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ABSTRACT 

It is a comprehensible fact that people always desire to be able to remove or at least 

to decrease the level of uncertainty in real world application. In all the areas of 

science and technology, it is important to have an accurate measurement for 

evaluating the uncertainty. 

Increasing accuracy of measurement includes the identification, analysis and 

minimization of errors, compute and estimate the result of uncertainties. A 

probability is the branch of science studying the quantitative inferences of 

uncertainty. Probability is involved in various fields such as finance, meteorology, 

engineering, medicine, management etc. 

In this thesis, Bayesian probability estimation for reasoning process is analyzed. The 

conditional, joint, prior, and posterior probabilities are mentioned. The importance of 

the probability views based on the subjectivity and objectivity, and the properties of 

these two terms are considered. The Bayesian inference and the generalized Bayes’ 

theorem are discussed. 

 

Keywords: Uncertainty, Bayesian method, subjective and objective probabilities, 

Bayesian inference, generalized Bayes’ theorem  
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ÖZ 

Bilinen bir gerçektir ki insanlar farklı uygulamalarda belirsizlik derecesini yok 

etmeğe veya en azından küçültmeğe isteklidirler. Bilim ve teknolojinin tüm 

alanlarında belirsizliği değerlendirmek için hassas ölçüm gereklidir.  

Hassas ölçümü yükseltmek amacı ile belirsizliğin tanımlanması, tahlili, hatanın en az 

olması, sonuçların hesaplanması ve değerlendirilmesi gerekir. Olasılık bir bilim dalı 

olarak belirsizliğin nicel çıkarımlarını öğrenir. Olasılık finans, meteroloji, 

mühendislik, tıp ve başka alanlarda yer alır. 

 

Bu tezde Bayes olasılığı uslamlama işlemi için incelenir. Koşullu, bileşik, önsel,  ve 

sonsal olasılıklardan bahsedilir. Öznellik ve nesnelliğe dayanan olasılık 

görünümlerinin önemi, ve bu iki kavramın özellikleri dikkate alınır. Bayes sonuç 

çıkarma ve genelleştirilmiş Bayes teoremi tartışılır.  

 

 

 

Anahtar Kelimeler: Belirsizlik, Bayes yöntemi, öznel ve nesnel olasılıklar, Bayes 

çıkarımı, genelleştirilmiş Bayes teoremi 
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Chapter 1  

INTRODUCTION 

Reasoning about uncertainty is a significant and valuable synthesis of the uncertainty 

in mathematics as it has evolved in a wide variety number of related fields such as 

computer science, probability, statistics, artificial intelligence, economics, logic, 

game theory, and even philosophy. Understanding why uncertainty plays a 

significant role in human affairs is not difficult. For instance, making decisions in 

everyday life is indivisible from uncertainty. People do not have certain information 

about what happened in the past because of absence broad and stable data about the 

past. People do not have a certainty about present affairs due to the lack of 

appropriate information. Making an appropriate decision in all situations is the most 

important capability of a person. To understand the capability, firstly it is needed to 

comprehend the notation of uncertainty. The terms of uncertainty and information 

are connected to each other strongly. Uncertainty is defined as a lack of information. 

However, information is used to reduce uncertainty. 

The objective of making each system is different, such as forecasting, planning, 

control etc. Nowadays, uncertainty theory has become a branch of mathematics for 

modeling human uncertainty.   
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Ordinary life is not imaginable without uncertainty. However, from the traditional 

point of view a science without uncertainty is the best choice we may desire, but the 

complete elimination of the uncertainty is almost impossible. 

Statistical methods are applied to problems that include systems with components the 

behavior of which is random. Additionally, statistical methods deal with problems in 

business fields such as marketing, investment and insurance. At the beginning of the 

20th century, there was no positive attitude about the concept of uncertainty when 

statistical methods were accepted by the scientific community.   

Uncertainty relates to conditions that are not exactly measurable or quantifiable and 

not controllable by human. Uncertainty occurs in the condition of lacking the 

complete information such as deficit of perfect information regarding models, 

phenomena, data or process to precisely determine future outcomes. Besides 

incomplete information, uncertain variables are usually subjects to a certain level of 

errors because of their randomization characteristics. Reducing the effects of 

uncertainty in the decision-making process and making the best possible decision 

among existing options are the main purposes of uncertainty analysis. 

Recognizing sources and different uncertain variables are the fundamental steps in 

risk and reliability analysis. The uncertainty analysis is the process that prevents 

system failure. The main common steps to evaluate uncertainty are given below [1]: 

Step 1: Recognizing sources of uncertainty; 
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Step 2: Derive the probability distribution function of desired uncertain variables; 

Step 3: Insert uncertain variables into the model and estimate results; 

Step 4: Finding the most sensitive variables. 

According to [2], the terms of uncertainty are used in different ways, and defined by 

many specialists in statistics and decision making theory as following: 

1. Uncertainty: This is a lack of certainty in different situations. If we do not have 

enough knowledge, it is impossible to describe data exactly, and predict a future 

outcome; 

2. Measuring the uncertainty: Probabilities are set to all the results or all possible 

states, and the application of a probability density function (PDF) is performed. 

The importance of the application of “mathematics of chance” including such fields 

of mathematics as graph theory, analysis, and mathematical physics, is undeniable.  

Bayes theorem is a theorem of probability theory that is named after Reverend 

Thomas Bayes (1701–1761). Nevertheless, the French mathematician Pierre-Simon 

Laplace was a pioneer of what is called Bayesian probability these days. Bayes 

theorem in statistics and probability theory is the result derived from the most basic 

axioms of probability. It is a result of a mathematical manipulation of conditional 

probabilities. 
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Bayes’ theorem is an important method aiming to understand the provided evidences, 

what are really known and other information. Additionally, Bayes’ theorem is used 

to define the existence of relationships within an array of simple and conditional 

probabilities. It helps making "conditional probabilities" into the conclusions. 

Bayesian probability belongs to the group of evidential probability and is one of the 

various interpretations of the idea of probability. To compute the probability of a 

hypothesis or a problem, the Bayesian probability identifies some prior probabilities 

which will be updated in the light of related data. Bayes’ theorem is used in different 

topics; its range varies from marine biology to the spam blockers from an email by 

the evolvement of the Bayesian approach. As a view of science, it is used to make a 

clear relationship between theory and evidence. By the use of Bayes’ theorem, many 

insights into the philosophy of science which involves falsification and confirmation, 

and many other different topics can be made more accurate. Bayes’ theorem has not 

been overlooked firstly and will not be the last in probability and uncertainty 

questions. 

