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ABSTRACT 

The main propose of this study is to analyze and compare the effects of different 

limiters on interface tracking within two phase flows. OpenFOAM source codes 

were employed as the base of analysis. In order to simulate the two phase 

incompressible flows in the OpenFOAM, the embedded InterFOAM solver has been 

used in this study. The solver is based on a modified volume of fluid (VOF) method. 

The VOF approach relies on a scalar indicator function between zero and unity to 

differentiate two different fluids. Since simulation results are affected by the applied 

convection schemes, selection of an appropriate scheme is significant. Discretization 

of the convection term is a controversial issue in the two phase flow simulations. In 

this thesis, investigation of the performance of the various limiters has been done on 

a variety of well-known validation test cases that include Dam-break problem, free 

bubble rise problem and advection of hollow shapes in an oblique velocity field 

problem. Results were obtained using the Upwind, Van-Leer, UMIST, QUICK and 

MULES convection schemes. With the comparison of these schemes, it has been 

observed that MULES is the most accurate scheme in tracking the interface. 

Keywords: OpenFOAM, InterFOAM, VOF, limiters, convection schemes, free-

surface flow 
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ÖZ 

Bu tezin asil amacı iki fazlı akımlarda bulunan ara yüzeylerin takibi için farklı 

sınırlandırıcınin incelenmesi ve bunların karşılaştırılmasıdır. Analiz işlemleri için 

OpenFOAM ana kodu kullanılmıştır. İki fazlı sıkışmayan akımların simülasyonu 

için, OpenFOAM içinde bulunan InterFOAM çözücüsü kullanılmıştır. Bu çözücünün 

temeli değiştirilmiş Volume of Fluid (VOF) yöntemidir. Sıfır ve bir arasında olan 

indikator fonksiyonuna dayanarak, VOF yöntemi iki akışkanın ayırdedilmesinde 

kullanılmaktadır. Simülasyon sonuçlarının seçilen konveksiyon yöntemine bağımlı 

olması nedeni ile uygun bir konveksiyon yöntemi seçilmesi çok önemlidir. İki fazlı 

akımların simülasyonu ile ilgili çalışmalarda konveksiyon teriminin ayrıştırılması en 

tartışılan konulardan biridir. Bu tezde çeşitli sınırlandırıcıların performansı bir kaç 

meşhur doğrulama testi ile incelenmiştir. Bu testler baraj yıkılma problemi, serbest 

baloncuk tırmanışı problemi ve içi boş şekillerin eğri hız alanı içinde adveksiyon 

problemidir. Tez Sonuçları Upwind, Van-Lear, UMIST, QUICK ve MULES 

konveksiyon yöntemleri kullanarak elde edilmiştir. Bu yöntemlerin 

karşılaştırılmasına göre MULES yöntemi arayüz takibi için en doğru yöntem olarak 

belirlenmiştir. 

Anahtar kelimeler: OpenFOAM, InterFOAM, VOF, sınırlandırıcılar, konveksiyon 

yöntemleri, açik yüzeyli akişlar. 
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Chapter 1  

 INTRODUCTION 

1.1 Background 

The study of fluid dynamics has applications in various areas of science and 

engineering, and it helps to understand the environmental, chemical and biological 

flows. The two main methods for the study of complex flow problems are computer 

simulations and laboratory experiments. It is possible to analyze the complexity 

involved in these flows more clearly by computer simulations without time 

consuming, inaccurate and expensive experiments. This approach in simulation of 

fluid mechanics is known as Computational Fluid Dynamics (CFD). 

 The objective of this thesis is to present an accurate, reliable and comprehensive 

Computational Fluid Dynamics (CFD) methodology that has the ability to predict the 

flow behaviour of immiscible fluids. The flow of immiscible fluids is regularly 

encountered in industrial processes and nature.  

Writing one set of governing equations for the whole flow field, also commonly 

referred to as the single fluid formulation, has been considered as possible since the 

beginning of multiphase flows large-scale computational studies. 

In multiphase flow simulations for immiscible flows, the exact positions and shapes 

of the interfaces separating the immiscible fluids contribute actively to the physics of 
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the problem. The fluids will roughly have different densities and viscosities, thus, 

density and viscosity discontinuities occur across interfaces. For multiphase flows, 

each interface is a border between two immiscible fluids. Moreover, surface tension 

forces act at each interface. The intensity depends on the interface shape. In solving 

free-surface flow problems, it is important to retain the sharpness of the interface in 

between the two fluids.  

In the numerical simulations, it is crucial to have an updated representation of the 

interfaces. A method for locating and advancing the free surface, as well as, for 

treating the free surface or multiphase flow boundary conditions for velocity and 

pressure, must be included in any solution procedure for free surface fluid flow or 

multiphase flow problems. The behavior of the dispersed phase is expressed only in 

terms of its phase fraction and velocity in the multi-fluid model. Many two-phase 

flows occurring in practice are completely or partly separated (e.g. annular or 

stratified flows) and Interface deformation and structure are crucial factors (Hewitt 

and Vassilicos (2005)). 

1.2 Computation of free surface 

To predict the common boundary between multiphase structures and topographical 

distributions of the different phases appropriately, the location of the interface must 

be determined properly as part of the solution. Interface tracking methods are 

developed to represent and record moving and deforming surfaces or curves that 

include various types of internal boundaries, interfaces and fronts.  The interfaces are 

defined by constantly updated discretizations. These discretizations can be Eulerian 

or Lagrangian in nature and it depends on the interface tracking method that is used. 

The interface tracking techniques described in this chapter were developed to beat 
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the deficiencies of the artificial dissipation method. The tracking methods have small 

or no artificial dissipation close to the interface since the singularity is directly 

calculated and dealt with explicitly as a discontinuity. These methods are harder to 

implement and perform precisely for a large class of problems (Hyman (1984)). 

Existing approaches for the analysis of free surfaces and fluid interfaces between two 

immiscible fluids on a random Eulerian mesh can in general be categorized in two 

groups: 

 Surface methods (interface tracking methods) 

 Volume methods (interface capturing methods) 

Figure ‎1.1 shows a schematic definition of the above methods. The interface is 

tracked explicitly by marking it with marker points or by attaching it to a mesh that 

follows the movement of the interface in the surface method. In the volume method, 

not only the interface, but the fluid in the entire computational domain is marked. 

The applicability of interface tracking methods is usually limited to simple flow 

configurations. Both methods are based on stabilized formulations. Stabilized 

formulations like Streamline-Upwind/Petrov-Galerkin (SUPG) and pressure-

stabilizing/Petrov-Galerkin (PSPG) prevent numerical fluctuations and other 

instabilities in solving problems with high Mach and/or Reynolds numbers, shocks 

and strong boundary layers, as well as, by using equal-order interpolation functions 

for pressure and velocity, and other unknowns (Tezduyar (2006)). 

Surface methods act with the free surface as a sharp interface of which the motion is 

followed. The interface can either be tracked explicitly by marking it with special 
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marker points (particles) or by hooking up the points to a mesh surface which is then 

forced to move with the interface. In this type of solution, boundary-fitted grids are 

used and advanced each time the free surface is displaced (Ferziger and Perić 

(2002)). The surface tracking approaches are the easiest to implement, till 

interactions happen that change the topology of the interface during the computation. 

By dividing the domain into a union of disjoint solution regions, volume methods 

overcome the variable topology problems. The interface is the boundary between 

these areas (Hyman (1984)). The regions (fluids) on either side of the interface are 

marked by either massless particles, or alternatively, an indicator function. Indicator 

function can be used to reconstruct an approximate interface location at any time; it 

means the interface is algebraically set without reconstruction. 

 The analysis by volume methods are performed on a fixed grid, which extends 

beyond the free surface. Unlike the surface tracking methods, very little sub-grid 

scale structure is retained during the calculation. In this type of method, interface was 

not defined as a sharp boundary (Ferziger and Perić (2002)). Aside from which 

method is used, the essential features to accurately model free surface and fluid 

interface have to include a scheme to describe the location and geometry of the 

surface, a method to evolve the shape and location with time, and application of free 

surface boundary conditions at the surface. Sometimes, the shape of the interface 

affects the vector field of advection. A more detailed description of the different 

methods is given in the subsequent part. 
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Figure ‎1.1. Different methods of representing the interface (Ubbink (1997)) 

1.2.1 Surface methods 

As mentioned above in this class of methods, the interface is marked with special 

marker points located on the interface. Between the points, the position of interface is 

approximated by interpolation, usually piecewise polynomial. These time-dependent 

interfaces divide the problem domain into connected regions. The marker points 

might be represented either the distance from some reference surface or a parametric 

interpolation. It can be noted that, the distance function is easier to resolve, however 

the interface deformation is severely limited. 

As the spatial domain occupied by the fluid changes in time, the mesh is updated. 

The accuracy of the surface tracking methods depends strongly on stability and 

accuracy of the interpolation method approximating the interface location between 

the marker points. The data structure and algorithms needed by surface tracking 

methods to account for interactions greatly increase the program complexity (Hyman 

(1984)). 

Interface-tracking methods can follow the evolution of a simple interface very 

accurately. However, they encounter difficulties in dealing with changes in interface 

topology. When the flow conditions are such that there are no breakings or 
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overturning waves, the interface-tracking method is a good approach (Muzaferija and 

Peri´c (1997)). 

 For simulating two-fluid flows, in some cases the interface might be too complex to 

track while keeping the frequency of remeshing at an acceptable level. Due to the 

complexity of handling interactions and adaptively refining the interface in 3-D the 

only surface tracking codes that resolve multiple interactions are in l- and 2-D. 

Because volume methods do not require mesh update, these methods are more 

flexible than the surface methods. However, for comparable levels of spatial 

discretization, volume methods yield less accurate representation of the interface. 

