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ABSTRACT 

In this thesis, we study the Hawking radiation (HR) of non-asymptotically flat (NAF) 

four-dimensional (4𝐷) static and spherically symmetric (SSS) black holes (BHs) via 

the Hamilton-Jacobi (HJ) and the Parikh-Wilczek tunneling (PWT) methods. 

Specifically for this purpose, linear dilaton BH (LDBH) and Grumiller BH (GBH) or 

alias Grumiller-Mazharimousavi-Halilsoy BH (GMHBH) are taken into 

consideration. We should state that the GMHBH has the same metric structure with 

the GBH. The most important difference between them is the theories in which they 

are derived. While the GBH belongs to the Einstein’s theory, the GMHBH is the 

solution to the 𝑓(ℜ) theory. For the GBH, we also study the quantization of its 

entropy/area via the quasinormal modes (QNMs). 

We firstly apply the HJ method to the geometry of the LDBH. While doing this, in 

addition to its naive coordinates, we use four different regular (well behaved across 

the event horizon) coordinate systems which are isotropic, Painlevé-Gullstrand (PG), 

ingoing Eddington-Finkelstein (IEF) and Kruskal-Szekeres (KS) coordinates. Except 

the isotropic coordinates (ICs), direct computation of the HJ method leads us to 

obtain the standard Hawking temperature (𝑇𝐻) in all other coordinate systems. With 

the aid of the Fermat metric, the ICs allow us to read the index of refraction of the 

medium around the LDBH. It is explicitly shown that the refractive index determines 

the value of the tunneling rate and its natural consequence horizon temperature. But, 

the ICs produce an imperfect result for the horizon temperature of the LDBH. We 

also explain how this discrepancy can be resolved by regularizing the integral which 

has a pole at the event horizon.  
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Secondly, we study the HR of scalar particles from the GMHBH via the HJ method. 

The GMHBH is also known as Rindler modified Schwarzschild BH, which is 

suitable to be tested in astrophysics. By considering the GMHBH, we aim not only to 

explore the effect of the Rindler parameter (𝑎) on the 𝑇𝐻, but to examine if there is 

any disparateness between the computed horizon temperature and the standard 𝑇𝐻 as 

well. For this purpose, we study on the three regular coordinate systems which are 

PG, IEF and KS coordinates. In all coordinate systems, we compute the tunneling 

probabilities of incoming and outgoing scalar particles from the event horizon by 

using the HJ equation. Thus, we show in detail that the HJ method is concluded with 

the conventional 𝑇𝐻 in all these coordinate systems without giving rise to the famed 

factor-2 problem. Furthermore, in the PG coordinates we employ the PWT method in 

order to show how one can integrate the quantum gravity (QG) corrections to the 

semiclassical tunneling rate by taking into account of the effects of self-gravitation 

and back reaction. Then we reveal the effects of the QG corrections on the 𝑇𝐻.  

Finally, we study the QNMs of the uncharged GBH. After reducing the radial 

equation of the massless Klein-Gordon (KG) equation to the Zerilli equation, we 

compute the complex frequencies of the QNMs of the GBH. To this end, an 

approximation method which considers small perturbations around the BH horizon is 

being used. Considering the highly damped QNMs in the process proposed by 

Maggiore, we obtain the quantum entropy/area spectra of the GBH. Although the 

QNM frequencies are governed by the 𝑎 term, we prove that the spectroscopy does 

not depend on that term. Here, the dimensionless constant 𝜀 of the area spectrum 

appears as the double of the Bekenstein's result. The reason of that discrepancy is 

also discussed. 



v 
 

Keywords: Hawking radiation, Hamilton-Jacobi equation, quasinormal modes, linear 

dilaton black hole, Grumiller black hole, Rindler acceleration, quantization, 

spectroscopy. 

  



vi 
 

ÖZ 

Bu tezde, Hamilton-Jacobi (HJ) ve Parikh-Wilczek tünelleme (PWT) metotlarını 

kullanmak suretiyle asimtotik-düz-olmayan (NAF) dört boyutlu (4D) statik ve 

küresel simetrik kara deliklerin (BHs) Hawking ışınımını (HR) çalışıyoruz. Özellikle 

bu amaç için, lineer dilatonlu BH (LDBH) ile Grumiller BH (GBH) veya diğer adıyla 

Grumiller-Mazharimousavi-Halilsoy BH (GMHBH) dikkate alınmaktadır. Bu arada 

hemen belirtmeliyiz ki GMHBH ile GBH aynı metrik yapısına sahiptirler. 

Aralarındaki en önemli fark elde edildikleri teoridir. GBH Einstein'ın teorisine ait 

iken, GMHBH 𝑓(ℜ) teorisine ait bir çözümdür. Kuazinormal modlar (QNMs) 

yardımıyla GBH için ayrıca entropi/alan kuantizasyon çalışmasını yapmaktayız. 

Biz ilk olarak LDBH geometrisine HJ yöntemini uyguluyoruz. Bunu yaparken, naif 

koordinatlara ek olarak, olay ufkunda tamamen düzenli olan dört farklı koordinat 

sistemini (izotropik, Painlevé-Gullstrand (PG), içeriye-giren Eddington-Finkelstein 

(IEF) ve Kruskal-Szekeres (KS)) kullanacağız. İzotropik koordinatlar (ICs) hariç, HJ 

yöntemi diğer tüm koordinat sistemlerinde bize standart Hawking sıcaklığını (𝑇𝐻) 

vermektedir. Fermat metriğinin yardımıyla ICs, LDBH etrafındaki ortamın kırılma 

indeksini okumamıza olanak sağlar. Kırılma indeksinin, tünelleme oranı ve onun bir 

sonucu olan ufuk sıcaklığının değerini belirlediği açıkca gösterilmiştir. Ancak, ICs 

LDBH’un ufuk sıcaklığı için uygun olmayan bir sonuç vermiştir. Ortaya çıkan bu 

tutarsız sonucun, ufukta bir kutba sahip integralin düzenlenmesi ile nasıl 

düzeltilebileceğini de göstermekteyiz. 

İkinci olarak, HJ yöntemi ile GMHBH’den saçılan skalar parçacıkların HR 

çalışacağız. GMHBH, astrofizikte test edilmeye uygun olan Rindler modifiyeli 
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Schwarzschild BH olarak da bilinir. GMHBH dikkate alarak, sadece Rindler 

parametresi (𝑎)’nın 𝑇𝐻 üzerindeki etkisini keşfetmeyi değil, aynı zamanda 

hesaplanan ufuk sıcaklığı ile standart 𝑇𝐻 arasında farklılık var olup olmadığını da 

incelemeyi hedefliyoruz. Bu amaçla PG, IEF ve KS düzenli koordinat sistemlerinde 

çalışacağız. Bu koordinat sistemlerinde, HJ denklemi kullanarak olay ufkuna gelen 

ve giden skaler parçacıkların tünelleme olasılıklarını hesaplıyoruz. Böylelikle HJ 

yönteminin, ünlü faktör-2 sorununa neden olmaksızın, tüm bu koordinat 

sistemlerinde geleneksel 𝑇𝐻 ile sonuçlandığı ayrıntılı olarak göstermekteyiz. Dahası 

PG koordinatlarında, PWT yöntemi sayesinde kuantum yerçekimi (QG) düzeltmeli 

yarıklasik tünelleme oranının, öz-yerçekimi ve geri reaksiyon etkilerini dahil ederek 

nasıl elde edileceğini göstermekteyiz. Sonra QG düzeltmelerinin 𝑇𝐻 üzerindeki 

etkilerini ortaya koymaktayız. 

Son olarak, yüksüz GBH'in QNMs’lerini çalışmaktayız. Kütlesiz Klein-Gordon (KG) 

denkleminden gelen radyal denklemi Zerilli denklemine indirgedikten sonra, GBH'a 

ait QNMs’ın kompleks frekanslarını hesaplamaktayız. Bu amaçla, BH ufku 

çevresinde, küçük perturbasyonları göz önünde bulunduran bir yaklaşım yöntemini 

kullanılmaktayız. Maggiore tarafından önerilen bir işlem sayesinde son derece 

sönümlü QNMs’ları dikkate alarak, GBHs’ların kuantum entropi/alan spektrumları 

elde etmekteyiz. QNM frekanslarının 𝑎 terimi tarafından yönetilmesine karşın, biz 

spektroskopinin bu terime bağlı olmadığını kanıtladık. Burada, alan spektrumunun 

boyutsuz sabiti 𝜀, Bekenstein’nın sonucunun iki katı olarak ortaya çıkmaktadır. Bu 

tutarsızlığı nedeni ayrıca tartışılmaktadır. 

Anahtar kelimeler: Hawking radyasyonu, Hamilton-Jacobi denklemi, kuazinormal 

modlar, lineer dilatonlu kara delik, Grumiller kara deliği, Rindler ivmesi, 

kuantizasyon, spektroskopi. 
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Chapter 1 

INTRODUCTION 

In 1974, Stephan Hawking [1,2] proved that when a BH is considered as a 

thermodynamical system amalgamated with quantum effects, it can perform a 

thermal radiation. Thus, BHs should have a characteristic temperature. In fact, 

Hawking's discovery broke all taboos which were classically prohibited about the 

BHs until that day. Together with Bekenstein's work [3] it caused to born a new 

subject that is the so-called QG theory which has not been completed yet. After these 

pioneering studies, there has always been hippest to find new methods for the HR 

which can decode the underlying BH geometry. Today, we can see various methods 

about the HR in the literature (see [4] and references therein). Among them, the most 

popular one is the tunneling method which is derived by Kraus and Wilczek (KW) 

[5,6]. KW used the null geodesic method to develop the action for the tunneling 

particle which is considered as a self-gravitating thin spherical shell and then 

managed to quantize it. KW method's strong suit indeed is to provide a dynamical 

model of the HR in which BH shrinks as particles radiate. In this dynamical model, 

both energy conservation and self-gravitational effects are included which were not 

considered in the original derivation of HR. Six years later, their calculations were 

reinterpreted by Parikh and Wilczek (PW) [7]. They showed that the spectrum of the 

HR can deviate from pure thermally, which implies unitarity of the underlying 

quantum process and the resolution of the information loss paradox [8,9]. Nowadays, 

PW's pioneer work has been still preserving its popularity. A lot of works for various 
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BHs proves its validity (a reader may refer to [10]). As far as we know, the original 

PW's tunneling method only suffers from one of the NAF BHs which is the so-called 

LDBH. Unlike to the other well-known BHs employed in the PWT method, their 

evaporation does not admit non-thermal radiation Therefore, the original PWT 

method cannot be an answer for their information paradox problem. This event was 

firstly unraveled by Pasaoglu and Sakalli [11]. Then, it was shown that the weakness 

of the PW's method in retrieving the information from the LDBH can be overcome 

by adding the QG corrections to the entropy [12]. Furthermore, it has proven by 

another study of Sakalli et al. [13] in which the entropy of the LDBH can be adroitly 

tweaked by the QG effects that both its temperature and mass simultaneously 

decrease to zero at the end of the complete evaporation. 

Based on the complex path analysis of Padmanabhan and his collaborators [14-16], 

Angheben et al. [17] developed an alternate method for calculating the imaginary 

part of the action belonging to the tunneling particles. To this end, they made use of 

the relativistic HJ equation. Their method neglects the effects of the particle self-

gravitation and involves the WKB approximation. In general, the relativistic HJ 

equation can be solved by substituting a suitable ansatz. The chosen ansatz should 

consult the symmetries of the space-time in order to allow for the separability. Thus 

one can get a resulting equation which is solved by integrating along the classically 

forbidden trajectory that initiates inside the BH and ends up at the outside observer. 

However, the integral has always a pole located at the horizon. For this reason, one 

needs to apply the method of complex path analysis in order to circumvent the pole. 

A Friedmann-Robertson-Walker (FRW) universe assuming to be a good model for 

our universe has NAF geometry [18]. For this reason, we believe that most of the 
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BHs in the real universe should be necessarily described by NAF spacetimes. Hence, 

it is of our special interest to find out specific examples of NAF BHs as a test bed for 

HR problems via the HJ method. Starting from this idea, in this thesis we consider 

the LDBHs. First of all, the eponyms of these BHs are Clément and Galtsov [19]. 

Initially, they were found as a solution to Einstein-Maxwell-Dilaton (EMD) theory 

[20] in 4𝐷. Later on, it is shown that in addition to the EMD theory 𝐷 ≥ 4 

dimensional LDBHs (even in the case of higher dimensions) are available in 

Einstein-Yang-Mills-Dilaton (EYMD) and Einstein-Yang-Mills-Born-Infeld-Dilaton 

(EYMBID) theories [21] (and references therein). The most intriguing feature of 

these BHs is that while radiating, they undergo an isothermal process. Namely, their 

temperature does not alter with shrinking of the BH horizon or with the mass loss. 

Our priority is to obtain the imaginary part of the action of the tunneling particle 

through the LDBH's horizon. This produces the tunneling rate that yields the 𝑇𝐻. In 

order to test the HJ method on the LDBH, in addition to the naive coordinates we 

will consider four more coordinate systems (all regular on the horizon) which are 

isotropic, PG, IEF and KS, respectively. Especially, we will mainly focus on the ICs. 

