

Improving Video-On-Demand Performance with

Prefetching

Farnoosh Falahatraftar

Submitted to the

Institute of Graduate Studies and Research

in partial fulfillment of the requirements for the Degree of

Master of Science

in

Computer Engineering

Eastern Mediterranean University

June 2013

Gazimağusa, North Cyprus

Approval of the Institute of Graduate Studies and Research

 Prof. Dr. Elvan Yılmaz

 Director

I certify that this thesis satisfies the requirements as a thesis for the degree of Master

of Science in Computer Engineering.

 Assoc. Prof. Dr. Muhammed Salamah

 Chair, Department of Computer Engineering

We certify that we have read this thesis and that in our opinion it is fully adequate in

scope and quality as a thesis for the degree of Master of Science in Computer

Engineering.

 Assoc. Prof. Dr. Işık Aybay

 Supervisor

Examining Committee

1. Assoc. Prof. Dr. Işık Aybay

2. Assoc. Prof. Dr. Muhammed Salamah

3. Asst. Prof. Dr. Gürcü Öz

iii

ABSTRACT

Over the past few years multimedia communications has become essential parts of

people’s daily life. In this context, video streaming is attracting extensive attention

and is becoming one of the most popular activities over the Internet. However, video

streaming supports a large number of simultaneous users and consumes more

network bandwidth as compared to other internet applications. So, implementations

that can improve video streaming efficiency are of particular importance. On the

other hand, the spectacular development in Peer-to-Peer (P2P) technologies presents

scalability and support for large number of users worldwide.

In this work, we consider a prefetching mechanism in a P2P Video-on-Demand

(VoD) system and study performance of using this prefetching method on our model.

We compute the prefetching time for one video segment and then divide our idle

time into several slices of prefetch activities. The prefetched segments are the

segments which are not available on other peers in the network, therefore those must

be prefetched from the server directly.

With using this prefetching mechanism, the idle time of the system is reduced and

consequently, the efficiency of the system will be improved.

Keywords: Prefetching, VoD Systems, Peer-to-Peer Networks, Efficiency

iv

ÖZ

Son yıllarda multimedia iletişim konusu insan yaşamında vazgeçilmez bir yer

tutmaktadır. Bu bağlamda, akan video uygulamaları, Internet üzerindeki en yaygın

uygulamalar arasında yer almaktadır. Ancak akan video, aynı anda bır çok

kullanıcıya ulaşması gereken ve dığer internet uygulamalarına göre daha büyük bant

genişliğine ihtiyaç duyan bır uygulamadır. Bu nedenle, akan video uygulamalarında

etkinlik ve hızı artırabilen yaklaşımlar önem kazanmaktadır. Aynı ağ üzerindeki

bilgisayarların birbirine destek olmasını sağlayan P2P (Peer-to-Peer) tekniği de bu

konuda yararlı olmaktadır.

Bu çalışmada, P2P akan video uygulamaları için önceden-getirme (Prefetching)

yöntemini kullanarak sistem etkinliginin arttırılması amaçlanmıştır. Önceden-getirme

işlemi, sistemin boş (Idle) zamanlarında yapılmaktadır. Aynı ağdaki diğer

bilgisayarlarda bölümler (segment) için önceden-getirme işlemi uygulamaktadır.

Önceden-getirme yöntemi ile sistemin boş geçirdigi zaman azaltılmakta ve böylece

sistem etkinligi artırılmaktadır.

Anahtar kelimeler: Önceden-getirme, Akan Video Sistemleri, Peer-to-Peer Ağlar,

Sistem Etkinliği

v

To my Father and Mother

vi

ACKNOWLEDGMENTS

I would like to thank Assoc. Prof. Dr. Işık Aybay for his continuous support and

guidance in the preparation of this study. Without his invaluable supervision, all my

efforts could have been short-sighted.

I wish to express my thanks to all the members of the Department of Computer

Engineering at Eastern Mediterranean University.

I owe quit a lot to my family who allowed me to travel all the way from Iran to

Cyprus and supported me all throughout my studies. I would like to dedicate this

study to them as an indication of their significance in this study as well as in my life.

Besides, a number of friends had always been around to support me morally. I would

like to thank them as well.

vii

TABLE OF CONTENTS

ABSTRACT ... III

ÖZ ... IV

DEDICATION .. V

ACKNOWLEDGMENTS .. VI

LIST OF TABLES ... IX

LIST OF FIGURES ... X

1 INTRODUCTION ...1

2 LITERATURE REVIEW ...3

 2.1 Peer-to-Peer Video-on-Demand Systems ... 3

 2.2 LCBBS Module .. 4

 2.3 Different Prefetching Models .. 5

3 P2P TECHNOLOGY IN LAN NETWORKS ...7

 3.1 Introduction... 7

 3.2 Ethernet Frame Format .. 8

 3.3 Context Switching ... 9

 3.4 CPI ...10

 3.5 Clock Rate ...11

4 PREFETCHING MODEL.. 13

 4.1 Introduction ...13

 4.2 Prefetching Model Proposed by this Study ...14

 4.2.1 Prefetching a Segment ..15

 4.2.2 Transmission Time ...17

 4.2.3 Unpacking Time ...17

viii

 4.3 Timing Dicussions ...19

 4.3.1 Assume no Packet Loss ..19

 4.3.2 Assume Lost Packets ..26

 4.4 Efficiency Discussion ...29

 4.5 Assumptions Review ..32

5 PREFETCHING SIMULATION RESULTS .. 34

 5.1 The Simulation Model ..34

 5.2 Results and Discussion ...35

 5.3 Comparison with Similar Studies ...40

CONCLUSION .. 43

REFERENCES ... 45

APPENDIX .. 48

ix

LIST OF TABLES

Table 1. Packet Availability Table ..16

Table 2. Assumptions Considered In This Study ...33

Table 3. Our Prefetching Model versus Other Prefetching Strategies40

Table 4. Samples of Different System Schedules ...48

Table 5. Samples of Different System Schedules ...49

Table 6. Samples of Different System Schedules ...50

Table 7. Samples of Different System Schedules ...51

Table 8. Samples of Different System Schedules ...52

Table 9. Samples of Different System Schedules ...54

Table 10. Samples of Different System Schedules ...55

Table 11. Samples of Different System Schedules ...56

Table 12. Samples of Different System Schedules ...57

Table 13. Samples of Different System Schedules ...58

x

LIST OF FIGURES

Figure 1. System Architecture .. 8

Figure 2. A Basic 10/100 Ethernet Frame Format ... 8

Figure 3. A Case Which Shows Segments Available/Unavailable Locally...............14

Figure 4. Dividing Idle Time into Segments of Prefetching Time14

Figure 5. Prefetching Steps ...19

Figure 6. Creating Table Program with 1399 Zero Values20

Figure 7. Prefetching Analysis for 1399 Packets ...21

Figure 8. Getting Packet Program with 770 Instructions One Group21

Figure 9. Getting Packet Program with 359 Instructions ..22

Figure 10. Check Program for Finding Any Zero Value. ...22

Figure 11. Final Check Program Assuming No Lost Packets23

Figure 12. Prefteching Time Analyze In The Case of No Packet Loss25

Figure 13. Dividing Each 256 Packets into One Group ..26

Figure 14. Time Needed for First Step ..27

Figure 15. Time Needed for Second Step ..28

Figure 16. An Example of a System Schedule ...30

Figure 17. Impact of Using Idle Time for Segment Prefetching On Efficiency33

Figure 19. Efficiency with Using Prefetching Model ...38

Figure 20. Busy and Idle Time in Millisecond for the First 10 Samples40

1

Chapter 1

INTRODUCTION

Today video on demand systems are used by millions of users around the world.

These users are served by enormous servers which are employed for streaming video

data. It is expensive to stream massive numbers of data videos on the Internet with

high quality and less time latency. In order to reduce the costs, we can use the Peer-

to-Peer (P2P) technology which makes use of available resources of peers; moreover,

we can use the advantages of prefetchig strategy to ensure play back continuity.

The requested video is divided to small blocks which are called segments. The user

can watch his/her requested video by downloading (or prefetching) these segments

from peers or from the main sever. With prefetching mechanism a peer can get a

video segment earlier than display time.

In peer to peer VoD systems, each peer can use available resources of other peers; in

fact peers can act both as a provider and as a consumer. When a peer needs a video,

it sends a request for that to other peers. Then, other peers check their buffer for

requested video segments and if any segment is found, they send back a list of

available segments of requested video to the requesting peer. The mentioned peer

collects all responses from its peers and finds out which segments are not available.

If the prefetching mechanism takes a lot of time, it will not be suitable because it will

2

be better to download and display normally instead of prefeching segments.

Therefore, measuring the time needed for prefetching mechanism is very important.

Several recent works proposed prefetching mechanisms based on priority of chunks.

In one approach, chunks closer to the current playing position have more importance

for prefetching [3]. These systems also use a scheduler to define the order of packets

to be transmitted from the queues. In another approach, just one segment after the

currently played segment can be prefetched by full speed but the one after next

cannot be prefetched, after prefetching peer release the occupied bandwidth for other

peers [2].