According to [3], both of the Bayesian method and classical method have advantages 

and disadvantages, and also they have some similarities. The results of both Bayesian 

method and classical method are similar to each other when the sample size is large. 

Some advantages of Bayesian analysis are: 

- Within a solid decision theoretical framework, Bayesian method provides a way to 

combine prior information with data. By solid decision theoretical structure, this 

method makes the principle and natural way for combining prior information with 
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data. The previous information of parameter can be formed as prior information for 

the next analysis. With this method, the last posterior distribution can be used as a 

prior distribution when new observations become available; 

- Without any reliance on an asymptotic approximation, this method provides 

inferences that are conditional and exact on data. Both small and large sample 

inferences proceed in the same manner.  Bayesian analysis can also estimate any 

function of the parameters; 

- Whereas the classical method, Bayesian analysis obeys the likelihood principle. 

The likelihood principle is not appropriate for the classical inference; 

- It gives answers like “the parameter θ has a probability of 0.65 of increasing in 65% 

credible interval”; 

- A wide range of models can be conveniently set. 

Using Bayesian analysis has also some disadvantages such as: 

- It cannot say anything about selecting a belief since there is no proper way to select 

a prior. If it is not done with caution, it might generate misleading results; 

- From a point of the practical view, sometimes it might be problematic to convince 

the subject matter expert who disagrees with the validity of the selected prior. It can 

yield posterior distributions which are affected by the priors; 
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- Sometimes in a model with a large number of parameters, it comes with a high 

computational cost. Additionally, by using the same random seed the simulation 

provides a little bit different answer. The slight differences in simulation outcomes 

do not contradict earlier claims that Bayesian inferences are exact. Given the 

likelihood function and also the priors, the posterior distribution of the parameter is 

precise, whereas estimates of posterior quantities by simulation-based way can vary 

as a result of the random number generator which is used in the process. 
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Chapter 2  

REVIEW OF EXISTING LITERATURE ON BAYESIAN 

PROBABILITY AND ITS APPLICATIONS 

Bayesian estimation techniques are used in [4] to evolve a dynamic stochastic 

general equilibrium (DSGE) model for an open economy and the estimation is 

performed on Euro. Based on the DSGE model, some open economy features such as 

a number of nominal and real frictions that have verified to be essential for the 

empirical fit of closed economy methods are incorporated. The evolvement of the 

standard DSGE model for an open economy is realized. 

[5] demonstrates how Bayesian method is used to calculate a small scale, structural 

general equilibrium model. The monetary policy of four countries Australia, Canada, 

New Zealand, and U.K. is compared. The outcome of this study is that the central 

banks of Australia, New Zealand, and U.K consider the nominal exchange rate in 

their strategic policy, but the bank of Canada does not consider nominal exchange 

rate. 

The properties of Bayesian approach are studied in [6] to estimate and compare the 

dynamic equilibrium economies. If even the models are non-nested, nonlinear, and 

misspecified, both tasks can be done. 
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The simulation based Bayesian inference procedures in a cost system are investigated 

in [7]. The reason of using the cost function and the cost share equations augmented 

in Bayesian inference procedures is to accommodate technical and allocative 

inefficiency. The way of estimating a translog system in a random effects framework 

is also represented.  

According to [8], Bayesian approach is presented in order to investigate aggregate 

level sales data in a business with different kinds of products. A reparameterization 

of the covariance matrix is introduced, and it is also illustrated that this method is 

suitable with both actual and simulated data. In addition, based on the sampling 

experience, it is shown that this approach could be suitable for those who want to 

exchange one additional distributional assumption to raise efficiency in estimation. 

A new Bayesian formulation in order to get the spatial analysis of binary choice data 

based on a vector multidimensional scaling procedure is presented in [9]. 

Approximation of a covariance matrix is permitted by the computational procedure. 

The posterior standard errors can be calculated. 

[10] focuses on determination the exchange rate target zone models and also rational 

expectations models by developing a Bayesian approach. In addition, it can 

incorporate a stochastic realignment risk by introducing a simultaneous-equation 

target zone model. 
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A Bayesian approach for semiparametric regression in multiple equation models is 

given in [11]. The developed empirical Bayesian approach is used for estimation the 

prior smoothing hyperparameters from the data. 

The shock and friction in two different economy areas such as US and euro over a 

common sample period (1974–2002) to estimate a DSGE model are compared in 

[12]. Differences in both shocks and the propagation mechanism of shocks, can 

affect the differences in business cycle behavior. In order to clarify which of them 

affects exactly on the business cycle, the structural estimation methodology is used.   

According to [13], one of the ways of accounting in the uncertainty model, mostly in 

regression models for finding the determinants of economic growth is Bayesian 

model averaging (BMA). In order to do BMA, a prior distribution in two different 

parts should be specified, and the first one is a prior for the regression parameters 

and the second one is a prior over the model space. 

The general idea of the paper [14] is to introduce a Bayesian posterior simulator in 

order to fit a model which allows a nonparametric behavior of the body mass index 

(BMI) variable, and also whose execution needs only Gibbs steps. In order to prove 

the result, data from the British Cohort Study in 1970 was used. The outcomes 

demonstrate that there are nonlinearities in the relationship between log salaries and 

BMI that is different across women and men.  
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In [15], Bayesian model averaging approach is used to predict realized volatility. 

Compared to benchmark models, this approach provides improvements in point 

forecasts. 

The main point of the paper [16] is a first order autoregressive non-Gaussian model 

which can be used for analyzing the panel data. This modeling approach is 

considered to get sufficient flexibility without losing interpretability and 

computational ease. The model combines individual effects and covariates and it is 

noticed to the elicitation of the prior. 

Monte Carlo (MC) method is used to draw parametric values from a distribution 

defined on the structural parameter space of an equation system [17]. The MC 

method is successful in some existing difficulties of applying Bayesian method to 

medium size models. 

The similarities and differences between Bayesian and classical methods are studied 

in [18]. It is shown that both results in virtually equivalent conditional estimate 

partworths for customer. Therefore, selecting Bayesian or classical estimation 

becomes one of implementation conveniences rather than parametric usefulness.  