They require more straightforward calculations when comparing with the others. 

Furthermore, as it will be shown in the section (2.4), the usage of the standard HJ 

method with ICs reveals a discrepancy in the associated temperatures. For a more 

recent account in the same line of thought applied to Schwarzschild BH within the 

ICs, one may consult [22] in which a similar discrepancy problem in the HR has 

been studied. Gaining inspiration from [22] , we will discuss about how one can also 

remove the discrepancy to be appeared in the HR of the LDBH. Unlike from [22], we 

will also represent the calculation of the index of refraction of the LDBH medium, its 

effect on the tunneling rate and consequently on the 𝑇𝐻 [23]. According to our 
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knowledge, such a theoretical observation has not been reported before in the 

literature. Slightly different from the other coordinate systems, during the application 

of the HJ method in the KS coordinates; we will first reduce the LDBH spacetime to 

Minkowski space and then demonstrate in detail how one recovers the 𝑇𝐻. 

Rindler acceleration, 𝑎, [24], which acts on an observer accelerated in a flat space-

time has recently become rage anew. This is due to its similarity with the mysterious 

acceleration that revealed after the long period observations on the Pioneer 

spacecrafts –Pioneer 10 and Pioneer 11– after they run off a distance about 3×10⁹km 

on their paths out of the Solar System [25]. Contrary to the expectations, that 

mysterious acceleration is attractive i.e., directed toward the Sun and this 

phenomenon is known as the Pioneer anomaly. Firstly, Grumiller [26] (and later 

together with his collaborators [27,28]) showed the correlation between the 𝑎 and the 

Pioneer anomaly. On the other hand, Turyshev et al. [29] have recently made an 

alternative study to the Grumiller's ones in which the Pioneer anomaly is explained 

by thermal heat loss of the satellites. 

Another intriguing feature of the 𝑎 is that it may play the role of dark matter in 

galaxies [30,31]. Namely, the incorporation of the Newton's theory with the 𝑎 might 

serve to explain rotation curves of spiral galaxies without the presence of a dark 

matter halo (a reader may refer to the study of Lin et al. [30]). For the galaxy-Sun 

pair, the 𝑎 with the order of ≈ 10−11𝑚/𝑠² in physical units is a very close value to 

MOND's acceleration which successfully describes rotation curves without a dark 

matter halo (see [31] and references therein). However, very recently the studies 

[30,31] have been retested and criticized by Cervantes-Cota and Gómez-López [32]. 
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As stated in [27,28], the main function of the 𝑎 is to constitute a crude model which 

casts doubts on the description of rotation curves with a linear growing of the 

velocity with the radius. By virtue of this, in the novel study of [25] it was suggested 

that the effective potential of a point mass 𝑀 should include 𝑟-dependent 

acceleration term. Therefore the problem effectively degrades to a 2𝐷 system in 

which the Newton's gravitational force modifies into  𝐹𝐺 = −𝑚 (
𝑀

𝑟2 + 𝑎) where 𝑚 is 

the mass of a test particle. For 𝑎 <  0, the two forces represent repulsive property 

however while 𝑎 >  0 gives an inward attractive force. Here, unless stated 

otherwise, throughout the thesis we shall use positive values of the 𝑎. Moreover, in 

the studies of [26,27] it is explicitly shown that dilatonic field source in general 

relativity (GR) is required for deriving a spacetime with the 𝑎. However, in 

performing this process one should be cautious about the physical energy conditions. 

It has been recently revived by [33] that the GBH spacetime does not satisfy the all 

essential energy conditions of the GR. Very recently, Mazharimousavi and Halilsoy 

(MH) [34] have shown that the GBH metric becomes physically acceptable in the 

𝑓(ℜ) gravity. In other words, in the 𝑓(ℜ) gravity the problematic energy conditions 

are all fixed. Thus, in chapter 2, instead of saying GBH, we shall prefer to call the 

Rindler modified Schwarzschild BH as the GMHBH. The physical source that has 

been used in [34] possesses a perfect fluid-type energy momentum tensor, and the 

pressure of the fluid becomes negative with a particular choice. So, one can infer that 

the 𝑎 plays role of the dark matter. Meanwhile, very recently detailed analysis of the 

geodesics of this BH has been made by Halilsoy et al. [35]. As a last remark about 

the GBH or the GMHBH, when the Rindler term in the GBH metric is terminated 

(𝑎 = 0), all results reduce to those of Schwarzschild BH as it must. 
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As mentioned above, the associated integral in the HJ method is evaluated by 

applying the method of complex path analysis in order to circumvent the pole. Result 

of the integral leads us to get the tunneling rate for the BH which renders possible to 

read the 𝑇𝐻. On the other hand, PWT method [7] uses the null geodesics to derive the 

𝑇𝐻 as a quantum tunneling process. In this method, self-gravitational interaction of 

the radiation and energy conservation are taken into account. As a result, the HR 

spectrum cannot be strictly thermal for many well-known BHs, like Schwarzschild, 

Reissner-Nordström etc. [7, 36]. Here we also investigate the HR of the GMHBH via 

the well-known PWT method.  

In the next chapter, we shall review the GMHBH which has a fluid source in the 

context of f(ℜ) gravity [34]. Then we use the HJ method in order to calculate the 

imaginary part of the classical action for outgoing trajectories crossing the horizon. 

In addition to the naive coordinates, three more coordinate systems (all regular) 

which are PG, IEF and KS, respectively, are considered. By doing this, we aim not 

only to make an analysis about the influences of the 𝑎 on the HR, but to examine 

whether the associated methods employing for the GMHBH with different 

coordinate systems yield the true 𝑇𝐻 without admitting the factor-2 problem or not. 

For the review of the factor-2 problem arising in the HR, a reader may consult 

[10,37-40]. Slightly different from the other coordinate systems, during the 

application of the HJ method in the KS coordinates, we will first reduce the GMHBH 

spacetime to a Minkowski type space with a conformal factor, and then show in 

detail how one recovers the 𝑇𝐻. Furthermore, in the PG coordinate system we shall 

study the PWT method [7] for the GMHBH. Besides, with the PWT method it is 

possible to add QG corrections (see [12,13] and references therein) to the tunneling 
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probability by considering the back reaction effect. To this end, the log-area 

correction to the Bekenstein-Hawking entropy will be taken into account. Finally, the 

modified 𝑇𝐻 of the GMHBH due to the back reaction effect will be computed. 

On the other hand, one of the trend subjects in the thermodynamics of BHs is the 

quantization of the BH horizon area and entropy. The pioneer works in this regard 

date back to 1970s, in which Bekenstein showed that BH entropy is proportional to 

the area of the BH horizon [3,41]. Furthermore, Bekenstein [42-44] conjectured that 

if the BH horizon area is an adiabatic invariant, according to Ehrenfest's principle 

[45] it has a discrete and equally spaced spectrum as 𝐴𝑛 = 𝜀𝑛𝑙𝑝
2  (𝑛 = 0,1,2, … . . ) 

where 𝜀 is a dimensionless constant and 𝑙𝑝 is the Planck length (𝑙𝑝
2 = ℏ). 𝐴𝑛 denotes 

the area spectrum of the BH horizon and 𝑛 is the quantum number. One can easily 

see that when the BH absorbs a test particle, the minimum increase of the horizon 

area becomes Δ𝐴𝑚𝑖𝑛 = 𝜀𝑙𝑝
2. Meanwhile, the undetermined dimensionless constant 𝜀  

is considered as the order of unity. Bekenstein claimed that the BH horizon is formed 

by patches of equal area 𝜀ℏ  with 𝜀 = 8𝜋. After that, many studies have been done in 

order to obtain such equally spaced area spectrum, whereas the spacing could 

different than 𝜀 = 8𝜋  (for the topical review, one may see [46] and references 

therein). Since a BH is characterized by mass, charge and angular momentum, it can 

be treated as an elementary particle. Since each object made by the elementary 

particles has its own characteristic vibrations known as the QNM frequencies, QNMs 

should reveal some information about the BH. Especially they are important for 

observational aspect of gravitational waves phenomena. In the same conceptual 

framework, Hod [47,48] suggested that  𝜀 can be obtained by using the QNM of a 

BH. Based on Bohr's correspondence principle [49], Hod theorized that the real part 
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of the asymptotic QNM frequency (𝜔𝑅) of a highly damped BH is associated with 

the quantum transition energy between two quantum levels of the BH. This transition 

frequency allows a change in the BH mass as ∆𝑀 = ℏ𝜔𝑅 . For the Schwarzschild 

BH, Hod calculated the value of the dimensionless constant as 𝜀 = 4𝑙𝑛3. Thereafter, 

Kunstatter [50] considered the natural adiabatic invariant 𝐼𝑎𝑑𝑏 for a system with 

energy 𝐸 and vibrational frequency Δ𝜔  (for a BH, 𝐸 is identified with the mass 𝑀) 

which is given by 𝐼𝑎𝑑𝑏 = ∫
𝑑𝐸

Δ𝜔
. At large quantum numbers, the adiabatic invariant is 

quantized via the Bohr-Sommerfeld quantization; 𝐼𝑎𝑑𝑏 ≅ 𝑛ℏ . Thus, Hod' result 

(𝜀 = 4𝑙𝑛3) is also derived by Kunstatter. Then, Maggiore [51] developed another 

method in which the QNM of a perturbed BH is considered as a damped harmonic 

oscillator. This approach was more realistic since the QNM has an imaginary part. In 

other words, Maggiore considered the proper physical frequency of the harmonic 

oscillator with a damping term in the form of 𝜔 = √𝜔𝑅
2 + 𝜔𝐼

2 where 𝜔𝑅 and 

𝜔𝐼 denote the real and imaginary parts of the frequency of the QNM, respectively.  

In the 𝑛 ≫ 1 limit which is equal to the case of highly excited mode, 𝜔𝐼 ≫ 𝜔𝑅 . 

Therefore, one infers that 𝜔𝐼 should be used rather than 𝜔𝑅 in the adiabatic quantity. 

As a result, it was found that 𝜀 = 8𝜋, which corresponds to the same area spectrum 

of Bekenstein's original result of the Schwarzschild BH [52,53]. Today, we can see 

numerous studies in the literature in which Maggiore's method (MM) was employed 

(see for instance [54-59]). In this thesis, our main purpose is to explore how the 

influence of the Rindler acceleration affects the GBH spectroscopy. To this end, we 

shall compute the QNMs of the GBH and subsequently use them in the MM. 
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The thesis is organized as follows: In chapter 2, we make a brief review of the LDBH 

with its naïve coordinates by giving some of their geometrical and thermodynamical 

features. Then in section 2.2, we show how the relativistic HJ equation can become 

separable on that geometry. The calculation of the tunneling rate and henceforth the 

𝑇𝐻 via the HJ method is also represented. The metric for a LDBH in ICs is derived in 

section 2.3. The effect of index of refraction on the tunneling rate is explicitly shown. 

The obtained horizon temperature is the half of the accepted value of the 𝑇𝐻. It is 

demonstrated that how the proper regularization of singular integrals resolves the 

discrepancy in the aforementioned temperatures. Sections 2.4 and 2.5 are devoted to 

the calculation of the 𝑇𝐻 in PG and IEF coordinate systems, respectively. In section 

2.6, we apply the HJ method to KS form of the LDBHs.  

In chapter 3, we review some of the geometrical and thermodynamical features of the 

GMHBH given in 𝑓(ℜ) theory. We then show how the HJ equation is separated by a 

suitable ansatz within the naive coordinates of the GMHBH. In section 3.2, the 

calculations of the tunneling rate and henceforth the 𝑇𝐻 via the HJ method are 

represented. Section 3.3 is devoted to the HR of the GMHBH in the PG coordinates 

via the HJ and the PWT methods. The back reaction effect on the 𝑇𝐻 is also 

discussed. Sections 3.4 and 3.5 are devoted to the applications of the HJ method in 

the IEF and KS coordinate systems, respectively.  

In chapter 4, we represent that how the massless KG equation reduces to the one 

dimensional Schrödinger-type wave equation which is the so-called the Zerilli 

equation [60] in the GBH geometry. Section 4.2 is devoted to the calculation of the 

QNMs of the GBH by considering the small perturbations around the horizon. After 
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that, we employ the MM for the GBH in order to compute its entropy/area spectra. 

Finally we draw our conclusions in chapter 5. 

