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Gazimağusa, North Cyprus



Approval of the Institute of Graduate Studies and Research

Prof. Dr. Elvan Yılmaz
Director

I certify that this thesis satisfies the requirements as a thesis for the degree of
Master of Science in Mathematics.

Prof. Dr. Nazim Mahmudov
Chair, Department of Mathematics

We certify that we have read this thesis and that in our opinion it is fully adequate
in scope and quality as a thesis of the degree of Master of Science in Mathematics.

Assoc. Prof. Dr. Hüseyin Aktuğlu
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ABSTRACT

In this thesis we studied αβ-statistical convergence. We started with the discussion of

statistical convergence. Later, we gave a brief summary of λ-statistical, lacunary statis-

tical and A−statistical convergences. The concept of αβ-statistical convergence which

is the main interest of this thesis has been considered in the last chapter of the thesis.

In this chapter we also show that αβ-statistical convergence is a non-trivial extension

of statistical, λ-statistical and lacunary statistical convergences. Finally, we introduced

boundedness of a sequence in the sense of αβ-statistical convergence.

Keywords: αβ−Statistical Convergence, λ−Statistical Convergence, Statistical Conver-

gence, A-Statistical Convergence
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ÖZ

Bu tezde, αβ-istatistiksel yakınsaklık kavramı incelenmiştir. Bu kapsamda, öncelikle

istatistiksel yakınsaklık kavramı ve bu kavrama bağlı olarak, λ -istatistiksel, lacunary

istatistiksel ve A−istatistiksel yakınsaklık konuları hatırlatılmıştır. Daha sonra bu tezin

esas amacı olan αβ-istatistiksel yakınsaklık tanımı özellikleri ve λ-istatistiksel, lacu-

nary istatistiksel ve A−istatistiksel yakınsaklık ile ilişkileri verilmiştir. Bu kapsamda

αβ-istatistiksel anlamında sınırlılık tanımı ilk kez bu çalışmada verilmiştir.

Anahtar Kelimeler: αβ−İstatistiksel Yakinsaklik,λ−İstatistiksel Yakinsaklik, İstatistik-

sel Yakinsaklik, A-İstatistiksel Yakinsaklik
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support throughout my study in Eastern Mediterranean University. Without his great

advice, encouragement and guidance I couldn’t have completed this research.

I would also like to give my special thanks to all my colleagues at the Department of

Mathematics in Eastern Mediterranean University who helped me.

I must express my gratitude to my family for their continuous spiritual and financial

support, encouragement and patience whom experienced all of the ups and downs of my

research.

I have been very lucky to be surrounded by some very giving friends and I would like

to take the opportunity to thank them here especially Sezer Zorsu, Noushin H. Ghahra-

manlou.

vi



TABLE OF CONTENTS

ABSTRACT................................................................................................................. iii

ÖZ ................................................................................................................................ iv

DEDICATION ............................................................................................................. v

ACKNOWLEDGMENT .............................................................................................. vi

1 INTRODUCTION .................................................................................................... 1

2 PRELIMINARIES .................................................................................................... 3

2.1 Sequences......................................................................................................... 3

2.2 Matrix Transformation.................................................................................... 10

2.3 Densities.......................................................................................................... 13

3 NEW TYPE CONVERGENCES ............................................................................ 20

3.1 Statistical Convergence.................................................................................... 20

3.2 Lacunary Statistical Convergence.................................................................... 26

3.3 λ−Statistical Convergence ............................................................................... 27

3.4 A-Statistical Convergence................................................................................ 28

4 αβ-STATISTICAL CONVERGENCE ..................................................................... 34

5 CONCLUTION ........................................................................................................ 48

REFERENCES ............................................................................................................ 49

vii



Chapter 1

INTRODUCTION

Statistical convergence, which is the generalization of the ordinary convergence was

first introduced by Steinhaus [11] at a conference in Poland in 1951. Then it was de-

veloped by Fast [2] in 1951 and has become popular among researchers from the differ-

ent fields of mathematics. After statistical convergence different researchers introduced

some other methods. Fridy and Orhan [8], proposed and discussed lacunary statisti-

cal convergence. In this method an arbitrary lacunary sequence θ is used to define

lacunary statistical convergence. Statistical convergence was extended to A-statistical

convergence in [10] by using a nonnegative regular matrix instead of Cesáro matrix.

Mursaleen[17] introduced the concept of λ−statistical convergence [17]. Çolak intro-

duced concepts of statistical convergence of order α and λ−statistical convergence of

order α in [14] and [15] respectively. All of these concepts are nontrivial extensions of

ordinary convergence. In addition, implication relations are studied for each case. For

example in the concept of lacunary statistical convergence sufficient conditions for sta-

tistical convergence and ordinary convergence are obtanied in [8]. Also they carried out

differences and implication conditions between statistical convergence. In the case of

λ− statistical convergence, Mursaleen did the same as well by proving the condition for

implication between statistical convergence and λ-statistical convergence. Later, using

these new type of convergences many research papers have been published by different

authors (see for example [4],[5],[6],[10],[12],[13], [16],[18] and [19].
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Recently, Aktuglu introduced the concepts of αβ−statistical convergence and αβ− sta-

tistical convergence of order γ in [1]. In this thesis we shall focus on αβ−statistical

convergence and αβ−statistical convergence of order γ which are given in [1]. Some

new definitions such as αβ−statistically bounded sequences, αβ−statistically Cauchy se-

quences, sequenses diverging to −∞ or∞ in the sense of αβ−statistical convergence are

given and studied in this thesis.

In Chapter 1, we give a short summary of the theory of sequences including definition

of convergent sequences, Cauchy sequences and liminf and limsup of a sequence. We

also give basic properties of sequences and Cauchy sequences. Moreover, some needed

properties of infinite matrices and matrix transformations are discussed in Chapter 1.

Finally, density functions and their properties are studied at the last part of Chapter 1.

Chapter 2 is devoted to new type of convergences such as Statistical, λ−statistical, lacu-

nary and A−statistical convergences. Definitions and discusssions about basic properties

and implications between these new type of convergences.