Prefetching strategies based on priority and mathematical computations will take

more time, but time is a main factor in peer to peer VoD systems. So, the aim is to

reduce the latency more and more. In this study, we focus on the location of

requested video segments. The main idea is that the chunks that are only available in

main server must be prefetched first. So, all the segments that are not available in

other peer's buffers have a priority for prefetching. In our work, we calculate time

needed for prefetching segments upon basic assumptions and different

circumstances. We develop a prefetching model and perform a detailed analytical

study and simulation which takes into consideration factors like the context

switching time, average clock cycles per instruction and clock cycle time.

3

Chapter 2

LITERATURE REVIEW

2.1 Peer-to-Peer Video-on-Demand Systems

Video-on-Demand (VoD) is a compelling application, but it is also costly. VoD is

costly due to the load it places on video source servers. Some researchers have

proposed using peer-to-peer (P2P) techniques to shift some load from servers to

peers. This technique has been used successfully for file downloading and live

streaming.

VoD differs from other Internet media applications in several important ways. First,

in VoD a user can begin a VoD session at any time and seek to any position during

playback. In live streaming, a stream begins at the same time for everyone and users

cannot seek forward and backward arbitrarily. Second, VoD has strict real-time

constraints while file downloading does not.

For VoD, the next segment is more important than a later one while any new file part

is good for file downloading. VoD is more challenging than live streaming or file

downloading because of user-control operations and real-time bonds.

The peer-to-peer networks are attractive for VoD since, they can provide a data

distribution model which reduce the costs and increase the scalability of video

distribution. For reducing server's workload, the P2P attempts to use the peer's

upload bandwidth. Satisfying the application requirements of as many end users as

4

possible with sustainable server bandwidth costs is the Internet media streaming's

final goal. For maintaining streaming to end users in traditional client/server

architecture in large scale, vast data centers are used. The bandwidth cost on servers

increases rapidly as the user population increases, and may not be manageable in

corporation with limited resources.

Peer to Peer technology comes for declining server utilization. For instance, in a

network consisting of some peers, at first other peers may not have copies of

requested data and it must be downloaded from servers. However, as time goes,

buffers of other peers will contain the popular data in network and consequently

number of downloads from the server will be decrease.

Many methods are proposed for improving efficiency of VoD systems with P2P

technology. Some examples are use of client back-end buffering system [1] or multi-

channeling. Data Prefetching has also been proposed as a technique for reducing the

access latency [7]. In this work we consider prefetching mechanism as an approach

to amending the utility of VoD systems.

2.2 LCBBS Module

An LCBBS (client back-end buffering system) can be installed and used on each peer

in a LAN. The segment available table and a two level buffer are the LCBBS

important parts. First level buffer is used for storing the names of videos and

maximum number of segments. The second level buffer is used for storing actual

video data and FIFO strategy is used for storing data in these two level buffers.

5

If LCBBS seeks on LAN for video segments, SAT is created. When one segment

exists in first level local buffer, the segment status is "local". Otherwise, LCBBS

module searches on LAN peers and if a peer has a copy of the segment, the related

status for that segment is "LAN". Finally the "remote server" status is for the

segments which do not exist on local buffer and LAN. Then the remote server

transferred these segments.

In LCBBS, a message is sent by the communication system to all nodes in LAN. The

LCBBS puts segments's number which exist in first level buffer, into response

message and multicast it in LAN. Then, the SAT of peer which needs to this video

will be updated after receiving this message. These segments can be downloaded

from the remote server directly, in the case that the message is lost.

The remote server calculates necessary byte of video segment's addresses for

executing remote server transfer function. Then this function requests these data

from the remote server. Eventually, after downloading data from remote server

completely, the system assigns "local" status for segment in SAT and its information

will be recorded in first level buffer.

With increasing buffer size, LCBBS improves the responding time and also it

reduces start up latency and total stopping time for each video [1].

2.3 Different Prefetching Models

 In the past years, several methods have been proposed for multimedia prefetching.

[8] For example, a basic random strategy based on segments which are close to the

play back position. This segment selection is randomly and probability is inversely

6

related to the number of replicas of segment. Generating lot of overhead for sharing

the segment's information in large network is drawback of this method. An optimal

off-line prefetching algorithm and a heuristic prefetching algorithm were proposed in

[9]. It is shown that with using appropriate prefetching policies the performance of

layered video can be improved.

Another approach is [7] proposed a cooperative prefetching strategy that decreases

the overhead significantly. Moreover, for selecting the best peer for supplying of

contents, they suggest a scheduling mechanism.

One prefetching model is based on user seeking behaviors [16]. The authors suggest

guided seek which is based on segment access information. This information gained

from seeking statistics in the current or previous segments. The guided seek is

different from random seek. The amount of access to a segment effects on its

popularity, so the popular segment is requested and visited more repeatedly.

7

Chapter 3

P2P TECHNOLOGY IN LAN NETWORKS

3.1 Introduction

In Peer-to-Peer (P2P) technology, peers download text or video data from other peers

in network. For example, a peer downloads data from other peers if the other peers

have got the requested data, otherwise the peer must download what it needs from

the server directly. In this approach, we assume that we have many peers in the local

network which can download/upload data from/to other peers and each one has

appropriate buffer space for storing data, the server is contacted in the condition that

peers cannot do anything for other one. Each peer provides the content to other peers.

Figure 1 shows our system architecture. The server is close to the clients, so we

ignore the propagation time. However, this model can also be used with modification

(adding propagation) for remote server systems. The communication network can be

LAN, Wireless LAN or Mobile cellular system, in our study we suppose that it is

LAN and also the type of our network is 100 Mbps Ethernet with 1500 byte payload

size for each packet.

8

Figure 1. System Architecture

3.2 Ethernet Frame Format

We assume the communication system is a 100 Mbps Ethernet. Figure 2 shows a

10/100 Mbps Ethernet frame which includes [12]:

 Figure 2. A Basic 10/100 Ethernet Frame Format [12]

9

3.3 Context Switching

In a computer system, the scheduler which is inside the operating system maintains a

queue of executable threads for each process priority level. These are known as ready

threads. When a processor becomes available for further processing, the system

performs a context switch.

The most common reasons for a context switch are:

 The time slice allocated for a process has passed.

 A thread with a higher priority is ready to run.

 A running thread needs to wait for some peripheral/memory actions.

Context switching performs in some CPUs which have hardware support for it, and

also it can be executed by the operating system software.

The state of the process includes all the registers that the process may use

particularly the program counter and also other operating system specific data. This

data is stored in a data structure called a process control block (PCB).

The contents of a CPU's registers and program counter at any point in time are the

"context". Context switching executes the next activities:

1. Suspending one process and storing the CPU's context for that process.

10

2. Choosing the next process to be run, retrieving the context of that process

from memory and restoring it in the CPU's registers

3. Returning to the location indicated by the program counter (returning to the

line of code at which the next process was interrupted) in order to resume the

process.

Some processors context switching times:

 Intel 5150: ~1900ns/process context switch, ~1700ns/thread context switch

 Intel E5440: ~1300ns/process context switch, ~1100ns/thread context switch

 Intel E5520: ~1400ns/process context switch, ~1300ns/thread context switch

 Intel X5550: ~1300ns/process context switch, ~1100ns/thread context switch

 Intel L5630: ~1600ns/process context switch, ~1400ns/thread context switch

Therefore, we consider 2 microseconds for context switching time. (2μsecs equals to

2000ns) [10, 11].

3.4 CPI

In computer architecture, cycles per instruction (CPI) is a term used to describe one

aspect of a processor's performance: the number of clock cycles spent that happen

when an instruction is being executed. CPI is the average number of clock cycles per

instruction.

CPI= CPU clock cycles/ Instruction count (1)

11

CPU Clock Cycles = Sum (CPIi * Counti) (2)

The average CPI from processors like MIPS, Intel and etc is 10, so we suppose that

CPI is 10.

3.5 Clock Rate

Computers are constructed using a clock that runs at a constant rate and determines

when events take place in hardware. Clock rate is the number of cycles per second; it

is typically measured in megahertz or gigahertz. One megahertz is equal to one

million cycles per second, while one gigahertz equals one billion cycles per second.

A 1.8 GHz CPU is not necessarily twice as fast as a 900 MHz CPU. Because

different processors usually use different architectures. For instance, one processor

may need more clock cycles to complete an instruction than another processor. If the

1.8 GHz CPU can execute an instruction in 4 cycles, but it takes 7 cycles in 900 MHz

CPU, the 1.8 GHz processor will be more than twice as fast as the 900 MHz

processor [17].

Clock rate is the reverse of clock period: 1/cycle time. So, the execution time can be:

Execution time= clock cycles/ clock rate (3)

For example, in group of Intel Core i7Extereme Processors, i7-990x has maximum

clock speed of 3.46 GHz and i7-965 has minimum clock speed with 3.20 GHz. So

the clock time for each one is 0.28 ns and 0.31 ns respectively.

Here we assume that our processor is i7-3960X with 3.30 GHz clock rate. Therefore:

12

3.3 * 10
9
= 1/ clock time

Clock time=1/3.3*10
9
=0.30 *10

-9

Clock time= 0.3 ns (3.3 Billion Cycles per second)

In group of Intel Core i5 Processors, clock speed has minimum number of 2.30 GHz

and maximum number of 3.40 GHz. Consequently, clock time is 0.29 ns minimally

and 0.43 ns maximally.

 Clock time=1/2.30*10
9
=0.43*10

-9
Clock time= 0.43 ns

 Clock time=1/3.40*10
9
=0.29*10

-9
Clock time= 0.29 ns

13

Chapter 4

PREFETCHING MODEL

4.1 Introduction

Prefetching mechanisms are based on making a decision for choosing chunks.