Throughout the thesis, the units 𝐺 = 𝑐 = 𝑘𝐵 = 1 are used. Furthermore in chapters 2 

and 3 we take 𝑙𝑝 = 1, however in chapter 4 it is used as 𝑙𝑝
2 = ℏ. 
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 Chapter 2  

HAWKING RADIATION OF THE LINEAR DILATON 

BLACK HOLE VIA THE HAMILTON-JACOBI 

METHOD
1
 

2.1 LDBH Spacetime 

In general, the metric of a SSS BH in 4D is given by: 

𝑑𝑠2 = −𝑓𝑑𝑡2 + 𝑓−1𝑑𝑟2 + 𝑅2𝑑𝛺2,                                   (2.1) 

where 

𝑑Ω2 = 𝑑𝜃2 + 𝑠𝑖𝑛𝜃2𝑑𝜑2,                                           (2.2) 

is the line-element for the unit two-sphere 𝑆2. Since we target to solve the relativistic 

HJ equation for a massive but uncharged scalar field in the LDBH background, let us 

first analyze the geometry of the LDBH. When the metric functions of the line-

element (1) are given by: 

𝑓 =  Σ(𝑟 − 𝑟ℎ),        and       𝑅2 = 𝐴2𝑟,                      (2.3) 

we designate the spacetime (2.1) as the LDBH [19,21]. In several theories (EMD, 

EYMD and EYMBID), metric functions (2.3) do not alter their form. Only non-zero 

                                                           
1
 This Chapter is mainly quoted from Ref. [23], which is Sakalli, I., & Mirekhtiary, S.F. (2013). 

Journal of Experimental and Theoretical Physics. 117, 656-663. 
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positive constants 𝐴 and Σ take different values depending on which theory is taken 

into account [21]. 

It is obvious that a LDBH possesses a NAF geometry and 𝑟ℎ represents the horizon 

of it. For 𝑟ℎ ≠ 0, the horizon hides the null singularity at 𝑟 = 0. Even in the extreme 

case (𝑟ℎ = 0) in which the central null singularity 𝑟 = 0 is marginally trapped, such 

that outgoing waves are not allowed to reach the external observers, a LDBH still 

maintains its BH property.  

One should consider the quasi-local mass definition [61] for our metric (1), since the 

present form of the metric represents NAF geometry. The relationship between the 

mass 𝑀 and the horizon 𝑟ℎ   is given as follows 

𝑟ℎ =
4𝑀

𝛴 𝐴2 .                                                   (2.4)  

In general, the definition of the 𝑇𝐻 is expressed in terms of the surface gravity 𝜅 as 

𝑇𝐻 =
𝜅

2𝜋
 [62]. For the line-elements given in the form of Eq. (2.3), the surface gravity 

is given by 

𝜅 = [−
1

4
𝑙𝑖𝑚𝑟→𝑟ℎ

(𝑔𝑡𝑡𝑔𝑖𝑗𝑔𝑡𝑡,𝑖𝑔𝑡𝑡,𝑗)]

1

2
,                              (2.5) 

which yields 𝜅 =
Σ

2
. Thus, the 𝑇𝐻 value of the LDBH becomes: 

𝑇𝐻 =
Σ

4𝜋
.                                                       (2.6) 

It is clear from the above equation that the obtained temperature is constant. We are 

familiar to such a phenomenon in standard thermodynamics. If we recall the 
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isothermal process in the concept of heat engines, we remember that Δ𝑇 = 0 in the 

process which corresponds to constant temperature. Therefore the LDBH's radiation 

is such a process that the energy transfer out of the BH typically processes at a 

proper slow rate that thermal equilibrium is always preserve. 

2.2 HR of the LDBH via the HJ Method in the Naive Coordinates 

In this section we shall consider the problem of a moving scalar particle in the LDBH 

geometry while the back-reaction and self gravitational effects are ignored. Staying 

in the semi-classical framework, the classical action 𝐼 of the particle satisfies the 

relativistic HJ equation, which is given by 

𝑔𝜇𝜈𝜕𝜇𝐼𝜕𝜈𝐼 + 𝑚2 = 0,                                                  (2.7) 

and for the metric (2.1) it takes the following form 

−
1

𝑓
(𝜕𝑡𝐼) + 𝑓(𝜕𝑟𝐼)2 +

1

𝑅2 [(𝜕𝜃𝐼)2 +
1

sin2 𝜃
(𝜕𝜑𝐼)

2
] + 𝑚2 = 0,               (2.8) 

 

where 𝑚 represents the mass of scalar particle and 𝑔𝜇𝜈 is the inverse of metric 

tensor. For the Eq. (2.8), it is common to use the separation of variables method for 

the action 𝐼 = 𝐼(𝑡, 𝑟, 𝜃, 𝜑) as follows: 

𝐼 = −𝐸𝑡 + 𝑊(𝑟) + 𝑍𝑖(𝑥𝑖),                                               (2.9) 

where 

𝜕𝑡𝐼 = −𝐸    ,     𝜕𝑟𝐼 = 𝜕𝑟𝑊(𝑟)     ,    𝜕𝑖𝐼 = 𝑍𝑖 .                                  (2.10) 
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The 𝑍𝑖 are constants in which 𝑖 = 1, 2 labels angular coordinates 𝜃 and 𝜑, 

respectively. Since the norm of the time like Killing vector 𝜕𝑡 is (negative) unity 

(𝑔𝜇𝜈𝜉𝜇𝜉𝜈|
𝑟=�̃�

= −1) at a particular location 

𝑟 ≡ �̃� =
1

Σ
+ 𝑟ℎ.                                                      (2.11) 

𝐸 is referred as the energy of the particle detected by an observer located at �̃�. 

Obviously, �̃� corresponds to a point that is outside the horizon. Solving for 

𝑊(𝑟) yields 

𝑊(𝑟) ≡ 𝑊(±) = ± ∫

√𝐸2−
𝑓

𝐴2𝑟
[𝑍𝜃

2+
𝑍𝜑

2

sin2 𝜃
+(𝑚𝐴)2𝑟]

𝑓
𝑑𝑟.                     (2.12) 

Here ± naturally comes since the Eq.(2.8) was quadratic in terms of 𝑊(𝑟). Solution 

of the Eq. (2.12) with "+" sign corresponds to scalar particles moving away from the 

BH (outgoing) and the other solution i.e., the solution with "−" sign represents 

particles moving toward the BH (ingoing). After evaluating the above integral 

around the pole at the horizon (by using the Feynman's prescription [63]), one arrives 

at the following: 

𝑊(±) ≅ ± ∫
𝐸

𝑓
𝑑𝑟 = ±

𝐸

Σ
∫

1

𝑟−𝑟ℎ
𝑑𝑟 = ±(

𝑖𝜋𝐸

Σ
+ 𝑐),                   (2.13) 

where 𝑐 is a complex integration constant. The latter result is found by the aid of the 

Cauchy's integral formula 

𝑅𝑒𝑠(𝑦, ∝) =
1

𝜋𝑖
∮ 𝑦(𝑧)𝑑𝑧

𝛿
,                                            (2.14) 

where 𝑅𝑒𝑠(𝑦, ∝) represents the residue of 𝑦-function and 𝛿 traces out a semi-circle 

around ∝ in a counterclockwise manner. Therefore, we infer that the imaginary parts 
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of the 𝐼 come both from the pole at the horizon and the complex constant 𝑐. From 

here, we can derive the probability of ingoing waves as 𝑃𝑖𝑛 and the probability of 

outgoing waves with 𝑃𝑜𝑢𝑡 , which are calculated as follows  

𝑃𝑜𝑢𝑡 = exp(−2𝐼𝑚𝐼) = exp (−
2𝜋𝐸

Σ
− 2𝐼𝑚𝑐) ,                           (2.15) 

𝑃𝑖𝑛 = exp(−2𝐼𝑚𝐼) = exp (
2𝜋𝐸

Σ
− 2𝐼𝑚𝑐).                                 (2.16) 

According to the classical definition of the BHs, all ingoing particles must be 

absorbed at the horizon, which means that there is no reflection probability for 

incoming particle. Namely, 

𝑃𝑖𝑛 = 1.                                                            (2.17) 

This is possible if and only if 

𝐼𝑚𝑐 =
𝜋𝐸

Σ
,                                                         (2.18) 

which yields 

𝐼𝑚𝑊(+) =
2𝜋𝐸

Σ
,                                                   (2.19) 

and whence the tunneling rate of the LDBH becomes 

Γ = 𝑃𝑜𝑢𝑡 = 𝑒(
−4𝜋𝐸

Σ
).                                            (2.20) 

According to the statistical physics, the tunneling rate is related with the temperature 

as follows 

 Γ = 𝑒−𝛽𝐸 ,                                                                (2.21) 
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𝛽  where is the Boltzmann factor, which is the inverse of the temperature. Hereby 

one can read the horizon temperature of the LDBH as  

𝑇�̃� =
1

𝛽
=

Σ

4𝜋
.                                                                    (2.22) 

which is exactly equal to the 𝑇𝐻 obtained in Eq. (2.6). 

2.3 HR of the LDBH via the HJ Method in the ICs and Effect of the 

Index of Refraction on the 𝑻𝑯 

In general, when the metric (1) is transformed to the ICs, the resulting line-element 

admits a BH spacetime in which the metric functions are nonsingular at the horizon, 

the time direction is a Killing vector and the three dimensional subspace of the 

spatial part of the line-element (known as time slice) appears as Euclidean with a 

conformal factor. Furthermore, using of the ICs makes possible of the calculation of 

the index of refraction of the light rays (a subject of gravitational lensing) around a 

BH. So, the light propagation of a BH can be mimicked by the index of refraction. 

By this way, an observer may identify the type of the BH. 

In this section, we firstly transform the LDBH to the ICs and then analyze the HJ 

equation. Next, we examine the horizon temperature whether it agrees with the 𝑇𝐻 or 

not. At the final part, we discuss the discrepancy in the temperatures and its 

abolishment. 

LDBHs can be expressed in the ICs by the following transformation 

𝑑𝜁

𝜁
=

𝑑𝑟

𝐴√Σ(𝑟2−𝑟𝑟ℎ)
,                                               (2.23) 
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which yields that 

𝜁 = [2𝑟 − 𝑟ℎ + 2√𝑟(𝑟 − 𝑟ℎ))]

1

𝛾

,                             (2.24) 

and inversely 

𝑟 =
1

4𝜁𝛾 (𝜁𝛾 + 𝑟ℎ)2,                                              (2.25) 

where  

    𝛾 = 𝐴√Σ.                                                  (2.26) 

On the other hand, the horizon is now replaced with 

𝜁ℎ = (𝑟ℎ)−1/𝛾.                                             (2.27) 

This transformation modifies the metric (2.1) to the general form of the ICs as 

𝑑𝑠2 = −𝐹𝑑𝑡2 + 𝐺(d𝜁2 + 𝜁2𝑑Ω2),                                 (2.28) 

where 

𝐹 =
Σ

4𝜁𝛾
(𝜁𝛾 − 𝑟ℎ)2,                                            (2.29) 

𝐺 =
𝐴2

4𝜁𝛾+2 (𝜁𝛾 + 𝑟ℎ)2.                                          (2.30) 

In this coordinate system, the region 𝜁 > 𝜁ℎ encloses the exterior region of the 

LDBH, which is static. In the naive coordinates (2.1) of the LDBH, all Killing 

vectors are spacelike in the interior region and we understand that the interior of the 

LDBH is not stationary. However, when we consider the interior region 𝜁 < 𝜁ℎ  of the 

metric (2.28), it admits a hyper surface-orthogonal timelike Killing vector which 
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implies the static region. Namely, the region 𝜁 < 𝜁ℎ   does not cover the interior of 

the LDBH. Instead, it recloses the exterior region such that metric (2.28) is a double 

covering of the LDBH exterior.  

One can easily rewrite the metric (2.28) in the form of the Fermat metric [64] which 

is given by  

𝑑𝑠2 = 𝐹(−𝑑𝑡2 + �̃�),                                                 (2.31) 

where                

�̃� = 𝑛(𝜁)2(𝑑𝜁2 + 𝜁2 𝑑Ω2),                                             (2.32) 

in which 𝑛(𝜁) is referred to as the index of refraction for the LDBH. 

