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ABSTRACT 

Estimation of the parameters of a complex sinusoid in noise usually consists of two 

steps; a coarse frequency estimation found by applying the N-point DFT of an N 

length input. Then a search method is applied around the peak frequency. 

Different search methods can be applied around the peak frequency.  In this thesis, 

we try to compare the method proposed by Candan with the Jacobsen, Macleod and 

Quinn’s estimators. The performance measure of these algorithms will be compared 

in terms of the Cramer-Rao lower bound. 

Different experiments have been implemented with different number of 

observations. Simulations show that as the number of observations becomes larger, 

these methods converge to the Cramer-Rao lower bound expressed as RMS error. 

However, Candan’s method has shown the best performance among all other 

algorithms. 

Keywords:Frequency Estimation, DFT, Jacobsen Estimator, Quinn Estimator, 

Macleod Estimator, Cramer-Rao Lower Bound. 
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ÖZ 

Bir gürültülü karmaşık üstelin parametre kestirimi genellikle iki adımdan oluşur: 

Uzunluğu N olan bir veriye N-noktalı bir DFT uygulanmak suretiyle yaklaşık sıklık 

kestirimi, daha sonra ise bu sıklık etrafında bir arama yönteminin uygulanması. 

Yaklaşık kestirilmiş sıklık etrafındaki arama için farklı yöntemler uygulanabilir. Bu 

tezde, Candan tarafından önerilmiş yöntemin, Jacobsen, Macleod ve Quinn’in 

kestirim yöntemleri ile karşılaştırılmasına çalışılmıştır. Bu algoritmaların 

karşılaştırılması için Cramer-Rao alt sınırı başarım ölçütü olarak alınmıştır. 

Farklı sayıda gözlemler ile birçok deney yapılmıştır. Benzetim çalışmaları, bu 

yöntemlerin, gözlem sayısı arttıkça MSE’nin karekökü cinsinden ifade edilen 

Cramer-Rao alt sınırına yakınsadığını göstermiştir. Candan’ın yöntemi, diğer 

algoritmalara göre en iyi başarımı göstermiştir.  

Anahtar kelimeler: Sıklık kestirimi, DFT, Jacobsen kestirimi, Quinn Kestirimi, 

Macleod kestirimi, Cramer-Rao alt sınırı. 
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Chapter 1 

INTRODUCTION 

1.1 Introduction 

Estimation of the parameters of a complex sinusoid corrupted by white noise is an 

important problem in signal processing, and has applications in many areas such as 

power spectrum estimation, array and radar signal processing. The requirements 

regarding computational load of the estimator are particularly crucial in radar signal 

processing where a very large number of hypothesis tests on received complex 

signals are carried out per second, [1].  

There are many fields that require high accuracy of frequency estimation, especially 

in engineering and scientific applications. Many research subjects and theories 

concentrate on this estimation. The frequency estimation problem is presented in the 

literature in two categories. One of them is the frequency-domain method (non-

parametric methods). This category includes the Fourier-Transform based methods 

such as the periodogram and correlogram methods which depend on the Fourier 

Transform. Time-domain methods (parametric methods), on the other hand, have 

high performance in accuracy of estimation when the model order is well-known [2], 

[3]. Usually a DFT of data having length N, with a frequency resolution of 2π/N in 

the estimate may be required in many applications to increase the frequency 
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estimate's resolution at the expense of increasing the computational load. A two-step 

search is described in [4] aimed at improving the accuracy of the frequency estimate.  

In the first step, approximate search is performed by computing the N-point DFT. 

Then, a refined search in the neighborhood of this coarse estimate is performed in 

order to improve the estimate.  The resolution of this two-step search is limited to 

the size of the grid used in the fine search. In [7], [8], [10], [11], an alternative 

strategy for the second step is proposed. Instead of searching on a fine grid, the high 

resolution estimate is obtained from a function in terms of the DFT samples 

computed in the first step. The methods proposed in [7], [8], [10] employ three DFT 

coefficients, while the method of Provencher uses only two DFT samples, [11]. 

These methods require much less computation than the fine grid search. Moreover, 

they yield a high resolution estimate instead of the limited resolution of the grid 

used.  Jacobsen has proposed a simple expression for fine frequency estimation in 

the DFT domain. This expression is presented without any proof and is based on 

empirical observations. In this thesis, we review the derivation of Jacobsen's formula 

and justify Candan's proposal for bias correction. It is found that the correction is 

particularly effective when SNR is high. Nevertheless, it requires minimal increase 

in computational cost, hence can be used at all SNR values.  

In this thesis, performance comparisons between the most well-known parametric 

methods will be done in terms of bias, variance and root-mean-square-error 

(RMSE). 
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Chapter 2 

FREQUENCY ESTIMATION 

2.1 Problem Description 

Estimation of the frequency of a single tone sinusoid in a noisy environment is 

becoming a necessity in many applications. Usually this is done by estimating the 

Fourier transform of the collected samples. However, the use of Fourier transform 

methods is an obstacle because of the high computational cost of these methods. 

Different methods that avoid using Fourier transform and, at the same time, provide 

a good estimation of the frequency of the signal of interest have been proposed. 

Some of the well-known techniques will be discussed in the following chapter. 

A single complex sinusoid signal embedded in AWGN (additive white Gaussian 

noise), is written as 

                                                     (2.1) 

In (2.1), A is the complex-valued amplitude and  is the discrete-time frequency in 

radians/sample. 

The magnitude spectrum of r[n] for the noise-free case is shown in Fig 2.1. The 

frequency of the complex exponential given as =2π(k+δ)/N is also shown there. 
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Estimation of δ, where | δ | < 1/2, using three samples including the DFT coefficient 

with maximum magnitude of the DFT spectrum becomes our goal in this thesis. In 

the first stage, the DFT of the data vector r[n] of length N is computed as follows,  

1
2

0

[ ] [ ]
N

j Nnk

n

R k r n e 






  

Here [ ]R k is the DFT coefficient which is complex in general. The expectation of the 

maximum value in the DFT magnitudes (k in Fig. 2.1) is in the vicinity of the true 

frequency  , if the input 

2

2

w

A
SNR


  is sufficiently large. Estimation of the 

complex signal's frequency for sufficiently high signal-to-noise ratios (SNR’s) is our 

interest in this thesis. This is important in radar signal processing applications. The 

DFT bin can be defined where the peak resides. The DFT coefficients to the left and 

right of this peak are: 

 

Fig 2.1: Magnitude spectrum of the complex exponential waveform with frequency

2 ( )k N    radians per sample, [6]. 
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Here   [k] is the DFT of w[n] which is also white and jointly Gaussian distributed. 