The accuracy of the reconstructed interface plays a critical role in the performance of 

the advection scheme. The main drawback of these methods is the algorithmic 

complexity involved in reconstructing the interface in a continuous manner across 

the computational domain, with this difficulty being compounded in three-

dimensional problems and these methods require too large computer resources on 3D 

geometries, so surface methods based on dynamic mesh do not appear of interest for 

industrial purpose (Mammoli and Brebbia (2005)). The biggest advantage of this 

approach is that the interface location is known.  Three popular surface methods are 

explained in following sections. 

 Markers on interface 1.2.1.1

The original idea behind this approach is to precisely track an interface on a fixed 

mesh by using a set of connected marker particles with negligible mass to mark the 

interface. The local velocities are used to advect these massless particles in a 

Lagrangian manner (Ubbink (1997)). Instead of advecting the marker function 

directly, the boundary between the different fluids can be tracked using marker 
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points, and the marker function then reconstructed from the location of the interface. 

Methods using marker points are mostly referred to as front-tracking methods. The 

inclusion of surface tension is fundamentally different in front-tracking and marker-

function methods (Prosperetti and Tryggvason (2009)). 

One of the front-tracking methods worth mentioning is that of Unverdi and 

Tryggvason (1992) in which the Lagrangian interface, represented by a set of 

connected line segments. This methodology avoids the interfacial numerical 

diffusion problems associated with VOF. Figure ‎1.2 presented the interface as an 

unstructured grid inside a fixed Cartesian grid. Grid points are added to or subtracted 

from the interface grid as the interface changes shape. The density and viscosity 

change in a small thickness zone from the values for the gas phase to those for the 

liquid phase. In this case, the method is alike to the VOF approach, though numerical 

diffusion is avoided. 

 
Figure ‎1.2. Grid system used for the embedded interface method 

(Unverdi and Tryggvason (1992)) 

One of biggest disadvantages of markers on interface method is that the method is 

sensitive to the spacing between the markers particles (Yeoh and Tu(2009)). 
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Furthermore, in three dimensions, bookkeeping of the particle connectivity becomes 

a nearly impossible task (Ubbink (1997)). It is quite hard to implement a merging 

algorithm in the front-tracking method due to the unstructured positioning of 

Lagrangian markers. 

 Level set method 1.2.1.2

Level Set approaches are based on the application of a continuous function to 

represent the interface within two mediums. The value of the level set function at 

each point is defined as the shortest distance between that point and the interface 

(Sussman et al. (1994)), and therefore, the interface is described by the 0 value of 

level set function. A negative sign is assigned to the distance function for one of the 

fluids to recognize the two fluids on sides of the interface. 

Level set function is updated in order to follow the position of the interfaces and an 

advection equation is written for this function that allows the position of the interface 

to be followed. Both for the front-tracking method and the level-set method, the 

Navier-Stokes equations were discretized using finite difference techniques 

(Tornberg (2000)). Level set approaches have become widely used for capturing 

interface evolution particularly when the interface bears extreme topological 

variations, e.g., merging or pinching off. In the level-set method, topological merging 

will always occur when interfaces defined by the same level-set function get close 

relative to the resolution of the grid. Therefore, explicit action must be taken in order 

to prevent merging (Tornberg (2000)). On the left of Figure ‎1.3 the two contours 

represent two distinct circular fluid blobs, but on the right the fluid blobs have 

merged into one. 
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Figure ‎1.3. Level-set representation of an interface. The interface consists of two 

distinct circles on the left, but on the right the circles are closer and form one  

interface. (Prosperetti and Tryggvason (2009)) 

Level set approaches have been used to simulate multiphase immiscible 

incompressible flows. These methods are attractive because they admit a convenient 

description of topologically complex interfaces and are quite simple to implement. 

One advantage of the level set approach is it being capable of signify topological 

changes both in 2D or 3D geometry pretty naturally (Mammoli and Brebbia (2005)). 

The natural ability of the level-set method to handle topological changes in the 

interfaces is for many applications an important advantage of the method. 

Some problems arise when the level set method is developed; namely high-velocity 

gradient can produce wide spreading and stretching level set, and continuous 

function will no longer remain a distance function (Mammoli and Brebbia (2005)). 

There are two reasons for this phenomenon. Firstly, the use of standard differencing 

schemes for solving the convection equation introduces numerical diffusion to the 

initial distance function. Secondly, the level set function keeps its initial minimum 

and maximum values; thus, the maximum value between two merging interfaces 

remains the same during the calculation, causing a steep gradient in the level set 

function. The latter is a significant drawback of the level set method (see Figure ‎1.4). 
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Since preserving the level-set function as a distance function (at least in the 

proximity of the interface) is essential for the coupling with the fluid equations in 

modelling of multiphase flows, it is necessary to reinitialize the level-set function. 

Without reinitialization, the magnitude of the gradient of the level-set function can 

become enormous or very small near the zero level-set of the continuous function. 

The computational time is a drawback of the level-set technique (Tornberg (2000)). 

 
Figure ‎1.4. Contours of the level set function: (a) initial configuration, (b) just before  

merging with no corrections (c) just before merging with corrections (Ubbink (1997) 

In this method mass loss in under-resolved regions can be generated. This is the main 

disadvantage of level set methods, but to develop mass conservation, two main 

extensions of the method can be enhanced, specifically, the particle level set (Enright 

et al. (2002)) and a coupling between Level Set and VOF (Sussman and Puckett 

(2000)). 

The local density and viscosity are defined as a function of the level of set function. 

In order to predict the density of a partially filled cell, it is necessary to reconstruct 

the interface during each time step. This enables the calculation of the fluid 

proportions filling the cell. These proportions, also known as volume fractions, are 
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then used to predict the mean density of the fluids occupying a particular cell. For 

this reason, the level set method can also be categorized as an interface capturing 

technique, rather than a surface tracking method. (Noh & Woodward (1976)) 

 Surface fitted method 1.2.1.3

The mesh on which the fluid equations are discretized and solved is updated 

continuously to fit the deforming fluid interfaces. The interfaces are treated as 

internal boundaries on which boundary conditions are prescribed. Disadvantages 

with this method include the cost of the computation and the interpolation errors 

introduced when remeshing. One example of an algorithm based on interface fitted 

meshes is the work of Hu and Joseph (1994). 

Application of surface-fitted methods is mostly motivated by (i) a reduction in the 

computer storage needed for the interface markers, (ii) always ensuring a sharp 

interface and (iii) avoidance of partially filled cells (or empty cells in the case where 

free surface flow between a liquid and void is simulated). As the mesh and fluid are 

allowed to move together, the mesh automatically tracks the free surface. As the 

interface moves incrementally in time, the critical factors of this approach are the 

efficiency and stability of the numerical algorithm. Maintaining a well-defined mesh 

is a principal feature, an improper surface mesh usually degrades the numerical 

computation of the fluid flow. With large amplitude changing, it may also be 

imperative to rapidly regenerate the internal volume mesh encapsulating the fluid 

domain, which implement of this approach to simulate a multi-phase problem 

becomes more twisted. Numerical results on the collapse of a liquid column 

presented by Ramaswamy & Kawahara (1987) reveal that such large deformations 

may happen even in an early stage of the computation (see Figure 1.7). Another 

disadvantage of the mentioned approach is that it can only be applied if the interface 
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is not subjected to large deformation since it can head to a serious distortion of the 

internal volume mesh. Nevertheless, the greatest limitation is that this method cannot 

accommodate interface that breaks apart or intersects.  

 
Figure ‎1.5. Collapse of a liquid column with an interface fitted method (a) at time  

t=3.0 and (b) at time t=4.0 (Ramaswamy & Kawahara (1987)) 

1.2.2 Volume methods 

The Volume methods (interface-capturing methods) advanced primarily for free-

surface, and two-fluid interface flows are expressed consistently over non-moving 

meshes, using an advection formula in addition to the flow formulations. The 

advection equation oversees the evolution of an interface function that marks the 

position of the interface. 

In interface-capturing methods, a compressive scheme is used to avoid smearing of 

the interface. However, this has been understood to lead to stepping off the interface 

(i.e., loss of curvature) whenever the flow is not aligned with the computational grid.  

The equations representing conservation of momentum, mass and energy, obviously 

hold for any fluid, even when density and viscosity change abruptly and the primary 

challenge in this method is to advect the phase boundary and to calculate terms 
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concentrated at the interface precisely, like surface tension (Prosperetti and 

Tryggvason (2009)). 

 Marker and cell 1.2.2.1

This approach was based on using marker particles distributed uniformly in each 

fluid to identify the various fluids. Massless marker particles are spread over the 

volume occupied by a fluid with a free surface in the marker and cell (MAC) method 

of Harlow &Welch (1965) (see Figure ‎1.6). A cell with no marker particles is 

considered to be empty. A cell with marker particles, lying adjacent to an empty cell, 

contains a segment of the interface. All other cells with marker particles are 

considered to be filled with fluid.  

 
Figure ‎1.6. Schematic representation of a typical marker and cell mesh layout  

(Ubbink (1997) 

The material properties were reconstructed from the marker particles, and sometimes 

separate surface markers were also introduced to facilitate the computation of the 

surface tension. While the historical importance of the marker and cell (MAC) 

method for multiphase flow simulations cannot be overstated, it is now obsolete. The 

fluids must be identified through a marker function that is advected by the current 

when the governing equations are figured out on a fixed grid. Several algorithms 
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have been advanced for that reason. The volume-of-fluid (VOF) approach is the 

oldest and, after many enhancements and innovations, keeps being widely used.  

The MAC scheme is attractive because it can treat complex phenomena like wave 

breaking. However, the computing effort is large, especially in three dimensions 

because, in addition to solving the equations governing fluid flow, one has to follow 

the motion of a large number of marker particles (Ferziger and Perić (2002)).  