The last Chapter is organized as follows. First definirions of are provided of αβ−statistical

convergence and αβ−statistical convergence of order γ which are given in [1]. Next,

the relation between αβ−statistical convergence and new type of convergences are an-

alyzed (see also [1]). Finally, some new definitions such as boundedness in the sense

of αβ−statistical convergence, divergence to ∞ and −∞ in the sense of αβ−statistical

convergence are discussed.
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Chapter 2

PRELIMINARIES

Before starting to discuss αβ−statistical convergence , we consider a very short summary

about the theory of sequences and some other related topics. Furthermare in the present

Chapter, some needed properties of sequences, infinite matrices and matrix transforma-

tions and density functions are studies. These basic properies of sequences will help us

to see the differences between the known theory of sequences and their αβ−statistical

cases.

2.1 Sequences

This Section is devoted to the brief summary of the theory of sequences. New type

of convergences like statistical convergence, λ−statistical convergence, Lacunary sta-

tistical convergence and more generally αβ−statistical convergence are all summability

methods. Therefore to compare these type of convergences by the ordinary convergence

first recall some well known properties of ordinary convergence. Starting with some

basic definition which can be easly found in any real analysis text books, related with

sequences.

Definition 1 A sequence is a function defined on the set of natural numbers N. Se-

quences get different names with respect to their range. If the range of the sequence is R

then we call this sequence a real number sequence (or real sequences). If the terms are

rational numbers Q, then we call this sequence rational number sequence (or rational
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sequences). Generally we use the notation

x = (xn)

to represent sequences. For each value of n, the term xn is known as nth term of x.The

space of all sequences is denoted by ω.

Example 2 Consider the constant function f (n)= 1 then we have the following constant

sequence xn := (1,1,1, . . . ,1, . . .)

Example 3 Taking f (n) = (−1)n thenxn := (−1,1,−1, . . . , (−1)n, . . .)

Definition 4 Given x := (xn) and letk1 < k2 < . . . < kn . . . where kn ∈N. Then the sequence(
xn1 , xn2 , . . . , xnk , . . .

)
is called a subsequence of x.

Example 5 Given x :=
(
1, 12 ,

1
3 , ...

)
, then obviously the sequence

x = (x3n) =
(
1
3
,
1
6
,
1
9
, . . . ,

1
3n
, . . .

)

is a subsequence of x := (xn).

Definition 6 A sequence x := (xn) is called bounded above if ∃K1 ∈ R, which satisfies

the inequality xn ≤ K1 for all n ∈ N. In this case we say K1 is an upper bound for x.

Definition 7 We say x := (xn) is bounded below if ∃K2, which satisfies the inequalityK ≤

xn for all n ∈ N . In this case we say K2 is a lower bound for x.

Definition 8 We say that a sequence x := (xn) is bounded if ∃ K > 0, which satisfies the

inequality

|xn| ≤ K
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for all n ∈ N.

Lemma 9 We say x := (xn) is bounded if and only if it is bounded below and bounded

above.

Recall that, l∞ = {x ∈ ω : xn is bounded} .

Example 10 Sequences defined by xn := n−1
n and yn := 1

2n are both bounded.

Definition 11 A sequence x := (xn) converges to a number L ∈R and denoted by xn→ L,

if for every ε > 0 there exists a N(ε) ∈ N, such that for all n ≥ N(ε),

|xn−L| < ε.

In other words, xn converges to L if ∀ε > 0, |xn−L| < ε holds except finitely many terms

of the sequence x.We use the notation c, to represent the space of convergent sequences,

c = {x ∈ ω : xn is convergent} .

Definition 12 A sequence which is not convergent is called divergent.

Definition 13 A sequence which is convergent to 0 is called a null sequence. The spaces

of all null sequences is denoted by c0, i.e.

c0 = {x ∈ ω : xn→ 0} .
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Example 14 The sequence yk := 1
k is a null sequence.

Remark 15 Obviously c0 ⊂ c ⊂ ω.

Now we recall some basic properties of sequences which are well known and can be

found in any calculus text book.

Lemma 16 If x := (xn) converges to L, then any subsequence x
′

:= (xnk) of x also con-

verges to L.

Lemma 17 Any convergent sequence of real numbers is bounded.

Remark 18 In general, a bounded sequence need not be convergent. In fact, the se-

quence xn := (−1)n is bounded but not convergent.

Theorem 19 (The Bolzano-Weierstrass Theorem) Any bounded sequence of real num-

bers has a convergent subsequence.

Theorem 20 Let x be a convergent sequence, then limit of x is unique.

Proof. Assume that x converges to different limits L1 and L2, i.e.

lim
n→∞

xn = L1 and lim
n→∞

xn = L2 .

Given any ε > 0, there exists N1 > 0, such that ∀n ≥ N1

|xn−L1| <
ε

2
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Similar there exists N2 > 0, such that ∀n ≥ N2

|xn−L2| <
ε

2

Take N := max {N1,N2} , then ∀n ≥ N,

|L1−L2| = |L1− xn+ xn−L2|

≤ |xn−L1|+ xn−L2

<
ε

2
+
ε

2
= ε

which implies

L1 = L2.

Definition 21 For each ε > 0 and a ∈ R. The set

Kε(a) = {x ∈ R, |x−a| < ε}

is called the ε−neighbourhood of a.

Lemma 22 Assume that xn→ L. Then for every ε > 0, except finitely many terms of xn,

all other terms lie in Kε(L). In other words; the set

{n ∈ N : |xn−L| ≥ ε}

7



is finite.

Definition 23 A sequence x := (xn) is called a Cauchy sequence if ∀ε > 0, ∃N (ε) ∈ N

such that for all n, m ∈ N, with n, m ≥ N (ε) , |xn− xm| < ε.

Lemma 24 Every real valued Cauchy sequence is bounded.

Theorem 25 (Cauchy Convergent Criterion) A sequence of real numbers is convergent

if and only if it is a Cauchy sequence.

Definition 26 A sequence x := (xn) of real numbers is called increasing if it satisfies the

inequality

x1 ≤ x2 ≤ ... ≤ xn ≤ xn+1 ≤ ....

Definition 27 A sequence x := (xn) of real numbers is called decreasing if it satisfies the

inequality

x1 ≥ x2 ≥ ... ≥ xn ≥ xn+1 ≥ ....

A sequence which is increasing or decreasing is called a monotone sequence.