Although each prefetching mechanism has a different rule for segment selecting, a

segment must have priority to be prefetched. For instance, popularity is a factor for

prioritizing the segments and a segment which is most popular has the highest

priority. The prefetching strategies are currently based on priority and mathematical

solutions [16, 2, and 18] which may take a lot of time. Time is the main factor in peer

to peer VoD systems and all of the work in this aspect is for reducing the time

latency. Mentioning this point, we try to focus on location of requested video

segments. A segment has high priority if it is not available in the local buffer and

other peers do not have it. In this approach unavailable segments must be prefetched

directly from main server. When a peer needs a video, it sends a request for that

video to other peers in network. Then other peers check their buffer for requested

video segments and if they have segments of it, they send back a list of available

segments of requested video to the peer which has requested for this video. The

mentioned peer collects all responses from the peers and finds out which segments

are not available and should be prefetched from the server directly. Figure 3 shows

one case of the available/unavailable segments of a requested video. The priority for

prefetching is based on location of segments which are not in peer and are in the

14

main server .All the segments that are not available in other peers' buffers have a

priority for prefetching.

Figure 3. A Case Which Shows Segments Available/Unavailable Locally

4.2 Prefetching Model Proposed by this Study

In our prefetching model, we calculate prefetching time for segments with a fixed 2

Mbyte size and take the advantage of idle time. As Figure 4 indicates, if one segment

needs 'x' time for prefetching, we divide our idle time into one or several slices of 'x'

times. 2 Mbyte fixed size is chosen with reference to the discussion given in [1].

When idle time begins, the peer executes context switching and starts prefetching

and checks P2P ports periodically. the must do context switching again when

finishing the idle time and starting download from other peers, but if this context

switching is requested while prefetching a segment, then the peer has to delay

context switching to the end of segment retrieval.

Downloading Segments Idle Time Downloading Segments

 CS
x

x

x x
 CS t

Figure 4. Dividing Idle Time into Segments of Prefetching Time (CS is Context

Switching)

15

Without prefetching in idle time, we have two statuses: idle and busy, therefore

efficiency of the system can be calculated as:

In our prefetching model, idle time is used for prefetching segments. We have three

statuses for our system: idle time, segment retrieval and busy. Busy time starts when

peer downloads segments from other peers. So the efficiency of the system will can

be calculated as:

For the next step, we must calculate time needed for prefetching a 2Megabyte

segment and use it as a scale to find out that how much of idle time we can use for

prefetching segments.

4.2.1 Prefetching a Segment

In order to calculate time needed for prefetching a segment, we should compute time

in each step of the prefetching mechanism. Prefetching a segment contains several

parts: packet transmission, unpacking [20], receiving data and sorting them, checking

for lost packets and buffering.

16

Firstly we calculate time for prefetching a segment in the best case with an

assumption that we do not have any lost packet. Then we discuss the worst case

where we have some lost packets.

When we say "no packet loss" it means that all packets of a segment are received

correctly. We consider (Table 1) which includes the status of packets. Initially, all

check bits are zero. Whenever a packet is received the corresponding zero check bit

value will be changed to 1. After receiving each group of 256 packets, the system

checks whether all check bits are 1. If there is a zero check bit, this indicates a lost

packet which may be received later. When sending packets from server is finished,

the peer must search this table to find out which packets were not received.

After each search on table for lost packets, if the system does not find any lost

packet, it must sort packets in the buffer according to their packet numbers.

17

Table 1. Packet Availability Table

Packet number Check bit
1

2

3

4

.

.

.
256

.

.

.

512

.

.

.

768

.

.

.

1024

.

.

.

1280

.

.

.

1399

0

0

0

0

.

.

.
0

.

.

.

0

.

.

.

0

.

.

.

0

.

.

.

0

.

.

.

0

4.2.2 Transmission Time

We consider a 2 Megabyte segment [1] which must be divided into 1399 packets

since we assume that we use 100 Mbps Ethernet with a maximum payload size of

1500 bytes (100Mbps=13107200 bytes per second, 2 Megabytes = 2097152 bytes).

Accordingly we can compute Ts (time for transmitting one segment) as:

Ts = 2097152/13107200=0.16 second (160000 microseconds)

18

4.2.3 Unpacking Time

We need to consider the time for unpacking each packet (frame) [19]. We assume

this unpacking process takes 121.44 microseconds [4] for each packet in our system.

Where Tunpack is time for unpacking one packet, Tunpack= 121.44, k=1399

121.44*1399=169894.56 microseconds≈ 170 milliseconds

For considering the sorting of packets in the buffer, there are certain sorting

algorithms like heap sort, bubble sort and quick sort. Merge sort is the one that is

appropriate for large amount of data. Actually, we have a counter that will be

increased after each received packet and when counter equals to (256*a) where 'a'

can be 1, 2…5 Merge sort algorithm is used to sort all packets. Figure 5 shows

prefetching steps:

Start

Counter = 0

While Server is sending packets

{

Get packet and change corresponding zero value to 1

in packet availability table
Increase counter by one

For (a=1; a<6; a++)

{

 If counter = (a*256) then

 {Check (a*256) entity of table for zero value

 If all (a*256) entity of table have value of 1 then sort them in buffer

 }

}

}

L1: search on table for zero values

 If find zero value then

 {Send request for corresponding packet to the server

 %Server starts to send requested packets again

 While server is sending packet

 {Get packet and change corresponding zero value to 1 in packet

availability table }
Go to L1
}

If no zero value then

Sort all 1399 packets

End

Figure 5. Prefetching Steps

19

4.3 Timing Discussions

4.3.1 Assume no Packet Loss

As we mentioned before, we need 160000 microseconds for transmitting 1399

packets in addition to 170 milliseconds for unpacking them.

Creating the packet availability table with 1399 zero values take 12.597 microseconds

as we explained in Figure 6.We assume that clock time is 0.0003 microsecond. This

means that each clock cycle is equal to 0.0003 microseconds and the number the of clock

cycles needed for each instruction (CPI) is 10. Thus:

Ti=CPI*Clock time (10)

Hence, Ti is time needed for each instruction, so an instruction needs 0.003 microseconds for

execution. As discussed in Figure 6, we have 4199 instructions.

Running time=Ti*(number of instructions) (11)

4199*0.003=12.597 microseconds

After receiving each 256 packet group, the sort algorithm should be run. Figure 7

illustrates this point.

20

 int seg[1399]; 1time 1400times

for (inti=0 ;i<1399; i++) 1399 times

{

 seg[i]=0; 1399 times

}

 Totally : 4199 instructions

Figure 6. Creating Table Program with 1399 Zero Values

 Packet number

 1

 2

 .

 . getting 256 packets

 .

 256 check algorithm runs for 256 packets + merge sort

 257

 .

 . getting 256 packets

 .

 512 check algorithm runs for 512 packets + merge sort

 513

 .

 . getting 256 packets

 .

 768 check algorithm runs for 768 packets + merge sort

 769

 .

 . getting 256 packets

 .

 1024 check algorithm runs for 1024 packets + merge sort

 1025

 .

 . getting 256 packets

 .

 1280 check algorithm runs for 1280 packets + merge sort

 1281

 .

 . getting 199 packets

 .

 1399 final check algorithm runs for 1399 packets + merge sort

Figure 7. Prefetching Analysis for 1399 Packets

21

For calculating all steps indicated in Figure 7, we must compute the number of

instructions in each step. Figure 8 and Figure 9 represent getting packets algorithm

for two different groups, Figure 10 and Figure 11 indicate check algorithm and final

check algorithm respectively.

 1time if z=256 257 times

for (int j=0 ; j<z ; j++) 256 times

{

 Count<<"packet number: ";

 Cin>>p;

 seg[p]=1; 256 times

}

Totally : 770 instructions

Figure 8. Getting Packet Program with 770 Instructions One Group

 1time if z=119 120 times

for (int j=0 ; j<z ; j++) 119 times

{

 Count<<"packet number: ";

 Cin>>p;

 seg[p]=1 119 times

}

Totally : 359 instructions

Figure 9. Getting Packet Program with 359 Instructions for One 119 Packet Group

22

 1 time

counter=0;1 time x+1 times

for (int i=0; i<x; i++) x times

{

 if(seg[i]==1) x times

 {

 Counter=counter++; at most x times

 }

}

if (counter==x) 1 time

{Sort x packets of segment;}

else

{"some packets have not been received yet"}

Totally : [(4*x) + 4] instructions

Figure 10. Check Program for Finding Any Zero Value. It Runs After Each 256

Group of Received Packets

23

1 time 1 time

Int t1=0, t2=0 ; 1time 1400 times

For (int i=0 ; i<1399 ; i++) 1399times

{

 If (seg[i]==1) 1399times

 { t1=t1++ ; } 1399 times

 else

 { t0=t0++ ; 0 time (with no lost packet)

 Cout<<" send request for packet"<<i+1<< "\n";

 }

 }

 If (t1== 1398) 1time

{ cout<<"sort all packets"<<;

}

Totally: 5601 instructions

Figure 11. Final Check Program Assuming No Lost Packets (t1and t0 Indicate

Number of Received Packet and None Received Packet Respectively)

In Figure 7 with the assumption that we do not have any packet loss, getting packet

algorithm (Figure 8) runs 5 times with 256 packets and 1 more time with 119 packets

(Figure 9).

