1=2000Hz. The Gaussian white noise, n(k), has a zero mean with 

variance equal to one.  

 
Figure ‎5.26:  ALE Configuration with Two Sinusoidal Input 

The magnitude responses of the ALE obtained by different µ values are shown in 

Figures 5.27, 5.28, and 5.29. The length of FIR filter is L= 128. The SNR of b(k) is 

10dB. 
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Figure ‎5.27: Magnitude Response of Filter with µ = 0.001 

 
Figure ‎5.28: Magnitude Response of Filter with µ = 0.0001 

 
Figure ‎5.29: Magnitude Response of Filter with µ = 0.00001 
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It can be seen that the ALE generates two peaks at the normalized frequencies of 0.2 

(
  

    
) and 0.5 (

  

    
) which corresponds to the sinusoidal frequencies of 800Hz and 

2000Hz, respectively. It is clear that the ALE operates like a bandpass filter having 

two bandpass frequencies at 800Hz and 2000Hz. All other signal components with 

different frequencies are suppressed (or attenuated) by the filter. It is obvious that 

when µ is decreased the magnitude response becomes more accurate and the 

attenuation level of the filter becomes smoother.  

The magnitude responses of the ALE obtained by different L values are shown in 

Figures 5.30, 5.31, and 5.32. The step size was set to 0.00001. The SNR of b(k) was 

assumed to be 10dB. 

 
Figure ‎5.30: Magnitude Response of Filter L = 10 
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Figure ‎5.31: Magnitude Response of Filter L = 50 

 
Figure ‎5.32: Magnitude Response of Filter L= 140 

Again, it can be seen that there exists two peaks at the normalized frequencies of 0.2 

(
  

    
) and 0.5 (

  

    
). It is obvious that when L is increased, the magnitude 

response becomes more accurate and the attenuation level of the filter increases. 
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5.3 Experimental Results  

5.3.1 Introduction  

The Simulink model of ALE configuration which was studied in section 5.3, has 

been loaded to the Texas Instruments (TI) TMS320C6416T DSP card. Figure 5.33 

illustrates the connections of the ALE on the DSP card with external devices. 

 
Figure ‎5.33: The ALE Configuration with TI TMS320C6416T DSP Card 

5.3.2 Implementation of ALE in Real-Time 

In the experimental study, the ALE configuration shown in Figure 5.33 was 

used. ‎The sinusoidal signal s(t) generated by the function generator is shown in 

Figure 5.34. ‎The frequency was equal to 40Hz, and the phase shift was equal to zero. 

Noise has ‎zero mean with variance equal to one as shown in Figure 5.35. After 

converting these ‎signals into digital form by using analog to digital converter (ADC), 

the input signal ‎b(t) shown in Figure 5.36 is formed. It should be noted that b(t) is 

very similar to the ‎waveform shown in Figure 5.3 obtained by simulation.‎ 
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The delay (D) is set to 12 and the step size was set to 0.0001. The filter length ‎was 

10. The output of the ALE is shown in Figure 5.37. It is obvious that y(t) is 

very ‎similar to s(t) which verifies the fact that ALE output is the estimation of s(k)‎. 

 

Figure ‎5.34: The Input Sinusoidal Signal s(t) 

 

Figure ‎5.35: The Noise Signal n(t) 
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Figure ‎5.36: The Input Signal of ALE b(t) 

 

Figure ‎5.37: The Output of ALE with µ = 0.0001 

5.3.3 The Influence of the Step Size  

In this part, the influence of step size on the convergence rate is studied in real 

time. ‎The input and noise signals (s(t) and n(t)) are exactly the same that were 

mentioned in ‎simulation section.‎ 

The experimental results that correspond to the simulation results (Figures 5.4, 

5.5, ‎and 5.6) are shown in Figures 5.38, 5.39, and 5.40. It is clear that the 
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experimental ‎results are in good agreement with the simulation results. The dynamic 

performance ‎of ALE increases considerably when the step size (µ) is increased. 

When the step size ‎is large, there exists an estimation error and y(k) becomes 

distorted. This case is ‎shown in Figures 5.41, 5.42, and 5.43‎. 

 

Figure ‎5.38: The Output of ALE with µ = 0.0001 

 

Figure ‎5.39: The Output of ALE with µ = 0.001 
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Figure ‎5.40: The Output of ALE with µ = 0.01 

Obviously, the error involved in the ALE is negligibly small when the step size is 

very small as shown in Figure 5.41. But, when the step size is increased the 

convergence rate increases resulting in a faster convergence rate. However, in this 

case, the estimation error will be larger as shown in Figures 5.42, and 5.43.  