 The VOF method 1.2.2.2

In the VOF (volume of fluid) method (Harlow and Welch, 1965), the flow field in a 

two-phase flow is considered as a flow field of a single fluid which has physical 

properties that vary with a scalar that is transported by the flow. The VOF approach 

relies on a scalar indicator function between zero and unity to distinguish between 

two different fluids. A value of zero indicates the presence of one fluid, and value of 

unity indicates the second fluid. On a computational mesh, volume fraction rates 

between these two numbers indicate the presence of the interface and the value 

provides an indication of the relative proportions occupying the cell volume. Using 

volume fractions is, in general, more economical than markers as only one value 

must be assigned to each mesh cell.  

For an air–water flow, for instance, the density and viscosity may be considered to 

change between the extremes of air and water over a small range of difference of the 

scalar as illustrated in Figure ‎1.7 and this allows identification of the interface state 

within the computational domain (Hewitt and Vassilicos (2005)). 

Another advantage of using volume fractions is that only a scalar convective 

equation is needed to be solved to circulate the volume fractions into the 
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computational area. Earlier versions of the VOF method did not take particular 

account of surface tension, but, more recently, changes of pressure across the 

interface due to interface curvature and surface tension have been taken account of in 

the modeling. A detailed review of VOF methods is given by Scardovelli and Zaleski 

(1999). 

In the VOF method, in addition to the conservation of momentum and mass 

equations, one solves an equation for the filled fraction of each control volume; it is 

important to ensure that the method does not generate overshoots or undershoots. 

Fortunately, it is likely to derive schemes that both keep the interface sharp and 

produce monotone profiles of across it; see Ubbink (1997) or Muzaferija and Perić 

(1997) for methods specifically developed for interface-capturing in free surface 

flows. This approach is more efficient than the MAC scheme and can be used for 

complex free surface shapes including breaking waves. However, the free surface 

profile is not clearly defined; it is usually smeared over one to three cells. 

 

The VOF method offers an extremely useful tool for investigating interfacial 

behaviour in multi-phase flows. One of the challenges with the method is that the 

interface tends to diffuse. A wide variety of ‘interface sharpening’ methods have 

been devised to offset this tendency (Hewitt and Vassilicos (2005)). 
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Figure ‎1.7. Variation of physical properties with scalar value in the VOF method  

(Hewitt and Vassilicos (2005)) 

In volume-tracking or Volume of Fluid (VOF) methods, a fractional volume function 

is specified to indicate the volume fraction of a particular fluid in each grid cell. In 

these methods, no explicit representations of the interfaces are defined. Instead, they 

are reconstructed locally. In order to simulate surface tension effects, which are 

challenging in the VOF methods, the continuum surface force (CSF) model was 

introduced by Brackbill et al., (1991). More modern implementations of these 

approaches were made by Wu et al. (1998). 

The renovated interface is not smooth or even continuous, decreasing the precision of 

the geometrical data (normals and curvature) at the interface discrediting the entire 

solution. Many scientists have studied to enhance the accuracy of the VOF 

geometrical data using convolution. 

To preserving the conservation of mass through the advection of the fraction factor, 

accurate algorithms are required. This represents the disadvantage of the method of 

VOF since conventional differencing methods for the convection term, which ensure 

a volume fraction field serving the physical bounds of zero and unity, smear the step 

profile of the interface over many mesh cells because of numerical diffusion, like 
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upwind method. Various techniques have been introduced to account properly for a 

well-defined interface within the VOF framework. They fall into the groups of donor 

– acceptor formulation and line methods (geometrical reconstruction). 

 Donor-acceptor scheme 1.2.2.2.1

The donor – acceptor formulation includes utilizing the volume fraction value of the 

downstream (acceptor) cell to foretell the level of volume fraction transported to it 

through a time step. Nevertheless, application of the downstream value may, in 

general, make the volume fraction values to be unbounded; they may grow larger 

than unity or narrow down smaller than zero.  

If fluid 1 is taken to be the grey-shaded fluid in Figure ‎1.8 the use of downwinding 

differencing (the acceptor cell value) in the fluid configuration of Figure ‎1.8 (a) will 

ultimately result in volume fraction values much larger than unity in the donor cell 

due to more fluid 2 being required by the acceptor cell than that available in the 

donor cell. On the other hand, downwinding differencing in the fluid configuration of 

Figure ‎1.8 (b) will ultimately result in negative volume fraction values. The reason is 

more of fluid 1 is needed by the acceptor cell than there is available in the donor cell. 

To ensure boundness, the availability of fluid in the donor cell (volume fraction 

value of the donor cell) must be resorted in order to set the level predicted by the 

acceptor cell, which brings forth the idea of controlled downwinding (Yeoh and 

Tu(2009)).  
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Figure ‎1.8. A schematic representation of donor–acceptor cell configurations.  

(Ubbink (1997) 

The boundness criteria for the volume fractions at their respective discrete areas are 

effectively the physical bounds of zero and unity. 

 Line techniques 1.2.2.2.2

The well-known Simple Line Interface Calculation (SLIC) by Noh and Woodward 

(1976) that has been proposed for multi-fluid flows gets place in this category. In this 

approach, the reconstructed interface is made up of a series of line segments aligned 

with the grid – the interface is rebuilt using a straight line parallel to one of the 

coordinate directions and assumes different fluid configurations in that cell for the 

horizontal and vertical movements, respectively.  

A useful refinement to the SLIC method is to fit the interface through oblique lines 

or piecewise linear segments. First proposed by Youngs (1982), this more accurate 

line technique is commonly known as the Piecewise Linear Interface Construction 

(PLIC) method. One critical simplifying feature of this method is that the interface is 

not required to be reconstructed as a chain of joined segments (a continuous chain of 

segments) but as a discontinuous chain with however asymptotically small 

discontinuities. 
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The reconstructed interface through the PLIC method by Youngs (1982) of the 

original fluid distribution is illustrated in Figure ‎1.9. In the same Figure, Ashgriz and 

Poo (1991) developed a Flux Line-Segment Model for Advection and Interface 

Reconstruction (FLAIR) by constructing the line segments on the cell faces instead 

of line segments within the cells. 

 
Figure ‎1.9. Comparison of different line techniques for the prediction of the fluid  

distribution (Yeoh and Tu(2009)) 

The local velocities are used to move the reconstructed fluid distributions in each cell 

in a Lagrangian manner. The new fluid distribution in each cell is then used to update 

the volume fraction value in each cell. 

In all the above methods the rectangular shapes of the mesh cells are implicitly part 

of the reconstruction algorithm of the interface. The reconstruction of the fluid 

distribution for these cells in two dimensions is already very complex. The 
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complexity increases substantially when arbitrary shaped cells in three dimensions 

are used.  
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Chapter 2  

LITERATURE REVIEW 

The purpose of this study is to analyze and compare the effects of different limiters 

to track the interfaces in free-surface flows. The dynamics of majority of two-phase 

flows in engineering fields are effectively simulated by the Navier-Stokes equations 

developed by an equation of state and a Newtonian law of viscosity. Mass and Heat 

transfer, chemical reactions and also phase changes are not discussed in this study. 

Open Source Field Operation and Manipulation (OpenFOAM) source codes were 

employed as the base of analysis. In the source code library, InterFOAM solver has 

been chosen for extraction of required results using VOF method. Three well-known 

test cases have been chosen in order to illustrate the differences in various schemes 

applications: Dam-break, free bubble rise, and advection of hollow shapes in an 

oblique velocity field. 

2.1 OpenFOAM 

OpenFOAM (Open Field Operation and Manipulation) is basically a C++ toolbox 

developed for the customizing and extension of expanding solvers for continuum 

mechanics simulations. Computational fluid dynamics (CFD) simulations are 

included in these simulations as well. OpenFOAM includes an expanding collection 

of solvers that can be applied to a wide range of simulations and problems. This 

software is originally developed by UK company OpenCFD Ltd. and the source 

codes are freely available (open source) under the GPL. Initial development was 

started in order to find a stronger and more flexible simulation platform and triggered 
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in the late 1980s at Imperial College, London. Since then it has evolved by using the 

latest developments in C++ programing language and adequately rewriting many 

times over. 

In case that the experiment is complex, the solution of the complete Navier-Stokes is 

essential and approximation methods to capture or track the interface are required. 

OpenFOAM is software developed to model engineering phenomena of interest in 

continuum mechanics, especially those relevant to heat transfer and fluid flows. 

OpenFOAM greatly depends on finite volume numerical method in order to solve a 

complex of partial differential equations (PDE). This programming software is 

licensed under the General Public License (GPL) and it is considered as an open 

source program. For modelling a multiphase flow, this provides a robust and very 

flexible development environment. 

The present study uses the OpenFOAM that is open-source code software for 

computational fluid dynamics (CFD). OpenFOAM Ltd. releases the software, 

publicly accessible for Linux operating systems through internet. OpenFOAM can be 

operated at a regular laptop in a Linux-based operating system environment, and 

supports parallelization which means it provides the capability of processing multiple 

simulations over multiple processors simultaneously. In this study, simulations are 

executed in parallel. 

OpenFOAM is constituted by a set of C++ modules and has limited graphical user 

interface. The built-in utility “paraFoam” provides capabilities of picturing the grid 

and the obtained results. However, it is helpful for the user to have some knowledge 

of C++ programming in order to apply this software efficiently. The software is open 
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source; therefore, the user may access the source codes in any library, utility and 

solver. OpenFOAM also provides for users numerous capabilities and accompanying 

demands to vary choices. 

2.2 InterFOAM Solver 

InterFOAM is a solver embedded in the OpenFOAM application suite that solves 

multiphase incompressible flows. The solver is based on a modified volume of fluid 

(VOF) method. This approach incorporates an interfacial compression flux term to 

reduce the effects of numerical smearing of the interface. It arranges a part of the 

utilities of OpenFOAM and C++ libraries and is getting more popular and viral in the 

multiphase flow researchers community. 

Rusche (2002) used interFOAM to test various cases of rising air bubbles in water. 

The velocity of an air bubble rising in a quiescent fluid was agreeing well with 

experimental data. Paterson (2008) reported recent developments in interFOAM 

applications. In analysis, the interFOAM solver was coupled with a 3DoF motion 

solver, so that translational motions could be understood. Modellings of a floating 

2D cylinder were carried out for different cylinder weights and the submergence of 

the center-of-gravity (COG) was compared with theoretical data. The results of the 

computations matched these values very well. 