From (11) 770*0.003=2.31 microseconds

 359*0.003=1.07 microseconds

24

Check program must execute for 5 times that in each run with different values of 'x'

(256, 512, 768, 1024 and 1280).

From (11) (4*256) + 4=1028 , 1028*0.003=3.084 microseconds

 (4*512) + 4=2052 , 2052*0.003=6.156 microseconds

 (4*768) + 4=3076 , 3076*0.003=9.228 microseconds

 (4*1024) + 4=4100 , 4100*0.003=12.3 microseconds

 (4*1280) + 4=5124 , 5124*0.003=15.372 microseconds

Merge sort has to run after check algorithm execution. Totally it takes 26

milliseconds (26000 microseconds) for sorting packets [13, 14, 15].

The final check algorithm runs for finding any lost packet and it needs 5601

instructions if we do not have any packet loss, consequently:

From (11) 5601*0.003=16.8 microseconds

Next figure shows time needed for each part of prefetching except transmission time

and unpacking time.

25

Packet number

 1

 2

 .

 . getting 256 packets: 2.31 microseconds

 .

 256 check algorithm runs for 256 packets: 3.084 microseconds

 Totally: 5.394 microseconds

 257

 .

 . 2.31 microseconds

 .

 512 check algorithm runs for 512 packets: 6.156 microseconds

 Totally: 8.446 microseconds

 513

 .

 . 2.31 microseconds

 .

 768 check algorithm runs for 768 packets: 9.228 microseconds

 Totally : 11.538 microseconds

769

 .

 . 2.31 microseconds

 .

 1024 check algorithm runs for 1024 packets: 12.3microseconds

 Totally: 14.61 microseconds

1025

 .

 . 2.31 microseconds

 .

 1280 check algorithm runs for 1280 packets: 15.372microseconds

 Totally: 17.682 microseconds

 1281

 .

 . 1.07 microsecond

 .

 1399 final check algorithm runs for 1399 packets: 16.8microseconds

 Totally:17.87 microseconds

Figure 12. Prefteching Time Analyze In The Case of No Packet Loss

26

In order to compute time needed for prefetching a segment from server to client

buffer, we must add transmission time and unpacking time with calculated values in

Figure 12.

160000microseconds transmission time for 1399 packets

169894.56 microseconds unpacking time for 1399 packets

12.597 microseconds creating packet availability table

5.394 microseconds

8.446 microseconds

11.538 microseconds

14.61 microseconds

17.682 microseconds

17.87 microseconds

26000 microseconds sorting time (totally)

 Totally: 355982.697microseconds ≈ 356 milliseconds

4.3.2 Assume Lost Packets

In this case we assume that approximately half of packets are not received, this

means 700 packets ([1399/2] ≈700). If we divide 1399 packets into five groups of

256 packets and one with 119 packets (look at Figure 13).

 A B C D E F

256 256 256 256 256 119

Figure 13. Dividing Each 256 Packets into One Group

 As discussed before, the check algorithm runs after each 256 received packets.

Actually it checks if these 256 received packets are in one group or not. If yes, it

sorts packets. Moreover, the final check algorithm runs whenever server stops

27

sending packet to node whether all 1399 packets received or not. We assume that we

have some lost packets in each group (worst case).

So, when 256 packets are received, the check algorithm runs for finding that whether

these 256 packets belong to group A? Answer is no in this case because we suppose

that we have lost packet in each group. This happens similarly after receiving another

256 packets. Consequently, we get 512 packets until here, besides, after receiving

187 more packets, the system recognizes that sending packets from server is finished.

So final check program starts to find lost packets (Figure 13). After that, the peer

sends a request for lost packets to the server and server again sends these 700 lost

packets. Thus, the check algorithm runs two times after receiving each 256 packets

of 700 packets and the final check algorithm again executes (after receiving 188

remains packets) for finding any packet loss when no packets received from server

(Figure 14).

Therefore, we need time for getting 699 packets, running the check algorithm two

times and also the final check algorithm for first step (Figure 14):

Getting 256 packets: 2.31 microseconds

Check algorithm runs for 256 packets: 3.084 microseconds

Getting another 256 packets: 2.31 microseconds

Check algorithm runs for 512 packets: 6.156 microseconds

Getting 187 packets: 1.689 microseconds

Final check algorithm runs for 1399 packets: 16.8microseconds

 Totally (for first step): 32.349 microseconds

Figure 14. Time Needed for First Step

28

After sending request for 700 lost packets (second step), again we need time for

getting 700 packets, running the check algorithm for two times and time for

executing the final check algorithm. Moreover, sorting time for sorting 1399 packets

must also be considered.

Getting 256 packets: 2.31 microseconds

Check algorithm runs for 256 packets: 3.084 microseconds

Getting another 256 packets: 2.31 microseconds

Check algorithm runs for 512 packets: 6.156 microseconds

Getting 188 packets: 1.698 microseconds

Final check algorithm runs for 1399 packets: 16.8microseconds

Sorting time: 26000

Totally (for second step): 26032.358 microseconds

Figure 15. Time Needed for Second Step

Although just half of all packets of a segment received in first step, the server sent all

1399 packets. So we have two transmissions times, first one for transmitting 1399

packets in first step and second one for retransmission of 700 lost packets in second

step. We assume no packet loss in the second transmission. As far as half of all

packets are lost so we can assume that retransmission time for this half should be 0.8

second.

 Beside, these 700 packets must be unpacked, so from (9)

121.44*700=85008 microseconds

29

These retransmission and unpacking process execute in time after first step.

Therefore, time measurement in the case of half of packets of a segment is lost:

 160000microseconds transmission time for 1399 packets

 84886.56microseconds unpacking time for 699 packets

 12.597microseconds creating packet availability table

 32.349 microseconds from Figure 14

 80000microseconds transmission time for 700 packets

 85008microseconds unpacking time for 699 packets

 26032.358 microseconds from Figure 15

 Totally: 435971.864 microseconds≈ 436 milliseconds

From what we discussed above, prefetching time for a segment is 356 milliseconds

in the best case where all packets are received completely and 436 milliseconds in

the worst case where half of the packets are lost.

4.4 Efficiency Discussion

Our prefetching model is proposed for reducing the idle time by using it for

prefetching segments which are not available in other peers in the network. As

formula (6) indicates, efficiency and idle time have a sort of inverse relation with

each other and we try to reduce idle time for improving system efficiency. Therefore,

formula number (6) is improved to what we see in formula (7).

30

In this section, we use the results which are presented in the previous chapter about

how long prefetching a segment takes, and we calculate the total time needed for

prefetching all segments. Then we subtract this prefetching time from our idle time.

Finally, we use formula (7) for computing efficiency for simulating our system and

we provide some results.

Firstly, we propose some examples to clarify our simulation model.

First example: If we have a system schedule like the one in Figure 16, and segment

prefetching time is 0.436 seconds (according to what we explained before in this

chapter) and we prefetch 8 segments during idle time, how can we calculate

efficiency in this system? (Assuming context switching time is 2 microseconds)

Figure 16. An Example of a System Schedule (CS: Context Switching)

In this case, the total time for prefetching 8 segments will be:

 8*0.436=3.488 seconds

 Total idle time: 6+3=9 seconds

 Total busy time: 8+6+7=21seconds

31

 Real idle time= Total idle time - time for prefetching 8 segments

 Real idle time: 9-3.488=5.512 seconds

From (6): Efficiency without prefetching:

 E=Busy/Busy + Idle

 E=21 / (21+9) = 0.7

From (7): Efficiency with prefetching:

 Ep= (Busy + Segment retrieval)/ (Busy + new Idle + Segment retrieval)

 Ep = (21+3.488) / (21+5.512+3.488) = 0.81

Second example: Now assume that we have the same schedule as in figure 16 and we

need 15 segments to prefetch from server, in this case:

Total time for prefetching 15 segments is: 15*0.436=6.54 seconds

Therefore, for this example, new idle time: 9-6.54 =2.46 seconds

From (7), efficiency with prefetching can be computed as:

 Ep= (21+6.54) / (21+2.46 +6.54) = 0.91

32

Considering these examples, for the first case, we use from less than 50% of our total

idle time by prefetching 8 segments (is about 38% of total idle time) and we get an

efficiency of more than 80 percent improved from 70 percent. It means around 10

percent of improviement on efficiency. In the second example, when we use more

than 50% of idle time by prefetching 15 segments (which takes about 72% of total

idle time), the resulting efficiency is about 90 percent. This is 20 percent higher than

the efficiency of the case without any prefetching.

In the previous examples, if we assume that segment prefetching time is 0.356

second (as discussed before, one segment preftching time with no packet loss), then

efficiency can be calculated as:

Total time for prefetching 8 segments: 8*0.356=2.848 seconds

Therefore, real idle time: 9-2.848=6.152 seconds

From (7): Ep= (21 + 2.848) / (21 + 6.152 + 2.848) = 0.79

So, there is about 9 percents rise in efficiency, compared with efficiency with no

prefetching segments in idle time.

33

 Figure 17. Impact of Using Idle Time for Segment Prefetching On Efficiency for

Previous Examples

These examples indicate that we can improve efficiency if we use idle time for

prefetching segments. As figure 17 indicates, when we use more than 70 percent of

idle time for prefetching, we obtain efficiency about 90%. This amount is reduced to

81% when we use nearly 40% of idle time, which is still better than efficiency with

no prefetching.