Bayesian method is used in [19] to get quintile regression for dichotomous response 

data. This view to the regression has problems in making inferences on the 

parameters and also in the optimizing the objective function. The problems to be set 
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by Bayesian method are avoided by accepting additional distribution assumption on 

the error. 

Because of the computational efficiency, direct theoretical base, and comparative 

accuracy, the naive Bayes classifier is useful in an interactive application [20]. This 

paper also compares and contrasts the lazy Bayesian rule (LBR) and the tree-

augmented naïve Bayes (TAN), finding that these two techniques have comparable 

accuracy to be selected on the base of the computational profile. In order to classify 

the small number of objects, it is desirable to use LBR while TAN is used with a 

large number of objects. 

The application of Bayesian decision theory is useful for making an effective 

cooperation of multiple decentralized components in a job scheduling, so it is 

necessary to have a heuristic matching a process dynamically [21]. The important 

points of using Bayesian decision theory are that its rules and principles are applied 

as a systematic approach to complicated decision making under conditions of 

incomplete information. 

Bayesian estimation is provided in [22] to loosen the problem when it deals with lack 

of information. The default data can be extremely sparse mainly when reducing to 

issues with specific characteristics.  Using Bayesian estimation techniques is adopted 

since classical tools result larger estimation errors.  
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Abnormal returns cause hamper in the study of statistical inference, in the long-

horizon event. An approach that controls other popular testing methods, and also 

overcomes these difficulties is presented in [23]. The usefulness of the methodology 

is illustrated. 

Model such as the method of maximum likelihood is developed for the spatial 

representation of market structure [24]. A Bayesian estimation method is provided in 

to overcome the traditional problems associated with estimating models with such 

correlated alternatives.  

Based on [25], for solving the lack of loss data in operational risk management, 

which can affect the parameter estimates of the marginal distributions of the losses, 

Bayesian method and simulation tool should be used. By using Bayesian method, it 

is allowed to integrate the scarce and, sometimes, incorrect and imperfect 

quantitative data. Markov chain and Monte Carlo (MCMC) simulations are required 

to estimate the parameters of the marginal distributions.  

In order to combine expert opinions and historical data, Bayesian inference is an 

appropriate statistical technique [26]. Bayesian inference methods are illustrated for 

operational risk quantification. 

The Bayesian hierarchical structure is described in [27] in order to model calibration 

from historical rating transition data. The way of assessing to the predictive 

performance of the model, under the condition of lack of event data, is indicated. 
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Geographic information system (GIS)-based Bayesian approach for intra-city motor 

vehicle crash analysis in Texas during the five years crash data is presented in [28].  

This method is suitable in estimating the relative crash risks, and in eliminating the 

uncertainty of estimates. 

A model for time series of continuous results that could be defined as density 

regression on lagged terms or fully nonparametric regression is presented in [29]. 

[30] demonstrates how subnational population estimation can be performed within a 

formal Bayesian framework. A major part of the framework is a demographic 

account providing a whole description of the demographic system. A system model 

describes regularities within the demographic account, and an observation model 

describes the relationship between observable data and the demographic account. For 

the illustration of the model, data for six regions within New Zealand is used.  

By growing problem of junk email on the internet, methods for the automated 

construction of filters in order to eliminate unwanted emails are examined in [31]. It 

is possible to use probabilistic learning methods in joining with a notation of 

differential misclassification cost to make filters that are specifically suitable for the 

nuance of this task. 

The intuitive technical approaches are used in inference systems, in artificial 

intelligence because of the absence of sufficient statistical samples compels reliance 

on the subjective judgment of specialists. A subjective Bayesian inference method is 
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described in [32] to indicate some advantages of both formal and informal 

approaches.  

Bayesian methods are developed for combining models and applied using various 

time series models which yield forecasts of output growth rates for eighteen 

countries, 1974–87. These odds are used in predictive tests to make a decision 

whether or not to combine forecasts of alternative models [33]. The Bayesian and 

non-Bayesian methods combine models, and represent the application of forecasting 

international growth rates. 

An autoregressive, leading indicator (ARLI) model are described in two forms for 

forecasting of growth rates of 18 countries for the years 1974–1986 [34]. For 

computing probabilities of downturns and upturns, Bayesian predictive densities are 

used. 
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Chapter 3  

BAYESIAN METHOD FOR CALCULATION OF 

PROBABILITY OF EVIDENCE  

3.1 Bayes’ Rule  

Probabilities represent a set of logical beliefs, and there is a connection between 

information and probability. Bayes’ rule is used to describe a logical way to update 

beliefs because of new information. Bayes’ rule is for the process of inductive 

learning to make the Bayesian inference. In general, Bayesian methods are obtained 

from the rules of Bayesian inference. Bayesian methods provide the estimation of 

parameter with suitable statistical properties, a description of observed data, 

prediction of missing and unknown data, forecasting of future data, estimation of a 

model, validation and selection. So, Bayesian methods are derived to exceed the 

formal task of induction [35]. 

Bayesian methods make statements about the incomplete and partial available 

knowledge that is based on data and concerning some unobservable situation in a 

systematic way, using probability as a measurement. The following reasons show 

that the probability is a reasonable way for quantifying uncertainty: 

1) By analogy: physical randomness causes uncertainty, so uncertainty is described 

in the language of random events. The use of different terms such as “probably” and 
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“unlikely” in general speech causes an extension of a formal probability calculus to 

problem of scientific inference; 

2) Axiomatic approach: this approach puts all statistical inferences to the concept of 

decision making with gains and losses. It is implied that the uncertainty should be 

defined in terms of probability [36]. 

One of the explanations of the concept of probability is Bayesian probability that 

belongs to the category of evidential probabilities. An extension of propositional 

logic can be a Bayesian probability that enables reasoning with proposition truth or 

falsity of which is uncertain. Bayesian probability clarifies prior probability, which is 

then updated into relevant data to evaluate the probability of the hypothesis [37]. 

The purpose of a statistical analysis to compare with probabilistic modeling is 

fundamentally an inversion purpose. To clarify, when observing a random 

phenomenon directed by a parameter    statistical methods deduce from these 

observations an inference which can be a characterization or a summary about    In 

the notation of the likelihood function, this inverting aspect of statistics is obvious 

since it is rewritten in the sample density in the proper order, 

                 

as a function of   , based on the observed value x [38]. 
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The important concepts in probability theory are events and the probabilities of 

events. An event is defined with a probability which is allocated to a number 

between 0 and 1. The mathematical propositions are categorized by the elements in a 

given set Ω. In this way, each of the predicates defines a subset 

  {                  

If two predicates define the same subset, they are equivalent. For clarification, 

instead of the various equivalent predicates an event is called a subset of  . 