Recent studies on multiphase flows that have been performed by many researchers 

during last few years include the following. 

Liu and Garcia (2008) compared the velocity profiles for a flow around a partially 

submerged cylinder with the experimental results. Berberovic et al in (2009) 

compared the process of crater formation and droplet impact with their experiments. 
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In 2009, Saha and Mitra (2009) regarding to dynamic and static contact angles, 

compared microfluidic capillary flows with their experiments. Saha et al (2009) 

introduced a comparison of a microfluidic flow in rectangular channels with an 

analytical solution of Zeng J. in 2007. Ishimoto et al (2010) modeled the cavitation 

assisted atomization in the gasoline injection system and pictorially with a modified 

version of InterFoam, compared the analyzed instantaneous spray profiles and 

breakup behavior with their experiments. Roisman et al (2010) modeled the droplet 

impact on a porous surface and measured up droplet spreading with their researches. 

Srinivasan et al (2011) modeled the modulated jets and compared the atomization 

properties with the experiments of Chaves, H. et al in 2000. Maiwald and Schwarze 

(2011) modeled the plane plunging jets and compared the obtained data for air 

entrainment for critical conditions with the experiments of Bolton et al. (1980). 

Raach et al (2011) executed an energy equation in the framework of InterFoam. The 

solver was not using surface tension simulation to model heat transfer in a film 

falling over turbulence wires. They evaluated their study by comparing phase 

velocities and wave peak heights with their experiments in 2008. Gopala et al (2011) 

applied a model for Bingham plastics. They evaluated their simulation against 

analytical solutions for velocity profile in channel flow. They validated the solver 

with a flowability test in a V-funnel. Trujillo et al (2011) used an energy equation in 

InterFoam to compute droplet impact heat transfer. Evaluation of this study has been 

performed by comparing of the experiments of Soriano et al. in 2010 and 

temperatures with their own trials. Deshpande et al (2012) compared the liquid 

fraction and velocity profiles in a plunging jet flow with their trials. Zhainakov 

(2012) performed a large scale 3D analyze on flows in complex topological relief 

areas. The Navier-Stokes Reynolds-averaged equations constitute the basis of the 3D 
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unsteady simulating by implementing the well-known Volume of Fluid (VOF) in the 

InterFOAM solver embedded in OpenFOAM 1.7.1 to track the free boundary 

location. The results have been evaluated by comparing to experimental studies. 

2.3 Volume of Fluids (VOF) method 

In Volume methods a boundary of volume is used for representing the free surface. 

The region completely is marked by massless particles or by an indicator function. 

Volume fraction methods are of the most commonly used approaches that can be 

applied to the free surface. Three important volume fraction methods were 

introduced within 10 years between 70’s and 80’s: the DeBar’s method at 1974, the 

SLIC method (Noh and Woodward, 1976) and the Hirt and Nichols’VOF method 

(Hirt and Nichols, 1981). Volume fraction function is used as a scalar indicator 

function in all above mentioned approaches. To distinguish the presence of phase 

fluid, this function’s range varies from zero (no material) to one (completely filled 

with material). 

In VOF method, the volume which is occupied by one fluid cannot be occupied by 

another fluid; this verifies the continuity law at all times. The flow properties (i.e. 

density and viscosity) are a proportional mixture of the properties of both phases. 

The main disadvantage of the VOF method is that in a numerical modeling with 

large grid magnitude, the formation of small bubbles or droplets, smaller than the 

minimum size of the grid is ignored, therefore leads to limiting the method.  

In OpenFOAM, the VOF model was initially deployed by Ubbink (1997) within the 

InterFoam solver codes. Trujillo et al. (2007) particularized experimental and 

numerical studies of horizontal jets below a free surface. Lobosco et al. tested the 
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interFoam in self-aeration regions of stepped spillways in 2011. The researchers 

successfully reproduced the entrapped-air, however, they faced some problems with 

the air-entrainment modellings. Deshpande et al. in 2012 used InterFoam to analyze 

and model horizontal jets plunging into a pool and evaluated the results with 

experimental data. The obtained mean vertical velocity profile along the 

experimental data concludes satisfactory results. Regarding to the surface curvature, 

even in modest grid resolution, the solver proved to be accurate; excellent mass 

conservation; and acceptable advection errors. 

The dispersed phases modelling benefits drag and virtual mass models, whereas the 

resolved phases use the surface-tension models and interface compression of the 

volume of fluid method (OpenFOAM, 2011). 

 In the InterFoam solver, the regular VOF method introduced by Hirt and Nichols in 

1981 is used. As mentioned in before, InterFOAM uses the volume fraction as an 

indicator function to distinguish which part of the cell is filled by the fluid. 

The discretization of the scalar transport equation with high-order difference 

schemes could be performed by the introduction of high-resolution schemes. Various 

methods can be found in the literature such as Total Variation Diminishing (TVD).  

2.4 Convection Discretisation Schemes 

Discretisation of the convection term has been a subject of continual intense debate. 

In order to achieve stability, first-order accurate differencing schemes have been 

introduced (Courant, Isaacson and Rees (1952), Lax (1954), Gentry et al. (1966)). 

The numerical procedure can produce values of the dependent variable that are 

outside of its physically meaningful bounds. If one considers the transport of scalar 
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properties common in fluid flow problems, such as phase fraction, turbulent kinetic 

energy, progress variable etc., the importance of boundedness becomes clear. It is 

therefore essential to obtain bounded numerical solutions when solving transport 

equations for bounded properties. 

A view on the issues of accuracy and boundedness can be based on the sufficient 

boundedness criterion for the system of algebraic equations. The only convection 

differencing scheme that guarantees boundedness is Upwind Differencing (UD), as 

all the coefficients in the system of algebraic equations will be positive even in the 

absence of physical diffusion (Patankar (1981)). Several researchers (Boris and Book 

(1973), Raithby (1974) and (1976), Leonard (1979)) shown that in cases of high 

streamline-to-grid skewness, this degradation of accuracy becomes unacceptable. 

Several possible solutions to these problems have been proposed, falling into one of 

the following categories: 

Locally analytical schemes (LOADS by Raithby (1979), Power-Law scheme by 

Patankar (1981)) use the exact or approximate one-dimensional solution for the 

convection diffusion equation in order to determine the face value of the dependent 

variable. These schemes are bounded and somewhat less diffusive than UD. 

Upwind-biased differencing schemes, including first-order upstream-weighted 

differencing by Raithby and Torrance (1974), Linear upwinding by Warming and 

Beam (1976) and Leonard's QUICK differencing scheme (1979). The interpolation 

that is used in these schemes depends on the direction of the flux. The amount of 

numerical diffusion is somewhat smaller than for UD, but boundedness is not 

preserved. 
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Switching schemes are another category to present better accuracy. In his Hybrid 

Differencing scheme, Spalding (1972) recognizes that the sufficient boundedness 

criterion holds even for Central Differencing if the cell Peclet number is smaller than 

two. Under such conditions, Hybrid Differencing prescribes the use of CD, while UD 

is used for higher Pe-numbers in order to guarantee boundedness. 

Blended Differencing, introduced by Peric (1985). Peric proposes a blending 

approach, using a certain amount of upwinding combined with a higher-order 

scheme (CD or LUD) by applying a constant blending factor for the whole mesh 

until boundedness is achieved. Although this approach potentially improves the 

accuracy, it is not known in advance how much blending should be used. 

The quest for bounded and accurate differencing schemes continues with the concept 

of flux-limiting. Boris and Book (1973) introduce a flux-limiter in their Flux 

Corrected Transport (FCT) differencing scheme, generalized for multi-dimensional 

problems by Zalesak (1979). After that Vanleer’s researchs (1973) and (1974) 

established the Total Variation Diminishing (TVD) schemes. TVD schemes have 

been developed by Harten (1983) and (1984), Roe (1985), Chakravarthy and Osher 

(1983) and others. A general procedure for constructing a TVD differencing scheme 

has been described by Osher and Chakravarthy (1984). Sweby (1984) introduces a 

graphical interpretation of limiters (Sweby's diagram) and examines the accuracy of 

the method. 

TVD schemes can be classified as a switching-blending methodology in which the 

discretisation practice depends on the local shape of the solution. If offers reasonably 

good accuracy and at the same time guarantees boundedness. It has been noted 
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(Hirsch (1991), Leonard (1991)) that limiters giving good step-resolution, such as 

Roe's SUPERBEE (1985) tend to distort smooth profiles. On the other hand, limiters 

such as MINMOD (Chakravarthy and Osher (1983)), although being suitable for 

smooth profiles are still too diffusive. 

2.5 Dam-Break Problem 

In 1995 Koshizuka performed an experimental study over dam break problem and 

obtained a comprehensive data, leading it to become a reliable source for evaluating 

numerical method data results. J.S Wang (2000) triggered an investigation over 

solving dam break problems using total variation diminishing (TVD) method. 

Applying different limiter schemes to 1D and 2D dam break, they achieved 

comparative data and illustrated the different performance of the numerical methods 

results. Larese (2008) performed analysis on the same problem using particle finite 

element method (PFEM) and the obtained results were in good agreement in 

comparison to Koshizuka’s experimental results. Furthermore, many other studies 

have been performed by Koshizuka considering different initial conditions and 

geometries. Koh (2012) used dam break as a test case to apply consistent particle 

method (CPM) which solves Navier-Stokes equations. In this study, partial 

differential equations were approximated using Tylor series expansion and obtained 

a fairly acceptable results comparing to experimental data. F. Moukalled et al. (2012) 

performed a comprehensive simulation over dam break problem using various 

transient schemes including Euler, B-SOUE, and recently developed TICS
1.76

 and 

TICS
2.5

, solved using STACS and SMART convective scheme. By visualizing the 

results using interface contour, it was concluded that TICS
1.75

 and TICS
2.5

 present 

more accurate and less diffusive results and preserves interface boundedness and 

sharpness. 
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2.6 Free bubble rise problem 

The experimental researches of free bubble rise in viscous liquids due to buoyancy 

have received extensive debates in the literature within last ten years by Grace 

(1973), Clift et al., 1978 and Raymond and Rosant (2000).  