𝑛(𝜁) = √
𝐺

𝐹
=

𝐴

√Σ𝜁
(

𝜁𝛾+𝑟ℎ

𝜁𝛾−𝑟ℎ
).                                                    (2.33) 

The HJ equation for the metric (2.28) takes the following form 

−
1

𝐹
(𝜕𝑡𝐼)2 +

1

𝐺
(𝜕𝜁𝐼)2 +

1

𝜁2𝐺
[(𝜕𝜃𝐼)2 +

1

sin2 𝜃
(𝜕𝜑𝐼)

2
] + 𝑚2 = 0.      (2.34) 

Letting  

𝐼 = −𝐸𝑡 + 𝑊𝑖𝑠𝑜(𝜁) + 𝑍(𝑥𝑖),                                    (2.35) 

and then solving Eq. (2.34) for 𝑊𝑖𝑠𝑜(𝜁) we get  

𝑊(𝜁) ≡ 𝑊𝑖𝑠𝑜(±) = ± ∫ 𝑛(𝜁)√𝐸2 − 𝑚2𝐹 −
𝐹

𝐺𝜁2
[𝑍𝜃

2 +
𝑍𝜑

2

sin2 𝜃
] 𝑑𝜁.            (2.36) 

Near the horizon (𝜁 ≈ 𝜁ℎ) , the above expression behaves as 
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                      𝑊𝑖𝑠𝑜(±) ≅ ±𝐸 ∫ 𝑛(𝜁)𝑑𝜁.                                           (2.37) 

Now, one can clearly see that 𝑊𝑖𝑠𝑜(±) strictly depends on the integral of the refractive 

index of the LDBH. If we set 

𝑧 = 𝜁𝛾    →      𝜁 = 𝑧
1

𝛾          →       𝑑𝜁 =
1

𝛾
𝑧

(
1−𝛾

𝛾
)
𝑑𝑧,                   (2.38) 

one can rewrite Eq. (2.37) as 

𝑊𝑖𝑠𝑜(±) = ±
𝐸𝐴

𝛾√Σ
∫

𝑧 + 𝑟ℎ

𝑧
1

𝛾(𝑧 − 𝑟ℎ)
𝑧

(
1−𝛾

𝛾
)
𝑑𝑧, 

= ±
𝐸

Σ
∫

𝑧+𝑟ℎ

𝑧(𝑧−𝑟ℎ)
𝑑𝑧.                                                (2.39) 

Employing the Feynman’s prescription, we then find 

                          𝑊𝑖𝑠𝑜(±) = ±
𝑖2𝜋𝐸

Σ
+ 𝑐0,                                    (2.40) 

where 𝑐0 is another complex constant. By following the foregoing procedure, i.e., 

                    𝑃𝑖𝑛 = 1         →            𝐼𝑚𝑐0 =
2𝜋𝐸

Σ
.                     (2.41) 

Therefore 

                         𝐼𝑚𝐼 = 𝐼𝑚𝑊𝑖𝑠𝑜(+) =
4𝜋𝐸

Σ
.                            (2.42) 

We derive the tunneling rate of the LDBH within the ICs as 

                      Γ = 𝑒−2𝐼𝑚𝐼 = 𝑒
−8𝜋𝐸

Σ ,                                        (2.43) 

which adjusts the horizon temperature of the LDBH as 
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         𝑇�̃� =
Σ

8𝜋
        →               𝑇�̃� =

1

2
𝑇𝐻.                                        (2.44) 

But the obtained temperature 𝑇�̃� is the half of the conventional Hawking 

temperature, 𝑇𝐻 given in Eq. (2.6). So, the above result represents that transforming 

the naive coordinates to the ICs yields an apparent temperature of the BH which is 

less than the true temperature, 𝑇𝐻. This is analogous to the apparent depth ℎ̂ of a fish 

swimming at a depth 𝑑 below the surface of a pool is less than the true depth 𝑑 i.e., 

ℎ̂ < 𝑑. This illusion is due to the difference of the index of refractions between the 

mediums. Particularly, such an event happens when 𝑛𝑜𝑏𝑗𝑒𝑐𝑡 >  𝑛𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑟   as in the 

present case. Because, it is obvious from Eq. (2.33) that the index of refraction of the 

medium of an observer who is located at the outer region is less than the index of 

refraction of the medium near to the horizon. Since the value of 𝑊𝑖𝑠𝑜(±) acts as a 

decision-maker on the value of the horizon temperature, one can deduce that the 

index of refraction and consequently the gravitational lensing effect, plays an 

important role on the observation of the true 𝑇𝐻. 

On the other hand, it is doubtless that coordinate transformation of the naive 

coordinates to the ICs should not change the true temperature of the horizon of the 

BH. Since the appearances are deceptive, one should make a deeper analysis in order 

to find the real. Recently, a similar problem appeared in the Schwarzschild BH has 

been thoroughly discussed by Chatterjee and Mitra [22]. Since the isotropic 

coordinate 𝜁 becomes complex inside the horizon (r< 𝑟ℎ ) they have proven that 

while evaluating the integral (2.37) around the horizon, the path across the horizon 

involves a change of π/2 instead of π in the phase of the complex variable (𝜁𝛾 − 𝑟ℎ). 

This could best be seen from Eq. (2.25), which is rewritten as 
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𝑟 = 𝑟ℎ +
(𝜁𝛾−𝑟ℎ)2

𝜁𝛾
.                                          (2.45) 

It can be manipulated as 

𝑑𝑟

𝑟−𝑟ℎ
= −𝛾

𝑑𝜁

𝜁
+ 2

𝑑𝑧

𝑧−𝑟ℎ
.                                 (2.46) 

The first term on the right hand side of the above equation does not admit any 

imaginary part at the horizon. So, any imaginary contribution coming from 
𝑑𝑟

𝑟−𝑟ℎ
 must 

be double of 2
𝑑𝑧

𝑧−𝑟ℎ
. The latter remark produces a factor 

𝑖𝜋

2
 for the integral in Eq. 

(2.39). This yields that 

𝐼𝑚𝑊𝑖𝑠𝑜(+) =
2𝜋𝐸

Σ
,                                             (2.47) 

which modifies the horizon temperature in Eq. (2.44) as 

         𝑇�̃� =
Σ

4𝜋
        →               𝑇�̃� = 𝑇𝐻.                                        (2.48) 

So the proof of how one can recover the 𝑇𝐻 in the ICs of the LDBH has been 

satisfactorily made.  
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2.4 HR of the LDBH via the HJ Method in the PG Coordinates 

Generally, we use the PG coordinates [65,66] to describe the spacetime on either side 

of the event horizon of a static BH. In the PG coordinate system, an observer does 

not sense the surface of the horizon to be in any way special. In this section, we shall 

use the PG coordinates as another regular coordinate system in the HJ equation (2.7) 

and examine whether they result in the 𝑇𝐻 or not. 

We can pass to the PG coordinates by applying the following transformation [67] to 

the metric (2.1): 

          𝑑𝑇 = 𝑑𝑡 +
√1−𝑓

𝑓
𝑑𝑟,                                            (2.49) 

where 𝑇 is called PG time. One of the main features of these coordinates is that the 

PG time corresponds to the proper time.  Substituting Eq. (2.49) into metric (2.1), 

one gets 

𝑑𝑠2 = −𝑓𝑑𝑇2 + 2√1 − 𝑓𝑑𝑇𝑑𝑟 + 𝑑𝑟2 + 𝑅2𝑑𝛺2.                  (2.50) 

For this metric, the HJ equation (2.7) reads 

−(𝜕𝑇 𝐼)2 + 2√1 − 𝑓(𝜕𝑇𝐼)(𝜕𝑟𝐼) + 𝑓(𝜕𝑟𝐼)2 +      

1

𝑅2 [(𝜕𝜃𝐼)2 +
1

sin2 𝜃
(𝜕𝜑𝐼)

2
] + 𝑚2 = 0.                                (2.51) 

Letting 

                    𝐼 = −𝐸𝑇 + 𝑊𝑃𝐺(𝑟) + 𝑍𝑖(𝑥𝑖),                                (2.52) 

one obtains  
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−𝐸2 + 2√1 − 𝑓𝐸(𝜕𝑟𝑊𝑃𝐺) + 𝑓(𝜕𝑟𝑊𝑃𝐺)2 +
1

𝑅2 [𝑍𝜃
2 +

1

sin2 𝜃
𝑍𝜑

2 ] + 𝑚2 = 0.        (2.53) 

Thus, we can derive an expression for 𝑊𝑃𝐺(𝑟) as  

𝑊𝑃𝐺(𝑟) ≡ 𝑊𝑃𝐺(±) = ∫
𝐸

Σ(𝑟−𝑟ℎ)
(√1 − Σ(𝑟 − 𝑟ℎ) ± √1 − Σ(𝑟 − 𝑟ℎ) −

∀𝑓

𝐸2) 𝑑𝑟,   (2.54) 

where 

     ∀= −𝐸2 +
1

𝑅2 (𝑍𝜃
2 +

𝑍𝜑
2

sin2 𝜃
) + 𝑚2.                                       (2.55) 

Near the horizon, Eq. (2.54) reduces to: 

𝑊𝑃𝐺(±) ≅
𝐸

Σ
∫

1

(𝑟−𝑟ℎ)
(1 ± 1)𝑑𝑟.                                              (2.56) 

According to our experience in the previous sections we know that 𝑊𝑃𝐺(−) = 0, 

which guaranties that there is no reflection for the ingoing particle. Thus we have 

only 

                         𝑊𝑃𝐺(+) =
2𝜋𝑖𝐸

Σ
.                                                       (2.57) 

From here, we derive the imaginary part of the action 𝐼 as 

                         𝐼𝑚𝐼 = 𝐼𝑚𝑊𝑃𝐺(+) =
2𝜋𝐸

Σ
.                                         (2.58) 

With the aid of Eqs. (2.20) and (2.21), one can directly read the horizon temperature 

of the LDBH in the PG coordinates as 

        𝑇�̃� =
Σ

4𝜋
.                                                    (2.59) 

This result fully agrees with the standard value of the 𝑇𝐻 (2.6). 
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2.5 HR of the LDBH via the HJ Method in the IEF Coordinates 

IEF coordinate system is also regular at the event horizon. It was originally 

developed by Eddington [68] and Finkelstein [69]. These coordinates are fixed to 

radially moving photons. The line-element (2.1) takes the following form in the IEF 

coordinates (see for instance [69]). 

𝑑𝑠2 = −𝑓𝑑𝑣2 + 2√1 − 𝑓𝑑𝑣𝑑𝑟 + 𝑑𝑟2 + 𝑅2𝑑𝛺2,                         (2.60) 

in which 𝑣 is a null coordinate, the so-called advanced time. It is given by: 

                                   𝑣 = 𝑡 + 𝑟∗,                                                     (2.61) 

where 𝑟∗ is known as the Regger-Wheeler coordinate or the tortoise coordinate. For 

the outer space of the LDBH, it is computed as 

𝑟∗ = ∫
𝑑𝑟

𝑓
=

1

𝛴
𝑙𝑛(𝑟 − 𝑟ℎ),            𝑓 = Σ(𝑟 − 𝑟ℎ).                                    (2.62) 

The timelike Killing vector for the metric (2.60) is given by 𝜉𝜇 = 𝜕𝜈. So in this 

coordinate system an observer measures the scalar particle’s energy by using the 

following expression 

         −𝜕𝑣𝐼 = 𝐸.                                                       (2.63) 

Whence, the action 𝐼 is assumed to be of the form: 

      𝐼 = −𝐸𝑣 + 𝑊𝐼𝐸𝐹(𝑟) + 𝑍(𝑥𝑖).                                         (2.64) 

Applying the HJ method for the metric (2.60), we obtain 

𝑊𝐼𝐸𝐹(𝑟) ≡ 𝑊𝐼𝐸𝐹(±) = ∫
𝐸

Σ(𝑟−𝑟ℎ)
(1 ± √1 −

∄Σ(𝑟−𝑟ℎ)

𝐸2 )𝑑𝑟.                  (2.65) 
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where  

            ∄=
1

𝑅2
(𝑍𝜃

2 +
𝑍𝜑

2

sin2 𝜃
) + 𝑚2.                                   (2.66) 

In the vicinity of the horizon, Eq. (2.65) reads  

            𝑊𝐼𝐸𝐹(±) ≅
𝐸

Σ
∫

1

(𝑟−𝑟ℎ)
(1 ± 1)𝑑𝑟.                              (2.67) 

Then,  

  𝑊𝐼𝐸𝐹(−) = 0     →      𝑊𝐼𝐸𝐹(+) =
2𝜋𝑖𝐸

Σ
  →     𝐼𝑚𝐼 = 𝐼𝑚𝑊𝐼𝐸𝐹(+) =

2𝜋𝐸

Σ
.               (2.68) 

Therefore we infer from the above result, likewise to the PG coordinates, the use of 

the IEF coordinates in the HJ equation enables us to reproduce the 𝑇𝐻 (2.6) from the 

horizon temperature of the LDBH. 

2.6 HR of the LDBH via the HJ Method in the KS Coordinates 

Another well-behaved coordinate system which encloses the entire spacetime 

manifold of the maximally extended BH solution is the so-called KS coordinates 

[71,72]. These coordinates have an effect of squeezing infinity into a finite distance, 

and thus the entire spacetime can be displayed on a stamp-like diagram. In this 

section, we will apply the HJ equation to KS metric of the LDBH in order to verify 

whether the horizon temperature 𝑇�̃� is going to be equal to the 𝑇𝐻 or not. 

Metric (2.1) can be rewritten as follows [70] 

          𝑑𝑠2 = −𝑓𝑑𝑢𝑑𝑣 + 𝑅2𝑑𝛺2,                                        (2.69) 

where 
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          𝑑𝑢 = 𝑑𝑡 − 𝑑𝑟∗       and     𝑑𝑣 = 𝑑𝑡 + 𝑑𝑟∗.                                (2.70) 

We can now define new coordinates (𝑈, 𝑉) in terms of the surface gravity as: 

            𝑈 = −𝑒−𝜅𝑢            and                 𝑉 = 𝑒𝜅𝑣 ,                                        (2.71) 

so that metric (2.69) transforms to the KS metric as follows 

                     𝑑𝑠2 =
𝑓

𝜅2𝑈𝑉
𝑑𝑈𝑑𝑉 + 𝑅2𝑑𝛺2.                                           (2.72) 

From the definitions given in the Eqs. (2.3),(2.5) and (2.71), one can derive the KS 

metric of the LDBH: 

                   𝑑𝑠2 =
−16𝑀

Σ2𝐴2 𝑑𝑈𝑑𝑉 + 𝑅2𝑑𝛺2.                                        (2.73) 

This metric is well-behaved everywhere outside the physical singularity 𝑟 = 0. 