The function f(.)  in equations (2.2), (2.3) and (2.4) is given as:  

       

21

0

( )
N j n

N

n

f e









                              

(2.5) 

where   is an arbitrary argument for f (.). 

Estimation of δ by utilizing three DFT coefficients in the vicinity of the peak is our 

goal. When the estimate    is determined, the resulting frequency estimate is 

obtained as ˆˆ 2 ( ) ,k N    where k is the bin index of the DFT peak evaluated 

in the approximate search step and    is the estimate produced by R[k-1], R[k] and 

R[k+1]. 
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Chapter 3 

FREQUENCY ESTIMATORS 

3.1 Introduction 

In this chapter, the frequency estimators which are considered to be among the most 

important ones in the literature are presented and discussed. These methods are 

Quinn’s, MacLeod’s and Candan’s estimators. A common feature of these methods 

is that they are all based on estimating frequency using three DFT samples, which 

are the one with maximum magnitude and those on the two sides of this maximum. 

The mathematical expressions employed in the estimators are given and the basic 

procedures in their algorithms are outlined.  

3.2 Quinn Estimator 

In this method, three DFT samples around the output peak are used for the 

estimation of the frequency of a complex exponential. This method does not use the 

method of periodogram to estimate the frequency, but instead it uses the complex 

DFT coefficients of data. This operation needs extra cost for computations in 

comparison with other methods.  Quinn’s method [10] can be summarized as: 
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(3.1) 

In Quinn’s method, the noise is not assumed to be i.i.d Gaussian, but the data is 

assumed to be strictly stationary and ergodic, which are very weak assumptions. 

3.3 MacLeod Estimator 

This method provides more accurate computation of the frequency estimation in 

terms of bias and variance of estimation. It is applicable to single or multi-sinusoid 

complex signals.The basic mathematical model of this method [7] is given by:  

 

 

* *

2 * *

2

[ 1] [ ] [ 1] [ ]

2 [ ] [ 1] [ ] [ 1] [ ]

1 8 1ˆ
4

real R k R k R k R k
d

real R k R k R k R k R k

d

d


  


   

  
  
 
     

(3.2) 

3.4 Jacobsen Estimator 

This method achieves fast and accurate estimation by the Discrete Fourier 

Transform (DFT). The idea of the estimation in this method is based on three 

samples of DFT and the peak of the frequency that will be estimated [5]. It basically 

uses the complex DFT values rather than the magnitudes. 

[ 1] [ 1]ˆ
2 [ ] [ 1] [ 1]

R k R k
real

R k R k R k


   
  

        

(3.3) 

Equation (3.3) provides potential for reduction in computations by avoiding the 

nontrivial magnitude calculations in (3.2). 
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3.4 Candan Estimator 

This method is a recently introduced novel way of frequency estimation. The 

novelty is that it combines Jacobsen’s formula and bias correction. In this way, we 

can get high performance for bias correction for large SNR with little extra cost of 

computation. Thus, at any SNR level it can be used [6]. 

In order to be able to express Jacobsen's estimator in terms of δ, f (δ)  in (2.5) is 

expanded in a Taylor series around δ=0. For small δ, the terms involving powers of 

δ higher then two can be neglected to enable solution. For the derivation of the 

estimation equation consider the expansion of 
1

0

( )
N

zn

n

g z e




 as a Taylor series 

around z=0:  

 1 1

0 0 0
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0 0

0
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(3.4) 

The integer power summations (k
th

) between 0 and N-1 can be denoted by Sk(N-1) = 

0
k 

+ 1
k
+

……
+ (N-1)

k
.  The sequence Sk (N) for k =0, 1, 2  can be written as follows: 

 

  

0

1

2

( ) 1

1
( )

2

1 2 1
( )

6

S N N

N N
S N

N N N
S N

 




 


     

(3.5) 

Higher orders for Sk(N) can been written in terms of Bernoulli numbers [12].  

Separating the summation in (3.4) for even and odd values of k, the f (α) sequence 

becomes 



9 

 

 
  

 

 
  

 

2

2 2

2
0

2 1

2 1 2 1

2 1
0

1 2
( ) 1

2 !

1 2
        1

2 1 !

kk

k k

k
k

kk

k k

k
k

S N
f

k N

S N
j

k N


 











 





 


 






  

 (3.5) 

Defining ck as: 
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the Taylor series expansion of (3.5) can be written as follows: 
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An estimator for  can be constructed by evaluating f() at  = +p where p=1,0 

,+1 and forming the following second-order differences: 

 

(3.8)

 

 

The abbreviation H.O.T. means the higher order terms of  , and in the right-hand 

side of equation (3.8) we evaluate the infinite sum by odd and even indexed ck terms 

as follows 
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(3.9) 

 

Rewriting (3.9); 

 

(3.10)

 

 

 

Using (3.6) for k =0, it can be shown that c0=N and c1=  (N-1). By substituting c0 

and c1 into the equations given in (3.10), equation (3.8) can be simplified as: 

 

(3.11)

 

 

In this procedure, by neglecting the higher order terms, the ratio of the differences is 

obtained as 
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Because    is small compared to  , (3.12) can be simplified as follows: 
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Nf f
real

f f f N

  


  

   
 

    

   

(3.13) 

When the signal-to-noise ratio (SNR) is large; that is when |A|
2
>>  

  , DFT samples 

around the peak value, that is R[k-1], R[k] and R[k+1],  in (2.2), (2.3) and (2.4), can 

be approximated by Af (δ +1), Af (δ)  and Af (δ-1),  respectively. Then an estimate 

for δ can be produced via the substitutionsf (δ) R[kp], f (δ -1)  R[kp+1], and  f (δ 

+1)  R[kp-1] into (3.13): 

       

 

 

tan / [ 1] [ 1]ˆ
/ 2 [ ] [ 1] [ 1]

N R k R k
real

N R k R k R k






   
  

                               

(3.14) 

Candan’s estimator is based on equation (3.14) and it can be shown that as N 

this estimator converges to the Jacobsen estimator. 
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Chapter 4 

EXPERIMENTAL RESULTS 

4.1. Introduction 

In this chapter, the performance of the frequency estimation algorithm proposed by 

Candan, discussed in detail in chapter 3, is investigated and compared with some 

well-known estimators presented in the literature. 