Early studies on the rise of a bubble in an inviscid or a viscous fluid were reported in 

the works of Hartunian and Sears (1957), Walters and Davidson (1962), Walters and 

Davidson (1963), Wegener and Parlange (1973) and Bhaga and Weber (1981). 

However, our understanding on bubble rise and deformation is still limited to a few 

flow regimes only, due to the difficulties in experiments. It is rather difficult to 

measure, without any interference, the flow pattern and pressure distribution within a 

bubble and its surrounding liquid while it is rising and deforming. As a result, 

approximate theoretical solutions have been derived in the limit of very small bubble 

deformations (low Bond number) for either high (Moore (1959)) or low (Taylor 

(1964)) Reynolds numbers, where the bubble shape is relatively stable. In the 

analysis work of Davies and Taylor (1950), the rising speed of a spherical-cap 

bubble was related to the radius/curvature of the bubble at the forward stagnation 

point. Hence, they took the overall spherical-cap as a priori shape rather than being 

determined as part of solution. 

An enhanced numerical method for front tracking method is developed to model the 

rising of a bubble in quiescent viscous liquid by Jinsong Hua and Jing Lou (2007). In 

the new numerical approach that presented by them, volume correction is introduced 

to maintain the volume conservation of the bubble while the bubble’s rising and 

deforming is being tracked and volume flux conservation based SIMPLE algorithm 
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using finite volume method is utilized to solve the Navier–Stokes equation for fluid 

flow. The modelling data results were compared with the experimental results in 

terms of terminal bubble shape and velocity. The experimental results clearly agreed 

with the predicted bubble shape and terminal velocity. Recently, A. Albadawi et al. 

(2013) modeled the bubble behavior and categorize its geometrical properties under 

different physical influences to understand the effects of the bubble and the wake 

generated behind it on mass and heat transfer problems. 
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Chapter 3  

NUMERICAL METHOD 

The solver of open-foam toolbox is an inter-foam multiphase solver and can simulate 

multiphase flows. In this part, the mathematical formulation and equation 

discretization of inter-Foam solver are explored to understand the source code better. 

This Section considers the works of Jasak (1996), Ubbink (1997) and Rusche (2002). 

3.1 Conservation Equations 

The movement of fluid is determined by a set of equations expressing the 

conservation of mass, energy and momentum. The mathematical statements of the 

conservation laws of physics are presented by the defined equations of fluid flow. 

The physical behavior of the fluid is completely determined and completely 

independent of the nature of the fluid. The governing equations of fluid continuum 

mechanics can be written in a 3D system in the differential form (Aris, 1989). 

3.1.1 Conservation of Mass 

Mass can neither be destroyed nor created. That means that mass must be conserved 

over time. 

 .( ) 0
t





 


u   (3.1) 

where   denotes fluid density and u is the fluid velocity. This result is known as the 

continuity equation. For an incompressible fluid (when density is constant), this 

equation is shortened to: 

 . 0 u   (3.2) 
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3.1.2 Conservation of Momentum 

As the Newton’s second law says, the sum of the forces on a fluid particle equals the 

rate of change of momentum. Velocity profile would be obtained from this equality. 

Forces on a particle of fluid could be classified into two types; the first one is surface 

forces such as normal forces (pressure and stress) or viscous forces, and the second 

one is body forces such as gravity forces or Coriolis forces. They are usually 

incorporated as additional source terms into the momentum equations. 

 
( )

( ) P g
t


  


     



u
uu F   (3.3) 

Where gravity acceleration vector and velocity vector represented by g and u  

respectively, P denotes the pressure,   is the viscosity stress tensor, and F is related 

to the surface tension:    

 
( )

( )
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n d     x xF S   (3.4) 

In this equation,   denotes the surface tension coefficient, x  is the position vector, 

x  denotes the position vector of interface, n are the normal vector of the interface, 

S  is the surface area vector and κ represent the curvature that described in section 

3.3. More information about surface tension is available. To obtain more efficiency 

the viscous stress term can be reformulated. The final form of this term is as below 

equation: 

  
T

( [ ]) ( ) ( )            u u u u   (3.5) 

where   is a property called dynamic viscosity.  The modified pressure p* (p_ gh  

in OpenFOAM code) is adopted in interFoam by removing the hydrostatic pressure (

xg  ) from the pressure P. This is an advantage for the specification of pressure at 

the boundaries of the space domain (Rusche, 2002). The gradient of the modified 

pressure is defined as: 
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  * x xp P g P g g             (3.6) 

3.2 Indicator Function (VOF method) 

The conventional volume of fluid method presented by Hirt and Nichols (1981) is 

used in the interFoam solver. In this method, the volume fraction is taken as an 

indicator function (alpha in OpenFOAM code) to describe which segment of the cell 

is occupied by the fluid, as mentioned in below equation: 

 

1                     for a cell occupied by fluid 1

0< 1              for a cell involving the interface

0                     for a cell occupied by fluid 2

 




 



  (3.7) 

The transport of   is calculated by solving scalar convection equations represented 

as: 

 ( ) 0
t





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
u   (3.8) 

The previewed equation proves that the conservation of mass is equivalent to the 

conservation of volume in an incompressible fluid and based on that conservation of 

the function α (C erne et al., 2001) is observed. The local fluid properties (   and  ) 

evaluated using the following mixture relations: 

 
1 2 1 2(1 )      and       (1 )               (3.9) 

The subscript 1 denotes to fluid 1 and subscript 2 represents fluid 2. In the case of 

having more than two fluids. Equations (3.8) and (3.9) are reformulated and shown 

below as equations (3.10) and (3.11), respectively. 
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1 1

     and            n = number of fluids
n n

k k k k

k k

     
 

     (3.11) 
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where 
( )k  denotes the volume fraction   of the k th fluid that it constrained by a 

conservation of volume equation as: 

 
( )

1

1    for 1,2,...,  
n

k

k

k n


    (3.12) 

where n represents the number of fluids. In the case of high-density fluids, the 

conservation of the phase fraction is essential. That’s where significant errors on the 

physical properties can be caused by small errors on the volume fraction. Function 

(3.8) is against the effect of high-density fluids (Rusche, 2002) and as a respond 

many researchers has presented alternative techniques to solve this problem (Ubbink, 

1997; Ubbink and Issa, 1999). The best alternative was created by Weller (2002). He 

introduced an extra term in the phase fraction function – the artificial compression 

term. 

 

Artifical compression term

( ) [ (1 )] 0r
t


  


    


u u   (3.13) 

where u   represents the mean velocity and 1 2r  u u u  denotes compression 

velocity that is the vector of relative velocity between the two fluids (Berberović et 

al., 2009).The mean velocity u   computed by a weighted average of the velocity 

between the two fluids: 

 1 2(1 )   u u u   (3.14) 

3.3 Surface Tension Force 

The surface tension force acts on the interface between the two phases. The interface 

is not tracked explicitly in the interface-capturing methodology and its exact form 

and location are unknown (Rusche, 2002). In the momentum equation(3.3), the 

source term (F) relative to the surface tension, cannot be solved directly. Brackbill et 

al. (1991) improved the Continuum Surface Force (CSF) method that solves this 
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problem by converting the F term into a volume force function of the surface tension. 

In this CSF model, the surface curvature (κ) is formulated from local gradients in the 

surface normal (n) at the interface, that is a function of the phase fraction ( n  ) 

(Tang and Wrobel, 2005): 

 ˆ





 
      

n
n =

n
  (3.15) 

The volumetric surface tension force (F) is written in terms of the surface tension, 

and subsequently, to the jump pressure across the interface. 

 
 1 20.5


  

 
 


F =   (3.16) 

By considering the viscous stress term (3.5), the modified pressure (3.6) and the 

volumetric form of surface tension (3.16), the last form of the Navier-Stokes 

equation is as below: 

  *( )
( ) ( ) p g

t


     


            



u
uu u u x   (3.17) 

The final form of the mathematical model by using VOF concept is constituted by 

the continuity equation (3.2), the modified indicator function (3.13) and the 

momentum equation (3.17). The constitutive relations for dynamic viscosity and 

density (equation(3.9)) can help to solve these equations. 

3.4 Finite Volume Method (FVM) 

This section defines the discretization of the governing equations using the FVM 

method. The FVM of solution is subdivided in two parts: time domains and space 

(Rusche, 2002).  

3.4.1 Discretization of the General Transport Equation 

The FVM (Finite Volume Method) discretization of space needs a subdivision of the 

simulation domain into a finite number of very small control volumes (CVs) 
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(Ferziger & Peric, 2002). Cells bounded by a set of flat faces are called control 

volumes. Each face is shared by two cells. The first one is control volume cell (or 

owner cell) and the other one is neighbouring cell. 

In Figure 3.1 an example of an owner cell is shown. The point N denotes the centroid 

of the neighbouring cell and the centroid of the computational cell is represented by 

the point P. Those cells have the internal face f  in common, having the normal 

vector shown by A. The vector A points always outwards from the computational 

cell, with magnitude equal to the area of the face f. The vector d connects the point P 

to N while the vector D is the vector with the same direction of d but magnitude able 

to satisfy the conditions proposed by Jasak (1996). 

  A D k   (3.18) 

 

2




d A
D

d A
  (3.19) 

In orthogonal meshes, the angle between A and d is zero and the vectors D and k are 

omitted (Ubbink, 1997). 