A random variable  , which is a map from   to  ,      , is defined on the base 

space   of a probability space       . To give emphasis on the importance of the 

image of  , the name of “variable” is used. A probability measure on the image  

     is caused by the probability measure of   on  .  

3.2 Conditional Probability 

The term called conditional probability is defined as a practical tool for computing 

the probability of two or more events. The conditional probability is one of the main 

important concepts in the probability theory which is defined in elementary statistics. 

In general, every subset of the sample space   must not necessarily be an event. For 

example, some of the subsets cannot be measured, where the events are intervals like 

"between 20 and 35 miles" and unions of such intervals, but not "irrational numbers 

between 20 and 35 miles” [39]. 
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The probability space         is a space which posses the following three main 

sections: 

1. The sample space indicated by   consisting of all the events which are 

considerable to be happening; 

2. All subsets of the sample set. Each subset can be assumed as a set itself and is 

shown generally by  ; 

3. A mapping defined from a subset of a sample set to the set including all 

probability values belonging to the interval [0,1]. 

Let’s assume that   and   are two events, so   and   belong to the event set, 

     , such that the probability of    is greater than 0,         The conditional 

probability of   given   is denoted by       , and it is defined by 

       
      

    
 

This means that   is taken as a certain event, the probability of   is       . The 

probability that both of   and   occur is        on the numerator and the 

denominator rescales this number in order to find conditional probabilities. In fact, 

let                    . Then        is a new measure on   such that 

        and, more generally,              such that      
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In case of independences of two events such as   and  , the conditional probability 

of   given   is only based on  . It means that understanding that   has happened 

cannot make any changes that the probability of   happening. 

       
        

    
      

There is a notation that null sets or empty sets are independent of the other sets, in 

particular, the empty set is independent of itself, so in order to be concerned with 

empty set or a set with measure 0, it is observed that 

                

3.3 Bayes Formula and Total Law of Probability 

Bayes formula: Let         be a probability space and let     . In case both      

and      are positive, then 

                                    

                                               

Proposition (Bayes formula): Let        be a probability space and let       

such that                  Then 
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It is possible to calculate the probability of   given   in terms of the probability of   

given   and the absolute probability of   [39-40]. 

If   and   are events for which       ,        and        are related by 

       
          

                        
 

                
          

    
 

In particular, 

                                            
      

      
 

      

      
                                                                        

when            . In order to get the equation (1) by the use of modern 

axiomatized or the modern expression of the theory, the probability theory becomes 

insignificant. This theory is one of the major concepts in statistics. The essential fact 

is expressed by the equation (1), such that for two equal probable causes, the ratio of 

their probabilities given a particular effect and also the ratio of the probabilities of 

this effect given the two causes are the same as each other. As a result of making the 

update of the likelihood of  , at the moment that     has been seen, from      to 

      , it is the rule that makes the process to be actual and real.  
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Let {          be a partition of the sample space  , and suppose that   , 

     , are disjoint sets and that their union equals  . Let A be an event. The law 

of total probability states that 

     ∑              

 

   

 

and Bayes’ formula states that 

        
            

∑             
 
   

 

3.4 Continuous Form of Bayes’ Theorem 

Thomas Bayes proved the continuous form of equiprobability in 1764. Suppose that 

  and   are two different random variables with marginal distribution and 

conditional distribution      and       , respectively, and the conditional 

distribution of   given   is defined by 

       
          

∫              
 

The mathematician scientists Bayes and Laplace thought that the uncertain model on 

the parameters   could be displayed by a probability distribution π on  , called prior 

distribution, however, this inversion theorem is entirely clear from a probabilistic 

point of view [38]. 
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The posterior is updated by Bayes theorem from the prior      by accounting for the 

data x, 

       
          

∫              
  

If   is just the only unknown quantity and the data   are available, the posterior 

distribution entirely describes the uncertainty. 

3.5 Bayesian Paradigm 

Bayesian paradigm has two primary advantages: (a) Bayesian method follows a 

simple instruction and recipes when the uncertainty is described by the probability 

distribution and the statistical inference can be automated, (b) available prior 

information is included into the statistical model coherently. 

The posterior distribution is proportional to the distribution of   conditional upon  , 

it means the prior distribution of  , multiplied by the likelihood. 

Both parametric statistical model        and a prior distribution on the parameters, 

    , make a Bayesian statistical model. 

Bayes’ theorem makes the information to be real and actual on   by the way of 

taking out the information that is included in the observation  . It also has strongly 

affected depending on the move that inserts observation (causes) and parameters 

(effects) on the same level of conceptualization. From the view of statistical 
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modeling, observations and parameters have a slightly different, due to conditional 

managements, interplay of their roles. 

The famous mathematicians Bayes and Laplace made the Bayesian analysis in 

particular and modern statistical analysis by the way of imposing this adjustment to 

the perception of random events. Despite the fact that some of the statisticians accept 

the probabilistic modeling on the observation(s), they make the boundary between 

two concepts. Although, in some special cases, the parameter is produced under 

some actions of many factors that happened at the same time and, therefore, can 

appear as (partly) random, the parameter cannot be noticed as the outcomes of a 

random experiment in some cases such as in quantum physics [38]. 

3.6 Joint Probability Distribution 

A model is needed that performs a joint probability distribution for   and   for 

making the probability statement about       . The product of the prior distribution 

by the data distribution (or sample distribution) makes the joint probability density or 

mass function 

                  

By the use of the fundamental property of a conditional probability which is known 

as the Bayes’ rule, the posterior density is defined: 

       
      

    
 

          

∑            
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where the summation on the denominator is over all possible values of θ and in the 

case of continuous θ, the formula is defined by: 

                                          
      

    
 

          

∫            
                                     

The unnormalized posterior density is deduced from (2) by deleting the probability 

of   which is not based on  , with fixed  , and considered as a constant: 

                  

The formula expresses that the basic task in the Bayesian inference of any specific 

application is just to evolve the model         and then do the required calculation 

to summarize        in a correct way [36]. 