MATLAB Software Package is used for implementing the various frequency 

estimators for simulations. The performances of the estimators of Candan, Quinn, 

Macleod, Jacobsen and the Cramer-Rao bound for frequency estimation variance 

(given by (4.1)) are compared and discussed in detail. A summary of the estimators 

is shown in Table 4.1. Given the data length N and signal-to-noise-ratio SNR, the 

Cramer-Rao lower bound for a complex sinusoid is given by [13] 

2

2

2

6

( 1)

where   

w

w

CRB
N N SNR

A
SNR




 



     

(4.1) 
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Table4.1: DFT-based Fine Resolution Frequency Estimators. 
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1 2
1 2

1 2

1 2 2
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2 * *
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Jacobsen [ 1] [ 1]ˆ
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R k R k
real

R k R k R k


   
  

    
 

Candan  

 

tan / [ 1] [ 1]ˆ
/ 2 [ ] [ 1] [ 1]

N R k R k
real

N R k R k R k






   
  

    
 

 

The main Matlab functions of the methods listed in Table 4.1 are given in Appendix 

A.1. 

In the first part of the simulations, the frequency of the signal described by the 

complex exponential waveform 

( ) ( )j nx n Ae v n      (4.2) 

is being estimated, where ( )v n  is a complex white Gaussian noise with zero mean 

and variance 5.02  . Here we estimate and we denote the estimated value by ̂ to 

distinguish it from the actual value. So the estimated frequency is given by: 
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The signal data length is selected to be 64 ( 64N  ) and the simulations were done 

for 1000 independent trials ( 1000M ) with signal-to-noise ratio (SNR=

1010log 15.6 dBs

n

P
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Fig. 4.1: Estimators Bias. 

Fig. 4.1 shows that the method proposed by Candan [6] (a modified version of 

Jacobsen’s method) provides almost the best estimation of  with lower bias (in 

average vs. bin number) than the other methods (Quinn, Jacobsen and Macleod). 

The bias of the estimators is calculated using  
1

2 ˆˆ .
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Another performance measure is the variance of the estimator, calculated using 
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Fig. 4.2: Estimator Variance. 

Fig. 4.2 shows that even though Candan’s and Jacobsen’s methods have higher 

variances than the others for bin numbers in the range 9.2.-9.8 their variances 

decrease when the bin number starts increasing. 
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Fig. 4.3: Frequency bias of estimators with white Gauusian noise. 

In Fig. 4.3, a comparison is made among the algorithms, given in Table 4.1, in terms 

of the bias estimate when N=8 and the given signal is without noise. Frequency 

estimation is a process which is nonlinear; hence it should be expected that all 

frequency estimators are inherently biased. The bias decreases as N   or as the 

SNR increases. Fig. 4.3 shows that Candan's estimator has the lowest bias among the 

others.  
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Fig. 4.4: Bias variation as SNR changes for 0.25  , 8N  . 

Fig.4.5 shows the effect of noise on the bias. For this computation, the parameter is 

fixed to the specific value, which is 0.25  , and SNR is varied between 0 to 80  

dB (in Fig. 4.4 we show 0-30 dB for zooming purpose). As can be observed from 

this figure, Candan’s estimator provides the lowest bias value among the others. 
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Fig. 4.5: RMSE variation as SNR changes for 0.25  and 8N  . 

Fig. 4.5 shows the root-mean-square-error (RMSE) of the estimators and the 

Cramer–Rao lower bound which is given by (4.1). Here, it should be noted that the 

Cramer-Rao bound is not normally applicable for estimation algorithms which are 

biased. However, it is still a useful indicator of performance if the bias of the 

estimator is much smaller then the variance of the error. Indeed, it is clearly 

noticeable in this figure that, the estimator bias is dominant in the RMSEs produced 

by all the estimators, including Candan's estimator, when the SNR is sufficiently 

high. 
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Fig. 4.6: Bias variation as SNR changes for 0.25  and 32N  . 

In Figures 4.6 and 4.7, N is taken as N=32. Fig. 4.6 shows how bias is affected by 

noise present in the signal. In this figure, the frequency parameter delta is fixed to a 

predetermined value 0.25  , and SNR is again varied between 0 to 80 dB. In this 

figure it can be observed that the variances of the estimators tend to the bias values 

produced in the absence of noise, as SNR increases, given in Fig. 4.3. However, 

Candan’s estimator has the lowest bias among all estimators. 
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Fig. 4.7: RMSE variation as SNR changes for 0.25  and 32N  . 

Fig. 4.7 depicts the comparison of RMSEs of the methods for N=32. It should be 

pointed out that, as the number of observations gets larger, the estimators’ 

performance (especially Candan’s one) gets closer to the Cramer-Rao lower bound. 
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Fig. 4.8: Bias variation as SNR changes for 0.25  and 128N  . 

In Figures 4.8 and 4.9, N is further increased to N=128. Fig. 4.8, again, shows the 

bias when the exponential is burried in noise. In this figure, the frequency parameter 

  is fixed to the predetermined value, which is 0.25  , and SNR is again varied 

between 0 to 80 dB. As the figure shows, the estimators can become close to the bias 

values in the absence of noise, as depicted in Fig. 4.3. Also, as before, Candan’s 

estimator still has the lowest bias among all estimators. 
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Fig. 4.9: RMSE variation as SNR changes for 0.25  and 128N  . 

Fig. 4.9 displays the RMSE when the data length is increased to N=128. It should be 

stressed that, as the number of observations gets larger, the estimators’ performance 

(especially Candan’s one) gets closer to the Cramer-Rao lower bound. This, in turn, 

shows the convergence to the Cramer-Rao lower bound. 
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Fig. 4.10: Bias variation as SNR changes for 0.25  and 256N  . 

In Figures 4.10 and 4.11, the number of observations is given as N=256. Fig. 4.10 

shows how bias is affected by noise present in the signal. In this figure, the 

frequency parameter   is fixed to the predetermined, which is 0.25  , and SNR is 

again varied between 0 to 80 dB. As can be seen in this figure, the estimator RMSEs 

tend to the bias values for the noise free case (see Fig. 4.3.), as SNR increases. 

However, Candan’s estimator again has the lowest bias among all estimators. 
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Fig. 4.11: RMSE variation as SNR changes for 0.25  and 256N  . 

Fig. 4.11 shows the RMSE for N=256. In this figure, Candan’s estimator approaches 

to the Cramer-Rao lower bound (only 1 dB difference). 
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In Figs 4.1-4.11, additive white Gaussian noise case is investigated. In order to 

show the effect of the noise type on the performance of the mentioned techniques,  

additive colored Gaussian noise (ACGN) case will be investigated. The colored 

Gaussian noise is created by filtering the white Gaussian noise using a 2-coefficient 

low-pass filter with impulse response  [0.707 0.707]h  and magnitude response 

shown in Fig. 4.12. 

 

Fig. 4.12: The Magnitude response of the filter used in creating colored noise  

( [0.707 0.707]h  ). 
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Fig. 4.13: Frequency bias of estimators with colored Gaussian noise. 