Therefore there is a trade-off between a faster convergence and lower estimation 

error. 

 

Figure ‎5.41: The Output of ALE after Convergence with µ = 0.0001 
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Figure ‎5.42: The Output of ALE after Convergence with µ= 0.001 

 

Figure ‎5.43: The Output of ALE after Convergence with µ= 0.01  
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Chapter 6 

6 CONCLUSIONS 

In this thesis, the noise cancellation problem has been studied by using an 

adaptive ‎line enhancer (ALE). The ALE configuration has been simulated by using 

Simulink ‎of Matlab having different parameters both in the input signal and in the 

ALE. The ‎theoretical considerations have been verified experimentally by using a 

TI ‎TMS320C6416T DSP card in real time.‎ 

The performance of the ALE under different parameters such as the step size, 

filter ‎length, and SNR has been studied extensively by simulations and experiments 

when ‎the input signal has one and two sinusoidal signal components together with a 

noise. ‎The simulation and experimental results showed that whenever the value of 

the step ‎size is small it leads to a good estimation of the sinusoidal signal, but the 

convergence ‎speed slows down. On the contrary, whenever the value of the step size 

is large, the ‎output of ALE (y(k)) becomes distorted, and the convergence speed 

increases ‎considerably.‎ 

Again, the simulation and experimental results showed that when the step size 

and ‎SNR are kept constant, the ALE output becomes more accurate when 

more ‎coefficients are used in the filter. But, more coefficients increase the cost of the 

filter, ‎and therefore, it should be selected carefully. For instance, the biggest filter 

length ‎may result in a large estimation error. ‎ 
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Finally, the simulation and experimental results showed that when the step size 

and ‎filter length are kept constant, the ALE output becomes more accurate when 

SNR ‎has large values. For instance, when SNR value is -10dB, the ALE cannot 

estimate ‎the sinusoidal signal and suppress the noise at its output. However, when 

SNR value ‎is increased the estimation becomes more successful resulting in a small 

error at the ‎ALE output. 
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Appendix A: Texas Instruments 

A.1 Description  

The 6416 DSP Starter Kit (DSK) is an all-in-one evaluation platform for the 

TMS320C6416T Digital Signal Processor from Texas Instruments. It includes a 

target board that can be used as a reference design for interfacing the DSP to 

common devices such as SDRAM, Flash and a codec as well as a special 

introductory version of TI's flagship Code Composer Studio development tools. An 

on-board JTAG emulator allows debug from Code Composer Studio through your 

PC's USB port.  

This kit contains everything you need to get started with TI DSPs. It can also be used 

with the full version of Code Composer Studio and an external JTAG emulator. 
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A.2 System Requirements  

• 500MB of free hard disk space  

• Microsoft Windows™ 2000/XP  

• 128MB of RAM  

• 16-bit color display  

• CD-ROM Drive  

A.3 Install DSK Content from the CD-ROM  

Before you install the DSK software, please make sure you are using Administrator 

privileges and any virus checking software is turned off. The DSK board should not 

be plugged in at this point.  

1. Insert the Code Composer Studio installation CD into the CD-ROM Drive. An 

install menu (see below) should appear. If it does not, manually run Launch.exe 

from the CD-ROM. Select the Install Products option from the menu.  

 

 
2. Install any components you need. To debug with the DSK you must have 1) a 

copy of Code Composer Studio, 2) the target content package for your board 

and 3) a copy of the FlashBurn plug-in. Users of the full Code Composer Studio 



60 

package can skip the DSK Code Composer installation and simply install the 

target content packages.  

 

3. The installation procedure will create two icons on your desktop:  

 

6416 DSK CCStudio v3.1  

6416 DSK Diagnostics Utility v3.1  

A.4 Connect the DSK to Your PC  

1. Connect the supplied USB cable to your PC or laptop. We recommend that anyone 

making hardware modifications connect through a USB hub for safety.  

2. If you plan to connect a microphone, speaker, or expansion card these must be 

plugged in properly before you connect power to the DSK board.  

3. Connect the included 5V power adapter brick to your AC power source using the 

AC power cord.  

4. Apply power to the DSK by connecting the power brick to the 5V input on the 

DSK.  