Example 28 The sequence xn := (1
2 )n is decreasing.

Example 29 The sequence xn := (2)n is incraesing.
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Theorem 30 (Monotone Convergence Theorem) A monotone sequence of real numbers

is convergent if and only if it is bounded.

Theorem 31 If (xn) is monotone increasing ( decreasing ) and not bounded above (be-

low), then xn→∞ (xn→−∞) as n→∞.

Definition 32 Given a sequence x := (xn) of real numbers. The limit superior of (xn) is

denoted by limsupxn (or limn→∞xn) and defined as

limsup xn = lim
n→∞

xn

= inf
k∈N

sup {xn : n ≥ k} .

Definition 33 Given a sequence x := (xn) of real numbers. The limit inferior of x := (xk)

is denoted by liminfxn (or limn→∞xn) and defined as

liminf xn = limn→∞xn

= sup
k∈N

inf {xn : n ≥ k} .

Example 34 Consider the sequence xn := −1+ (−1)n . Then

xn =


0 if n is even,

−2 if n is odd.

Thus,

lim
n→∞

xn = 0 and limn→∞xn = −2.
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Example 35 Let xn := (−1)n 1
2n+1 then it is easy to see that

lim
n→∞

xn = limn→∞xn = 0.

Lemma 36 Let x and y be two real sequence then,

i) liminf xn < limsup xn

ii) limsup(xn+ yn) ≤ limsup xn+ limsupyn

iii) liminf (an+bn) ≥ liminf an+ liminf bn.

Let x be a real sequence then,

lim
n→∞

xn = L⇐⇒ liminf xn = limsup xn = L.

2.2 Matrix Transformation

Definition 37 Let A and B be two infinite matrices and λ be a scalar then,

i) A+B = (ank +bnk) (matrix addition)

ii) λA = (λank) .

Definition 38 An infinite matrix A = (ank) , with non-negative entries (i.e. ank ≥ 0) is

called a non-negative infinite matrix.

Assume that A = (ank) is an infinite matrix such that for all x ∈ ω, the series

(Ax)n =

∞∑
k=1

ankxk,

10



converges for each n. In this case the infinite matrix A : ω→ ω defines a transformation

on ω.

Definition 39 An infinite matrix which maps a convergent sequence to a convergent

sequence is called conservative. In other words, A is conservative if and only if for each

x ∈ c, Ax ∈ c.

Theorem 40 (Kojima-Shurer ) Let A = (ank) be an infinite matrix. A = (ank) is conser-

vative if and only if

(i) supn
∑∞

k=1 |ank| <∞,

(ii) ak := limn ank = δk for all k,

(iii) limn
∑∞

k=1 ank = δ.

Definition 41 An infinite matrix A is called regular if and only if for each x ∈ c, with

x→ L, limn (Ax)n = L. Necessary and sufficient conditions for regularity of an infinite

matrix A = (ai j) is given by the following Silverman-Toeplitz Theorem.

Theorem 42 (Silverman-Toeplitz conditions) Let A = (ank) be an infinite matrix. A =

(ank) is reguler if and only if

(i) supn
∑∞

k=1 |ank| <∞,

(ii) For all k we have ak := limn ank = 0,

(iii) limn
∑∞

k=1 ank = 1.
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Example 43 The Cesaro matrix C = (cnk) , of order one is an infinite matrix where

cnk =


1
n if 1 ≤ k ≤ n,

0 otherwise

Example 44 The matrix A = (ank) where

ank =



1− 1
n2 if k = n−1,

1
n2 if k = n,

0 otherwise

or equivalently,

A = (ank) =



1 0 0 0 0 · · ·

3
4

1
4 0 0 0 · · ·

0 8
9

1
9 0 0 · · ·

...
...
...

...
... · · ·

0 0 · · · 1− 1
n2

1
n2 · · ·

...
...
...

...
... · · ·


is a regular matrix.

Definition 45 Consider a sequence x, and an infinite matrix A. Then we say that x is

A-summable to L if:

lim
n→∞

(Ax)n = L

12



In the rest of the thesis, we will consider the matrix A, as an infinite, non-negative and

regular matrix unless it is mentoined otherwise.

2.3 Densities

As it is well known, the theory of statistical convergence and other type of conver-

gences are all based on a density function. This is why we need to explain the idea

and basic properties of densities. Therefore through this section, we give definitions and

some basic properties of density functions, which will be used in next Chapters.

Definition 46 For any subset D ⊆ N , the function xD of D is defined by:

xD(k) :=


1, k ∈ D

0, k < D
, k = 1,2,3, ...

Example 47 For a set D= {3n | n ∈ N} the characteristic function is χD(k) :=


1, k ∈ D

0, k < D

or as a sequence it is,

χ
K
= (0,0,1,0,0,1, ..)

Definition 48 Symmetric difference of two subsets A and B of natural numbers, N is

defined as below:

A△B = (A�B)∪ (B�A).

13



If the symmetric difference above is finite, then we can say that they have ”∼” relation

and is denoted by:

A ∼ B⇔ A△B.

Definition 49 (See [3]) A set funtion

δ : 2N→ [0,1]

satisfying the following conditions;

(1) i f A ∼ B then δ (A) = δ (B) ;

(2) i f A∩B = ∅, then δ (A)+δ (B) ≤ δ (A∪B) ;

(3) f or all A,B; δ (A)+δ (B) ≤ 1+δ (A∩B) ;

(4) δ (N) = 1.

(2.1)

is called an asymptotic density function.

For a given density function δ, the set function defined by;

δ (A) = 1−δ (N\A)

also satisfies conditions given in (2.1). Therefore δ is also a density function which is

called upper asymptotic density of δ.

Proposition 50 Let δ be a density and δ be its upper density then any subsets A and B

of natural numbers we have;

14



i) A ⊆ B⇒ δ(A) 6 δ(B),

ii) A ⊆ B⇒ δ (A) 6 δ(B),

iii) δ(A)+δ(B) ≥
−
δ(A∪B),

iv) δ(∅) = δ(∅) = 0,

v) δ(N) = 1,

vi) A ∼ B⇒ δ (A) = δ(B),

vii) δ (A) ≤ δ (A) .