In Fig. 4.13, we compare the performance of the algorithms under ACGN. The other 

parameters are the same as those in Fig. 4.3. From Fig. 4.13 we see that the 

performance of Candan’s estimator is less than that of the AWGN case by 0.5 dB 

while it is less by 1 dB for the other estimators. This shows the advantage of 

Candan’s over the others even in ACGN case. 
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Fig. 4.14: Bias variation as SNR changes for 0.25  and 8N  in colored Gaussian 

noise. 

Figure 4.14 shows that none of the estimators bias is affected by the ACGN at high 

SNR, i.e., noise type does not affect the bias estimate. However, Candan 

estimator’s performance becomes constant at SNR=15 dB while it became constant 

at SNR=5 dB in the case of AWGN. 
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Fig. 4.15: RMSE variation as SNR changes for 0.25  and 8N   in colored 

Gaussian noise. 

Figure 4.15 shows that the estimators’ RMSE performances are again not affected 

by the noise type when the signal length is short (i.e. N=8) 
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Fig. 4.16: Bias variation as SNR changes for 0.25  and 256N  in colored 

Gaussian noise. 

Figure 4.16 shows that the estimators’ biases are the same as those of the AWGN 

case when the SNR is very high (i.e. SNR>40 dB). However, their biases are high 

by 4-5 dB at very low SNR’s in the case of ACGN than that of the AWGN. 
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Fig. 4.17: RMSE variation as SNR changes for 0.25  and 256N   in colored 

Gaussian noise. 

From Fig. 4.17, we see that Candan’s estimator is worse by 0.5 dB in ACGN case 

than that of the AWGN. However, in AWGN case Quinn and Macleod estimators 

were exactly reaching CR-lower bound when SNR<60 dB but in the ACGN case 

they perform worse by 1 dB. 
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Chapter 5 

CONCLUSIONS AND FUTURE WORK 

Conclusions 

In this thesis, the performance of the frequency estimator proposed by Candan is 

compared with the estimators of Jacobsen, Macleod and Quinn.  

The Candan estimator requires a small number of calculations for each estimate, and 

produces results with variances very close to the CR lower bound when the SNR is 

sufficiently high. These features render this estimator particularly suited to radar 

signal processing applications, where it is required to compute Doppler frequencies 

of unknown targets accurately and efficiently. The work presented in this thesis has 

confirmed the viability of this estimator. 

Different experiments have been implemented with different numbers of 

observations. Simulations show that Candan’s estimator performs much better than 

the other algorithms in terms of bias, variance and root-mean-square error (RMSE). 

Also, it has been shown that as the number of observations becomes large, these 

methods converge to the Cramer-Rao lower bound in terms of RMSE. However, 

Candan’s method has shown the best performance among all the other algorithms. 
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Future Work 

A possible future work could be the derivation of similar high resolution estimators 

by using alternative windows such as those of Hamming and Hanning. 

Also, trying to improve the performance of the Candan estimator in order to reach 

the Cramer-Rao lower bound for short length data without increasing the number of 

computations would be a distinct potential future work. 
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APPENDIX 

A.1. MATLAB Codes (Performance Measure vs. Bin Number) 

clear all; clc; 
tstlen=64;                  % Effective length of test vector. 
NZ=1;                       % Switch to enable (1) or disable (0) noise. 
NOISE=0.25;                 % Set noise level. 
N=1000;                     % Number of trials in test. 
Amp=4;                      % Exponential amplitude 
 
quinerr=zeros(size(1:N));   % Allocate vector for results. 
quaderr=zeros(size(1:N));   % Allocate vector for results. 
maclderr=zeros(size(1:N));  % Allocate vector for results. 
candanerr=zeros(size(1:N)); % Allocate vector for results. 
 
quinest=zeros(size(1:N));   % Allocate vector for results. 
quadest=zeros(size(1:N));   % Allocate vector for results. 
macldest=zeros(size(1:N));  % Allocate vector for results. 
candanest=zeros(size(1:N)); % Allocate vector for results. 
 
SNR=zeros(size(1:N));       % Allocate vector for results. 
 
K=10;                       % Number of bins to test. 
quinr=zeros(size(1:K));     % Allocate vector for results. 
quadr=zeros(size(1:K));     % Allocate vector for results. 
macldr=zeros(size(1:K));    % Allocate vector for results. 
candanr=zeros(size(1:K));   % Allocate vector for results. 
 
quinvar=zeros(size(1:K));   % Allocate vector for results. 
quadvar=zeros(size(1:K));   % Allocate vector for results. 
macldvar=zeros(size(1:K));  % Allocate vector for results. 
candanvar=zeros(size(1:K)); % Allocate vector for results. 
 
quinbias=zeros(size(1:K));  % Allocate vector for results. 
quadbias=zeros(size(1:K));  % Allocate vector for results. 
macldbias=zeros(size(1:K)); % Allocate vector for results. 
candanbias=zeros(size(1:K));% Allocate vector for results. 
 
targ=zeros(size(1:K));      % Allocate vector for results. 
 
M=0;                        % Current test number. 
 
binstrt = 9.0;              % Starting bin number. 
binstep = 0.1;              % Bin delta step size. 
binend = 9.9;               % Ending bin number. 
 
for bin = binstrt: binstep: binend, 
 
M=M+1;                      % Current test number. 
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target=bin;                 % Calculate desired target result 
targ(M)=bin; 
 
fprintf('Peak is at %f.\n',bin); 
 
for I = 1:N,                % Run trials. 
 
phz=2*pi*rand(1); 
 % Generate signal. 
cw=Amp*exp(j*((2*pi*(1:tstlen)*bin./(tstlen))+phz)); 

 % Calculate signal power. 
 
sigp=sum(abs(cw(1:tstlen).^2));                  

 
cwn=cw; 
 
if(NZ==1)                                         

  % Generate noise. 
 
  % Set signal level and add noise (noise variance=1 on I and on Q)                         
nzi=sqrt(NOISE)*randn(1,tstlen); 
nzq=sqrt(NOISE)*randn(1,tstlen); 
nzv=nzi+j*nzq; 
 
nzp=sum(abs(nzv(1:tstlen).^2)); 
 
if(nzp>0) 
SNR(I)=10*log10(sigp/nzp);                      % Calculate SNR. 
else 

  % Use this for no noise. 
 
SNR(I)=100.0;                                     end 
 
cwn=cw+nzv;   
 
end 

% End noise. 
 
dftshrt(1:tstlen)=fft(cwn(1:tstlen));              % DFT. 
magshrt(1:tstlen)=abs(dftshrt);                    % DFT magnitude. 