3.7 Prior and Posterior Probabilities 

Assume that there are n various models denoted as           . First of all, there is 

a belief about the credibility and plausibility of these models that are expressed by 

                   , and defined as a prior probability in order to express the 

opinion and belief before or prior to see any data in the model. In the next step, the 

observed data is denoted by  , and it gives information about the data, and the 

probabilities of each of them are defined as                          . These 

probabilities are called the likelihoods. By the use of Bayes’ rule, it will be found out 

how this data can change the belief about   models after observing the data result,  . 

The new probability    is equivalent to the likelihood multiplied by prior probability. 
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The updated probability is called the posterior probability due to the fact that it 

reflects the belief and opinion about the model after data are seen.  

                     

Let’s consider the first example. Suppose the proportion of an unknown disease in 

one country is 0.02. Then, the prior probability that a randomly selected subject has 

the disease is              

Let’s assume now a subject has been positive for the disease. It is known that the 

accuracy of the test is 97%, and sensitivity of the test is 98%. What is the probability 

that the subjective has the disease? In another word, what is the conditional 

probability that a subject has the disease while the test is also positive? 

       Disease                          Positive                                Negative                  Total 

    
Influenced 0.02*0.98 = 0.0196 0.02*(1-0.98)=0.0004 0.02 

Not influenced 0.98*(1-0.97) =0.0294 0.98*(0.97) =0.9506 0.98 

Total: 0.0196+0.0294=0.049 0.0004+0.94506=0.951 1.00 

The part of really having the disease is 0.0196/0.049 which is equal to 0.40=40%.  
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Therefore, the posterior (after the test has been performed and known that the test is 

positive) probability that the person is really having the disease is 0.40. 

As the second example let’s consider a model of blocking the junk email, and first of 

all it is needed to recognize whether the email is spam or it contains a word. Let’s 

assume that   is the set of junk emails and   is the set of emails that are containing 

the word. The purpose of solving this example is to find the probability of   given    

that means       . By using the Bayes’ formula it would be sufficient to have 

information about: 

a) The probability that the word is in the spam message and a non-spam message are 

by        and        , respectively. By the use of statistical analysis of the email, 

these probabilities can be achieved; 

b) The probability of the spam message is shown by  (F). The value of this 

probability can be obtained on the internet or by statistical analysis of the traffic. 

       
          

                          
  

One can calculate the probability of    given   regarding the probability of   given 

  and the absolute probability of  . 

Another example is that assume that there are   coins in a box and just one of them 

has a head on the both sides. Suppose the coin is taken from the box randomly and 
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without looking the coin, flipped   times and in all   times, heads come. Calculate 

the probability that the two headed coin was taken from the box. 

It is defined that    is the event that a coin is chosen randomly and flipped   times, 

and heads come.     - the two headed coin, and     - the usual coin is the fair 

hypotheses. Therefore,        
 

 
 and        

   

 
   So,             and 

               are the conditional probabilities for any  . 

By using the total probability formula 

      
      

   
  

and 

          
  

      
 

This example is about the electronic devices produced in a factory by a machine. The 

statistical data shows that most of the time the machine works properly 95% and 

produces 97% correct parts. Sometimes the machine is broken and produces 73% 

correct parts. During the 8 days, the manager expects the machine works in the 

following results: 
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The correct and bad components are illustrated by   and  , respectively. Find the 

probability that the machine is working properly. 

In this example, there exist two different models, the first one is that the machine is 

working correctly, and another one is that the machine is broken. Based on the given 

data, the prior probabilities are 0.95 and 0.05 for the cases of working and broken, 

respectively. The data are the result of the inspection records during the eight days. It 

calculates the sampling probabilities, and it means the probability of each data results 

for each case to understand the relationship between the cases and the data. 

In the case of working correctly, the probability of correct (C) part is 0.97 and for the 

bad (B) case is 0.03. So, the conditional probabilities for the two cases are: 

                               

On the other hand, if the machine is not working or broken, the probabilities are: 

                                 

The Bayes’s rule can be used for the set of inspection: 

     {                  

The probabilities of this data for each of the two different models are the likelihood. 

Assume that the outcomes are independent from each other: 
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                   {                       

                       

                        

            

In the similar way, the likelihood of the broken model is 

                    {                        

                         

                        

            

Now, posterior probability is calculated by likelihood multiplied by prior probability, 

which is demonstrated in the table 1. 

Table 1. Results of posterior probabilities after eight parts 

Model Prior Likelihood Product Posterior 

1.Working 0.95 0.0007497 0.0007122 0.5635 

2.Broken 0.05 0.0110323 0.0005516 0.4365 

 

The calculation shows that the posterior probability of the broken machine is over 

0.43.  
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When there exists sequential data, there is another way of implementing the Bayes’ 

rule. The inspection probabilities of working and broken of the machine are 

respectively 0.95 and 0.05 before collecting any data. The manager observed the 

quality of the first session and he/she can update his probability by Bayes’ rule. The 

table 2 shows the results of computation of posterior probabilities after observing the 

first session.  

Table 2. Posterior probabilities after the first session 

Model Prior Likelihood Product Posterior 

1.Working 0.95 0.97 0.9215 0.9619 

2.Broken 0.05 0. 73 0.0365 0.0381 

 

By single observation, it is noticed that the probability is more that 96%. The table 3 

shows the data that is related to the observation after the second session. 

Table 3. Posterior probabilities after the second session 

Model Prior Likelihood Product Posterior 

1.Working 0.9619 0.03 0.0288 0.7366 

2.Broken 0.0381 0.27 0.0103 0.2634 

 

Now, the probability of working machine is 0.7366. 
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Continue in this way for eight sessions, and in each session the prior probability is 

the posterior of the previous session. The table 4 demonstrates the posterior 

probability in each step after all eight sessions are done. 

Table 4. Results of Posterior probability in each step for all eight sessions 

 Observation P(Work)    P(Break) 

1 Prior 0.95 0.05 

2 C 0.9619 0.0381 

3 B 0.7366 0.2634 

4 C 0.7879 0.2121 

5 C 0.8316 0.1684 

6 C 0.8677 0.1323 

7 C 0.8971 0.1029 

8 C 0.9206 0.0794 

9 C 0.5633 0.4367 

 

The next example is about two competitions in a TV game including a series of 

various questions. The game ends when the player answers the question correctly. 

Let’s define two players   and   and the probabilities that   and   answer the 
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question correctly are   and   in the same order. Calculate the probability that   is a 

winner if: 

(a)   answers the first question;  

(b)   answers the first one. 