 
Figure ‎3.1. CV and parameters of the discretisation of the solution domain. P and N 

are the centroid of two neighbouring cells, d is the vector between P and N and A the  

vector normal to the face f common to both cells (addapted from Ubbink (1997)) 
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The FVM discretization of the governing equations is done in a few levels. At the 

first step the equations are presented as volume integrals over each CV and later by 

using using Gauss‟s theorem, converted to surface flux terms. Then, the surface 

integrals are calculated by a sum of fluxes over all CVs faces. Finally, to determine 

the fluxes, cell face values of variables are estimated by interpolation using cell 

centered values at neighbouring cells. 

The description below describes and summarizes the finite volume discretization for 

a generic transport equation by applying a generic scalar ϕ. The generic transport 

equation represents any conservation law. 

 

convection term source termdiffusion term
transient term

( )
( ) ( ) S

t
 


 


      


u   (3.20) 

where the density is  , u denotes the velocity vector, transported variable   

represents a flow quantity (property),  and S  are diffusion coefficient and the 

source term, respectively. Discretizing (3.20) over a time interval t, t+Δt and over the 

volume VP (cell with the centroid point P), the volume integral form, results: 

 ( ) ( )
P P P P

t t t t

t V V V t V
dV dV dV dt S dV dt

t
   

               
     u  (3.21) 

The parts below show the main levels for the spatial and temporal discretization of 

the transport equation. 

 Gradient Term 3.4.1.1

As stated before by using the Gauss theorem, the advection and diffusion terms 

needs to be simplified into surface integrals over the cell faces. The Gauss‟s 

divergence theorem is represented: 

  
V V

dV dS 


      (3.22) 
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where V  represents closed surface bounding the volume V and dS  denotes an 

extremely small surface element outward pointing normal on V . 

Since the variable   are stored on the cell center, the respective value on the face 

needs to be obtained by interpolation. Considering the linear variation of   in space 

x, the integral of this variable in the volume VP is: 

  (x) (x x )
P

P P P PPV V
dV dV V              (3.23) 

It is possible to transform equation (3.22) into a sum of integrals over the faces and a 

linear variation of ϕ, by using Gauss theorem it can be discretized as: 

  
P P

f f
V V f

f f

dV dS dS   


       A   (3.24) 

where f  is the face value of variable   and A  is the outward normal surface area 

vector of the faces in the control cell. 

 Face interpolation scheme 3.4.1.2

There are many schemes to interpolate the field ϕ. In following sections some of the 

face interpolation schemes that are used in this thesis are presented. 

 The Upwind Differencing (UD) scheme 3.4.1.2.1

This scheme assumes f , determined according to the direction of the flow. It means 

that the face value f   is set equal to the cell-center value of   in the upstream cell. 

In this scheme, the boundedness of solution is guaranteed, however the order of 

accuracy of the discretization is not guaranteed as second order and the solution can 

become distorted (Jasak, 1996).  

 
  for    flux 0

  for    flux 0

P

f

N







 


  (3.25) 
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 The 2
nd

 order Upwind Differencing (UD) scheme 3.4.1.2.2

 When second-order accuracy is aimed, values at cell faces are computed using a 

multidimensional linear reconstruction approach. In this approach, higher-order 

accuracy is achieved at cell faces through a Taylor series expansion of the cell-

centered solution about the cell centroid. Therefore the face value f  is computed by 

applying the next equation ((3.26)) when second-order upwinding is chosen: 

 
+     for    flux 0

+   for    flux 0

P P Pf

f

N N Nf

r

r

 


 

  
 

  
  (3.26) 

where Nfr  and Pfr  are the displacement vectors from the upstream cell centroid 

(point N) to the face centroid and from the cell centroid (point P) to the face centroid, 

respectively. 

 The Central Differencing (CD) scheme 3.4.1.2.3

CD scheme assumes a linear variation of   between the upstream cell centroid N and 

the cell centroid (Point P). The face value f  is calculated based on the 

 (1 )f x P x Nf f       (3.27) 

where the interpolator factor 
xf  is defined as the ratio of the distances Nfr  and 

PNr . 

Ferziger and Peric (2002) showed that this scheme is second order accurate, although 

it causes violates the boundedness of the solution and unphysical oscillations in the 

solution (Pantakar, 1980). 

 The TVD Scheme 3.4.1.2.4

For finding the face value f  by TVD scheme, the equation (3.28) is used as shown 

below: 
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 

 

1
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2

1
( )    if  N is upstream node
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    

    

  
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  (3.28) 

Where ( )fr  is a flux limiter function and fr  ratio becomes  

 

(2 )
1   if  P is upstream node

(2 )
1   if  N is upstream node

N PN
f

P N

P PN
f

N P

r

r


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

 

 
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

 
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

r

r
  (3.29) 

Note that this fr -formulation can also be applied for any higher order scheme. Some 

of the most popular schemes which are used as a flux limiter are written as below 

 

 
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UD Scheme    ( ) 0

QUICK Scheme    ( ) 0.25 0.75
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1
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r r

r r
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r r r r

r r
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













 






    

   

    n 2 ,1 ,min ,2r r  

  (3.30) 

 Transient Term 3.4.1.3

The transient term [first term of equation (3.21)] is usually discretized using a 2nd 

order or a first order accurate scheme in time. The Euler implicit is an example of a 

first order time differencing scheme that is used in this work: 

 

0 0

P

n n

P
V

dV V
t t

     


    (3.31) 

where 0  is the known value of   from the previous time step and n  is the unknown 

value of   at the current time step. 

 Convection Term 3.4.1.4

Appling Equation (3.24) to the convection term of the momentum equation gives: 
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 ( ) ( ) ( )
P

f f f f f f f
V

f f f

dV F              u u uA A   (3.32) 

where fF  represents  mass flux through the face based on a known velocity field and 

f  is determined through one of the interpolation schemes. 

 Diffusion Term 3.4.1.5

In a similar way to the convection term, the diffusion term is discretized as 

 ( ) ( )
P

f f f
V

f

dV       A   (3.33) 

where   represented the diffusivity and f  the diffusivity at face is computed by 

applying the one interpolation scheme. 

If the mesh is orthogonal, i.e. vectors A and D  are parallel as shown in Figure ‎3.1. 

By considering equation (3.19) it is possible to use the following expression: 

 ( ) N P
f f f

f

 



   D

d
A   (3.34) 

If the mesh is non-orthogonal then it is essential to define an additional explicit term 

( fk ) to induce higher accuracy of the equation (3.34): 

 ( ) ( ) ( )f f f f f f         D kA   (3.35) 

There are many possible decompositions to correct the orthogonality. In open foam, 

the orthogonal correction is made using an Over-relaxed approach (Jasak, 1996; 

Ubbink, 1997). 

For finding ( ) f , Equation (3.36) is used as given below: 

 ( ) ( ) (1 )( )f x P x Nf f          (3.36) 

where xf  is an interpolation factor and is defined as   
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f N

x

f N f P

f



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x x

x x x x
  (3.37) 

 Source Term 3.4.1.6

The right side terms in equation (3.21), which is not possible to be written as 

diffusion, convection or transient terms, are treated as sources. A simple process of 

linearization follows the work of Pantakar (1980): 

 ( ) u pS S S      (3.38) 

Using the assumption made in Equation (3.23) the volume integral of the source term 

is: 

 ( )
P

u P p P P
V

S dV S V S V      (3.39) 

3.4.2 MULES Approach 

The Flux Corrected Transport (FCT) is a technique introduced by Boris and Book 

(Boris and Book, 1973) and improved by Zalesak (Zalesak, 1979) as a way to 

guarantee boundedness in the solution of hyperbolic problems. OpenFOAM 

implementation of FCT theory is called MULES (Multidimensional Universal 

Limiter for Explicit Solution); it relies on similar concepts with respect to Zalesak's 

limiter (Zalesak, 1979) but the determination of λ's (the limiter in equation (3.45)) is 

iterative. 

This approach is described first by rewriting equation (3.8) in integral form as 

 ( ) 0
t t t t

t V t V
dV dt dV dt

t




          
    u   (3.40) 

After discretizing equation (3.40) by using equations (3.31) and (3.32), it becomes: 

 
   
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P P
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F
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 



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
   (3.41) 
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where the transient term is discretized using the forward Euler scheme, and the 

convection term appears as a summation over the cell faces. The values of the flux 

depend on many variables but particularly on the values of   at faces. Boundedness 

of the temporal solution can be achieved via face value limiting, such as in TVD 

schemes, or by limiting the face fluxes. 

In this approach the values of F are obtained by a lower order and bounded method 

and a limited portion of the values obtained by a high order and possible unbounded 

method, so equation (3.41) can be written as  

 
   

0

01
( )

n

P P

u M c

fP

F F
t V

 



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
   (3.42) 

where 
M  is a limiter that is implemented in the MULES solver and is equal to one 

in the transition region (interface) and zero elsewhere. The advective fluxes 
uF  and 

cF are defined as 

 ,    and

(1 )
u f f upwind

c f f rf rf rf u

F

F F

 
    



   
  (3.43) 

 where f (volume flux) is given by 

 f f f  u A   (3.44) 

The face values for volume fraction to find  cF  are calculated using a blending of 

central and upwind schemes as follows: 

 
 

1 ( )(1 )
2

N P

f P f 

 
    


        (3.45) 

where ( )f   is a step function and  the limiter   can be chosen from among 

several alternatives, such as Van-Leer, SuperBee, Minmod and QUICK. In all the 
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results presented here, the Van-Leer scheme was used to obtain the face centered 

values for  . ( )f   is given by 

 
1           for      0

( )
1        for      0

f

f

f


 




 
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  (3.46) 

Regarding the compressive flux, (1 )rf rf rf    in equation (3.43) is given by 

  min ,max
f f

rf f f

f f

C

 


  
   
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n A
A A

  (3.47) 

where the max operation is performed over the entire domain, while the min 

operation is done locally at each face. The constant C  is a user-specified value, 

which serves as a parameter to restrict interface smearing. 