 % Find raw peak magnitude and location. 
 [rawmag,rawind]=max(magshrt);     
 

% Isolated 3 samples around peak. 
pk3vect(1:3)=dftshrt(rawind-1:rawind+1);  
quinest(I)=rawind-1+quin(pk3vect); % Do Quinn's first estimation. 
quinerr(I)=target-quinest(I);         % Calculate and save error. 
 % Do modified quadratic estimation. 
quadest(I)=rawind-1+quadterp(pk3vect); 
quaderr(I)=target-quadest(I);         % Calculate and save error. 
 

 
macldest(I)=rawind-1+macleod(pk3vect);% Do Macleod's estimation. 
maclderr(I)=target-macldest(I);       % Calculate and save error. 
candanest(I)=rawind-1+candan(tstlen,pk3vect);% Do Candan's 
candanerr(I)=target-candanest(I);   % Calculate and save error.  
end                                          % End inner for loop. 
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quinvar(M)=sqrt(mean(quinerr.^2));     % Calculate result rms error. 
quadvar(M)=sqrt(mean(quaderr.^2));     % Calculate result rms error. 
macldvar(M)=sqrt(mean(maclderr.^2));  % Calculate result rms error. 
candanvar(M)=sqrt(mean(candanerr.^2)); % Calculate result rms error. 
 
SNRmn=mean(SNR);                       % Calculate result mean. 
 
quinbias(M)=mean(quinerr);             % Calculate bias. 
quadbias(M)=mean(quaderr);             % Calculate bias. 
macldbias(M)=mean(maclderr);           % Calculate bias. 
candanbias(M)=mean(candanerr);         % Calculate bias. 
 
quinr(M)=mean(quinest);                % Calculate average result. 
quadr(M)=mean(quadest);                % Calculate average result. 
macldr(M)=mean(macldest);              % Calculate average result. 
macldr(M)=mean(macldest);              % Calculate average result. 
candanr(M)=mean(candanest);            % Calculate average result. 
 
end;                                   % End bin loop. 
 
xs(1:M)=binstrt+(((1:M)-1)*binstep);% Generate scale for plot  
 
figure(1); 
plot(xs(1:M),targ(1:M),'r-',xs(1:M),quadr(1:M),'mo',xs(1:M),quinr(1:M),... 
    'gs', xs(1:M),macldr(1:M),'bx',xs(1:M),... 
candanr(1:M),'c*'); 
title('Average Peak Location Estimates (bin) vs Bin Number'); grid on 
legend('Real Value','Jacobsen','Quin','Macleod','Candan'); 
xlabel('Bin Number') 
ylabel('Average Peak Location Estimates') 
figure(2); 
 
plot(xs(1:M),quadvar(1:M),'mo:',xs(1:M),quinvar(1:M),'gs:',... 
    ,xs(1:M),macldvar(1:M),'bx:',xs(1:M),... 
candanvar(1:M),'c*:'); 
title('Estimator Variance vs Bin Number'); grid on 
legend('Jacobsen','Quin','Macleod','Candan'); 
xlabel('Bin Number') 
ylabel('Variance Estimates') 
 
figure(3); 
plot(xs(1:M),quadbias(1:M),'mo:',xs(1:M),quinbias(1:M),'gs:',... 
     ,xs(1:M),macldbias(1:M),'bx:',xs(1:M),... 
candanbias(1:M),'c*:'); 
title('Estimator Bias vs Bin Number'); grid on 
legend('Jacobsen','Quin','Macleod','Candan'); 
xlabel('Bin Number') 
ylabel('Bias Estimates') 
 

 
function x=candan(tstlen,y) 
% Candan 
% Performs a quadratic-fit peak location interpolation on a three-  % element input vector y. 
% Returns -0.5< x < 0.5, which is the fraction of the sample       % spacing about the center 
% element where the peak is estimated to be. 
NN=tstlen; 
 
x=(tan(pi/NN)/(pi/NN)).*real((y(1)-y(3))/((2*y(2))-y(1)-y(3))); 
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function [x] = macleod(Y) 
 
% Y is a three-element complex vector with the 
% DFT output magnitude maximizer as the center element. 
%  
% Returns -0.5< x < 0.5, which is the fraction of the sample 
% spacing (i.e., bin width) about the center element where the 
% peak is estimated to be. 
 

 
ref = Y(2);                   % Isolate phase reference.  
R = real(Y.*conj(ref));% Generate phase corrected coefficients  
gamma = (R(1)-R(3))/((2*R(2))+R(1)+R(3));       % Calculate offset.  
delta = (sqrt(1 + 8*gamma*gamma)-1)/(4*gamma);  % Final estimate.  
x = delta; 

 

function x=quadterp(y) 
% Jacobsen 
% Performs a quadratic-fit peak location interpolation on a three-  %element input vector y. 
% Returns -0.5< x < 0.5, which is the fraction of the sample% spacing about the center 
% element where the peak is estimated to be. 
 
x=real((y(1)-y(3))/((2*y(2))-y(1)-y(3))); 
 
 

function [x] = quin(pk3vect) 
 
% pk3vect is a three-element complex vector with the 
% DFT output magnitude maximizer as the center element. 
% Returns -0.5< x < 0.5, which is the fraction of the sample 
% spacing (i.e., bin width) about the center element where the 
% peak is estimated to be. 
 
alpha1=real(pk3vect(1)/pk3vect(2)); 
alpha2=real(pk3vect(3)/pk3vect(2)); 
 
delta1= alpha1/(1-alpha1); 
delta2=-alpha2/(1-alpha2); 
 
if ((delta1>0) & (delta2>0)) 
    x=delta2; 
else 
        x=delta1; 
end 
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A.2. MATLAB Codes (Performance Measure vs. SNR) 

%FIGURE BIAS (MC_deneme_f_bias_plot) 

clear all, 

N=8; 

SNR_dB=100; 

noise_type=2; % select 1 for colored noise, otherwise white noise 

MC_run=1000; 

wbin_vec=setdiff(2.02:0.02:2.48,2); 

hh=[0.707 0.707]; 

indexwbin=0; 

error=zeros(length(wbin_vec),5); 

SNR=10^(SNR_dB/10); 

for wbin=wbin_vec,   

    indexwbin=indexwbin+1; 

        delta=wbin-round(wbin); 

         

        %Generate noise 

        if noise_type==1 

            s=repmat(sqrt(SNR)*exp(j*wbin*2*pi/N*(0:N-1)'+j*rand(1)*2*pi),[1 MC_run]) +... 