4.5 Assumptions Review

The next table contains all our assumptions which we need for obtaining our results

in next chapter.

34

Table 2. Assumptions Considered In This Study

Assumption Type or Value
Communication Network LAN

Type of Network 100 Mbps Ethernet

Context Switching Time 2 microseconds

CPI(clock per instruction) 10

Clock Time 0.0003 microseconds

Transmission Time (for 2 MB segment) 0.16 second (160000 microseconds)

Unpacking Time (for 2 MB segment) 170 milliseconds(169894.56 microseconds)

Sorting Time (for 1399 packets) 26000 microseconds

One Segment Prefetching Time (without

any lost packet)

~ 356 milliseconds

One Segment Prefetching Time (with lost

packets, worst case)

~ 436 milliseconds

Propagation time Ignored

35

Chapter 5

PREFETCHING SIMULATION RESULTS

5.1 The Simulation Model

In this chapter, we are going to discuss the results of simulation studies for a

prefetching system. We use 100 system schedules like our example in chapter 4.

Each schedule has different values for busy time and idle time sections during 20

seconds of simulation time. After each switching for idle time or busy time, we

consider 2 microseconds for context switching. So we simulate our system by

dividing 20 seconds of total time into sections which indicate busy and idle status of

our system. We run this simulation for 100 times with different types of partitioning

for busy and idle statuses. We use Matlab for simulating our system.

Values allocated for busy and idle time sections in each of the 100 samples are

generated randomly. The assumption is that, the sum of them plus context switching

time should be equal to 20000 milliseconds (20 seconds), which is the total

simulation time.

In each run of our simulation model, we calculate total busy time and total idle time

in addition to total time including context switching times that we have during this

20 second interval. Then we use formula (6) and (7) for computing efficiencies with

and without prefetching.

36

Finally, we have two figures for illustrating the results of our simulation model for

these 100 samples. The main goal of this study was to improve efficiency by using

prefetching, which is shown to be achieved by the simulation study.

5.2 Results and Discussion

Tables 2, 3, 4, 5, 6, 7, 8, 9, 10 and 11 summarize our data and results for simulation.

We have a variation of data for each part. The busy time is 4790 milliseconds

minimum, and 15670 milliseconds maximum, because of data choice. On the other

hand, 4290 milliseconds and 15170 milliseconds are minimum and maximum

amounts for idle time respectively. We test our data with at most 9 segments for

prefetching, beacause if we consider that each segment takes 436 milliseconds for

prefetching (0.436 second, from results of chapter 4) then with 4290 millieconds,

which is minimum idle time that we have, we can prefetch 9 segments, as:

From the given tables, efficiency is 0.2395 minimum and 0.7835 maximum without

prefetching. These amounts rise to 0.4357 and 0.9797 in minimum and maximum

with our prefetching model. Efficiency has a mean of 0.531 without any prefetching

and a mean of 0.728 with using our prefetching model.

As results of one hundred samples indicate, in each sample we improve efficiency by

almost 0.2 on the average, which is 20 percent (see figure 18 and figure 19).

37

From Figure 19, for our one hundred samples and with our assumption, efficiency

has the highest amount where idle time is minimum. It shows that whenever we use

from idle time more we can reach higher efficiency values. As explained above, we

prefetch 9 segments, so we use:

9*436= 3924 milliseconds for prefetching.

Figure 18. Efficiency without Prefetching (Idle Time Is in Millisecond)

38

 Figure 19. Efficiency with Using Prefetching Model (Idle Time Is in Millisecond)

Therefore, when idle time is 4290 milliseconds and we use 3924 milliseconds of that

for prefetching, it means we take more part of idle time for prefetching and the real

idle time will be short. So efficiency will be increased as Figure 19 indicates.

In case of maximum idle time, if we prefetch 9 segments, we use 25% of our idle

time. So, real idle time will be 11246 milliseconds and consequently efficiency will

be less compared to other 99 cases.

All of our values for maximum and minimum busy and idle times and the number of

prefetching segments depend on the schedules of our samples. Of course if we

generate different schedules these results may change. However, the main part is that

39

with any different values, which we use as samples we have improvement in

efficiency of the system with this prefetching model.

When running the program in Matlab simulator, we generate various schedules, and

consequently, we generate different values as total busy and idle times. For example,

in some samples the total busy time is less than the total idle time. Note that these

values represent just 20 seconds of a system schedule. So during this time, total busy

time of the system may be less than total idle in some cases. In this sort of samples,

we see that efficiency is low.

If we increase the number of prefetched segments in each sample, we reach to higher

efficiency values with prefetching (Ep) and also if we decrease the number of

prefetched segments, the efficiency is lower in each sample.

Each sample starts with busy time and also finishes with busy time. We check

whether the sum of busy and idle time plus context switching time is equal to 20

seconds (20000 milliseconds). If when data is finished, computation steps for

calculating E and Ep will start. Otherwise getting data from user mode will continue.

The number of busy and idle part in each sample are different. As Tables (4-12)

show, we have samples with at least 21 of busy/idle times and at most 33 values of a

system schedule. Figure 20 plots total busy and total idle times only for the first table

(Table 4), For example, first pair of bar charts is for first column (sample) of table 4

and the second pair is for second column of table 4 and so on.

40

Figure 20. Busy and Idle Time in Millisecond for the First 10 Samples of Table 4

Our model shows that if we assign more idle time for prefetching segments, we can

reach higher efficiency values in the system.

Up to this point, we have assumed that the server responds to our prefetch requests

immediately, what happens if the server is busy? As discussed in chapter 4, when

idle time starts, peer sends a request for prefetching segments to the server. If the

server is busy exactly at that time, the peer may find out that its request is rejected by

the server. So, the peer should send this request periodically while the idle time

continues and the server has not yet accepted segment request from the peer. As soon

as the server starts sending packets, the system uses the rest of idle time for

prefetching, even though the rest of idle time is not enough for prefetching all

requested segments. So in this case, efficiency becomes less because of the idle time

which spends for getting respond from the server than efficiency when the server

immediately starts sending segments.

41

All our computations were upon the assumption that the time for prefetching a

segment is 0.436 second, but as discussed in chapter 4 this time is calculated with the

condition that we have packet loss. Actually in the best case, this time reduces to

0.356 second. In real life, the prefetching time needed for one segment can be some

value between these two values.

5.3 Comparison with Similar Studies

Table 3 compares between three other studies and our study in different aspects.

In another study on prefetching [18], continuous-time and discrete-time are the

factors. In continuous-time model, video frames can be transmitted continuously

across frame periods. We use discrete-time prefetching. [18] Indicates that

continuous-time prefetching may decrease the starvation probability and this may

lead to better performance compared to discrete-time prefetching.

42

Table 3. Our Prefetching Model versus Other Prefetching Strategies

Results Model Video Slicing Study

The proposed

prefetching scheme
optimally

determines which
segments will be

prefetched and cached,
based on the segment

access probability. The
optimized prefetching

scheme could minimize
the expected seeking

delay at each viewing
position.

The module of the

optimal prefetching
takes the segment access

probability as input and
determines the optimal

segments for prefetching
and optimal cache

replacement policy.

Each video divided
into several

segments

Prefetching Optimization in
P2P VoD application with

guided seek [16]

Differentiated chunk
scheduling mechanism

can achieve high peer
bandwidth utilization.

Using queue-based
signaling between peers

and the content source

server, the amount of
workload assigned to a

peer is proportional to
its

available upload
capacity, which leads to

high
bandwidth utilization.

Use different queues:
“urgent target” and

“prefetching target”.
The segments near to

playback position are
placed in urgent target.

Prefetching queue

contains segments with
latest play back time.

Urgent segments have
higher priority than

prefetching segments.

Each video divided

into several chunks

Prefetching with

Differentiated Chunk

Scheduling [3]

When a substream
is lost, the client may

have a sufficient
“reservoir” for that

sub-stream, so that
playback continues

without any quality
degradation.

The optimal prefetching
policy

determines how to
allocate the bandwidth

at time t to the
M substreams in order

to minimize the average
distortion. To

implement this
prefetching policy, the

server peer needs
to keep track of the

prefetch buffer content
and an estimate of

the average available
bandwidth for a request

(heuristic prefetching).

Each video divided
into several

substreams

Optimal off-line prefetching
algorithm and Heuristic

prefetching algorithm [9]

We use 100 system
schedules and our results

show that we have about
20% improvement in

performance of the
system by using our

prefetching model.

We calculate
prefetching time for one

segment, if it takes 'x'
time, then we divide our

idle time into slices of
'x' times. In our

prefetching model, idle
time is used for

prefetching segments
which are unavailable in

local buffer and other
peers.

Each video divided

into several
segments

Our prefetching model

43

Chapter 6

CONCLUSION

Within this dissertation, we discussed how to improve the performance of peer to

peer video-on-demand systems by using a prefetching method. This prefetching

mechanism will be executed during idle times of the processor. Therefore, idle time

of the system will be reduced, and consequently efficiency of the system will be

improved. Our simulation studies show this improvement can be about 20%, which

is considerably high.

We compute one segment's prefetching time based on some assumptions and

conditions like type of the communication network, type of the network, processor

clock speed and context switching time. Changes in these attributes will, of course,

change the results. For example, if we use a 10 Mbps Ethernet network, then time

needed for prefetching a segment may increase.