Proof. (i) Using A∩ (B\A) = ∅ and (2) of (2.1) one can write that,

δ (A)+δ (B\A) ≤ δ (A∪ (B\A)) = δ (B) ,

since δ (B\A) ≥ 0, we have,

δ (A) ≤ δ (B) .

(ii) If A ⊆ B then Bc = N\B ⊆ N\A = Ac, using i), we get

δ (N\B) ≤ δ (N\A)

or equivalently,

δ (A) = 1− δ (N\A) ≤ 1− δ (N\B) = δ (B) .

15



(iii) As a consequence of the definition we can write that,

δ (A)+δ (B) = 2−δ (N\A)−δ (N\B)

= 2− (δ (N\A)+ δ (N\B))

≥ 2− (1+δ ((N\A)∩ (N\B))) .

But δ ((N\A)∩ (N\B)) = δ (N\ (A∪B)) gives

δ (A)+δ (B) ≥ 1−δ (N\ (A∪B)) = δ (A∪B) .

(iv) Take A = ϕ and B = N in (2) of (2.1), we have

δ (∅)+δ (N) ≤ δ (N∪∅) = δ (N) ,

which implies that

δ (∅) = 0.

Moreover if we take A = ∅, we have

δ (∅) = 1−δ (N\∅) = 1−δ (N) = 0.

16



(v) This is a direct consequence of the definition of density (vi) Assume that A ∼ B then

we have

(N\A) △ (N\B) = ((N\A)\ (N\B))∪ ((N\B)\ (N\A))

= (B\A)∪ (A\B) = A ∼ B,

which means that

δ (N\A) = δ (N\B) .

Hence

δ (A) = δ (B) .

(vii) Take B = N\A in (2) of (2.1), gives

δ (N\A)+δ (A) ≤ δ ((N\A)∪A) = δ (N) = 1

thus

δ (A) ≤ 1−δ (N\A) = δ (A) .

Definition 51 ([3]) We say that, a subset A of natural numbers has natural density if

17



and only if,

δ (A) = δ (A) .

Example 52 Let d be a function defined from power set of natural numbers to the inter-

val [0,1] as follows,

d(A) = lim
n→∞

|An|
n

where |An| denotes the number of elements in A∩{1,2,3, . . . ,n} , then d defines a natural

density.

It is not difficult to see that the function d(A) defined above satisfies the conditions for

density functions. We can also define d(A) in another way using the non-negative regular

matrix C1, the Cesaro matrix of order one, since A(n)
n is n th term of the sequence (C1xA)

we have,

d(A) = liminf(C.xA)n.

Proposition 53 Let M be a non-negative, regular, infinite matrix and let δM be defined

as follows;δM = lim
n→∞

inf(M.κA)n,then δM is a natural density function (i.e. satisfies (2.1)

and furthermore,

¯
δM = limsup

n→∞
(M.κA)n.

18



Example 54 It is easy to see that,

i) δ(N) = 1

ii) δ(N2) = δ(
{
n2 : nϵN

}
) = 0

iii) δ({2n : nϵN}) = δ({2n+1 : nϵN}) = 1
2 .

Example 55 The natural density of all finite sets are zero.

Example 56 In genaral, for a set K = {ak+b : kϵN}, we have

δ(K) =
1
a
.

Example 57 Given,

xk = (1,0,0,1,1,1,1,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0, ...)

and the subset K = {k ∈ N : xk = 1} of natural numbers, then for large m we have

∣∣∣K(2m)
∣∣∣ =


≥ 2m−1+2m−3 if m is odd,

≤ 2m−2+2m−3 if m is even.

moreover,

lim
m

|K(2m)|
2m =


≥ 5

8 if m is odd,

≤ 3
8 if m is even.

.

therefore δ (K) does not exist.
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Chapter 3

NEW TYPE CONVERGENCES

The concept of new type of convergences has been initiated by Fast in [2]. After that,

there is an increasing interest to new type of convergences, among researchers. Different

type of converges has been introduced by many researchers. This section is devoted

to the definitions and properties of these new type of convergences such as statistical

convergence, lacunary statistical convergence and λ−statistical convergence. The aim

here is not to give these type of convergences with all details but is to briefly explain the

idea for each case.

3.1 Statistical Convergence

Definition 58 ([2]) Any sequence x := (xk) satisfying the condition,

δ({k : |xk −L| ≥ ε}) = 0.

for every ε > 0, is called statistically convergent to L and is denoted by st− limn xn = L.

Recall that the natural density of all finite sets are zero. If we combine this by the fact

that ordinary convergence of a sequence to a number L, implies that

{k : |xk −L| ≥ ε}

is a finite set we get the following Theorem.

20



Theorem 59 Ordinary convergence implies statistical convergence.

The following remark gives the most important difference between ordinary and statisti-

cal convergence.

Remark 60 If x is statistically convergent to L, then every ε−neigborhood of L, contains

all terms of the sequence except terms with their indices having density 0.

Now we are ready to consider examples of statistical convergent sequences, and also try

to show the differences between ordinary and statistical convergenses on examples.

Example 61 Let x := (xn) be the sequence

xn =


3 i f n = m2,

1
m i f n , m2.

Since δ
({

n2 : n ∈ N
})
= 0 we have st− limn xn = 0, but x is not convergent in the ordinary

sense.

The boundedness property is not hold by the statistical convergence. Recall that in the

sense of ordinary convergence, convergent sequences are all bounded. So, this also

shows that statistical and ordinary convergence are different from each other.

Example 62 Let x := (xn) be the sequence

xk =


n2 i f n = m2,

1 i f n , m2.
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It is easy to see that x is not bounded but st− limn xn = 1.

Lemma 63 [2] Assume that st− lim xn = L1 and st− limyn = L2 then

(i) st− lim(xn+ yn) = L1+L2.

(ii) st− lim(xnyn) = L1L2.

(iii) st− lim(kxn) = kL1 for any k ∈ R.

Proof. (i) Given, ε > 0. Then, since

{n : |(xn− yn)− (L1+L2)| ≥ ε} ⊂
{
n : |xn−L1| ≥

ε

2

}
∪

{
n : |yn−L2| ≥

ε

2

}
.

we have st− lim(xn+yn) = L1+L2. (ii) Assume that st− lim xn = L1. By the definition of

statistical convergence

δ (A) = δ ({n : |xn−L1| < 1}) = 1.