               sqrt(1/2)*(filter(hh,1,randn(N,MC_run))+j*filter(hh,1,randn(N,MC_run))); 

        else 

            s=repmat(sqrt(SNR)*exp(j*wbin*2*pi/N*(0:N-1)'+j*rand(1)*2*pi),[1 MC_run]) +... 

               sqrt(1/2)*(randn(N,MC_run)+j*randn(N,MC_run)); 

        end 

         

        

[wcandan,wquinn,wjacobsen,wmcl,w_dftmag]=find_Dop_peak_around_abin_f(s,round(wbin)+1);         

        error=[w_dftmag' wquinn' wmcl' wjacobsen'  wcandan']-delta-round(wbin); 

    bias(indexwbin,:) = mean(error); 

    MSE(indexwbin,:)  = var(error)+mean(error).^2; 

    varer(indexwbin,:) = var(error); 

    dum = CR_calc(SNR_dB,N,wbin); 

    CR(indexwbin) = dum(3,3); 

end; 

figure, 

semilogy(wbin_vec-round(wbin_vec),abs(bias(:,1)),'linewidth',2);  hold all; 

semilogy(wbin_vec-round(wbin_vec),abs(bias(:,2)),'d-','linewidth',2); 

semilogy(wbin_vec-round(wbin_vec),abs(bias(:,3)),'s--','linewidth',2); 

semilogy(wbin_vec-round(wbin_vec),abs(bias(:,4)),'+:','linewidth',2); 

semilogy(wbin_vec-round(wbin_vec),abs(bias(:,5)),'o-','linewidth',2); 

legend('Parabolic Fit','Quinn','MacLeod','Jacobsen','Candan'); 

h=xlabel('\delta'); set(h,'fontsize',11) % increase the title size 

h=ylabel('Bias'); set(h,'fontsize',11) % increase the title size 

h=title(['Bias of \delta estimate for N=' num2str(N)]); 

set(h,'fontsize',11); 

  

% RMSE=sqrt(MSE); 

  

% figure(2),semilogy(wbin_vec-round(wbin_vec),RMSE,SNR_dB_vec,sqrt(CR)); 

legend('new','quinn','jacobsen','MacLeod','DFT Mag','CR') 

% xlabel('\delta'); ylabel('RMSE'); title(['N=' num2str(N)]); 

%plot(error), 

hold off; 

disp('press space for next figure'); 

pause; 

%%%%%%%%%% 

%FIGURE RMSE 

  

clear all, 

noise_type=2; % select 1 for colored noise, otherwise white noise 
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hh=[0.707 0.707]; 

N=8; 

SNR_dB_vec=[0:5:80]; 

MC_run=20e3; 

%wbin=2.1; 

%delta=wbin-round(wbin); 

  

indexSNR=0; 

error=zeros(MC_run,5); 

for SNR_dB=SNR_dB_vec,   

    SNR=10^(SNR_dB/10); 

    indexSNR=indexSNR+1; 

        wbin=2.25; 

        delta=wbin-round(wbin); 

         

         

         %Generate noise 

        if noise_type==1 

            s=repmat(sqrt(SNR)*exp(j*wbin*2*pi/N*(0:N-1)'+j*rand(1)*2*pi),[1 MC_run]) +... 

               sqrt(1/2)*(filter(hh,1,randn(N,MC_run))+j*filter(hh,1,randn(N,MC_run))); 

        else 

            s=repmat(sqrt(SNR)*exp(j*wbin*2*pi/N*(0:N-1)'+j*rand(1)*2*pi),[1 MC_run]) +... 

               sqrt(1/2)*(randn(N,MC_run)+j*randn(N,MC_run)); 

        end 

         

         

        

[wcandan,wquinn,wjacobsen,wmcl,w_dftmag]=find_Dop_peak_around_abin_f(s,round(wbin)+1);         

        error=[w_dftmag' wquinn' wmcl' wjacobsen'  wcandan']-delta-round(wbin); 

    bias(indexSNR,:) = mean(error); 

    MSE(indexSNR,:)  = var(error)+mean(error).^2; 

    varer(indexSNR,:) = var(error); 

    dum = CR_calc(SNR_dB,N,wbin); 

    CR(indexSNR) = dum(3,3); 

end; 

%figure(1),semilogy(SNR_dB_vec,abs(bias)); legend('new','quinn','jacobsen','MacLeod','DFT Mag'); 

%xlabel('Sample SNR'); ylabel('Bias'); title(['N=' num2str(N)]); 

figure, 

semilogy(SNR_dB_vec,abs(bias(:,1)),'linewidth',2);  hold all; 

semilogy(SNR_dB_vec,abs(bias(:,2)),'d-','linewidth',2); 

semilogy(SNR_dB_vec,abs(bias(:,3)),'s--','linewidth',2); 

semilogy(SNR_dB_vec,abs(bias(:,4)),'+:','linewidth',2); 

semilogy(SNR_dB_vec,abs(bias(:,5)),'o-','linewidth',2); 

legend('Parabolic Fit','Quinn','MacLeod','Jacobsen','Candan'); 

h=xlabel('Input SNR (dB)'); set(h,'fontsize',11) % increase the title size 

h=ylabel('Bias'); set(h,'fontsize',11) % increase the title size 

h=title(['Bias of \delta estimate for N=' num2str(N)]); 

set(h,'fontsize',11); 

hold off; 

  

RMSE=sqrt(MSE); 

  

% figure(2),semilogy(SNR_dB_vec,RMSE,SNR_dB_vec,sqrt(CR)); 

legend('new','quinn','jacobsen','MacLeod','DFT Mag','CR') 

% xlabel('Sample SNR'); ylabel('RMSE'); title(['N=' num2str(N)]); 

%plot(error), 

hold off; 

  

  

figure, 

semilogy(SNR_dB_vec,abs(RMSE(:,1)),'linewidth',2);  hold all; 
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semilogy(SNR_dB_vec,abs(RMSE(:,2)),'d-','linewidth',2); 

semilogy(SNR_dB_vec,abs(RMSE(:,3)),'s--','linewidth',2); 

semilogy(SNR_dB_vec,abs(RMSE(:,4)),'+:','linewidth',2); 

semilogy(SNR_dB_vec,abs(RMSE(:,5)),'o-','linewidth',2); 

semilogy(SNR_dB_vec,sqrt(CR),'linewidth',2) 

legend('Parabolic Fit','Quinn','MacLeod','Jacobsen','Candan','CR Bound'); 

h=xlabel('Input SNR (dB)'); set(h,'fontsize',11) % increase the title size 

h=ylabel('RMSE'); set(h,'fontsize',11) % increase the title size 

h=title(['RMSE of \delta estimate for N=' num2str(N) ' and  \delta=' num2str(delta) ]); 

set(h,'fontsize',11); 