Moreover, we assume that the peer sends a request for prefetching segments to the

server and the server starts sending segments instantly. However, the server may be

busy at that moment and may not send segments immediately. It is a controversial

issue that can probably happen in our prefetching model, and if we miss our idle time

because of the server delays, the efficiency of our system may decrease.

44

Furthermore, this situation that the server is busy also may happen in the case that we

have some lost packets and peer has to send new requests to the server for

retransmission them. If the server is busy, prefetching that video segment would take

a longer time. The peer should wait until all packets are received correctly and

completely from the server. So the server busy status is a subject which we could not

discuss comprehensively in this work.

As mentioned before, the type of network was considered LAN in our work. We also

assumed the server is on the same LAN. Actually, in many cases, the server will be

remote. We can implement our prefetching model upon other types of networks and

investigate efficiency of system in each one. For instance, in a wireless LAN network

or in mobile cellular systems which use base stations, communication between base

stations and peers in the peer to peer network are significant. So, for the future work

we can evaluate efficiency of the system with our prefetching model in different type

of network with more challenging conditions and limitations than a LAN network.

45

REFERENCES

[1] H. Sarper, I. Aybay. , "Improving VoD Performance with LAN Client Back-

End Buffering", IEE Multimedia, VOL.14, issue: 1, pp: (48-60), 2007.

[2] G. Deng, T. Wei, C. Chen, W. Zhue, B. Wang, D.R. Wu. , "Moderate

Prefetching Strategy Based on Video Slicing Mechanism for P2P VoD

streaming System", 4
th
 IET International Conference on Wireless, Mobile and

Multimedia, 2011.

[3] U. Abbasi, G. Simo, T. Ahmed., "Differentiated Chunk Scheduling for P2P

Video-on-Demand System", The 8
th
 Annual IEEE Consumer Communication

and Networking Conference, pp: (622-626), 2011.

[4] H. Sampathkumar. "Using Time Division Multiplexing To Support real-time

Networking on Ethernet", Master thesis of Computer Science and

Engineering, University of Madras, Chennai, 2002.

[5] D.A. Patterson, J. L. Hennessy, Computer Organization and Design, Elsevier,

2005.

[6] J. Summers, T. Brecht, D. Eager, B. Wong., "To Chunk or Not to Chunk:

Implications for HTTP Streaming Video Server Performance", Proceedings of

ACM NOSSDAV, 2012.

46

[7] U. Abbasi, T. Ahmed., "COOCHI_G: Cooperative Prefetching Strategy for

P2PVideo-on-Demand System", IEEE Consumer Communication and

Networking Conference, 2011.

[8] P. Garbacki, D.H.J. Epema, J. Pouwelse, M. Steen, “Offloading Servers with

Collaborative Video on Demand”. In Proc of International Workshop on Peer-

to-Peer Systems (IPTPS '08) 2008.

[9] Y. Shen, Z. Liu, S. Panwar, K. Ross, Y. Wang, “On the design of prefetching

strategies in a peer-driven Video on demand systems”. In Proceedings of IEEE

International Conference on Multimedia and Expo, pp: (817-820), 2006.

[10] http://techtips.salon.com/differences-intel-processors-2586.html

(All web address: last visited in May 2013)

[11] http://blog.tsunanet.net/2010/11/how-long-does-it-take-to-make context.html

[12] M. Simmons, Ethernet Theory of Operation, Microchip, Microchip

Technology INC, 2008.

[13] http://www.academia.edu/1908921/An_Experiment_to_Determine_and_Com

pare_Practical_Efficiency_of_Insertion_Sort_Merge_Sort_and_Quick_Sort_A

lgorithms

[14] http://warp.povusers.org/SortComparison/integers.html

http://techtips.salon.com/differences-intel-processors-2586.html
http://blog.tsunanet.net/2010/11/how-long-does-it-take-to-make%20%20context.html
http://www.academia.edu/1908921/An_Experiment_to_Determine_and_Compare_Practical_Efficiency_of_Insertion_Sort_Merge_Sort_and_Quick_Sort_Algorithms
http://www.academia.edu/1908921/An_Experiment_to_Determine_and_Compare_Practical_Efficiency_of_Insertion_Sort_Merge_Sort_and_Quick_Sort_Algorithms
http://www.academia.edu/1908921/An_Experiment_to_Determine_and_Compare_Practical_Efficiency_of_Insertion_Sort_Merge_Sort_and_Quick_Sort_Algorithms
http://warp.povusers.org/SortComparison/integers.html

47

[15] http://www.cs.uml.edu/~pkien/sorting/

[16] Y. He, L. Guan, "Prefetching Optimization in P2P VoD Applications", First

International Conference on Advances in Multimedia, pp: (110-115), 2009.

[17] http://www.techterms.com/definition/clockspeed

[18] S. Oh, B. Kulapala, A.W. Richa, and Martin Reisslein, "Continuous-Time

Collaborative Prefetching of Continuous Media", IEEE Transactions on

Broadcasting, VOL. 54, pp: (36-52), 2008.

[19] R. Diwan, S. Thakur, "Role of Data Link Layer in OSI", International

Research Journal, VOL. 1, issue: 7, pp: (24-26), 2010.

[20] J. Jasperneite, J. Imtiaz, M. Schumacher, K. Weber. "A Proposal for a

Generic Real-Time Ethernet System", IEEE Tranactions on Industrial

Informatics, VOL.5, issue: 2, pp: (75-85), 2009.

http://www.cs.uml.edu/~pkien/sorting/
http://www.techterms.com/definition/clockspeed