Alternatively, metric (2.73) can be recast as 

                    𝑑𝑠2 = −𝑑�̅�2 + 𝑑𝑋2 + 𝑅2𝑑𝛺2.                                            (2.74) 

This is done by the following transformation: 

          �̅� =
4√𝑀

𝛴𝐴
(𝑉 + 𝑈) =

4√𝑀

𝛴𝐴
√

𝑟

𝑟ℎ
− 1𝑠𝑖𝑛ℎ (

𝛴𝑡

2
),                       (2.75) 

            𝛸 =
4√𝑀

𝛴𝐴
(𝑉 − 𝑈) =

4√𝑀

𝛴𝐴
√

𝑟

𝑟ℎ
− 1𝑐𝑜𝑠ℎ (

𝛴𝑡

2
).                     (2.76) 

These new coordinates satisfy  

                                  Χ2 − �̅�2 =
16𝑀

Σ2𝐴2 (
𝑟

𝑟ℎ
− 1).                                           (2.77) 
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This means that 𝑋 = ±�̅� corresponds to the future (+) and past horizons (−). On the 

other hand, 𝜕�̅� is not a timelike Killing vector anymore for the metric (2.74); instead 

we should consider the timelike Killing vector as: 

           𝜕�̌� = 𝑁(𝛸𝜕�̅� + �̅�𝜕𝛸).                                            (2.78) 

where 𝑁 denotes the normalization constant. This constant can admit such a specific 

value that the norm of the Killing vector becomes negative unity (𝑔𝜇𝜈𝜉𝜇𝜉𝜈 = −1) at 

the specific location (2.11). Thus, we compute its value as 𝑁 =
Σ

2
, which is nothing 

but the surface gravity (2.5). Since the energy is in general defined by: 

                                −𝜕�̌�𝐼 = 𝐸,                                                   (2.79) 

one finds 

                       −𝐸 =
𝛴

2
(𝛸𝜕�̅�𝐼 + �̅�𝜕𝛸𝐼).                                               (2.80) 

Without loss of generality, we may only consider the two dimensional form of the 

KS metric (2.74) 

                             𝑑𝑠2 = −𝑑�̅�2 + 𝑑𝑋2,                                           (2.81) 

which appears as Minkowskian. Thus, the calculation of the HJ method becomes 

more straightforward. The HJ equation (2.7) for the above metric reads 

                              −(𝜕�̅�𝐼)2 + (𝜕𝛸𝐼)2 + 𝑚2 = 0.                                     (2.82) 

This equation implies that the action 𝐼 to be used in the HJ equation (2.7) for the 

metric (2.74) can be 

                                𝐼 = 𝑔(𝑢) + 𝑍(𝑥𝑖),                                            (2.83) 
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where 𝑢 = 𝛸 − �̅�. For simplicity, we may further set 𝑍(𝑥𝑖) = 𝑚 = 0. Using Eq. 

(2.82) with ansatz (2.83), we derive an expression for 𝑔(𝑢) as . 

                       𝑔(𝑢) = ∫
2𝐸

Σ𝑢
𝑑𝑢.                                                  (2.84) 

This expression develops a divergence at the future horizon 𝑢 = 0, namely 𝛸 = �̅�. 

Thus, it leads to a pole at the horizon (doing a semi-circular contour of integration in 

the complex plane) and the result is found to be 

                          𝑔(𝑢) =
2𝑖𝜋𝐸

Σ
,                                                    (2.85) 

which implies the correct imaginary part of the action:  

                          𝐼𝑚𝐼 =
2𝜋𝐸

Σ
.                                                    (2.86) 

As a consequence, the above result implies that the true horizon temperature (i.e., 

 𝑇𝐻) can also be recovered in the background of the KS metric of the LDBH. 
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Chapter 3 

HAWKING RADIATION OF THE GRUMILLER-

MAZHARIMOUSAVI-HALILSOY BLACK HOLE IN 

THE 𝒇(𝕽) THEORY VIA THE HAMILTON-JACOBI 

METHOD
2
 

3.1 GMHBH Spacetime in the 𝒇(𝕽) Theory and HJ Method 

In this section we firstly introduce the geometry and some thermodynamically 

properties of the GMHBH. Secondly, we demonstrate how one can derive the radial 

equation of the relativistic HJ equation in the background of the GMHBH. Finally 

and most importantly, we represent how the HJ method eventuates in the 𝑇𝐻. 

Let us start from the 4𝐷 action of 𝑓(ℜ) gravity  

𝑆 =
1

2𝜆
∫ √(−𝑔)𝑓(ℜ)𝑑4𝑥 + 𝑆𝑀 ,                                             (3.1) 

where 𝜆 = 8𝜋𝐺 = 1, ℜ is the curvature scalar and 𝑓(ℜ)  = ℜ − 12𝑎𝜉𝑙𝑛|ℜ| in which 

𝑎 and 𝜉 are positive constants. Here, 𝑆𝑀 denotes the physical source for a perfect 

fluid-type energy momentum tensor which is given by 

                 𝑇𝜇
𝜈 = 𝑑𝑖𝑎𝑔. [−𝜌, 𝑝, 𝑞, 𝑞],                                                      (3.2) 

                                                           
2
 This Chapter is mainly quoted from Ref. [73], which is Mirekhtiary, S.F., & Sakalli, I. (2014). 

Communication in Theoretical Physics. 61, 558-564. 
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with the thermodynamic pressure 𝑝 being a function of the rest mass density of the 

matter 𝜌 only, so that 𝑝 = −𝜌. Besides, 𝑞 is also a state function which is to be 

determined. Recently, MH has obtained the GMHBH solution to the above action in 

their landmark manuscript [34]. Their solution is described by the following 4𝐷 SSS 

line-element  

                 𝑑𝑠² = −𝐻𝑑𝑡² + 𝐻−1𝑑𝑟2 + 𝑟2𝑑𝛺2.                                     (3.3) 

MH ingeniously have arranged their solution in such a manner that the metric 

function 𝐻 exactly matches with the GBH solution without the cosmological 

constant [26], i.e.,  

𝐻 = 1 −
2𝑀

𝑟
+ 2𝑎𝑟 =

2𝑎

𝑟
(𝑟 − 𝑟ℎ)(𝑟 − 𝑟𝑜),                                  (3.4) 

where 𝑀 is the constant mass and as mentioned in the Abstract 𝑎 shows the Rindler 

parameter which is assumed to be positive throughout this thesis. Besides, the other 

parameters seen in Eq. (3.4) are 

𝑟ℎ =
√1+16𝑀𝑎−1

4𝑎
        and            𝑟0 = −

√1+16𝑀𝑎+1

4𝑎
.                          (3.5) 

The GMHBH has only one horizon, since 𝑟0 cannot be horizon due to its negative 

signature. After computing the scalars of the metric, we obtain 

𝐾 = 𝑅𝛼𝛽𝜇𝜈𝑅𝛼𝛽𝜇𝜈 = 32
𝑎2

𝑟2 + 48
𝑀2

𝑟6 , 

𝑅 = −12
𝑎

𝑟
,                                                (3.6) 

𝑅𝛼𝛽𝑅𝛼𝛽 = 40
𝑎2

𝑟2
. 

On the other hand, energy-momentum components become 
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𝑝 = −𝜌 =
([6𝑎𝜉−𝑓(ℜ)]𝑟2+4(𝜉−𝑎)𝑟−6𝑀𝜉)

2𝑟2 ,                                      (3.7) 

and  

𝑞 = −
𝑓(ℜ)𝑟−2𝜉+8𝑎

2𝑟
,                                               (3.8) 

where 

𝑓(ℜ) = − [12𝑎𝜉𝑙𝑛 (
12𝑎

𝑟
) +

12𝑎

𝑟
].                                         (3.9) 

One can easily observe from the last three equations that the parameter 𝑎 is decisive 

for the fluid source. This can be best seen by simply taking the limit of 𝑎 → 0 which 

corresponds to the vanishing fluid and Ricci scalar, and so forth 𝜉 → 0. Thus, 𝑓(ℜ) 

gravity reduces to the usual ℜ-gravity of the theory of Einstein. In other words, while 

𝑎 → 0, the GMBH solution reduces to the Schwarzschild geometry. 

By using the definitions made in Eqs. (2.5) and (2.), 𝑇𝐻 of the GMHBH is expressed 

as follows: 

𝑇𝐻 =
𝜅

2𝜋
=

1

4𝜋
𝜕𝑟𝐻|𝑟=𝑟ℎ

=
𝑎(𝑟ℎ−𝑟0)

2𝜋𝑟ℎ
=  (

𝑎√1+16𝑎𝑀

𝜋(√(1+16𝑎𝑀)−1
).               (3.10) 

From the above expression, it is obvious that while the GMHBH losing its mass 𝑀 

by virtue of the HR, 𝑇𝐻 increases (i.e., 𝑇𝐻 → ∞) with 𝑀 → 0 in such a way that its 

divergence speed is tuned by the term 𝑎. Also, one can immediately check that 

log𝑎→0 𝑇𝐻 =
1

8𝜋𝑀
, which is the most known Hawking temperature: 𝑇𝐻 of the 

Schwarzschild BH. In general, The Bekenstein-Hawking entropy of the metrics like 

Eq. (3.3) is given by 
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                                        𝑆𝐵𝐻 =
𝐴ℎ

4
= 𝜋𝑟ℎ

2.                                                   (3.11) 

Accordingly, its differential form becomes 

                  𝑑𝑆𝐵𝐻 =
4𝜋𝑟ℎ

√1+16𝑎𝑀
𝑑𝑀.                                                  (3.12) 

Therefore one can prove the validity of the first law of thermodynamics for the 

GMHBH via the following thermodynamical law, 

                                     𝑇𝐻𝑑𝑆𝐵𝐻 = 𝑑𝑀.                                                (3.13) 

Now, we want to proceed to our calculations by considering the problem of a scalar 

particle which moves in this spacetime. By doing this, we initially ignore all the 

back-reaction or the self-gravitational effects. Within the semi-classical framework, 

the classical action 𝐼 of the particle satisfies the relativistic HJ equation was given in 

Eq. (2.7). So, for the metric (3.3), the HJ equation becomes 

−1

𝐻
(𝜕𝑡𝐼) + 𝐻(𝜕𝑟𝐼)2 +

(𝜕𝜃𝐼)2

𝑟2 +
1

𝑟2sin2 𝜃
(𝜕𝜑𝐼)

2
+ 𝑚2 = 0.              (3.14) 

Substituting the ansatz (2.9) for the 𝐼 into the above equation, we get 

𝜕𝑡𝐼 = −𝐸,         𝜕𝑟𝐼 = 𝜕𝑟𝑊(𝑟),         𝜕𝑘𝐼 = 𝑍𝑘,                                   (3.15) 

As stated before,  𝑍𝑘 's are constants in which 𝑘 = 1,2 labels angular coordinates 𝜃 

and 𝜑, respectively. In this geometry, the norm of the time-like Killing vector (𝜕𝑡) is 

negative unit at only the following particular location 

𝑟 ≡ 𝑅𝑑 =
𝑟ℎ+𝑟0

2
+

1+√4(𝑟ℎ+𝑟0)2+4(𝑟ℎ+𝑟0)𝑎+1

4𝑎
 ,                              (3.16) 
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which satisfies (𝑔𝜇𝜈𝜉𝜇𝜉𝜈|
𝑟=𝑅𝑑

= −1). Hence, 𝐸 in Eq. (3.15) is designated with the 

"energy" of the particle detected by an observer (or by a probe of a radiation 

detector) at 𝑅𝑑, where is outside the horizon. Solving Eq. (3.14) for 𝑊(𝑟) yields 

𝑊(𝑟) ≡ 𝑊(±) = ± ∫

√𝐸2−
𝐻

𝑟2[𝑍𝜃
2+

𝑍𝜑
2

𝑠𝑖𝑛2𝜃
+𝑚2𝑟2]

𝐻
𝑑𝑟.                            (3.17) 

Therefore, the above solution with "+" sign corresponds to scalar particles moving 

away from the BH (outgoing ones) and the other solution with "−" sign belongs to 

the ingoing particles. After evaluating the above integral around the pole existing at 

the horizon (cf. the Feynman's prescription [63]), we have 

                            𝑊(±) ≅ ±
𝑖𝜋𝐸𝑟ℎ

2a(𝑟ℎ−𝑟0)
+ 𝛿,                                       (3.18) 

in which  𝛿 is another complex integration constant. Thence, we can determine the 

probabilities of ingoing and outgoing particles while crossing the GMHBH horizon 

as 

𝑃𝑜𝑢𝑡 = 𝑒𝑥𝑝(−2𝐼𝑚𝐼) = 𝑒𝑥𝑝 (−
𝜋𝐸𝑟ℎ

𝑎(𝑟ℎ−𝑟0)
− 2𝐼𝑚𝛿),                      (3.19) 

𝑃𝑖𝑛 = 𝑒−2𝐼𝑚𝐼 = exp (
𝜋𝐸𝑟ℎ

a(𝑟ℎ−𝑟0)
− 2𝐼𝑚𝛿).                              (3.20) 

Because of the condition of being BH, there should not be any reflection for the 

ingoing waves, which means that 𝑃𝑖𝑛=1. This is possible with  𝐼𝑚𝛿 =
𝜋𝐸𝑟ℎ

2𝑎(𝑟ℎ−𝑟0)
 . This 

choice also implies that the imaginary part of the action 𝐼 for a tunneling particle can 

only come out of 𝑊(+). Briefly, we get 
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𝐼𝑚𝐼 = 𝐼𝑚𝑊+ =
𝜋𝐸𝑟ℎ

𝑎(𝑟ℎ−𝑟0)
.                                              (3.21) 

Consequently, the tunneling rate for the GMHBH turns out to be as 

Γ = 𝑒−2𝐼𝑚𝐼 = 𝑒
−2𝜋𝐸𝑟ℎ

𝑎(𝑟ℎ−𝑟0) = 𝑒−
𝐸

𝑇 .                                (3.22) 

Thus, one can easily read the horizon temperature of the GMHBH as 

                                     �̌�𝐻 =
𝑎(𝑟ℎ−𝑟0)

2𝜋𝑟ℎ
 .                                               (3.23) 

which is exactly equal to the 𝑇𝐻 given in Eq. (3.10). 