  

  

disp('press space for next figure'); 

pause; 

  

clear all, 

noise_type=2; % select 1 for colored noise, otherwise white noise 

hh=[0.707 0.707]; 

N=32; 

SNR_dB_vec=[0:5:80]; 

MC_run=20e3; 

%wbin=2.1; 

%delta=wbin-round(wbin); 

  

indexSNR=0; 

error=zeros(MC_run,5); 

for SNR_dB=SNR_dB_vec,   

    SNR=10^(SNR_dB/10); 

    indexSNR=indexSNR+1; 

        wbin=2.25; 

        delta=wbin-round(wbin); 

         

         %Generate noise 

        if noise_type==1 

            s=repmat(sqrt(SNR)*exp(j*wbin*2*pi/N*(0:N-1)'+j*rand(1)*2*pi),[1 MC_run]) +... 

               sqrt(1/2)*(filter(hh,1,randn(N,MC_run))+j*filter(hh,1,randn(N,MC_run))); 

        else 

            s=repmat(sqrt(SNR)*exp(j*wbin*2*pi/N*(0:N-1)'+j*rand(1)*2*pi),[1 MC_run]) +... 

               sqrt(1/2)*(randn(N,MC_run)+j*randn(N,MC_run)); 

        end 

         

         

        

[wcandan,wquinn,wjacobsen,wmcl,w_dftmag]=find_Dop_peak_around_abin_f(s,round(wbin)+1);         

        error=[w_dftmag' wquinn' wmcl' wjacobsen'  wcandan']-delta-round(wbin); 

    bias(indexSNR,:) = mean(error); 

    MSE(indexSNR,:)  = var(error)+mean(error).^2; 

    varer(indexSNR,:) = var(error); 

    dum = CR_calc(SNR_dB,N,wbin); 

    CR(indexSNR) = dum(3,3); 

end; 

%figure(1),semilogy(SNR_dB_vec,abs(bias)); legend('new','quinn','jacobsen','MacLeod','DFT Mag'); 

%xlabel('Sample SNR'); ylabel('Bias'); title(['N=' num2str(N)]); 

figure, 

semilogy(SNR_dB_vec,abs(bias(:,1)),'linewidth',2);  hold all; 

semilogy(SNR_dB_vec,abs(bias(:,2)),'d-','linewidth',2); 

semilogy(SNR_dB_vec,abs(bias(:,3)),'s--','linewidth',2); 

semilogy(SNR_dB_vec,abs(bias(:,4)),'+:','linewidth',2); 

semilogy(SNR_dB_vec,abs(bias(:,5)),'o-','linewidth',2); 

legend('Parabolic Fit','Quinn','MacLeod','Jacobsen','Candan'); 

h=xlabel('Input SNR (dB)'); set(h,'fontsize',11) % increase the title size 
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h=ylabel('Bias'); set(h,'fontsize',11) % increase the title size 

h=title(['Bias of \delta estimate for N=' num2str(N)]); 

set(h,'fontsize',11); 

hold off; 

  

RMSE=sqrt(MSE); 

  

% figure(2),semilogy(SNR_dB_vec,RMSE,SNR_dB_vec,sqrt(CR)); 

legend('new','quinn','jacobsen','MacLeod','DFT Mag','CR') 

% xlabel('Sample SNR'); ylabel('RMSE'); title(['N=' num2str(N)]); 

%plot(error), 

hold off; 

  

  

figure, 

semilogy(SNR_dB_vec,abs(RMSE(:,1)),'linewidth',2);  hold all; 

semilogy(SNR_dB_vec,abs(RMSE(:,2)),'d-','linewidth',2); 

semilogy(SNR_dB_vec,abs(RMSE(:,3)),'s--','linewidth',2); 

semilogy(SNR_dB_vec,abs(RMSE(:,4)),'+:','linewidth',2); 

semilogy(SNR_dB_vec,abs(RMSE(:,5)),'o-','linewidth',2); 

semilogy(SNR_dB_vec,sqrt(CR),'linewidth',2) 

legend('Parabolic Fit','Quinn','MacLeod','Jacobsen','Candan','CR Bound'); 

h=xlabel('Input SNR (dB)'); set(h,'fontsize',11) % increase the title size 

h=ylabel('RMSE'); set(h,'fontsize',11) % increase the title size 

h=title(['RMSE of \delta estimate for N=' num2str(N) ' and  \delta=' num2str(delta) ]); 

set(h,'fontsize',11); 

  

  

disp('press space for next figure'); 

pause; 

  

  

clear all, 

noise_type=2; % select 1 for colored noise, otherwise white noise 

hh=[0.707 0.707]; 

N=128; 

SNR_dB_vec=[0:5:80]; 

MC_run=20e3; 

%wbin=2.1; 

%delta=wbin-round(wbin); 

  

indexSNR=0;error=zeros(MC_run,5); 

for SNR_dB=SNR_dB_vec,   

    SNR=10^(SNR_dB/10); 

    indexSNR=indexSNR+1; 

        wbin=2.25; 

        delta=wbin-round(wbin); 

        

         %Generate noise 

        if noise_type==1 

            s=repmat(sqrt(SNR)*exp(j*wbin*2*pi/N*(0:N-1)'+j*rand(1)*2*pi),[1 MC_run]) +... 

               sqrt(1/2)*(filter(hh,1,randn(N,MC_run))+j*filter(hh,1,randn(N,MC_run))); 

        else 

            s=repmat(sqrt(SNR)*exp(j*wbin*2*pi/N*(0:N-1)'+j*rand(1)*2*pi),[1 MC_run]) +... 

               sqrt(1/2)*(randn(N,MC_run)+j*randn(N,MC_run)); 

        end 

         

         

        

[wcandan,wquinn,wjacobsen,wmcl,w_dftmag]=find_Dop_peak_around_abin_f(s,round(wbin)+1);         

        error=[w_dftmag' wquinn' wmcl' wjacobsen'  wcandan']-delta-round(wbin); 



43 

 

    bias(indexSNR,:) = mean(error); 

    MSE(indexSNR,:)  = var(error)+mean(error).^2; 

    varer(indexSNR,:) = var(error); 

    dum = CR_calc(SNR_dB,N,wbin); 

    CR(indexSNR) = dum(3,3); 

end; 

%figure(1),semilogy(SNR_dB_vec,abs(bias)); legend('new','quinn','jacobsen','MacLeod','DFT Mag'); 