48

APPENDIX

49

Table 4. Samples of Different System Schedules

10 9 8 7 6 5 4 3 2 1

600 600 700 800 500 1000 650 1000 500 400 1

500 400 240 300 600 500 700 300 450 262 2

500 500 800 600 1000 700 1250 700 1000 800 3

236 200 600 500 300 300 500 500 130 500 4

700 1000 400 700 700 600 500 900 800 1000 5

400 300 500 700 400 600 700 600 500 600 6

800 700 800 1000 900 500 2000 2000 3000 900 7

600 500 500 200 500 200 300 500 900 800 8

900 900 1000 500 2000 500 650 700 750 500 9

500 600 700 500 600 500 950 1000 600 300 10

1000 2000 900 700 600 2000 300 2500 2500 2500 11

300 500 500 400 240 400 400 200 500 400 12

800 700 800 800 800 700 200 500 920 1350 13

400 1000 500 100 400 900 500 400 580 658 14

500 2500 1300 900 1500 800 600 1000 3500 750 15

600 200 600 700 500 300 800 800 100 1000 16

700 500 700 2000 700 500 1000 900 700 2250 17

800 400 500 500 300 450 350 152 30 650 18

800 1000 700 400 800 700 550 2000 1500 3000 19

500 800 400 300 600 500 800 600 500 340 20

600 900 900 900 900 450 500 400 500 1000 21

400 152 300 600 100 500 1500 600 22

1500 2000 600 700 500 700 100 500 23

700 600 500 500 400 100 600 200 24

800 1000 1000 1000 700 800 600 1000 25

500 800 400 600 636 900 26

600 500 900 400 1100 200 27

400 500 500 1000 400 800 28

900 600 700 400 900 400 29

200 300 640 500 500 400 30

500 800 500 500 700 240 31

300 300 32

400 200 33

12600

14300

12500

13100

12900

12850

9740

14100

15670

14450
Total

Busy

time

7336

5652

7440

6840

7040

7086

10200

5852

4290

5510

Total

Idle

time

0.63 0.715 0.625 0.655 0.645 0.6425 0.487 0.705 0.7835 0.7225 E

0.8262 0.9112 0.8212 0.8512 0.8412 0.8387 0.6834 0.9012 0.9797 0.9187 Ep

50

Table 5. Samples of Different System Schedules

10 9 8 7 6 5 4 3 2 1

500 600 2250 600 240 400 30 400 900 500 1

1000 100 650 700 650 900 1500 600 200 800 2

800 500 3000 800 700 500 500 500 800 300 3

500 500 340 700 1250 700 500 500 400 600 4

600 600 1000 800 500 640 450 236 240 500 5

300 436 400 800 500 500 1000 700 650 700 6

800 700 262 800 700 800 130 400 700 700 7

700 500 800 500 2000 300 800 800 1250 1000 8

240 200 500 1000 300 600 500 600 500 200 9

800 900 1000 240 650 500 3000 900 500 500 10

600 400 600 900 950 700 900 500 700 500 11

400 600 900 500 300 700 750 1000 2000 700 12

500 500 800 800 400 1000 600 300 300 400 13

800 1000 500 500 200 200 2500 800 650 800 14

500 500 300 500 500 500 500 400 950 100 15

1000 700 2500 400 600 500 920 500 300 900 16

700 300 400 700 800 700 580 600 400 700 17

900 800 1350 300 1000 400 3500 700 200 2000 18

500 500 658 700 350 800 100 800 500 500 19

800 800 750 600 550 100 700 800 600 400 20

500 600 1000 900 800 900 500 500 800 300 21

1300 1800 300 500 700 600 1000 900 22

600 600 600 1500 2000 400 350 600 23

700 700 500 100 500 1500 550 700 24

500 400 1000 600 400 700 800 500 25

700 900 500 600 300 800 500 1000 26

400 500 500 900 900 500 1500 400 27

900 800 500 200 600 600 100 900 28

300 400 600 800 700 400 600 500 29

 600 500 1300 400 500 900 400 700 30

500 400 400 400 1000 200 600 640 31

 750 500 32

 450 300 33

8540

8150

10770

11600

10440

12540

4790

7736

10640

7340
Total

Busy

time

11400

11786

9190

8340

9500

7400

15170

12200

9300

12600
Total

Idle

time

0.427 0.4075 0.5385 0.58 0.522 0.627 0.2395 0.3868 0.532 0.367 E

0.6232 0.6037 0.7347 0.7762 0.7182 0.8232 0.4357 0.583 0.7282 0.5632 Ep

51

Table 6. Samples of Different System Schedules

10 9 8 7 6 5 4 3 2 1

900 1100 600 400 200 1350 800 700 700 700 1

400 400 500 500 1000 658 400 600 300 30 2

600 900 200 500 1000 750 400 400 200 1500 3

500 500 1000 500 300 1000 240 1000 1000 500 4

1000 700 300 600 700 2250 650 400 500 500 5

500 300 700 1000 500 650 700 500 700 450 6

700 200 500 300 900 3000 1250 600 300 1000 7

300 1000 900 700 600 340 500 1000 600 130 8

800 500 600 400 2000 1000 500 300 600 800 9

500 700 2000 900 500 400 700 700 500 500 10

800 300 500 500 700 262 2000 400 200 3000 11

600 600 700 2000 1000 800 300 900 500 900 12

1800 600 1000 600 2500 500 650 500 500 750 13

600 500 2500 600 200 1000 950 2000 2000 600 14

700 200 200 240 500 600 300 600 400 2500 15

400 500 500 800 400 900 400 600 700 500 16

900 500 400 400 1000 800 200 240 900 920 17

500 2000 1000 1500 800 500 500 800 800 580 18

800 400 800 500 900 300 600 400 300 3500 19

400 700 900 700 152 2500 800 1500 500 100 20

500 900 152 300 2000 400 1000 500 450 500 21

400 800 2000 800 600 350 700 700 22

750 300 600 600 400 550 300 500 23

450 500 400 900 600 800 800 450 24

600 450 1000 100 500 500 600 500 25

100 700 500 1500 900 700 26

500 500 400 100 100 100 27

500 450 700 600 500 800 28

600 500 600 600 400 636 29

436 700 400 900 500 1100 30

700 100 1000 200 500 400 31

500 800 900 32

200 636 500 33

12850

8786

6852

7440

13300

11212

10300

6940

7686

15670
Total

Busy

time

7086

11150

13100

12500

6652

8748

9640

13000

12250

4290
Total

Idle

time

0.6425 0.4393 0.3426 0.372 0.665 0.5606 0.515 0.347 0.3843 0.7835 E

0.8387 0.6355 0.5388 0.5682 0.8612 0.7568 0.7112 0.5432 0.5805 0.9797 Ep

52

Table 7. Samples of Different System Schedules

10 9 8 7 6 5 4 3 2 1

700 152 500 500 1000 800 800 800 600 500 1

500 2000 700 200 400 636 700 500 436 600 2

200 600 640 900 262 1100 240 600 700 400 3

900 400 500 400 800 400 800 400 500 900 4

400 600 800 600 500 900 600 900 200 200 5

600 500 300 500 1000 500 400 200 900 500 6

500 200 600 1000 600 700 500 500 400 300 7

1000 1000 500 500 900 300 800 300 600 400 8

500 1000 700 700 800 200 500 400 500 600 9

700 300 700 300 500 1000 1000 600 1000 500 10

300 700 1000 800 300 500 700 500 500 500 11

800 500 200 500 2500 700 900 500 700 236 12

500 900 500 800 400 300 500 236 300 700 13

800 600 500 600 1350 600 800 700 800 400 14

600 2000 700 1800 658 600 500 400 500 800 15

1800 500 400 600 750 500 1300 800 800 600 16

600 700 800 700 1000 200 600 600 600 900 17

700 1000 100 400 2250 500 700 900 1800 500 18

400 2500 900 900 650 500 500 500 600 1000 19

900 200 700 500 3000 2000 700 1000 700 300 20

500 500 2000 800 340 400 400 300 400 800 21

800 400 500 400 700 900 800 900 400 22

400 1000 400 500 900 300 400 500 500 23

500 800 300 400 800 600 500 800 600 24

400 900 900 750 300 500 600 400 700 25

750 600 450 500 1000 700 500 800 26

450 700 600 450 800 800 400 800 27

600 500 100 700 500 800 750 500 28

100 1000 500 500 500 500 450 600 29

500 400 500 450 600 600 600 400 30

500 900 600 500 300 400 100 1500 31

600 436 700 1500 500 700 32

436 700 100 700 500 800 33

7486

11752

13040

13150

6510

8950

8240

9136

7650

11600
Total

Busy

time

12450

8200

6900

6786

13450

10986

11700

10800

12286

8336
Total

Idle

time

0.3743 0.5876 0.652 0.6575 0.3255 0.4475 0.412 0.4568 0.3825 0.58 E

0.5705 0.7838 0.8482 0.8537 0.5217 0.6437 0.6082 0.653 0.5787 0.7762 Ep

53

Table 8. Samples of Different System Schedules

10 9 8 7 6 5 4 3 2 1

1000 600 436 1000 600 500 400 3500 600 600 1

400 900 700 400 900 500 700 100 400 300 2

900 200 500 500 200 500 600 700 900 800 3

500 800 200 500 800 600 400 30 200 700 4

700 400 900 500 400 1000 1000 1500 500 240 5

640 240 400 600 240 300 400 500 300 800 6

500 650 600 1000 650 700 500 500 400 600 7

800 700 500 300 700 400 500 450 600 400 8

300 1250 1000 700 1250 900 600 130 500 500 9

600 500 500 400 500 500 1000 1000 500 800 10

500 500 700 900 500 2000 300 800 236 500 11

700 700 300 500 700 600 700 500 700 1000 12

700 2000 800 2000 2000 600 400 3000 400 700 13

1000 300 500 600 300 240 900 750 800 900 14

200 650 800 600 650 800 500 900 600 500 15

500 950 600 240 950 400 2000 600 900 800 16

500 300 1800 800 300 1500 600 2500 500 500 17

700 400 600 400 400 500 600 500 1000 1300 18

400 200 700 1500 200 700 240 920 300 600 19

800 500 400 500 500 300 800 580 800 700 20

100 600 900 700 600 800 400 500 400 500 21

900 800 500 300 800 600 1500 500 700 22

700 1000 800 800 1000 900 500 600 400 23

2000 350 400 600 350 100 700 700 900 24

500 550 500 900 550 500 300 800 300 25

400 800 400 100 800 400 800 800 600 26

300 500 750 500 500 700 600 500 500 27

900 1500 450 400 1500 600 900 600 1000 28

600 100 600 700 100 400 100 400 800 29

700 600 100 600 600 1000 500 1500 500 30

500 400 500 400 400 400 500 700 500 31

 500 800 32

 600 500 33

8400

9900

12886

13500

9900

12900

7540

14950

8836

8540
Total

Busy

time

11540

10040

7050

6440

10040

7040

12400

5010

11100

11400
Total

Idle

time

0.42 0.495 0.6443 0.675 0.495 0.645 0.377 0.7475 0.4418 0.427 E