3.2 HR of the GMHBH via the HJ and PWT Methods in the PG 

Coordinates 

By following the works that we made in section (2.4), we can transform the naive 

coordinates of the GMHBH to the PG coordinates by using the following 

transformation. 

                     𝑑𝑡𝑃𝐺 = 𝑑𝑡 +
√1−𝐻

𝐻
𝑑𝑟.                                                 (3.24) 

Then the GMHBH metric (3.3) transforms to 

𝑑𝑠2 = −𝐻𝑑𝑡𝑃𝐺
2 + 2√1 − 𝐻𝑑𝑡𝑃𝐺𝑑𝑟 + 𝑑𝑟2 + 𝑟2𝑑𝛺2,                (3.25) 

and consequently its HJ equation takes the form 

−(𝜕𝑡𝑃𝐺
 𝐼)

2
+ 2√1 − 𝐻(𝜕𝑡𝑃𝐺

𝐼)(𝜕𝑟𝐼) + 𝐻(𝜕𝑟𝐼)2 +  

1

𝑟2
(𝜕𝜃𝐼)2 +

1

𝑟2𝑠𝑖𝑛2𝜃
(𝜕𝜑𝐼)

2
+ 𝑚2 = 0.                          (3.26) 
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Similar to the ansatz (2.52), one may set 

                          𝐼 = −𝐸𝑡𝑃𝐺 + 𝑊𝑃𝐺(𝑟) + 𝐽(𝑥𝑖),                                       (3.27) 

such that Eq. (3.26) becomes  

2𝐸√1 − H�́� + H(𝑊)́ 2 + ℊ = 0,                                       (3.28) 

where �́� = 𝜕𝑟𝑊𝑃𝐺 and  

ℊ = −𝐸2 +
1

𝑟2 (𝐽𝜃
2 +

𝐽𝜑
2

𝑠𝑖𝑛𝜃2) + 𝑚2.                                     (3.29)   

Then we obtain 

𝑊𝑃𝐺(𝑟) ≡ 𝑊𝑃𝐺(±) = 𝐸 ∫
√1−𝐻

𝐻
(1 ± √1 −

𝐻ℊ

(1−𝐻)𝐸2 )𝑑𝑟.                     (3.30) 

Near the horizon, it reduces to 

                         𝑊𝑃𝐺(±) ≅ 𝐸 ∫
1±1

𝐻
𝑑𝑟.                                            (3.31)  

According to the our former experiences, we set 𝑊𝑃𝐺(−) = 0, and this leads us to 

find out  

                                       𝑊𝑃𝐺(+) =
𝜋𝑖𝐸𝑟ℎ

𝑎(𝑟ℎ−𝑟0)
 ,                                           (3.32) 

where we now have 

                  𝐼𝑚𝐼 = 𝐼𝑚𝑊𝑃𝐺(+) =
𝜋𝐸𝑟ℎ

a(𝑟ℎ−𝑟0)
 .                                     (3.33) 

Recalling the Eqs. (2.20) and (2.21), we read the horizon temperature of the 

GMHBH within the PG coordinates as 
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�̌�𝐻 =
𝑎(𝑟ℎ−𝑟0)

2𝜋𝑟ℎ
.                                            (3.34) 

This result is in agreement with the standard value of the 𝑇𝐻 (3.10). 

Now, we want to continue to our calculations by employing the tunneling method 

prescribed by PW [7]. To this end, we recalculate the imaginary part of the 𝐼 for an 

outgoing positive energy particle which crosses the horizon outwards in the PG 

coordinates. In the metric (3.25), the radial null geodesics of a test particle has a 

rather simple form 

           �̇�=
𝑑𝑟

𝑑𝑡𝑃𝐺
= ±1 − √1 − 𝐻,                                            (3.35) 

where upper (lower) sign corresponds to outgoing (ingoing) geodesics. After 

expanding the metric function 𝐻 around the horizon 𝑟ℎ, we get 

           𝐻 = 𝐻′(𝑟ℎ)(𝑟 − 𝑟ℎ) + 𝑂(𝑟 − 𝑟ℎ)2.                           (3.36) 

And hence by using Eq. (3.10), the radial outgoing null geodesics (3.35) can be 

approximated to 

               �̇� ≅ 𝜅(𝑟 − 𝑟ℎ).                                           (3.37) 

In general, the imaginary part of the 𝐼 for an outgoing positive energy particle which 

crosses the horizon from inside (𝑟𝑖𝑛) to outside (𝑟𝑜𝑢𝑡) is defined as 

𝐼𝑚𝐼 = 𝐼𝑚 ∫ 𝑝𝑟𝑑𝑟 = 𝐼𝑚 ∫ ∫ 𝑑𝑝𝑟
𝑝𝑟

0
𝑑𝑟

𝑟𝑜𝑢𝑡

𝑟𝑖𝑛
.

𝑟𝑜𝑢𝑡

𝑟𝑖𝑛
                         (3.38) 

Hamilton's equation for the classical trajectory is given by 

                                              𝑑𝑝𝑟 =
𝑑ℋ

�̇�
,                                                    (3.39) 



37 
 

where 𝑝𝑟 and ℋ denote radial canonical momentum and Hamiltonian, respectively. 

Thus, we have 

                   𝐼𝑚𝐼 = 𝐼𝑚 ∫ ∫
𝑑ℋ̃

�̇�

ℋ

0
𝑑𝑟

𝑟𝑜𝑢𝑡

𝑟𝑖𝑛
.                                       (3.40) 

Now, if we consider the whole system as a spherically symmetric system of total 

mass (energy) 𝑀, which is kept fixed. Then we suppose that this system consists of a 

GMHBH with varying mass 𝑀 − 𝜔, emitting (in each time) a spherical shell of mass 

𝜔 such that 𝜔 ≪  𝑀 . This phenomenon is known as self-gravitational effect [5]. 

After taking this effect into account, the above integration is expressed as 

𝐼𝑚𝐼 = 𝐼𝑚 ∫ ∫
𝑑ℋ̃

�̇�

𝑀−ω

𝑀
𝑑𝑟 = −𝐼𝑚 ∫ ∫

𝑑ω̃

�̇�

ω

𝑀
𝑑𝑟,

𝑟𝑜𝑢𝑡

𝑟𝑖𝑛

𝑟𝑜𝑢𝑡

𝑟𝑖𝑛
                         (3.41) 

in which the Hamiltonian ℋ = 𝑀 − 𝜔 ∴. 𝑑ℋ = −𝑑𝜔 is used. Furthermore, Eq. 

(3.37) can now be redefined as follows 

                                         �̇� ≅ 𝜅𝑄𝐺 (𝑟 − 𝑟ℎ),                                              (3.42) 

where 𝜅𝑄𝐺 = 𝜅(𝑀 − 𝜔) is the modified horizon gravity, which is the so-called QG 

corrected surface gravity, cf. [74,75]. Thus, after evaluating the integral (3.41) with 

respect to 𝑟 which is done by deforming the contour, the imaginary part of the action 

reads 

                                 𝐼𝑚𝐼 = −𝜋 ∫
𝑑ω̃

𝑇𝑄𝐺

ω

0
𝑑𝑟,                                            (3.43) 

where the "modified Hawking temperature" is expressed in the form of  

𝑇𝑄𝐺 =
𝜅𝑄𝐺

2𝜋
.                                                    (3.44) 
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From here on, we make use of the above expression to determine how the action 𝐼 is 

related with the QG corrected entropy, 𝑆𝑄𝐺 . Namely 

𝐼𝑚𝐼 = −
1

2
∫

𝑑ω̃

𝑇𝑄𝐺

ω

0
𝑑𝑟 = −

1

2
∫ 𝑑𝑆 = −

1

2
Δ𝑆𝑄𝐺 

𝑆𝑄𝐺(𝑀−𝜔)

𝑆𝑄𝐺(𝑀)
.                    (3.45) 

Then the modified tunneling rate is computed via 

                              Γ𝑄𝐺~𝑒−2𝐼𝑚𝐼 = 𝑒Δ𝑆𝑄𝐺 .                                   (3.46) 

In string and loop QG theories, S𝑄𝐺 is introduced with a logarithmic correction (see 

for instance [12,76]) 

                                    𝑆𝑄𝐺 =
𝐴ℎ

4
+ 𝛼𝑙𝑛𝐴ℎ + Ο (

1

𝐴ℎ
),                                   (3.47) 

where 𝛼 is a dimensionless constant, and it symbolizes the back reaction effects. It 

possesses positive values in the string theory, however for the loop QG theory it 

appears as negative. In other words, it takes different values according to which 

theory is considered [75]. Thus, with the aid of Eqs. (3.11) and (3.47), one can 

compute 𝛥𝑆𝑄𝐺 as follows 

Δ𝑆𝑄𝐺 = −
𝜋(8𝑎𝜔+√1+16𝑎(𝑀−𝜔)−√1+16𝑎𝑀)

8𝑎2 + 𝛼𝑙𝑛 (
1+8𝑎(𝑀−𝜔)−√1+16𝑎(𝑀−𝜔)

1+8𝑎𝑀−√1+16𝑎𝑀
).      (3.48) 

According to the fundamental law in thermodynamics 

   𝑇𝑄𝐺𝑑𝑆𝑄𝐺 = 𝑑𝑀,                                                      (3.49) 

one can derive the 𝑇𝑄𝐺 with the back reaction effects. After a straightforward 

calculation, we can derive 𝑇𝑄𝐺 from Eq. (3.47) in terms of the 𝑇𝐻 as follows 



39 
 

                                          𝑇𝑄𝐺 = (1 +
𝛼

𝜋𝑟ℎ
2)−1𝑇𝐻.                                              (3.50) 

Thus, one can easily see that once we terminates the back reaction effects (i.e., 𝛼=0), 

the standard 𝑇𝐻   is precisely reproduced. On the other hand, it is also possible to 

retrieve the 𝑇𝑄𝐺 from Eq. (3.48). For this purpose, we expand Δ𝑆𝑄𝐺 and recast terms 

up to leading order in 𝜔. So, one finds 

∆𝑆𝑄𝐺 ≅ − [
𝜋

𝑎
(

√1+16𝑎𝑀−1

√1+16𝑎𝑀
) +

16𝑎𝛼

(1+16𝑎𝑀−√1+16𝑎𝑀
] 𝜔 + Ο(𝜔2),                 

= − (
1

𝑇𝐻
+ 𝛼

16𝜋𝑇𝐻

1+16𝑎𝑀
) 𝜔 + Ο(𝜔2).                                           (3.51) 

Considering Eqs. (2.21) and (3.46), we obtain 

                                                 Γ𝑄𝐺~𝑒Δ𝑆𝑄𝐺 = 𝑒−
𝜔

𝑇 ,                                              (3.52) 

Thus, the inverse temperature that is identified with the coefficient of 𝜔 reads 

𝑇 = (
1

𝑇𝐻
+ 𝛼

16𝜋𝑇𝐻

1+16𝑎𝑀
)−1 ,                                           (3.53) 

After manipulating the above equation, one can see that 

𝑇 = (1 +
𝛼

𝜋𝑟ℎ
2)−1𝑇𝐻.                                           (3.54) 

obviously it is nothing but the 𝑇𝑄𝐺 (3.50).  