%xlabel('Sample SNR'); ylabel('Bias'); title(['N=' num2str(N)]); 

figure, 

semilogy(SNR_dB_vec,abs(bias(:,1)),'linewidth',2);  hold all; 

semilogy(SNR_dB_vec,abs(bias(:,2)),'d-','linewidth',2); 

semilogy(SNR_dB_vec,abs(bias(:,3)),'s--','linewidth',2); 

semilogy(SNR_dB_vec,abs(bias(:,4)),'+:','linewidth',2); 

semilogy(SNR_dB_vec,abs(bias(:,5)),'o-','linewidth',2); 

legend('Parabolic Fit','Quinn','MacLeod','Jacobsen','Candan'); 

xlabel('Input SNR (dB)'); ylabel('Bias'); title(['Bias of \delta estimate for N=' num2str(N)]); 

hold off; 

  

RMSE=sqrt(MSE); 

  

% figure(2),semilogy(SNR_dB_vec,RMSE,SNR_dB_vec,sqrt(CR)); 

legend('new','quinn','jacobsen','MacLeod','DFT Mag','CR') 

% xlabel('Sample SNR'); ylabel('RMSE'); title(['N=' num2str(N)]); 

%plot(error), 

hold off; 

  

figure, 

semilogy(SNR_dB_vec,abs(RMSE(:,1)),'linewidth',2);  hold all; 

semilogy(SNR_dB_vec,abs(RMSE(:,2)),'d-','linewidth',2); 

semilogy(SNR_dB_vec,abs(RMSE(:,3)),'s--','linewidth',2); 

semilogy(SNR_dB_vec,abs(RMSE(:,4)),'+:','linewidth',2); 

semilogy(SNR_dB_vec,abs(RMSE(:,5)),'o-','linewidth',2); 

semilogy(SNR_dB_vec,sqrt(CR),'linewidth',2) 

legend('Parabolic Fit','Quinn','MacLeod','Jacobsen','Candan','CR Bound'); 

h=xlabel('Input SNR (dB)'); set(h,'fontsize',11) % increase the title size 

h=ylabel('RMSE'); set(h,'fontsize',11) % increase the title size 

h=title(['RMSE of \delta estimate for N=' num2str(N) ' and  \delta=' num2str(delta) ]); 

set(h,'fontsize',11); 

hold off; 

  

clear all, 

noise_type=2; % select 1 for colored noise, otherwise white noise 

hh=[0.707 0.707]; 

N=256; 

SNR_dB_vec=[0:5:80]; 

MC_run=20e3; 

%wbin=2.1; 

%delta=wbin-round(wbin); 

  

indexSNR=0; 

error=zeros(MC_run,5); 

for SNR_dB=SNR_dB_vec,   

    SNR=10^(SNR_dB/10); 

    indexSNR=indexSNR+1; 

        wbin=2.25; 

        delta=wbin-round(wbin); 

      

         %Generate noise 

        if noise_type==1 

            s=repmat(sqrt(SNR)*exp(j*wbin*2*pi/N*(0:N-1)'+j*rand(1)*2*pi),[1 MC_run]) +... 

               sqrt(1/2)*(filter(hh,1,randn(N,MC_run))+j*filter(hh,1,randn(N,MC_run))); 
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        else 

            s=repmat(sqrt(SNR)*exp(j*wbin*2*pi/N*(0:N-1)'+j*rand(1)*2*pi),[1 MC_run]) +... 

               sqrt(1/2)*(randn(N,MC_run)+j*randn(N,MC_run)); 

        end 

         

         

         

        

[wcandan,wquinn,wjacobsen,wmcl,w_dftmag]=find_Dop_peak_around_abin_f(s,round(wbin)+1);         

        error=[w_dftmag' wquinn' wmcl' wjacobsen'  wcandan']-delta-round(wbin); 

    bias(indexSNR,:) = mean(error); 

    MSE(indexSNR,:)  = var(error)+mean(error).^2; 

    varer(indexSNR,:) = var(error); 

    dum = CR_calc(SNR_dB,N,wbin); 

    CR(indexSNR) = dum(3,3); 

end; 

%figure(1),semilogy(SNR_dB_vec,abs(bias)); legend('new','quinn','jacobsen','MacLeod','DFT Mag'); 

%xlabel('Sample SNR'); ylabel('Bias'); title(['N=' num2str(N)]); 

figure, 

semilogy(SNR_dB_vec,abs(bias(:,1)),'linewidth',2);  hold all; 

semilogy(SNR_dB_vec,abs(bias(:,2)),'d-','linewidth',2); 

semilogy(SNR_dB_vec,abs(bias(:,3)),'s--','linewidth',2); 

semilogy(SNR_dB_vec,abs(bias(:,4)),'+:','linewidth',2); 

semilogy(SNR_dB_vec,abs(bias(:,5)),'o-','linewidth',2); 

legend('Parabolic Fit','Quinn','MacLeod','Jacobsen','Candan'); 

h=xlabel('Input SNR (dB)'); set(h,'fontsize',11) % increase the title size 

h=ylabel('Bias'); set(h,'fontsize',11) % increase the title size 

h=title(['Bias of \delta estimate for N=' num2str(N)]); 

set(h,'fontsize',11); 

hold off; 

  

RMSE=sqrt(MSE); 

  

% figure(2),semilogy(SNR_dB_vec,RMSE,SNR_dB_vec,sqrt(CR)); 

legend('new','quinn','jacobsen','MacLeod','DFT Mag','CR') 

% xlabel('Sample SNR'); ylabel('RMSE'); title(['N=' num2str(N)]); 

%plot(error), 

hold off; 

  

  

figure, 

semilogy(SNR_dB_vec,abs(RMSE(:,1)),'linewidth',2);  hold all; 

semilogy(SNR_dB_vec,abs(RMSE(:,2)),'d-','linewidth',2); 

semilogy(SNR_dB_vec,abs(RMSE(:,3)),'s--','linewidth',2); 

semilogy(SNR_dB_vec,abs(RMSE(:,4)),'+:','linewidth',2); 

semilogy(SNR_dB_vec,abs(RMSE(:,5)),'o-','linewidth',2); 

semilogy(SNR_dB_vec,sqrt(CR),'linewidth',2) 

legend('Parabolic Fit','Quinn','MacLeod','Jacobsen','Candan','CR Bound'); 

h=xlabel('Input SNR (dB)'); set(h,'fontsize',11) % increase the title size 

h=ylabel('RMSE'); set(h,'fontsize',11) % increase the title size 

h=title(['RMSE of \delta estimate for N=' num2str(N) ' and  \delta=' num2str(delta) ]); 

set(h,'fontsize',11); 

  

  

disp('press space for next figure'); 

pause; 

  

 