0.6162 0.6912 0.8405 0.8712 0.6912 0.8412 0.5732 0.9437 0.638 0.6232 Ep

54

Table 9. Samples of Different System Schedules

10 9 8 7 6 5 4 3 2 1

400 500 700 200 500 500 650 500 1500 400 1

700 500 640 500 500 500 3000 600 500 900 2

600 500 500 300 600 450 340 436 500 200 3

400 450 800 400 300 1000 1000 700 450 500 4

1000 1000 300 600 800 800 400 500 1000 300 5

400 130 600 500 700 130 262 200 130 400 6

500 800 500 500 240 500 800 900 800 600 7

500 500 700 236 800 3000 500 400 500 500 8

500 3000 700 700 600 900 1000 600 3000 500 9

600 900 1000 400 400 750 600 500 900 236 10

1000 750 200 800 500 600 900 1000 750 700 11

300 600 500 600 800 2500 800 500 600 400 12

700 2500 500 900 500 500 500 700 2500 800 13

400 500 700 500 1000 100 300 300 500 600 14

900 920 400 1000 700 580 2500 800 920 900 15

500 580 800 300 900 3500 400 500 580 500 16

2000 3500 100 800 500 920 1350 800 3500 1000 17

600 100 900 400 800 700 658 600 100 300 18

600 700 700 500 500 30 750 1800 700 800 19

240 30 2000 600 1300 500 1000 600 500 400 20

800 1500 500 700 600 1500 2250 700 30 500 21

400 400 800 700 400 600 22

1500 300 800 500 900 700 23

500 900 500 700 500 800 24

700 600 600 400 800 800 25

300 700 400 900 400 500 26

800 500 1500 1000 500 600 27

600 1000 700 600 400 400 28

900 400 800 500 750 1500 29

100 900 500 300 450 700 30

500 500 600 800 600 800 31

 400 100 500 32

 900 500 600 33

13400

15670

7400

12200

9240

7280

11440

12786

15200

11700
Total

Busy

time

6540

4290

12540

7736

10700

12680

8520

7150

4760

8236
Total

Idle

time

0.67 0.7835 0.37 0.61 0.462 0.364 0.572 0.6393 0.9562 0.585 E

0.8662 0.9797 0.5662 0.8062 0.6582 0.5602 0.7682 0.8355 0.9562 0.7812 Ep

55

Table 10. Samples of Different System Schedules

10 9 8 7 6 5 4 3 2 1

600 500 500 340 500 100 500 500 100 400 1

500 500 500 1000 1000 500 600 400 700 240 2

1000 600 600 400 400 500 300 700 30 650 3

800 300 436 262 900 600 800 600 1500 700 4

500 800 700 800 500 436 700 400 500 1250 5

600 700 500 500 700 700 240 1000 500 500 6

300 240 200 1000 640 500 800 400 500 500 7

800 800 900 600 500 200 600 500 450 700 8

700 600 400 900 800 900 400 500 1000 2000 9

240 400 600 800 300 400 500 600 130 300 10

800 500 500 500 600 600 800 1000 800 400 11

600 800 1000 300 500 500 500 300 500 950 12

400 500 500 2500 700 1000 1000 700 3000 300 13

500 1000 700 400 700 500 700 400 900 650 14

800 700 300 1350 1000 700 900 900 750 200 15

500 900 800 658 200 300 500 500 600 500 16

1000 500 500 750 500 800 800 2000 2500 600 17

700 800 800 1000 500 500 500 600 500 800 18

900 500 600 2250 700 800 1300 600 920 1000 19

500 1300 1800 650 400 600 600 240 580 350 20

800 600 600 3000 800 1800 700 800 3500 550 21

500 700 700 100 600 500 400 800 22

1300 500 400 900 700 700 1500 500 23

600 700 900 700 400 400 500 1500 24

700 400 500 2000 900 900 700 100 25

500 900 800 500 500 300 300 600 26

700 300 400 400 800 600 800 600 27

400 600 500 300 400 500 600 900 28

900 500 400 900 500 1000 900 200 29

300 1000 750 600 400 800 100 800 30

500 800 450 700 750 500 500 400 31

 600 450 32

 100 600 33

11900

8540

7650

13790

12040

12386

11900

12900

13600

9650
Total

Busy

time

8040

11400

12286

6170

7900

7550

8040

7040

6360

10290
Total

Idle

time

0.595 0.427 0.3825 0.6895 0.602 0.6193 0.595 0.645 0.68 0.4825 E

0.7912 0.6232 0.5787 0.8857 0.7982 0.8155 0.7912 0.8412 0.8762 0.6787 Ep

56

Table 11. Samples of Different System Schedules

10 9 8 7 6 5 4 3 2 1

500 900 580 2000 640 3000 600 500 600 500 1

800 200 3500 600 500 340 400 300 500 700 2

300 500 100 400 800 1000 1000 400 1000 300 3

600 300 700 500 300 400 400 600 800 200 4

500 400 3000 200 600 262 500 500 500 1000 5

700 600 1500 1000 500 800 500 500 500 500 6

700 500 500 300 700 500 600 236 600 700 7

1000 500 500 700 700 1000 1000 700 300 300 8

200 236 450 500 1000 600 300 400 800 600 9

500 700 1000 900 200 900 700 800 700 600 10

500 400 130 600 500 800 400 600 240 500 11

700 800 800 2000 500 500 900 900 800 200 12

400 600 500 500 700 300 500 500 600 500 13

800 900 30 700 400 2500 2000 1000 400 500 14

2000 500 900 1000 800 400 600 300 500 2000 15

900 300 750 2500 100 1350 600 800 800 400 16

700 1000 600 200 900 658 240 400 500 700 17

100 800 2500 500 700 750 800 500 1000 900 18

500 400 500 400 2000 1000 400 600 700 800 19

400 500 920 1000 500 2250 1500 700 900 300 20

300 600 500 800 400 650 500 800 500 500 21

900 700 900 300 700 800 800 450 22

600 800 152 900 300 500 500 700 23

700 800 600 600 800 600 300 500 24

500 500 1000 700 600 400 600 450 25

1000 600 500 900 1500 700 500 26

900 1500 1000 100 700 500 700 27

400 400 400 500 800 700 100 28

500 700 900 400 500 400 800 29

700 800 500 700 600 900 636 30

640 500 700 500 400 1300 1100 31

 600 900 400 32

 400 200 900 33

9740

10436

7760

8052

13240

9170

7540

7936

9840

12750
Total

Busy

time

10200

9500

12200

11900

6700

10790

12400

12000

10100

7186
Total

Idle

time

0.487 0.5218 0.388 0.4026 0.662 0.4585 0.377 0.3968 0.492 0.6375 E

0.6832 0.718 0.5842 0.5988 0.8582 0.6547 0.5732 0.593 0.6882 0.8337 Ep

57

Table 12. Samples of Different System Schedules

10 9 8 7 6 5 4 3 2 1

400 700 200 100 900 300 800 658 900 300 1

900 500 1000 600 500 400 500 750 500 800 2

500 1000 500 900 700 600 500 1000 700 700 3

700 400 700 200 300 500 600 2250 640 240 4

300 900 300 800 200 500 300 650 500 800 5

200 500 600 400 1000 236 800 3000 800 600 6

1000 700 600 240 500 700 700 340 300 400 7

500 640 500 650 700 400 240 1000 600 500 8

700 500 200 700 300 800 800 400 500 800 9

300 800 500 1250 600 600 600 262 700 500 10

600 300 500 500 600 900 400 800 700 1000 11

600 600 400 500 500 500 500 500 1000 700 12

500 500 2000 700 200 1000 800 1000 200 900 13

200 700 700 2000 500 300 500 600 500 500 14

500 700 900 300 500 800 1000 900 500 800 15

500 100 800 650 2000 400 700 800 700 500 16

2000 200 300 950 400 500 900 500 400 1300 17

400 500 500 300 700 600 500 300 800 600 18

700 500 450 400 900 700 800 2500 100 700 19

900 700 700 200 800 800 500 400 900 500 20

800 400 500 500 300 800 1300 1350 700 700 21

300 800 450 600 500 500 600 2000 400 22

500 1000 500 800 450 600 700 500 900 23

450 900 700 1000 700 400 500 400 300 24

700 700 100 350 500 1500 700 300 600 25

500 2000 800 550 450 700 400 900 500 26

450 500 636 800 500 800 900 600 1000 27

500 400 1100 500 700 500 300 700 800 28

700 300 400 1500 100 600 600 500 500 29

100 900 900 400 800 400 500 1000 500 30

800 600 500 600 636 900 1000 400 600 31

636 700 1100 200 32

1100 300 400 500 33

12250

9500

8886

10140

8086

12500

12200

10098

7800

12000
Total

Busy

time

7686

10440

11050

9800

11850

7436

7740

9862

12140

7940
Total

Idle

time

0.6125 0.475 0.4443 0.507 0.4043 0.625 0.61 0.5049 0.39 0.6 E

0.8087 0.6712 0.6405 0.7032 0.6005 0.8212 0.8062 0.7011 0.5862 0.7962 Ep

58

Table 13. Samples of Different System Schedules

10 9 8 7 6 5 4 3 2 1

300 400 200 1350 200 400 1000 1500 900 500 1

200 600 900 658 800 400 1000 500 152 500 2

1000 500 400 750 400 1000 300 500 2000 600 3

500 200 600 1000 400 500 700 450 600 1000 4

700 1000 500 2250 240 500 500 1000 400 300 5

300 300 1000 650 650 500 900 130 600 700 6

600 700 500 3000 700 600 600 800 500 400 7

600 500 700 340 1250 300 2000 500 200 900 8

500 900 300 1000 500 1000 500 3000 1000 500 9

200 600 800 400 500 700 700 900 1000 2000 10

500 2000 500 262 700 400 1000 750 300 600 11

500 500 800 800 2000 900 2500 600 700 600 12

2000 700 600 500 300 500 200 2500 500 240 13

400 1000 1800 1000 650 2000 500 500 900 800 14

700 2500 600 600 950 600 400 920 600 400 15

900 200 700 900 300 600 1000 580 2000 1500 16

800 500 400 800 400 240 800 3500 500 500 17

300 400 900 500 200 800 900 100 700 700 18

500 1000 500 300 500 400 152 500 1000 300 19

450 800 800 2500 600 1500 2000 230 2500 800 20

700 900 400 400 800 500 600 500 200 600 21

500 152 500 1000 700 400 500 900 22

450 2000 400 350 300 600 400 100 23

500 600 750 550 800 500 1000 500 24

700 1000 450 800 600 200 800 400 25

100 600 500 900 700 26

800 100 1500 100 600 27

636 500 100 500 400 28

1100 500 600 400 1000 29

400 600 600 700 400 30

900 436 900 600 500 31

500 700 32

700 500 33

12950

14100

7286

11212

9840

8140

6852

15470

9100

7540
Total

Busy

time

6986

5852

12650

8748

10100

11800

13100

4490

10852

12400
Total

Idle

time

0.6475 0.705 0.3643 0.5606 0.492 0.407 0.3426 0.7735 0.455 0.377 E

0.8437 0.9012 0.5605 0.7568 0.6882 0.6032 0.5388 0.9697 0.6512 0.5732 Ep