3.3 HR of the GMHBH via the HJ Method in the IEF Coordinates 

In order to transform the naive coordinates of the GMHBH (3.3) to the IEF 

coordinates: 
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                    𝑑𝑠2 = −𝐻𝑑𝑣2 + 2√1 − 𝐻𝑑𝑣𝑑𝑟 + 𝑑𝑟2 + 𝑟2𝑑𝛺2,                     (3.55) 

its tortoise coordinate (for the outer region of the GMHBH)  

𝑟∗ = ∫
𝑑𝑟

𝐻
=

1

2𝑎(𝑟ℎ−𝑟0)
ln [

(
𝑟

𝑟ℎ
−1)𝑟ℎ

(𝑟−𝑟0)𝑟0
] ,                                 (3.56) 

should be used in the advanced time coordinate, 𝑣 = 𝑡 + 𝑟∗. By following the 

calculations that we already made in section (2.5), one can find 

𝑊𝐼𝐸𝐹(𝑟) ≡ 𝑊𝐼𝐸𝐹(±) = 𝐸 ∫
1

H
(1 ± √1 −

ℑ𝐻

𝐸2 )𝑑𝑟,                                  (3.57) 

where 

                                            ℑ =
1

𝑟2 (𝑍𝜃
2 +

𝑍𝜑
2

sin2 𝜃
) + 𝑚2.                                      (3.58) 

Approaching to the 𝑟ℎ, we have 

𝑊𝐼𝐸𝐹(±) ≅ 𝐸 ∫
1±1

𝐻
𝑑𝑟,                                            (3.59)  

which yields 𝑊𝐼𝐸𝐹(−) = 0, which automatically satisfies the necessity condition for 

having a BH. So the only non-zero expression that we have is  

                                       𝑊𝐼𝐸𝐹(+) =
𝜋𝑖𝐸𝑟ℎ

𝑎(𝑟ℎ−𝑟0)
 .                                           (3.60) 

From here, we get 

                               𝐼𝑚𝐼 = 𝐼𝑚𝑊𝐼𝐸𝐹(+) =
𝜋𝐸𝑟ℎ

a(𝑟ℎ−𝑟0)
.                             (3.61) 
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This expression is in accordance with the former results like Eq. (3.33), hence it 

guaranties that the horizon temperature of the GMHBH in the IEF coordinates is the 

𝑇𝐻 obtained in Eq. (3.10). Namely, 

    �̌�𝐻 =
𝑎(𝑟ℎ−𝑟0)

2𝜋𝑟ℎ
= 𝑇𝐻.                                    (3.62) 

3.4 HR of the GMHBH via HJ Method in the KS Coordinates 

The aim of this section is to compute the 𝑇𝐻 of the GMHBH when it is described in 

the KS coordinates. By doing this, we mainly follow the calculations made in the 

section (2.6). 

Recalling the KS transformations given in the Eqs.(2.70) and (2.71), we put the 

metric of the GMHBH (3.3) into the following form 

                         𝑑𝑠2 =
𝐻

𝜅2𝑈𝑉
𝑑𝑈𝑑𝑉 + 𝑟2𝑑𝛺2,                                                 (3.63) 

which can be reorganized as  

                         𝑑𝑠2 = −𝜚𝑑𝑈𝑑𝑉 + 𝑟2𝑑𝛺2 ,                                                    (3.64) 

where 

𝜚 =
2𝑟ℎ

3

𝑎𝑟(𝑟ℎ−𝑟0)2 (𝑟 − 𝑟0)
1+

𝑟0
𝑟ℎ .                                         (3.65) 

As an aside, the metric (3.64) is regular everywhere except 𝑟 = 0, which represents 

the location of the physical singularity. It is also possible to recast the metric (3.65) 

to the following form 
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             𝑑𝑠2 = −𝜚(𝑑ℳ2 − 𝑑ℕ2) + 𝑟2𝑑𝛺2,                                    (3.66) 

where 

                   ℳ =
1

2
(𝑉 + 𝑈) =

√
𝑟

𝑟ℎ
−1

(𝑟−𝑟0)

𝑟0
2𝑟ℎ

𝑠𝑖𝑛ℎ(𝜅𝑡),                                 (3.67) 

                   ℕ =
1

2
(𝑉 − 𝑈) =

√
𝑟

𝑟ℎ
−1

(𝑟−𝑟0)

𝑟0
2𝑟ℎ

𝑐𝑜𝑠ℎ(𝜅𝑡).                                 (3.68) 

Therefore we have 

                                 ℕ2 − ℳ2 =
√

𝑟

𝑟ℎ
−1

(𝑟−𝑟0)

𝑟0
2𝑟ℎ

,                                                     (3.69) 

So we deduce that while ℕ = +ℳ represents the future horizon, ℕ = −ℳ stands for 

the past horizon. Furthermore, the timelike Killing vector for the metric (3.66) 

becomes 

                    𝜕�̿� = Π(ℕ𝜕ℳ + ℳ𝜕ℕ),                                          (3.70) 

where Π denotes the normalization constant. The particular value of the Π, which 

makes the norm of the Killing vector as negative unity can be found at the 𝑅𝑑 

location (3.16) as .  

Π =
𝑟ℎ−𝑟0

𝑟ℎ
√

𝑎𝑟

2(𝑟−𝑟ℎ)(𝑟−𝑟0)
|

𝑟=𝑅𝑑

=
𝑎(𝑟ℎ−𝑟0)

𝑟ℎ
.                       (3.71) 

Since the energy of the scalar particle emitted by the BH is given by 

                                             𝜕�̿�𝐼 = −𝐸,                                                 (3.72) 
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then we find 

                         𝐸 = −
𝑎(𝑟ℎ−𝑟0)

𝑟ℎ
(ℕ𝜕ℳ𝐼 + ℳ𝜕ℕ𝐼).                                   (3.73) 

Without loss of generality, we may ignore the angular part of the KS metric (3.66) 

and consider it as  

                        𝑑𝑠2 = −𝜚(𝑑ℳ2 − 𝑑ℕ2).                                    (3.74) 

In this case, the calculation of the HJ method becomes more straightforward. Thus, 

by substituting the metric (3.74) into the HJ equation (2.7), we take the following 

differential equation 

                            −𝜚−1[−(𝜕ℳ𝐼)2 + (𝜕ℕ𝐼)2] + 𝑚2 = 0.                           (3.75)  

For simplicity, we may also set 𝑚 = 0. Then, we can postulate the following ansatz 

motivated by the argument in section (2.6)  

                                        𝐼 = 𝜘(�̂�),                                                   (3.76) 

where �̂� = ℳ − ℕ. From the Eqs. (3.75) and (3.76), we derive the function 𝜘(�̂�): 

                             𝜘(�̂�) = ∫
𝐸𝑟ℎ

𝑎(𝑟ℎ−𝑟0)𝑢
𝑑�̂�.                                 (3.77) 

This expression develops a divergence at the future horizon �̂� = 0 (i.e., ℕ = +ℳ). 

This leads to a pole at the horizon which can be overcome by doing a semi-circular 

contour of integration in the complex plane, and therefore the result is found to be 

𝜘(�̂�) =
𝑖𝜋𝐸𝑟ℎ

𝑎(𝑟ℎ−𝑟0)
              →               𝐼𝑚𝐼 =

𝜋𝐸𝑟ℎ

𝑎(𝑟ℎ−𝑟0)
,                 (3.78) 

which admits the horizon temperature as  
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 �̌�𝐻 =
𝑎(𝑟ℎ−𝑟0)

2𝜋𝑟ℎ
= 𝑇𝐻.                                            (3.79) 

In short, we prove that the correct Hawking temperature is precisely recovered in the 

background of the KS metric of the GMHBH. 
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Chapter 4 

SPECTROSCOPY OF THE GRUMILLER BLACK 

HOLE
3
 

4.1 Scalar Perturbation of the GBH and its Zerilli Equation 

In this section, we shall explicitly show how one gets the radial equation for a 

massless scalar field in the background of the GBH described by the metric (3.3) and 

its function (3.4), cf. [26-28]. Then, we will derive the form of the Zerilli equation 

(one-dimension wave equation) [60] for the GBH. Finally, following a particular 

approximation method, we will also show how one computes the QNMs and 

entropy/area spectra of the GBH. 

In order to find the entropy spectrum by using the MM, here we firstly consider the 

massless scalar wave or the so-called KG equation on the geometry of the GBH. The 

KG equation of a massless scalar field in a curved spacetime is given by 

                                                       □𝛹 = 0,                                                              (4.1) 

where □ denotes the Laplace-Beltrami operator. Therefore, the explicit form of the 

above equation is given by 

1

√−𝑔
𝜕𝑗(√−𝑔𝜕𝑗Ψ) = 0,        𝑗 = 0,1,2,3,                                    (4.2) 

where √−𝑔 = 𝑟2𝑠𝑖𝑛𝜃. Because of the spherical symmetry, we can write the field as 

                                                           
3
 This Chapter is mainly quoted from Ref. [77], which is Sakalli, I., & Mirekhtiary, S.F. (2014). 

Astrophysics and Space Science. 350, 727-731. 
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𝛹 = F(𝑟)𝑒𝑖𝜔𝑡𝑌𝐿
𝑚(𝜃, 𝜑),            𝑅𝑒(𝜔) > 0,                       (4.3) 

in which 𝑌𝐿
𝑚(𝜃, 𝜑)is the well-known spheroidal harmonics which has the eigenvalue 

−𝐿(𝐿 + 1) [78] and 𝜔 denotes the energy or the frequency of the scalar wave. Use of 

the above ansatz is the standard method of separation of variables, which enables us 

to reduce the Eq. (4.2) into a radial equation of F(𝑟). In our case, the resulting 

equation is 

1

𝑟2 [𝜕𝑟 (𝑟2𝐻
𝑑𝐹

𝑑𝑟
)] + [

𝜔2

𝐻
−

𝐿(𝐿+1)

𝑟2 ] 𝐹(𝑟) = 0.                          (4.4) 

If we change the radial function as  

𝐹(𝑟) =
ℝ(𝑟)

𝑟
,                                            (4.5) 

one gets 

[𝐻2𝜕𝑟
2 + 𝐻𝜕𝑟(𝐻)𝜕𝑟]ℝ(𝑟) − {𝐻 [

𝐿(𝐿+1)

𝑟2 +
𝜕𝑟(𝐻)

𝑟
] − 𝜔2} ℝ(𝑟) = 0.                (4.6) 

In order to simplify even more this equation, we use the tortoise coordinate (3.56), so 

that 

𝜕𝑟∗
= 𝐻𝜕𝑟              and               𝜕𝑟∗

2 =   𝐻2𝜕𝑟
2 + 𝐻𝜕𝑟(𝐻)𝜕𝑟.                (4.7) 

Finally, the radial equation reduces to the famous Zerilli equation [60], which is 

considered as a one-dimensional wave equation in a scattering potential barrier 𝑉(𝑟) 

[−
𝑑2

𝑑𝑟∗2 + 𝑉(𝑟)]  ℝ(𝑟) = 𝜔2ℝ(𝑟).                                          (4.8) 

The effective potential 𝑉(𝑟) is called the Zerilli or the Regge-Wheeler potential, and 

now we have 
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𝑉(𝑟) =  𝐻 [
𝐿(𝐿+1)

𝑟2 +
𝜕𝑟(𝐻)

𝑟
].                                               (4.9) 

If we substitute the GBH function (3.4) into the above equation, we can express the 

Zerilli potential of the GBH in more explicit form as 

𝑉(𝑟) = 𝐻 [
𝐿(𝐿+1)

𝑟2
 + 

2𝑀

𝑟3
+  

2𝑎

𝑟
].                                        (4.10) 

Now, let us check the asymptotic limits of the tortoise coordinate (3.56)  

𝑙𝑖𝑚𝑟⟶𝑟ℎ
𝑟∗ = −∞      and         𝑙𝑖𝑚𝑟⟶∞ 𝑟∗ = ∞,                             (4.11) 

which imply that the potential 𝑉(𝑟) is positive towards the horizon and spatial 

infinity, and satisfies 

𝑉(𝑟∗) → 0       as         𝑟∗ → −∞,   

𝑉(𝑟∗) → 4𝑎2      as         𝑟∗ → ∞ .                                  (4.12) 

However  

∫ 𝑉(𝑟∗)𝑑
+∞

−∞
𝑟∗,                                             (4.13) 

is infinite. Therefore, we remark that such potentials admit of bound states. In 

physics, a bound state describes a system where a wave (or its associated particle) is 

subject to a potential such that the wave has a tendency to remain localized in one or 

more regions of space. This means that, in order to preclude a possible QNM 

analysis, we must consider the solution of the Zerilli equation (4.8) either at the 

horizon or at the spatial infinity. As demonstrated in the next section, the simplest 

way of reading the QNMs is to consider the near horizon form of the Zerilli equation.  
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4.2 QNMs and Entropy/Area Spectra of the GBH 

In this section, we shall attempt to compute the entropy and area spectra of the GBH 

by using the MM. Gaining inspiration from the pioneer studies [79-83] in which a 

particular approximation method was employed; here we will first calculate the 

QNMs by using the associated method. Meanwhile, the QNMs are defined to be 

those for which we have only ingoing plane wave at the horizon. Since we know the 

behaviors of the Zerilli potential from Eq. (4.12), we can express our condition as 

follows. 