Finally, the quantities rf  similar to equation (3.45) is calculated as 

 
 

1 ( )(1 )
2

N P

rf P f r

 
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
        (3.48) 

where the limiter r  is calculated as 

        
2 2

min max 1 max 1 4 1 , 1 4 1 ,0 ,1r p p N N    
   

           
 (3.49) 

3.4.3 Discretization of the Spatial Terms of Momentum Equation 

Following the discretization process presented for the general transport equation, the 

momentum equation (3.17) of the Navier-Stokes equations over the control volume 

and the time step Δt can be presented as follow: 
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  (3.50) 
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The finalized form of the momentum equation after the terms discretization is as 

below: 

 

0 0
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  (3.51) 

3.4.4 Discretization of the Phase Fraction Transport Equation 

The final form of the indicator function transport equation is defined in previous 

parts by the equation (3.13). The finite volume discretization over the volume control 

and the time step Δt assumes this form: 

  ( ) (1 )
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t t t t t t

r
t V t V t V

dV dt dV dt dV dt
t


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
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The first term of the equation by assuming the linear variation of indicator function 

(α), can reduced to: 
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t t

 
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    (3.53) 

The second and third terms of the equation (3.52) are discretized applying the Gauss 

theorem. 

Following the description of the open foam manual (openfoam, 2014), the transient 

PDE presented in (3.21) can be simplified as the following equation by considering 

the spatial terms   where   is a spatial operator: 
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By applying the Euler implicit method (Equation (3.31)), the first term of the 

Equation (3.54) returns: 
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The second term of the equation (3.54) can be discretized in open foam by three 

ways: Euler implicit, Euler explicit and Crank Nicholson. 

The Euler implicit guarantees boundedness, it is unconditionally stable and is a 1st 

order scheme accurate in time (Hirsch 1988). This scheme uses the current values of 

ϕ, thereby the solution needs to be achieved using a matrix. 

The Euler explicit is a first order scheme accurate in time and is unstable for Courant 

numbers greater than unity. This scheme uses only the old values of ϕ. The Courant 

number is defined as: 

 

time step

length of a cell

t
Co

x





u   (3.56) 

The Crank Nicholson is a second order scheme accurate in time. This scheme does 

not guarantee the boundedness of the solution (Jasak, 1996). It uses the trapezoidal 

rule to discretize the spatial terms, thereby taking the mean value of the current 

values and old values of ϕ. 

 01
( )

2

t t
n

t
dt  



      (3.57) 

Assuming now that the viscosity (  ) and density (  ) do not change in time and by 

applying the Crank Nicolson scheme (3.57), the momentum equation returns: 
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The discretisation and linearization procedure outlined produces a linear algebraic 

equation for each control volume. Since fu ,  
f

u  and other terms depend on the 

values on the neighbouring cells, the new values of Pu  can be implicitly achieved 

from the generic equation: 

 n n

P P N N

N

a a S u u   (3.59) 
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Chapter 4  

RESULTS 

4.1 Dam-Break Problem 

In Figure ‎4.1 schematic of the model is showed. In the mentioned model, a column 

of water with width of        m and height    is located on the left side of a 

square tank with sides of size    filled with air. Water is considered viscous, with a 

constant density 
w  and viscosity 

w  of values 998.2 3/kg m  and 0.993×10
-3

 Pa s , 

respectively. Air is also considered to be of constant density and viscosity

3( 1.164 /a kg m  , 
51.824 10  )a Pa s    . The water column, which is initially at 

rest, starts collapsing under its own weight at time 0 t s . 

The above mentioned problem is different from the previously showed problems that 

the velocity field is not known and it is achieved as a part of the solution. 

Furthermore, the continuity and Navier-Stokes equations have to be solved in 

addition to the volume fraction    equation. The resulting flow field at time 0t    is 

modeled as laminar, the gravitational acceleration g  is assigned the value of 

29.81 /m s , and surface tension effects are neglected. The boundary conditions are 

all set as no-slip wall conditions for solving momentum equation and for simulating 

volume fraction equation zero gradient condition applied for the boundary 

conditions. The physical domain is subdivided into 80×80 control-volumes, and the 

problem is solved for three different time intervals, with values of 0.0026 s, 0.0052 s 
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and 0.0078 s. With the maximum theoretical velocity not exceeding (

maxu 2 (2 ) 2.392 /g a m s    ), these time steps correspond to 

max maxu 0.852,  1.704,  and 2.556
t

Co
x


 


, respectively. In the Navier-Stokes 

equations, the convective terms are discretized using the UMIST scheme, while the 

transient term is discretized via a first-order Euler scheme. In the volume fraction 

equation, however, the convective terms are discretized using various schemes 

introduced earlier, while the transient term is discretized by applying the same 

unsteady scheme that is used for solving transient term in the momentum equation. 

 
Figure ‎4.1. A schematic representation of dam-break problem 

Contour plots of the   (indicator function) simulated by various convection schemes 

are illustrated in Figure ‎4.2, Figure ‎4.3 and Figure ‎4.4 in three different time steps. 
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MULES 

   
Figure ‎4.2.  -contour plots for the dam-break problem over an 80×80 grid at time  

t
*
=1.278. 
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Figure ‎4.3.  -contour plots for the dam-break problem over an 80×80 grid at time  

t
*
=2.54. 
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Figure ‎4.4.  -contour plots for the dam-break problem over an 80×80 grid at time  

t
*
=6s. 
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As can be seen in Figure ‎4.2 until Figure ‎4.4, solutions are generated for the various 

convection schemes. Results at any time step are assumed to be converged in all the 

computations when the maximum absolute value of the residual of all variables falls 

below a small numbers set at 10
-6

. In Figure ‎4.2, Figure ‎4.3 and Figure ‎4.4, solutions 

achieved using the Upwind, Van-Leer, UMIST, QUICK and MULES convection 

schemes at three values of the 
maxCo  are shown. Figure ‎4.2 show interfaces at the 

dimensionless time 
* 1.278t t g a  , Figure ‎4.3 and Figure ‎4.4 at * 2.54t   and 

* 6t  , respectively. By comparing Courant number for max 0.852Co  , 

max 1.704Co   and 
max 2.556Co   shows little effect on the interface anticipated 

results by all of the convection schemes. For max 2.556Co   it is possible to see small 

wiggles and the results become slightly more diffusive when 
maxCo  increases, 

however, the results shows that the interface is almost independent with Courant 

number for the schemes that have been used. For smaller Co numbers the results are 

slightly better. The Upwind scheme profiles are greatly diffusive at all Co 

considered, and it’s the most diffusive at all maxCo and *t . Results by MINMOD are 

much better than UPWIND’s but the results are still diffusive. Interfaces predicted by 

the Van-Leer and UMIST schemes are somewhat sharper than those achieved with 

the QUICK, but the results are slightly more diffusive. Results for Van-Leer and 

UMIST are nearly the same, but the prediction of interface by Van-Leer is a bit 

sharper and less diffusive. Profiles predicted by MULES are much sharper and it’s 

the lowest diffusive results in comparison with the other schemes that are used. As 

seen in the plots, all schemes are capable of predicting the collapse of the water 

column on the left wall of the domain * 1.278t  , the rise of water on the opposite 
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side * 2.54t  , and then its descent * 6t   but the results by Upwind is so diffusive, it 

means that it’s not logical to use this scheme for predicting interfaces. 

4.2 Advection of Hollow Shapes in an Oblique Velocity Field 

In this problem in comparison with the previous one, the momentum equation is not 

solved. In an oblique velocity field presented by  2,1u /m s , the convection of three 

different hollow shapes are considered.  

  
 

 
Figure ‎4.5. schematic of initial condition advection of (a)  hollow circle (b) hollow  

square (c) hollow rotated square 

 The following three shapes, depicted in Figure ‎4.6 to Figure ‎4.11, are taken to the 

account: A hollow square (Figure ‎4.7 and Figure ‎4.10) aligned with the coordinate 
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axes 0.1m and 0.2 m of an inner side length and outer side length that are divided 

into 20 and 40 cells for the regular rectangular mesh used, respectively; with respect 

to the x-axis a hollow square rotated through an angle of 26.57
o
 (Figure ‎4.8 and 

Figure ‎4.11), of same dimensions as shown in above hollow square; A hollow circle 

(Figure ‎4.6 and Figure ‎4.9) with 0.2m and 0.1m as an outer diameter and inner 

diameter that subdivided 40 and 20 structured cells, respectively. 

Initially, all of these shapes are centered at (0.2, 0.2) meter and after 0.3 seconds 

their exact positions centered at (0.8, 0.5) meter. For discretizing the transient 

scheme, the second-order Crank-Nicholson scheme is used. Computations are 

performed over the 200×200 structured grid system for three different time steps 

which are Δt= 0.0004168 seconds yields Courant number values of 0.25, Δt= 

0.0008332 , and 0.0012499 seconds, yielding, Co=0.5, and Co=0.75, respectively. 

These Co values are indicated by low courant number, medium courant number, and 

high courant number on the following simulation results. For the different convection 

schemes and shapes, Contour plot results of the   fields at different courant number 

values after the lapse of 0.2 s and 0.3 s are displayed in Figure ‎4.6 to Figure ‎4.8 and 

Figure ‎4.9 to Figure ‎4.11, respectively. 

At all Courant numbers considered, the UPWIND scheme profiles are greatly 

diffusive. The MINMOD scheme creates better simulation results in comparison with 

the UPWIND scheme results, but the interfaces by using the MINMOD scheme is 

not resolved sharply and it could not track the shape of the interface correctly. The 

convected shapes seem to be little effected by the Courant numbers that are predicted 

by all of the convection schemes. By using MULES the best profiles are achieved 

and are almost independent of Co and preserving the sharpness of the interfaces. By 
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the comparison of the contours it is possible to see that the results by QUICK have 

the lowest diffusivity except MULES but this scheme cannot follow the interface 

sharply. The simulation results of UMIST are close to results of Van-Leer scheme 

where the predicted interface by Van-Leer is more accurate and less diffusive.  
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Figure ‎4.6. advection contour plots of  (indicator function) over 200×200 grid after  

0.3 seconds of a hollow circle. 
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Figure ‎4.7. advection contour plots of  (indicator function) over 200×200 grid after  

0.3 seconds of a hollow square. 