On the other hand

|xnyn−L1L2| ≤ |xn| |yn−L2|+ |L2| |xn−L1| .

For each n ∈ A, |xn| < |L|+1. This implies that,

|xnyn−L1L2| ≤ (|L1|+1) |yn−L2|+ |L2| |xn−L1| . (3.1)

Now given ε > 0 and choose δ > 0 such that

0 < 2δ <
ε

|L1|+ |L2|+1
. (3.2)
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Let F1 = {n : |xn−L1| < δ} and F2 = {n : |yn−L2| < δ} then δ(F1)= δ(F2)= 1 and δ (A∩F1∩F2)=

1. For each n ∈ A∩F1∩F2 we have from 3.1 and 3.2

|xnyn−L1L2| < ε.

Now δ {n : |xnyn−L1L2| ≥ ε} = 0 and st− lim(xkyk) = L1L2.

(iii) Take yk = λ for all n ∈N, then it follows from (ii).

Remark 64 Asume that st-lim x = L⇔ ∃(nk) such that δ {nk : k ∈ N} = 1 and limk xnk =

L.

Example 65 Consider the sequences,

x = (xn) :=



1 n = k2, for some k

0 n = k2+1, for some k

2 otherwise

and

y = (yn) :=


1
n +1 otherwise

0 n = k2, for some k

then x and y are not convergent in the ordinary sense but

st− lim xn = 2 and st− limyn = 1.
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Using Lemma 2.1.6 we have,

st− lim(xn+ yn) = 3

st− lim(xnyn) = 2

and

st− lim(3xn) = 6.

Definition 66 A sequence x is statistically divergent to∞ if for any real number M,

δ ({n ∈ N : xn > M}) = 1.

Example 67 Consider the sequence

x = (xn) :=


√

n otherwise

1 n = k2+2, for some k

then x is statistically diverges to∞.

Definition 68 A sequence x is statistically divergent to −∞ if for any real number K,

δ ({n ∈ N : xn < K}) = 1.

Example 69 Consider the sequence

x = (xn) :=


√

n n = k2+2, for some k

−n+1 otherwise
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then x is statistically diverges to -∞.

Definition 70 A sequence x := (xk) is statistically Cauchy sequence if for each ε > 0,

∃N (ε) such that,

lim
n

1
n
|{k ≤ n : |xk − xN | ≥ ε}| = 0.

Lemma 71 A sequence x := (xk) is statistically Cauchy sequence if and only if ∃D ⊂ N

with δ(D) = 1 and x is Cauch on D.

Example 72 Consider the sequence

x = (xn) :=


1 n = k2+2, for some k

1
n otherwise

then x is statistically Cauchy sequence.

Parallel to the ordinary case, one state the following theorem,

Theorem 73 A sequence x is statistically convergent if and only if it is statistically

Cauchy sequence.

Proof. Assume that x is statistically convergent to L. By the definition there exists a

subset D of natural numbers with δ(D) = 1 and x→ L on D in the ordinary sense. This

means that x is a cauch sequence on D or equivalently x is a statistical Cauchy sequence.

25



Conversely, assume that x is statistical Cauch sequence then by Lemma, there exists

a subset D of natural numbers with δ(D) = 1 and x is Cauchy on D. Therefore it is

convergent on D, which means that x is statistical cauchy sequence.

Theorem 74 ( [4]) If x is a sequence such that st − lim xk = L and △ xk = o(1
k ), then

lim xk = L.

3.2 Lacunary Statistical Convergence

Definition 75 ([8]) A sequence θ = {kr} satisfiying,

i) k0 = 0

ii) hr = kr − kr−1→∞, r→∞.

is called a lacunary sequence.

For each lacunary sequence θ one define the interval Ir :=
(
kr−1, kr

]
and the fraction

qr := kr
kr−1

. Lacunary statistical convergence has been introduced by Fridy and Orhan in

the following way.

Example 76 The sequence θ = {kr} = {2r} is a lacunary sequence with Ir :=
(
2r−1, 2r

]
and qr := 2.

Definition 77 ([8]) A sequence x is called Lacunary statistical convergent and denoted

by κk→ L (θ− st) if for every ε > 0,

lim
r

1
hr
|{k ∈ Ir : |xk −L| ≥ ϵ}| = 0
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Lemma 78 ([8]) For a lacunary sequence θ = {kr} , κk → L implies κk → L (θ− st) if

and only if liminfr qr > 1.

Lemma 79 ([8]) For a lacunary sequence θ = {kr}, κk→ L (θ− st) implies κk→ L if and

only if lim supr qr <∞.

As a consequence of following Lemmas we have;

Theorem 80 ([8]) Let θ = {kr} be a lacunary sequence. Then statistical convergence and

θ−statistical convergence of κk→ L are equal if and only if

1 < liminf
r

qr < limsup
r

qr <∞.

Example 81 The lacunary sequence θ = {kr} = {2r}, satisfies the conditions of the above

theorem for r > 0.

3.3 λ−Statistical Convergence

The concept of λ-statistical convergence for sequences of numbers was first introduced

by Mursaleen in [17] where he showed that statistical convergence is an extension of

ordinary convergence. Fridy introduced sufficent conditions for ordinary and and sta-

tistical convergence. Also Orhan and Fridy provided θ−convergence and introduced

implication conditions and also the differences between θ-convergent and statistical con-

vergence. Mursaleen applied the same method for λ-statistical convergence and obtained

implication conditions. Later this theory was extended by Çolak, introducing statistical

convergence of order α.
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To define λ-statistical convergence first we need a sequence (λr) of positive, non-decreasing

numbers such that λr →∞, as r→∞, λ1 = 1 and λr+1 ≤ λr + 1. Assume that w is the

space of all sequences satisfying these conditions. Then for each (λr) ∈ w and for each r,

we can define intervals,

Mr = [r−λr +1,r] .

Definition 82 ([17]) A sequence x is said to be λ−statistical convergent to L if, for all

ε > 0,

lim
r

1
λr
{|kϵMr : |xk −L| ≥ ϵ |} = 0.

The λ-statistical convergence of κ to L is represented by the notation κk→ L(λ− st).