ℝ(𝑟)|𝑄𝑁𝑀 ≈ 𝑒𝑖𝜔𝑟∗
        as        (𝑟∗ → −∞  𝑜𝑟  𝑟 → 𝑟ℎ),                  (4.14) 

Now our strategy is as follows: First we solve the Zerilli equation (4.8) around the 

event horizon 𝑟ℎ, and subsequently impose the above boundary condition to compute 

the frequency of QNMs (i.e., 𝜔).  

Expansion of the GBH’s metric function (3.4) around the 𝑟ℎ reads 

𝐻 = 𝜕𝑟(𝐻)(𝑟 − 𝑟ℎ) + Ο(𝑟 − 𝑟ℎ)2 ≅ 2𝜅(𝑟 − 𝑟ℎ),                         (4.15) 

which means that 

𝑟∗ = ∫
𝑑𝑟

𝐻
≅ ∫

𝑑𝑟

2𝜅(𝑟−𝑟ℎ)
=

1

2𝜅
ln(𝑟 − 𝑟ℎ).                         (4.16) 

Defining a new variable 𝑦 = 𝑟 − 𝑟ℎ, we get 

𝑟 = 𝑦 + 𝑟ℎ,         𝑑𝑟 = 𝑑𝑦,       𝑟∗ =
1

2𝜅
𝑙𝑛𝑦,         𝜕𝑟∗ = 2𝜅𝑦𝜕𝑦.                      (4.17) 

If one substitutes them with Eq. (4.15) into the Zerilli potential (4.10) and then 

performs the Taylor expansion around the horizon:  
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1

𝑟
=

1

𝑦+𝑟ℎ
≅

1

𝑟ℎ
(1 −

𝑦

𝑟ℎ
)      and       

1

𝑟2 =
1

(𝑦+𝑟ℎ)2 ≅
1

𝑟ℎ
2 (1 −

𝑦

𝑟ℎ
),                (4.18) 

we obtain the near horizon limit of the Zerilli potential (4.10) as follows 

𝑉(𝑦) ≅ 2𝜅𝑦 [
𝐿(𝐿+1)

𝑟ℎ
2

(1 −
2𝑦

𝑟ℎ
)  + 

2𝜅

𝑟ℎ
(1 −

𝑦

𝑟ℎ
)].                           (4.19) 

By making those changes, the wave equation (4.8) becomes 

−4𝜅2𝑦2 𝑑2ℝ(𝑦)

𝑑𝑦2 − 4𝜅2𝑦
𝑑ℝ(𝑦)

𝑑𝑦
+ 𝑉(𝑦)ℝ(𝑦) = 𝜔2ℝ(𝑦).                      (4.20) 

The solution of the above complicated differential equation has been obtained by the 

help of the famous mathematical computer program, Maple [84]. After a rigorous 

and exhausting simplification process, we finally obtain the solution in terms of the 

confluent hypergeometric function (see for instance [85]) as follows 

  ℝ(𝑦) ≈ 𝑦𝑖�̅�𝑈(�̂�, �̂�; �̂�𝑦).                                           (4.20) 

where �̅� =
𝜔

2𝜅
. The parameters of the confluent hypergeometric function 𝑈(�̂�, �̂�; �̂�𝑦) 

are found to be 

 �̂� =
1

2
+ 𝑖 (�̅� −

�̂�

�̂�√𝜅
),  

�̂� = 1 + 2𝑖�̅�, 

�̂� = 𝑖
�̂�

2𝑟ℎ√𝜅
,                                                (4.21) 

in which 

�̂� = 4√𝑟ℎ√𝐿(𝐿 + 1) + 𝜅𝑟ℎ,      and      �̂� = 𝐿(𝐿 + 1) + 2𝜅𝑟ℎ.                          (4.22) 
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In the limit of 𝑦 ≪ 1 , the solution (4.20) can be rewritten as (cf. [85]) 

𝑅(𝑦) ≈ 𝐷1𝑦−𝑖�̅� 𝛤(2𝑖�̅�)

𝛤(�̂�)
+ 𝐷2𝑦𝑖�̅� 𝛤(−2𝑖�̅�)

𝛤(1+�̂�−�̂�)
,                           (4.23) 

where the symbol of 𝛤 stands for the Gamma function, and the constants 𝐷1 and 𝐷2 

represent the amplitudes of the near-horizon outgoing and ingoing waves, 

respectively. According to the definition of the QNMs which imposes the 

termination of the outgoing waves at the horizon, the first term of Eq. (4.23) should 

be cancelled. This is possible with the poles of the 𝛤 shown in the denominator. 

Namely if 1/𝛤(�̂�) is an entire function with zeros at �̂� = −𝑠, (𝑠 = 0,1,2,3, … . ), 

there would not be any outgoing wave. Thus, the frequencies of the QNM of the 

GBH are obtained from 

1

2
+ 𝑖 (�̅� −

�̂�

�̂�√𝜅
) = −𝑠,                                          (4.24) 

which yields 

𝜔𝑠 = 2√𝜅
�̂�

�̂�
+ 𝑖𝜅(2𝑠 + 1),                                         (4.25) 

where 𝑠 is now called the overtone quantum number of the QNMs. Thus, the 

imaginary part of the frequency of the QNM reads 

                                     𝜔𝐼 = 𝑎(2𝑠 + 1)
𝑟ℎ−𝑟0

𝑟ℎ
.                                            (4.26) 

As it can be seen from above, the Rindler acceleration 𝑎 plays a crucial role on 𝜔Ι . 

While  𝑎 → 0 , 𝜔𝐼 =
(2𝑠+1)

4𝑀
  which agrees with the QNMs of the Schwarzschild BH 
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[83,86]. Hence the transition frequency between two highly damped neighboring 

states becomes  

∆𝜔 = 𝜔𝑠+1 − 𝜔𝑠 = 4𝜋
𝑇𝐻

ℏ
 .                                       (4.27) 

We point out that in this section ℏ ≠ 1 so that 𝑇𝐻 =
ℏ𝜅

2𝜋
. Recalling the adiabatic 

invariant quantity that we mentioned in the Introduction, we now have 

  𝐼𝑎𝑑𝑏 =
ℏ

4𝜋
∫

𝑑𝑀

𝑇𝐻
 .                                             (4.28) 

According to the first law of BH thermodynamics (3.12), the above expression yields 

𝐼𝑎𝑑𝑏 =
ℏ

4𝜋
𝑆𝐵𝐻.                                             (4.29) 

where 𝑆𝐵𝐻 was given in Eq. (3.11). Finally, with the aid of the Bohr-Sommerfeld 

quantization rule  𝐼𝑎𝑑𝑏 = 𝑛ℏ  (𝑛 = 0,1,2 …), we can now quantize the entropy as 

𝑆𝐵𝐻𝑛
= 4𝜋𝑛.                                            (4.30) 

Since 𝑆𝐵𝐻 =
𝐴ℎ

4ℏ
 ; the corresponding area spectrum becomes 

            𝐴ℎ𝑛
= 16𝜋𝑛ℏ.                                         (4.31) 

From the above expression, one can also measure the spacing of the area as  

                                           ∆𝐴ℎ = 16𝜋ℏ.                                        (4.32) 

It is easily seen that unlike to 𝜔𝐼  the spectroscopy of the GBH is completely 

independent of the Rindler term 𝑎. Additionally here 𝜀 = 16𝜋 , which means that the 

obtained spacings between subsequent levels are the double of the Bekenstein's 
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original result [42,46]. We shall discuss the possible reason of this discrepancy in the 

next chapter. 
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Chapter 5 

CONCLUSION 

In this thesis, we have considered the HR of the LDBH and the GBH (or the 

GMHBH) spacetimes, both have 4𝐷 SSS geometry. The original motivation to study 

this class of metrics was the fact that they are NAF BHs. We believe that most of the 

BHs in the real universe should be necessarily described by NAF geometries like the 

FRW spacetime, which is assumed to be one of the best models for describing our 

universe. Furthermore, the spectroscopy of the GBH has been also studied. 

Perhaps the most interesting feature of the LDBHs is that their radiation acts as an 

isothermal process which corresponds to no change in the temperature (𝛥𝑇 = 0). 

This can be easily seen from its 𝑇𝐻 (2.6), which possesses a constant value. In other 

words, 𝑇𝐻 of the LDBH is independent from the mass 𝑀 (or from the event horizon 

𝑟ℎ) of the BH. In addition to the naive coordinates, four different regular coordinate 

systems are examined for the LDBHs during their HR calculations. It was shown that 

the computed horizon temperatures in the naive, PG, IEF and KS coordinates via the 

HJ method exactly matched with the conventional 𝑇𝐻 (2.6). Here, we should notice 

that the way that followed up for the HJ method in the section (2.6), which considers 

the KS coordinates, was slightly different than the sections (2.2-2.5). In the section 

(2.6), without loss of generality, we discarded the mass of the scalar field and 

neglected the angular dependence of the HJ equation. This turned out to be the 

application of the HJ method for the Minkowski metric. As a result, matching of the 
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temperatures was successfully shown. On the other hand, the most interesting section 

of chapter (2) is definitely the section (2.3) in which the LDBH metric was expressed 

in terms of the ICs. By using the Fermat metric, we have identified the index of 

refraction of the medium around the LDBH. In particular, it is proven that the index 

of the refraction plays a decisive role on the tunneling rate of the scalar particles 

emitting from the LDBH. Unlike to the other coordinate systems, in the ICs the our 

standard integration technique that circumvents the pole at the event horizon 

produced unacceptable value for the horizon temperature. The obtained temperature 

was the half of what is expected. In order to overcome this discrepancy, we have 

inspired from a recent study [22] which considers the Schwarzschild BH. In that 

paper, it has shown how the proper regularization of singular integrals leads to the 

standard 𝑇𝐻 for the ICs. By this way, we have also managed to regularize the horizon 

temperature of the LDBH in the ICs. It has been shown in detail that the path across 

the horizon entails the value (𝑖𝜋/2) on the integration instead of 𝑖𝜋. The underlying 

reason of this may arise from the fact that the isotropic coordinate 𝜁 is real outside 

the BH, however it becomes complex inside the BH. We believe that the 

phenomenon is also closely related with the gravitational lensing effect on the HR. 

For the most recent work in the same line of thought, a reader may refer to [87]. 

In chapter (3), the HR of the GMHBH is also examined by the HJ method. This time, 

in addition to the naive coordinates, we have considered only three different regular 

coordinate systems which are PG, IEF and KS coordinates. The main reason of the 

exclusion of the ICs from the GMHBH is the transcendental form of the 

transformation from 𝜁 to 𝑟. Without giving rise to any factor-2 problem like the one 

happened in the section (2.3), it was shown that the whole computed horizon 
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temperatures of the GMHBH have exactly matched with its 𝑇𝐻. In the PG 

coordinates, we have also taken account of the back reaction and self-gravitational 

effects. To do so, we have employed the PWT method for the HR of the GMHBH. 

The modified tunneling rate (3.46) has been computed via the log-area correction to 

the Bekenstein-Hawking entropy (3.47). From this, the QG corrected Hawking 

temperature 𝑇𝑄𝐺 (3.50) have been also derived. 

Chapter (4) has been devoted to the computation of the GBH spectroscopy via the 

MM. To this end, we have applied an approximation method [79-83] to the Zerilli 

equation (4.8) in order to compute the QNMs of the GBH. After a straightforward 

calculation, the QNM frequencies of the GBH are analytically found. Although the 

imaginary part of the frequency 𝜔𝐼 is governed by the Rindler term 𝑎, however the 

entropy/area spectra of the GBH are found to be independent of the 𝑎. Moreover, the 

obtained spectroscopy is equally spaced, which agrees with the Bekenstein’s 

conjecture [42-44]. Furthermore, we have evaluated the dimensionless constant as 

𝜀 = 16𝜋, which means that the equispacing is the double of its Schwarzschild value: 

𝜀 = 8𝜋 [51-53]. This differentness may be caused by the Schwinger mechanism [88]. 

In the Bekenstein's original work [42], one derives the entropy spectrum by 

combining both the Schwinger mechanism and the Heisenberg quantum uncertainty 

principle via the Bohr-Sommerfeld quantization. However, the present method does 

not consider the Schwinger mechanism; only the Bohr-Sommerfeld quantization rule 

is taken into account. Therefore, as stated in [48], the spacings between two 

neighboring levels could be different according to the applied method. Thus, having 

𝜀 = 16𝜋 rather than its well-known value 𝜀 = 8𝜋  is not an unexpected result. 

Besides, equidistant structure of the area spectrum of the GBH is also in agreement 
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with the Wei et al.'s [89], which postulates that static BHs of the Einstein's theory 

have evenly spaced quantum spectroscopy. 

Finally, I plan to extend the same analysis to the rotating and higher dimensional 

BHs. This is going to be my new problems in the near future. 
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