5. When power is applied to the board the Power On Self Test (POST) will run. 

LEDs 0-3 will flash. When the POST is complete all LEDs blink on and off then 
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stay on. At this point your DSK is functional and you can now finish the USB 

driver install.  

 

 
6. Make sure your DSK CD-ROM is installed in your CD-ROM drive. Now connect 

the DSK to your PC using the included USB. After few seconds Windows will 

launch its "Add New Hardware Wizard" and prompt for the location of the DSK 

drivers.  

7. Follow the instructions on the screens and let Windows find the USB driver files 

“dsk6416.inf” and “sdusb2em.sys” on the DSK CD-ROM. On XP systems 

Windows will find the drivers automatically.  

A.5 Testing Your Connection  

If you want to test your DSK and USB connection you can launch the C6416 DSK 

Diagnostic Utility from the icon on your desktop.  

 

From the diagnostic utility, press the start button to run the diagnostics. In 

approximately 30 seconds all the on-screen test indicators should turn green.  
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A.6 Starting Code Composer  

To start Code Composer Studio, double click the 6416 DSK CCStudio icon on your 

desktop. 

 

A.7 Running the DSK Tutorial  

The on-line help included with the DSK contains in-depth information about the 

hardware and software that comes with the kit. It also contains a tutorial that will 

help you get started with your DSK and learn about its features. To access the on-line 

help and run the tutorial, follow these steps:  

1. Start Code Composer Studio (ignore this if CCS is already running) by double-

clicking on the C6416 DSK icon on your desktop.  

2. Use the Debug --> Connect menu option to open a debug connection to the DSK 

board.  

3. Launch the DSK help file by opening the following file using Windows Explorer.  

C:\CCStudio_v31.\docs\hlp\c6416dsk.hlp 

4. Look in the section entitled “Welcome to Your ‘C6416 DSK”. You will find the 

tutorial and other introductory material there. Note that older versions of 

CCStudio use c:\ti as the default install path instead of c:\CCStudio_v31. so you 

may have to adjust the path names to match the actual location of files on your 

PC.   
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A.8 Related Documentation  

A complete list of related documentation is available in the on-line help. The path to 

this documentation is (assuming you choose c:\CCStudio_v3.1 as the default path)  

c:\CCStudio_v3.1\docs\pdf\release_ccs_full_master.html 

A.9 Debug Hints and Trouble Shooting  

1. If installing on Windows XP and your PC is connected to the internet through a 

firewall the USB install may take up to 15 minutes if you let it complete 

normally. The work-around for this issue is to simply disconnect your network 

cable during the USB hardware install.  

2. Make sure all of the Configuration Switches (SW3) are set in the off position. This 

conFigures the DSK for the factory default settings of little endian processor 

mode booting out of the on-board Flash memory.  

3. Some of the Help Files are links to Adobe Acrobat PDF files. If you intend to 

access these files you must have Adobe Acrobat installed on your system.  

4. If you want to verify a successful USB driver install, open your device manager by 

right clicking on the My Computer icon on your desktop and selecting Properties 

--> HW --> Device Manager. You should see a new class “SD USB Based Debug 

Tools” and one Spectrum Digital TMS320C6416 DSK installed.  

5. The BUSY LED above the USB connector comes on when power is applied to the 

DSK. Do not launch Code Composer until the LED is off.  

A.10 Error Messages  

Many of the error messages below refer to USB enumeration issues. The following 

window will appear when launching CCS or the Diagnostic Utility indicating the 

enumeration status.  
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1. Message: Failed: Requires Win98, Win2K or Win XP.  

Problem: Your operating system does not support USB.  

2. Message:  

Failed: USB device is NOT enumerated or plugged in.  

Problem: Windows cannot find the DSK. Check power and USB Cable.  

3. Message:  

Failed: Load USB Application.  

Problem: Loader could not download the DSK emulation application. The on-

board emulation controller could be in a bad state. Cycle power on the DSK.  

4. Message:  

Failed: USB Channel in use by another app.  

Problem: Another application is using the DSK USB communication channel. 

Only one application is allowed to communicate to the DSK over the USB 

channel at the same time. Check for active applications using the Windows Task 

Manager if open application is not obvious.  

5. Message:  

Waiting for USB Enumeration.  

Status: This is a status message which indicates that Code Composer Studio is 

waiting for communication with the on-board JTAG emulator to be established. 

This should take less than 10 seconds. Do not hit the close button unless it is clear 

that something is wrong (the progress bar runs forever).  