Remark 83 For λr = r, λ−statistical convergence coincides with statistical convergence.

3.4 A-Statistical Convergence

As we discussed in the previous sections, density was defined on Cesáro matrix A of or-

der one. Freedman and Sember [3] used a non-negative regular matrix instead of A, and

defined the concept of A-density. In [10] Kolk, used A−density to define A−statistical

convergence. Later, many mathematicians have used A−statistical convergence in their

research studies.

Definition 84 ([3]) Let A = (ank) be a nonnegative regular matrix an K ⊆ N. Then the
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set function or density

δA(K) := lim
n

(Aκ)n = lim
n

∑
k∈K

(ank)

if the limit above exists, is called the A−density of the set K and denoted by δA(K).

Lemma 85 For an existing δA(K) or δA(N�K) we have the following relation.

δA(K) = 1−δA(N�K)

Remark 86 δA(K) = 0 when K is finite.

Definition 87 ([10]) Suppose A = (ank) is nonnegative regular matrix, if ∃L such that

for all ε > 0

lim
n→∞

∑
k:|xk−L|≥ε

(ank) = 0

then we say that the sequence x = (xK) is A-statistical convergent to L. In this case we

will denote it as bellow ;

κK → L(A− st)

Lemma 88 ([10]) Let

K(ε) = {k ∈ N : |κK −L| ≥ ε}

and let xK(ε) be the characteristic function of K(ε) then, xK is A-statistical convergent
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to L if and only if ∀ϵ > 0,

lim
n→∞

(AκK(ε))n = 0.

Example 89 Consider the matrix C = (cnk) where

cnk =


1
n k ≤ n

0 otherwise

or

C1 =



1 0 0 0 · · · · · ·

1
2

1
2 0 0 · · · · · ·

1
3

1
3

1
3 0 · · · · · ·

...
...
...
. . .

...
...


which is known as Cesáro matrix. Then if we use C1 instead of A given at the begining

of this section, we reach the definiton of natural density see below;

δ(K) = lim
n→∞

(C1.κK)n = lim
n→∞

1
n
|{k ≤ n : k ∈ K}| .

Example 90 Consider the following nonnegative regular matrix,

A = (ank) =


1 k = n2

0 k , n2
n = 1,2,3, . . .
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and the sequence κ given below,

κ =


1
2 k = n2

1 k , n2
.

Then for any ε > 0 and

K(ε) =
{

k ∈ N :
∣∣∣∣∣κK −

1
2

∣∣∣∣∣ ≥ ε}

we get

lim(AκK(ε)) = 0

Therefore

A− st lim
n→∞
=

1
2
.

Remark 91 Consider λn with the following properties

λ1 = 1

λn+1 ≤ λn+1

λn ≥ 0

and define the matrix A = (ark) as below;

Aλ =


1
λK

k ∈ In

0 otherwise
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then Aλ−statistical convergence coincides with λ−statistical convergence.

Example 92 Let θ = {kr} be a lacunary sequence then consider the matrix Aθ = (ark)

where

Aθ =


1
hr

k ∈ Ir

0, k < Ir

then Aθ−statistical convergence is lacunary statistical convergence.

Example 93 :Given the matrix below

A = ank =



0 1
2 0 0 0 0 · · ·

0 1
2 0 1

2 0 0 · · ·

0 0 0 1
2 0 1

2 · · ·
...
...
...
...
...
...
...


and the sequences

κn =


0 n = 2n

1 n , 2n

we will see that κ is A-statistical convergent to zero while it is not statistical convergent.

To see that it is enough to see that, if ε > 1 then the set below is empty

K(ε) = {k : |κk −0| ≥ ε} .
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But if 0 < ε ≤ 1 then we have

K(ε) = {1,3,5,7, ..}

In this case, since

κk = (1,0,1,0,1, ...)

we get

(A.κk) = (0,0,0, ..).

Therefore, calculating the A-density of K we have,

δ(K) = lim
n→∞

∑
k∈K(ε)

ank = lim
n→∞

∑
k∈{1,3,5,...}

ank = 0.
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Chapter 4

αβ-STATISTICAL CONVERGENCE

This chapter is devoted to the concept of αβ−statistical convergence which is introduced

in ([1]). Recall that for each type of convergence, there exists a density function and

it plays a basic role in the definition of different type of convergences. The idea which

is used to define new type of convergences was the following, a sequence may have in-

finitely many terms which are not including in ε−neigborhoods of the limit point for ε

small enough but the set of indicies of such terms have density zero. As it is well known

this is not possible in ordinary sense. Therefore, new type of convergences defined in

this way give us a new type convergence which is different from ordinary convergence.

In many years researchers focus on convergences which are obtained from different den-

sity functions. But a careful observation shows that all density functions are based on

different class of intervals. For example statistical convergence and lacunary statistical

convergences are based on intervals [1,n] and (kn−1,kn] respectively. In [1], it is shown

that a generalization of set of intervals gives us a generalization of these new type con-

vergences. This is the basic idea of αβ−statistical convergence. After this brief idea of

αβ−statistical convergence, we shall discuss details of this generalization of new type of

convergences.
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Now let α and β be two sequences such that,

P1 : α(n),β(n) ≥ 0 ∀nϵN,

P2 : β(n) ≥ α(n),∀nϵN

P3 : β(n)−α(n)→∞ as n→∞. (4.1)

For the simplicity we shall use the notation Λ to represent the set of pairs of sequences

α and β satisfying (4.1) i.e. ,

Λ := {(α,β) | α and β satisfies P1,P2,P3} ⊂ s× s

Definition 94 ([1])For any K ⊂ N and for each pair (α,β) ∈ Λ

we define :

δα,β(K) = lim
n→∞

∣∣∣K∩ [
α(n),β(n)

]∣∣∣
(β(n)−α(n)+1)

(4.2)

where |S | is the cardinality of the set S and Pα,βn =
[
α(n),β(n)

]

Lemma 95 ([1]) Let M and K be any subset of N and (α,β) ∈ Λ

i) δα,β(ϕ) = 0

ii) δα,β(N) = 1

iii) If K is finite then δα,β(K) = 0

iv) K ⊂ M =⇒ δα,β(K) ≤ δα,β(M)
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Proof. i) Taking K = ϕ in (4.2) gives,