 

In order to solve this example, first of all, we should define: 

A set of all feasible infinite sequence of answers which is shown by  ; 

Event   - means   answers the question number one; 

Event   - means TV game finishes after the question number one; 

Event   - means E wins the game.  

The aim of this example is to find the  

                        

By using the total probability theorem, and the partition of {      
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Obviously,         (                                            )   , 

           , and           , on the other hand           

       , therefore  

             (             )                             

Similarly, 

                                             

So,          (  answers the question number one correctly)   ,         

   , but            . Finally,                    so 

              (            )                                         

Solving the equations (3) and (4) simultaneously for parts (a) and (b) 

       
 

            
              

      

            
  

Notice that for any events    and    

    
                  

But not necessarily that  
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The next example is for a subset of the survey including data on salary and education 

for a sample of females over 30 years old. Assume that   {             is a set 

of events that randomly selected woman from S, each of the    has 25% in terms of 

salary. Therefore, by definition 

{                         {                     

The set   is a partition, so as a result, the summation of these probabilities must be 

equal to one. Now, suppose that one chooses a sample randomly from the survey of 

college education and this event is shown by  . Based on the survey, 

{                                 {                      

These probabilities are demonstrated the proportions of college-educated people in 

the four different salary subpopulations                . By using the Bayes’ rule, 

it is able to calculate the salary distribution of the college-educated population.  

{                                 {                     

It is illustrated that the salary distribution for persons in the college degree 

population is different from {                    , the distribution for the general 



35 

population. Moreover, the total summation of conditional probabilities of the event in 

the partition equals to one. 

 Notice that in Bayesian inference, the set {               often refers to the state 

of nature or disjoint hypothesis, and F shows the result of the survey, experiment or 

study. By calculating the following ratio, hypotheses can be compared post-

experimentally 

       

 (  | )
 

                ⁄

 ( |  ) (  )     ⁄
 

 
            

 ( |  ) (  )
 

 
       

 ( |  )
 

     

 (  )
 

                            

This calculation demonstrates that Bayes’ rule says how the first beliefs change after 

observing data, and it does not mention anything about what individual’s beliefs 

should be after observing the data. 

Let’s consider another example.  Suppose the table 5 illustrates the joint distribution 

of occupational categories of son and father. 
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Table 5. Joint distribution of occupational categories 

 Son’s occupation 

Fathers’ 

occupation 

Accountant Architecture Manager Nurse Teacher 

Accountant 0.054 0.105 0.093 0.024 0.054 

Architecture 0.006 0.347 0.198 0.099 0.213 

Manager 0.002 0.138 0.197 0.067 0.176 

Nurse 0.002 0.036 0.038 0.020 0.102 

Teacher 0.003 0.095 0.105 0.141 0.429 

 

Now suppose    be the fathers’ job and    is the son’s job. Then  

                            
                           

                
 

 
     

                             
 

       

In the next example it is assumed that a box includes   blue beads and   green beads. 

It is needed to calculate the probability of picking one blue bead in one selection 

only. Assume a person does not have any information about the color of the first 
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bead. Without replacing it, the person picks another one. We calculate the probability 

of picking a blue bead in the second selection. 

The certain event is that two beads are picked and each of them can be either blue or 

green. Therefore,   {      where the  th component of             is zero 

if the  th picked is blue and 1 if the  th picked is green. So, the event of the first bead 

is blue, and is associated with  

   {             

Thus           ⁄ . In fact, when the first bead is “randomly” selected, the 

probability of success is     ⁄ . Similarly, if the first selected bead is green, the 

event is associated with 

   {                  

Therefore                   ⁄ . Now calculate that the probability of the 

second bead is blue, and this event is associated with  

   {             

After picking the first beads, two cases may happen. Assume the first one is blue, 

then there exist     blue beads and g green beads in the box, 
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and similarly 

         
 

     
  

Then the law of total probability shows that  

                        

                             

 
   

     
 

 

   
 

 

     
 

 

   
 

 

   
  

Without any information about the color of the first selected bead, the probability of 

selecting the bead with the same color in the second selection remains the same. 
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Chapter 4  

SUBJECTIVE AND OBJECTIVE PROBABILITIES 

4.1 Properties of Subjective and Objective Probabilities 

The terms subjective and objective are used in several ways; however, there is 

another interpretation of these terms in probability theory. There exists a distinction 

between beliefs of scientists about a phenomenon before collecting the data, and 

beliefs of scientists after the data have been gathered and analyzed. The specific 

things are defined to be only a subjective reality, and these cases are formed 

depending on beliefs and views of the human mind. From another point of view, the 

objective fact is used in some cases that are outside the minds of the human being, 

and also it is defined without considering of whether a person perceives it or not. For 

instance, the view and opinion of a person about a subject such as a social issue and 

political are just a personal belief that has only a subjective reality. However, the 

starting point considering external reality is that the sun and the moon exist without 

considering of human being perceived them. As a simple example, it is to state that 

an existence of all laws and rules of nature in the world is not depending on human 

belief. Human intuition and sense are involved in anything that is seen or can be 

measured by human beings. After observing or perceiving entities by a human in the 

objective word, either by measuring instrument or even by the senses and feelings, 

the consequence of measurements, which is called data, are described by a human in 
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a subjective way that demonstrates the personals’ experience, comprehending, and 

preliminary feeling and also beliefs about the entities, the things, the objects and 

phenomenon, or make being measured. The comprehension of these data is 

influenced by the human’s state of sense. The term “subjective” is used to refer to 

preexisting beliefs or views about entities. Broadly speaking the term “subjective” is 

used to indicate a human’s belief, and intuition. The views about the hypothesis that 

a person held prior may be different across individuals, this view or belief is called 

subjective. 

Let’s try to clarify the definition “objective” in an experimental way to understand 

how scientists describe this definition. By this definition, both scientists and science 

are objectives in the following sense. A hypothesis is evolved, and the specialists 

design a study to test the hypothesis. The data might be gathered by performing 

observation carefully in a non-experimental setting or even by designed experiment. 

After collecting the data, the scientists evaluate the results, consequences, and the 

implications for the hypothesis. The scientists describe the study of publication if the 

outcomes support the hypothesis. On the other hand, the scientist rejects the 

hypothesis and either reviews the hypothesis considering the new finding and repeats 

everything, or continues to other concerns [41]. 