 

 

 



61 

 Low Co Medium Co High Co 

Upwind 

   

Vanleer 

   

UMIST 

   

QUICK 

   

MINMO

D 

   



62 

MULES 

   

Figure ‎4.8. advection contour plots of  (indicator function) over 200×200 grid after 

 0.3 seconds of a rotated hollow square. 
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Figure ‎4.9. advection contour plots of  (indicator function) over 200×200 grid after  

0.2 seconds of a rotated hollow circle. 
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Figure ‎4.10. advection contour plots of  (indicator function) over 200×200 grid  

after 0.2 seconds of a hollow square. 
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Figure ‎4.11. advection contour plots of  (indicator function) over 200×200 grid  

after 0.2 seconds of a rotated hollow square. 

Profiles for the hollow square and rotated hollow square problems (Figure ‎4.7, 

Figure ‎4.10, Figure ‎4.8 and Figure ‎4.11) anticipated by the QUICK scheme have 

wiggles along interfaces that is the square lines do not remain straight, but Van-Leer 

and UMIST predicted the interfaces sharper. By comparing  -contours achieved 

with the various schemes (Figure ‎4.6 to Figure ‎4.11), the performance of MULES is 

preferable to all other schemes, considered in this work and Results demonstrated 

that interfaces obtained with MULES are sharper and bounded. 

4.3 Free bubble rise 

In a liquid under the influence of buoyancy, free rising of a gas bubble is considered. 

For solving the problem by using different schemes to solve the convection term of 

volume fraction equation, the single bubble rising in a motionless liquid is simulated 

same as done in the previous problem, but the surface tension affect is applied in this 

model. The analysis is done for two series of physical properties as shown in 

Table ‎4.1 and for two different equivalent diameters; 3mm and 5mm. 

Table ‎4.1. physical properties for simulation free rise bubble problem 

Series l  (Pa s) l

(kg/m
3
) 

 (N/m) Mo 
*( / )b l    

*( / )b l    

S3 0.242 1230 0.063 0.11 7.61×10
-5 

9.57×10
-4

 

S5 0.0733 1205 0.064 9.0×10
-4

 2.51×10
-4

 9.89×10
-4
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The size of the numerical domain is (0.04 m, 0.075 m, 0.04 m) and (0.04 m, 0.075 m, 

0.04 m) that correlates with (8Deq, 15Deq, 8Deq) ( eqD  is the equivalent diameter of 

bubble) for diameter of bubble 5 mm and 3mm, respectively. Hua and Lou (2007) 

have demonstrated that no liquid influence from the boundary walls on the bubble 

motion for the same geometry and physical properties. 

It has been found that the bubble can deform to different shapes depending on three 

dimensionless numbers: the Morton number ( Mo  ), the Eötvös number ( Eo ) (also 

called as the Bond number) and the Reynolds number ( Re ) (Grace(1973) and Clift 

et al. (1978)), where  these numbers are defined as 

 
4

2 3

l

l

g
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 

 


   (4.1) 

 

2
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




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l eq

l

V D




   (4.3) 

where g  is gravity acceleration , l  and l  denotes viscosity and density of liquid 

around the bubble respectively and eqD  represents the equivalent diameter of bubble. 

The solution domain size in the radial direction should be large enough so that the 

boundary effects on bubble rising can be ignored in the simulation, and the bubble 

rising can be reasonably assumed as in an infinite quiescent liquid. To discretize the 

fluid domain, a structured mesh is used. In this mesh system along the diameter of 

bubble, 12 cells are distributed. The convergence of the simulation results is 

guaranteed by this size of mesh and it is sufficient as well. (Van Sint et al. (2005)) 
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used 12 cells per diameter so a 96×180 rectangular grid is used in this work. The 

boundary conditions are all set as no-slip wall conditions. 

For solving free bubble rise problem, the same schemes for discretizing the 

convection and transient terms for momentum and volume fraction equations are 

used as dam-break problem. Alpha-contours are shown in Figure ‎4.12 to Figure ‎4.15 

at three different times.The non-dimensional Reynolds number and Eötvös number 

are given in Table ‎4.2. 

Table ‎4.2. The simulation parameters for free bubble rise problem in different fluids 

Bubble 

diameter (m) 
*Re  for S3 

*Eo  for S3 
*Re  for S5 

*Eo  for S5 

0.003 2.610 1.722 8.445 1.660 

0.005 5.616 4.783 18.172 4.612 

 

where the non-dimensional Reynolds number and Eötvös number are defined by 

Equations (4.4) and (4.5), respectively. 

 

1 2 3 2

*Re
l eq

l

g D


   (4.4) 

 

2

* l eqg D
Eo




   (4.5) 

The terminal bubble shape for the different bubble diameters with the S3 fluid is 

illustrated in Figure ‎4.12 and Figure ‎4.14 and with the S5 fluid is displayed in 

Figure ‎4.13 and Figure ‎4.15 where the initial spherical bubble is shown to deform 

from spherical to ellipsoidal shape as the initial diameter increases. 

The shape of bubbles, with intermediate Reynolds and Bond numbers (1 < Re < 100 

and 1 < Eo < 100), are affected significantly by the flow conditions. Various bubble 



69 

shapes (oblate ellipsoid, disk-like, oblate ellipsoidal cap, skirt bubble, and spherical-

cap) have been found in various flow regimes by the experimental investigations. In 

spite of the difference in shapes, the bubbles rise steadily in the liquid along a 

straight path (Hua and Lou (2006)). 

By comparing results for same initial bubble diameter (Figure ‎4.12 and Figure ‎4.14 

for 3mm eqD ; Figure ‎4.13 and Figure ‎4.15 for 5mm eqD ) shows that the shape of 

bubble is affected by changing the density ratio and viscosity ratio, bubble shape 

distort more by increasing these ratios. 

The UPWIND scheme profiles are greatly diffusive at all of the time intervals and it 

gets worse throughout the time and results show that this scheme cannot follow the 

bubble shape properly specially for the higher initial bubble diameter. Interfaces 

predicted by MINMOD are less diffusive and sharper than UPWIND but the results 

by this scheme are still diffusive. QUICK scheme could not track the shape of the 

interface correctly in comparison with Van-Leer and UMIST results especially it gets 

worse by increasing the bubble diameter (Figure ‎4.13 and Figure ‎4.15) but the result 

by Quick is less diffusive. Results for Van-Leer and UMIST are nearly the same, but 

the prediction of interface by Van-Leer is a bit less diffusive. Results demonstrated 

that interfaces obtained with MULES are sharper and MULES generated the lowest 

results in comparison with the other schemes that are used in this work. 
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Figure ‎4.12.  -contour plots for the free bubble rise problem over an 96×180 grid 

with S3 physical properties for bubble diameter 3 mm in three different time steps  

0.1s, 0.15s and 0.3s respectively. 
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Figure ‎4.13.  -contour plots for the free bubble rise problem over an 96×180 grid 

with S3 physical properties for bubble diameter 5 mm in three different time steps  

0.1s, 0.15s and 0.3s respectively. 
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Figure ‎4.14.  -contour plots for the free bubble rise problem over an 96×180 grid 

with S5 physical properties for bubble diameter 3 mm in three different time steps  

0.1s, 0.15s and 0.3s respectively. 
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Figure ‎4.15.  -contour plots for the free bubble rise problem over an 96×180 grid 

with S5 physical properties for bubble diameter 5 mm in three different time steps 

0.1s, 0.15s and 0.3s respectively. 

  



76 

Chapter 5   

CONCLUSION 

Discretization of the convection term is a controversial issue in the two phase flow 

simulations.  This research work started with the study of effect of different 

convection schemes on solving volume fraction equation to track the interfaces in 

free surface flows. Three well-known test cases (dam-break, free bubble rise and 

advection of hollow shapes in an oblique velocity field) have been chosen in order to 

illustrate the differences in various schemes applications. 

 The OpenFOAM is a free open-source CFD toolbox that is largely used in 

multiphase flows. OpenFOAM includes an expanding collection of solvers that can 

be applied to a wide range of simulations and problems. The interFoam is one of 

these solvers, which employs the VOF method to predict the free-surface that is used 

in this work. The VOF method was found to be more accurate in capturing the sharp 

interface between two fluids than other methods available in literature. The 

simulation in this research has been carried out for 2D problems. 

To see the performance of different convection schemes, the UPWIND scheme as a 

first order accurate scheme, QUICK as a higher order accurate scheme, MINMOD, 

Van-Leer and UMIST as a flux limiter function in newly TVD scheme and MULES 

as a flux limiter are chosen. 
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 As given results in previous chapter (Figure ‎4.2 to Figure ‎4.4 for dam-break 

problem, Figure ‎4.6 to Figure ‎4.11 for advection of hollow shapes problem and 

Figure ‎4.12 to Figure ‎4.15 for free bubble rise problem), the results by UPWIND 

scheme profiles are greatly diffusive due to the fact that it’s a first order scheme, this 

scheme is the most diffusive scheme in comparison to the other schemes that are 

used, also it is not possible to track interface accurately by using UPWIND scheme. 

The MINMOD scheme creates better simulation results in comparison with the 

UPWIND but the results by this scheme are still diffusive. The predicted interfaces 

by using the QUICK scheme is not resolved sharply but in comparison with results 

of Van-Leer and UMIST schemes is less diffusive. The simulation results of UMIST 

are close to results of Van-Leer scheme where the predicted interface by Van-Leer is 

more accurate and less diffusive. The most accurate and lowest diffusive results are 

given by MULES. 

New methods such as CICSAM or STACS based on the blending strategy are 

developed for solving the diffusivity problem. These methods can be applied and 

developed in future works by changing the blending schemes and applying new 

blending factor to achieve more accurate, sharp and less diffusive results. 
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