δα,β(ϕ) = lim
n→∞

∣∣∣ϕ∩ [
α(n),β(n)

]∣∣∣
(β(n)−α(n)+1)

= lim
n→∞

0
(β(n)−α(n)+1)

= 0.

ii) Using (4.2), we have

δα,β(N) = lim
n→∞

∣∣∣K∩ [
α(n),β(n)

]∣∣∣
(β(n)−α(n)+1)

= lim
n→∞

(β(n)−α(n)+1)
(β(n)−α(n)+1)

= 1.

iii) Assume that K ⊂ N is finite with |K| = c,

δα,β(K) = lim
n→∞

∣∣∣K∩ [
α(n),β(n)

]∣∣∣
(β(n)−α(n)+1)

≤ lim
n→∞

c
(β(n)−α(n)+1)

= 0.

iv) If K ⊂ M then

K∩ [
α(n),β(n)

] ⊂ M∩ [
α(n),β(n)

]

which means that

∣∣∣K∩ [
α(n),β(n)

]∣∣∣ ≤ ∣∣∣M∩ [
α(n),β(n)

]∣∣∣
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and

∣∣∣K∩ [
α(n),β(n)

]∣∣∣
(β(n)−α(n)+1)

≤
∣∣∣M∩ [

α(n),β(n)
]∣∣∣

(β(n)−α(n)+1)
.

Taking limits from both sides as n→∞ we have

δα,β(K) ≤ δα,β(M).

Definition 96 ([1]) We say the sequence x is αβ−statistically convergent to L and denote

by xn→ L (αβ− st) if ∀ε > 0

δα,β
({

k ∈ Pα,βn : |xk −L| ≥ ε
})
= lim

n→∞

∣∣∣∣{kϵPα,βn : |xk −L| ≥ ε
}∣∣∣∣

(β(n)−α(n)+1)

= lim
n→∞

∣∣∣{kϵ [α(n),β(n)
]

: |xk −L| ≥ ε}∣∣∣
(β(n)−α(n)+1)

= 0.

Example 97 Consider the sequence

x = (xn) :=


0 n = k2, for some k

1 otherwise
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and take α(n) = n, β(n) = n2, then

δα,β
({

k ∈ Pα,βn : |xk −1| ≥ ε
})
= lim

n→∞

∣∣∣∣{kϵPα,βn : |xk −L| ≥ ε
}∣∣∣∣

(β(n)−α(n)+1)

= lim
n→∞

∣∣∣∣{kϵ [n,n2
]

: |xk −L| ≥ ε
}∣∣∣∣

n2−n+1

= lim
n→∞

∣∣∣∣{kϵ [n,n2
]

: |xk −L| ≥ ε
}∣∣∣∣

n2−n+1

≤ lim
n→∞

n
n2−n+1

= 0

therefore x is αβ−statistical convergent to 1.

Example 98 Consider the sequence

x = (xn) :=


1 n = k3, for some k

0 otherwise
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and take α(n) = 1, β(n) = n3, then

δα,β
({

k ∈ Pα,βn : |xk −1| ≥ ε
})
= lim

n→∞

∣∣∣∣{kϵPα,βn : |xk −L| ≥ ε
}∣∣∣∣

(β(n)−α(n)+1)

= lim
n→∞

∣∣∣∣{kϵ [1,n3
]

: |xk −L| ≥ ε
}∣∣∣∣

n3

= lim
n→∞

∣∣∣∣{kϵ [1,n3
]

: |xk −L| ≥ ε
}∣∣∣∣

n3

≤ lim
n→∞

n
n3 = 0

therefore x is αβ−statistical convergent to 0.

Lemma 99 ([1]) Assume that xn→ L1 (αβ− st) and yn→ L2 (αβ− st) then

(i) (xn+ yn)→ L1+L2 (αβ− st)

(ii) (xnyn)→ L1L2 (αβ− st)

(iii) (kxn)→ kL1 (αβ− st) for any k ∈ R.

Proof. (i) Given, ε > 0. Since

{n : |(xn− yn)− (L1+L2)| ≥ ε} ⊂
{
n : |xn−L1| ≥

ε

2

}
∪

{
n : |yn−L2| ≥

ε

2

}
.

we have (xn+ yn)→ L1+L2 (αβ− st) .
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(ii) Assume that xn→ L1 (αβ− st) . By the definition of statistical convergence

δα,β (A) = δα,β ({n : |xn−L1| < 1}) = 1.

On the other hand

|xnyn−L1L2| ≤ |xn| |yn−L2|+ |L2| |xn−L1| ,

for each n ∈ A, |xn| < |L|+1. This implies that,

|xnyn−L1L2| ≤ (|L1|+1) |yn−L2|+ |L2| |xn−L1| . (4.3)

Now given ε > 0 and choose δ > 0 such that

0 < 2δ <
ε

|L1|+ |L2|+1
. (4.4)

Let

F1 = {n : |xn−L1| < δ}

and

F2 = {n : |yn−L2| < δ}

then

δα,β(F1) = δα,β(F2) = 1
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and

δα,β (A∩F1∩F2) = 1.

For each n ∈ A∩F1∩F2 we have from (4.3) and (4.4)

|xnyn−L1L2| < ε.

Now

δα,β {n : |xnyn−L1L2| ≥ ε} = 0

and

(xkyk)→ L1L2 (αβ− st) .

(iii) Take yk = λ for all n ∈ N, then it follows from (ii).

The following Lemma shows that αβ−statistical convergence is an extension of ordinary

convergence.

Lemma 100 ([1]) Let x be a convergent sequence (in the ordinary sense) then x is

αβ−statistically convergent.
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Proof. Assume that x → L in the ordinary sense. Then for each ε > 0, and for all

(α,β) ∈ Λ the set

{
kϵPα,βn : |xk −L| ≥ ε

}

is finite. Therefore,

δα,β ({K : |xk −L| ≥ ε}) = 0

which implies that

xn→ L (αβ− st) .