The terms “subjective” and “objective” can be also used in another sense. It is merely 

defined that subjective probability refers to the human’s degree of belief individually 

about the event to happen. However, objective probability refers to the numerical 

probability, mathematical chance of some event happening. The definition of 
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objectivity that is used by some philosophers needs to be testable by anyone. It is 

believed that such consistency of explanation is rare. Different people have different 

ideas because of their preexisting views, and induce them to analyze the data in 

different forms. 

There is a quote of Ian Hacking who mentioned that one of the most intriguing 

aspects of the subjectivist theory is the use of a point about Bayes' theorem. Hacking 

believed that observers have different interpretation of exactly same data; however, 

eventually with an adequately large number of experiments or trials, the differing 

prior views about the same data by the different observers will mostly disappear [42]. 

It will be enlightening to commence the discussion of the term subjectivity in 

scientific methodology with mentioning an example that demonstrates how various 

observers unwittingly bring the personal beliefs and ideas.  

During the time, it is always interested to find the probability of some events in 

future observations such as it will be raining during the next hour, or the probability 

that a candidate will win in the next election. These kinds of events will happen only 

once; therefore, it is needed to expand the definition of probability in order to cover 

all such problems and situations. 

Finally, probability theory is defined to be a personal degree of individual belief 

about any unknown quantity or some proposition. The term subjective probability is 

defined as individual beliefs or personal probability. Additionally the subjective 
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probability implies that this concept is based on a personal belief. The belief might 

be that the mathematical probability or the long-range relative frequency. 

In order to clarify the definition of subjective probability, let’s assume the 

proposition “William Henry Harrison was the eighth president of United States” -   

this is either true of false. If a person does not know about this proposition, so for the 

person it will be uncertain, but this person has a degree of belief about its 

correctness. This person may think there is 50% chance that it is correct, on the other 

hand, based on some extra information such as the history of United States this 

person may think that there is 80% chance that this proposition is true. Personal 

belief on 80% chance of correctness of the proposition is equivalent to the situation 

that someone randomly selects the black ball out of a box containing 80 black balls 

and 20 white balls (William Henry Harrison was ninth president of the United 

States). The similar arguments about any unknown quantity can be done like the hair 

color of the next person that might be seen accidentally in the street. In the first step, 

scientists might have a belief that the probability in a special theory has 50% chance 

to be true. After that, the scientist may collect related observational data and add 

more evidence about the correctness of the theory. In the last step, the scientist might 

say that the chance of correctness of probability has increased to 75%. In fact, the 

scientist cannot be certain 100% about the hypothesis [41]. 

The probabilities in these examples such as the probability of raining in the next one 

hour, the probability of winning of a candidate in an election, or the probability of 

winning of a driver in a race can be considered to be subjective or at least include a 
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subjective component. However, there is another probability which seems, at least at 

first sight, to be totally objective. For instance, in rolling the dice the probability of 

each side is 1/6, and in such case this is completely objective regardless of an 

individual belief or subjectivity. Another example is to calculate the probability of an 

isotope of uranium disintegrating in one year. This calculation is completely based 

on the quantities of books related to physics, not the personal belief. Subjective 

theory cannot support these kinds of examples [43]. 

In 1763, Thomas Bayes defined a method for making statistical inferences that 

broaden earlier comprehending and understanding of the phenomenon. This method 

joins the earlier comprehending with currently measured data to update the scientific 

belief or subjective probability of the experiment. The previous experiment and 

comprehending are identified as prior belief and the updated prior belief, which is 

given by combining the prior belief with a new observation, is identified as posterior 

belief. To clarify, posterior belief can be defined as a belief that is held after 

collecting the current data and also having examined those data considering how well 

they confirm the preliminary data. This inferential process which is suggested by 

Thomas Bayes is called Bayesian inference. To find subjective probability for some 

events, unknown quantity, or proposition, based on this method, is needed to 

multiply prior belief by an appropriate summary of the observational data. Therefore, 

Bayes indicated that all scientific inferences include two parts: one of them based on 

the subjective understanding and information (prior knowledge), and another part 

based on scientific experiment and observation [41]. 
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Probability that is used in all statistical methods is subjective in the sense of 

depending on mathematical idealizations of the world. Bayesian analysis especially 

mentions that the term subjective due to its dependence on the prior distribution, 

however, in some problems, scientific belief and judgment is fundamental in order to 

define the “likelihood” and “prior” parts of the model. Here is a general principle: 

when there is duplication, there is a scope to calculate a probability distribution and 

therefore constructing the analysis in more objective form. If we are dealing with a 

replication of the whole experiment several times, the parameter of the prior 

distribution could be calculated from data. However, some elements requiring 

scientific idea still remain, remarkably the selection of data in the analysis, for the 

distribution the parametric forms is assumed [36]. 

In the logical explanation, the probability of   given   is identified with a reasonable 

degree of belief which a person who had evidence   would give to  . The reasonable 

level of belief is supposed to be the same for all rational individuals.  The subjective 

explanation of probability rejects the hypothesis of rationality going to consensus. 

Based on the definition of the subjective theory, although different individuals such 

as person  , person  , and person  , all perfectly logical and having the same 

evidence  , might have various degrees of belief in   yet. Thus, probability is 

defined as the degree of opinion and the belief of an individual [43]. 

One of the pioneers of the subjective theory is de Finetti whose first writing was in 

French and Italian at the beginning of 1930. The idea of probability via expectation 
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was introduced by de Finetti that was called “prevision” or “subjective” probability 

[44]. 

De Finetti’s treatise on probability theory started with the statement “Probability 

does not exist”, which means the probability exists only subjectively rather than in 

sense of objectively. Moreover, he thought that objective probability does not exist 

without depending on the human mind and belief. According to this view, 

probabilities are built as degree of personal beliefs. The theory of subjective 

probability is mostly attributed to three mathematicians de Finetti, Ramsey, and 

Savage. They proposed the behavior in the definition of probability by mentioning 

the example of betting rates. Betting rate shows the personal probability or individual 

belief of the human being that is the only probability that really exists. In de Finetti’s 

theory, he believed that bets are just for money therefore an individual probability of 

events directly affects the money that the person is willing to win. He introduced the 

notation of “Pr” which is interchangeable by Probability, Prevision, and Price [45].  

The objective view of probability includes three major principles mentioned below: 

1) Probability: An individual’s degree of belief ought to be represented by 

probabilities. Therefore, for instance, a personal degree of belief that a certain 

candidate will win in the next election and will not win should sum to 1; 

2) Calibration:  An individual’s degree of belief has to be properly constrained by 

empirical evidence. If the person thinks that today is rainy with probability between 
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80% and 90%, then the person’s degree of belief about tomorrow should also lie in 

the interval [0.8, 0.9]; 

3) Equivocation: An individual’s degree of belief has to be as middling as these 

restrictions permit. In the previous example, it should be equivocated as far as 

possible between rainy weather or not. It should be believed that tomorrow is rainy 

with the probability degree of 80%. 

These days objective theory of probability is a popular topic in statistics, physics, 

engineering and also artificial intelligence, especially in machine learning and 

language processing [46].  

4.2 Generalized Bayes’ Theorem 

In the use of probability theory, Bayesian rule is a key point for the diagnosis 

process. Assume two spaces,   and   represent space of diseases and symptoms, 

respectively.  

Given the conditional probability shown by          of observing    which is a 

subset of   in each disease class    that belongs to  , and a prior probability    over 

 , calculates a posterior probability         over   that the ill person is in a disease 

class in   given the symptom   has been seen. By Bayes rule, 

         
              

∑   ( |  )       
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In generalized Bayes’ theorem, it is assumed that each disease with class    has a 

belief function to be shown by            over   and it represents the personal belief 

about if the person has a disease that symptom can be observed. Let’s define the a 

priori belief by      which represents a personal belief about the disease class to 

which the ill person belongs. Assume       means that there is no a priori personal 

belief about the disease. The formula (5) shows a posterior plausibility function over 

 : 

                                   ∏ (           )                                                                  

One of the significant properties of generalized Bayes’ theorem is dealing with the 

case when there exist two different independent observations. To clarify this 

property, assume two symptoms spaces such as   and  . Therefore,      and      

are represented an individual’s belief on   and  . Based on this property, it is 

assumed that the symptoms are not depending on each other within each disease 

class. Being independence indicates that if a person had knowledge about which 

disease is related to the observation of a symptom could not affect the personal belief 

of other symptoms. The meaning of the independence property is that the conditional 

joint belief over the space     given    is 

                                 

There are observations about the symptoms     and    , and afterwards 

          and           by using the generalized Bayes’ theorem are defined. In 
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order to find the personal belief             about   given both of symptoms x and 

y and combine these two beliefs together, Dempster’s rule should be used. On the 

other hand, by using the generalized Bayes’ theorem on             , it is possible 

to calculate            . Using the Dempster’s rule and generalized Bayes’ theorem, 

the same results are reached, as it should be. 

By using the generalized Bayes’ theorem, it is allowed to enlarge the disease domain 

 . It is obvious that, in that class, the individual’s belief about the symptoms is 

vacuous. However, by using generalized Bayes’ theorem, it is allowed to calculate a 

posterior belief that whether the patient belongs to a new class or not. The personal 

belief about the “discovery”, which is impossible by using the probabilistic 

framework, is computed.  

Suppose   {          is a set of diseases that    and    are two well-known 

diseases which mean that there exist some beliefs about which symptoms reveal 

when    or    holds. The compliment of {       is defined by    that means relative 

to all possible diseases plus the other diseases that are unknown yet. Therefore, in 

this example the personal belief on the symptoms can be vacuous [47]. 
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Chapter 5 

CONCLUSION 

In this thesis, Bayes probability is considered that studies the relation between 

probability and uncertainty. Probability is the science of uncertainty that prepare 

mathematical rules to comprehend and analyze the uncertain situation. Probability 

cannot tell about next week’s stock prices or even tomorrow’s weather, instead it 

gives framework to work with imprecise information to make a sensible decision 

based on previous knowledge and information. Uncertainty has been with human 

forever, however, the mathematical theory of probability commenced in the 

seventeenth century. Thomas Bayes is one of the mathematicians who introduced the 

probability theory. Bayes theory is a significant method in probability theory for the 

aim of comprehending the prepared observations, what is actually known, and some 

other information. To calculate the probability of an unknown hypothesis, the 

Bayesian probability identifies and recognizes some prior probabilities that will be 

updated in next steps, in the light of related data.  

Probability theory plays a noticeable role in various applications of science and 

technology. In some cases, there exists the risk such as risk of losing money. If the 

problem people encounter, individually or collectively, become more sophisticated, 

people need to improve and evolve their rough understanding of the idea of 
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probability to form an exact and precise approach. This is one of the reasons that 

probability theory has been altered to a mathematical and scientific subjects. In fact, 

probability theory is prepared a precise comprehending of uncertainty which is 

helpful for making prediction, optimal decision, and estimating risk in everyday life. 

Probability is dealing with quantifying or measuring uncertainty. 

In this thesis, the definition of probability starts with a sample space. The sample 

space can be any set that includes all possible outcomes of some unknown situations 

or experiments such as {                          for predicting the future 

weather. A probability model needs a collection of events, which are subsets of the 

sample space to which probabilities can be allocated. Finally, the probability model 

needs a probability measure which is essential in the model and represented by  . 

Another important point is the conditional probability.  

The differences between the terms “subjective” and “objective” in probability theory 

are presented. The term subjective probability mentions the human’s degree of belief 

is individual about the chance of some events happen. On the other hand, objective 

probability is about the numerical probability, mathematical chance of some events 

happen. In the Bayesian analysis, the term “subjective” is independent from the prior 

distribution, however, in some problems, human belief is required for specifying the 

likelihood and prior parts of the model. The first scientist who mentioned the term of 

subjectivity was de Fenetti, who believed that the probability does not exist in the 

sense of objectivity. On the other hand, nowadays objective theory of probability is a 
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popular topic in various types of majors such as statistics, physics, artificial 

intelligence etc. 

A general framework for reasoning with uncertainty that is using belief function is 

the transferable belief model. In the particular topic of interest, the generalized 

Bayes’ theorem is an expansion of Bayes’ theorem that is probability measures are 

replaced by belief functions and there exist no prior experiment. Lately, applications 

of the generalized Bayes’ theorem have been limited, mostly due to the lack of 

methods for making belief functions from observation data. However, these days by 

using this method and also combination rules to merge partly overlapping item of 

evidence expand the application of the transferable belief model.   
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