Remark 101 ([1]) Choose α(n) = 1 and β(n) = n then Pα,βn = [1,n] and

δα,β(
{
k ∈ Pα,βn : |xk −L| ≥ ε

}
) = lim

n→∞
|{kϵ[1,n] : |xk −L| ≥ ε}|

n

= lim
n→∞
|{k ≤ n : |xk −L| ≥ ε}|

n

which is the density function used in the definition of statistical convergence. In other

words, for α(n) = 1 and β(n) = n, αβ−statistically convergence reduces to statistical

convergence.

Remark 102 ([1]) Assume that λn is an arbitrary sequence in ω, then take α(n) = n−
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λn+1 and β(n) = n, it is easy to see that (α,β) ∈ Λ and

β(n)−α(n) = n− (n−λn+1)

= λn−1.

Moreover,

δα,β(
{
k ∈ Pα,βn : |xk −L| ≥ ε

}
) = lim

n→∞
|{kϵ [n−λn+1,n] : |xk−L| ≥ ε}|

n− (n−λn+1)+1

= lim
n→∞
|{kϵ [n−λn+1,n] : |xk−L| ≥ ε}|

λn

which is the density function used in the definition of λ−statistical convergence. In

other words for α(n) = n− λn + 1 and β(n) = n, αβ−statistical convergence reduces to

λ−statistical convergence.

Remark 103 ([1]) Assume that θ = {kn} is an arbitrary lacunary sequence, then take

α(n) = kn−1+1 and β(n) = kn, it is easy to see that (α,β) ∈ Λ and

β(n)−α(n) = kn− kn−1+1.
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Moreover,

δα,β(
{
k ∈ Pα,βn : |xk −L| ≥ ε

}
) = lim

n→∞
|{kϵ [kn−1+1,kn] : |xk−L| ≥ ε}|

kn− kn−1

= lim
n→∞
|{kϵ [kn−1+1,kn] : |xk−L| ≥ ε}|

hn

= lim
n→∞
|{kϵ (kn−1,kn] : |xk−L| ≥ ε}|

hn

which is the density function used in the definition of lacunary statistical convergence.

In other words for α(n) = kn−1+1 and β(n) = kn, αβ−statistical convergence reduces to

lacunary statistical convergence.

Definition 104 A sequence x is αβ−statistically divergent to ∞ if for any real number

M,

δα,β ({n ∈ N : xn > M}) = 1.

Example 105 Consider the sequence

x = (xn) :=


n otherwise

0 n = k2, for some k
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and choose α (n) = 1, β (n) = n2, then for any real number M

δα,β ({n ∈ N : xn < K}) = lim
n→∞

∣∣∣∣{k ∈ Pα,βn : xk > M
}∣∣∣∣

(β(n)−α(n)+1)

= lim
n→∞

∣∣∣∣{k ∈ [
1,n2

]
: xk > M

}∣∣∣∣
n2

= lim
n→∞

∣∣∣∣{k ∈ [
1,n2

]
: xk > M

}∣∣∣∣
n3

≤ lim
n→→∞

n2− (n+M)
n2 = 1.

then x is αβ−statistically diverges to∞.

Remark 106 Since αβ−statistical convergence includes statistical, λ−statistical and la-

cunary statistical convergences, any sequence x which is statistically divergent to ∞, is

αβ−statistically diverges to∞, for the appropriate choice of α and β.

Definition 107 A sequence x is αβ−statistically divergent to −∞ if for any real number

K,

δα,β ({n ∈ N : xn < K}) = 1.

Example 108 Consider the sequence

x = (xn) :=


0 n = k3, for some k

−n otherwise
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and choose sequences α (n) = 1, β (n) = n3 then for any reel number K,

δα,β ({n ∈ N : xn < K}) = lim
n→∞

∣∣∣∣{k ∈ Pα,βn : xk < K
}∣∣∣∣

(β(n)−α(n)+1)

= lim
n→∞

∣∣∣∣{k ∈ [
1,n3

]
: xk < K

}∣∣∣∣
n3

= lim
n→∞

∣∣∣∣{k ∈ [
1,n3

]
: xk < K

}∣∣∣∣
n3

≤ lim
n→∞

n3− (n+K)
n3 = 1.

x is αβ−statistically diverges to −∞ for any real number K.

Remark 109 Since αβ−statistical convergence includes statistical, λ−statistical and la-

cunary statistical convergences, any sequence x which is statistically divergent to −∞,

is αβ−statistically diverges to −∞, for the appropriate choice of α and β.

Definition 110 A sequence x := (xk) is called αβ−statistically bounded if there exists a

positive constant M, such that

δαβ ({n : |xn| > M}) = 0.

Example 111 Choose α (n) = 1, β (n) = n3 and consider the sequence

x = (xn) :=


0 otherwise

n n = k3, for some k
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then for any M > 0,

δα,β ({n : |xn| ≥ M}) = lim
n→∞

∣∣∣∣{k ∈ Pα,βn : |xk| > M
}∣∣∣∣

(β(n)−α(n)+1)

= lim
n→∞

∣∣∣∣{k ∈ [
1,n3

]
: |xk| > M

}∣∣∣∣
n3

= lim
n→∞

∣∣∣∣{k ∈ [
1,n3

]
: |xk| > M

}∣∣∣∣
n3

≤ lim
n→∞

n
n3 = 0,

which means that x is αβ−statistically bounded.

Definition 112 A sequence x is said to be αβ−statistically convergent of order γ to L

and denoted by xn→ L (αβγ− st), if ∀ε > 0

lim
n→∞

∣∣∣∣{k ∈ Pα,βn : |xk −L| ≥ ε
}∣∣∣∣

(β(n)−α(n)+1)γ
= 0.

Lemma 113 ([1]) If 0 < γ ≤ δ ≤ 1 and xn→ L (αβ− st) then xn→ L (αβ− st) .

47



Chapter 5

CONCLUTION

αβ-statistical convergence is studied in this thesis. First, the definitions of density, ma-

trix transitions and sequence are studied in order to discuss the concept of statistical

convergence. Then, a brief summary of λ-statistical, lacunary statistical and A-statistical

convergences is given.

In the last chapter the concept of αβ-statistical convergence, which is the main interest

of this thesis has been considered. It is shown that αβ-statistical convergence is a non-

trivial extension of statistical,λ-statistical and lacunary statistical convergences. Finally,

we introduced boundedness of a sequences in the sense of αβ-statistical convergence,

which is firstly discussed in this thesis.
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