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ABSTRACT

This thesis consisting of three chapters is concerned with Bernstein polynomials. In the

first chapter, an introduction to Bernstein polynomials is given. Then, basic properties

of Bernstein polynomials are studied in the second chapter. Last chapter studies the

generalized Bernstein polynomials and since it is known that generalized Bernstein

polynomials are related to q-integers, we gave basic properties of q-integers. In this

chapter, convergence properties of Bernstein polynomials are also given. In addition,

we introduced some probabilistic considerations of generalized Bernstein polynomials.

Keywords: Bernstein polynomials; generalized Bernstein polynomials; q-integers;

convergence
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ÖZ

Bu çalışma üç bölümden oluşmaktadır. Bu tezde Bernstein polinomları çalışılmıştır.

İlk olarak Bernstein polinomlarının tanımı yapılmış ve başlıca özellikleri incelenmiştir.

İkinci bölümde genelleştirilmiş Bernstein polinomlari incelenmiş ve bu polinomlar

q-tamsayılarıyla ilgili olduğundan q-tamsayılarının başlıca özellikleri de verilmiştir.

Sonrasında Bernstein polinomlarının yakınsaklık özellikleri çalışılmıştır. Buna ek olarak

Bernstein polinomlarının bazı olasılık metodlarıyla yakınsaklık özellikleri ele alın-

mıştır.

Anahtar kelimeler: Bernstein polinomları; genelleştirilmiş Bernstein polinomları; q-

tamsayıları; yakınsaklık
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I would like to thank my dear friends who have always been by my side. Last but not

the least, I would like to give my special gratitude to my family for their endless love,

care, patience and support throughout my life.

v



LIST OF SYMBOLS

∀ for all

∃ there exists

E expectation

P probability measure

∆ difference operator

(Ω,F,P) probability space

Var variance

Bk,n (t) kth nth- degree Bernstein polynomial

Bn( f ; x) a sequence of Bernstein polynomials

C [a,b] space of a continuous functions on a domain [a,b]

Cm [a,b] space of m-times continuously differentiable functions on a domain [a,b]

[k]q q-analog of k

[k]q! q-factorial[
n
k

]
q

q-binomial coefficient

⇒ uniform convergence
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Chapter 1

INTRODUCTION

Bernstein polynomial basis is started to review the historical progress together with

contemporary state of theory, algorithms and applying the method of polynomials for

finite domains. Initially introduced by S. N. Bernstein to ease a useful proof of the

Weierstrass Approximation Theorem, the slow convergence rate of Bernstein polyno-

mial approximations to continuous functions result in them to fade in obscurity, till the

arrival of digital computers.

The Bernstein form started to enjoy common use as a multifaceted means of intuitively

creating and working on geometric shapes. At the same time, inciting further develop-

ment of basic theory, identification of its excellent numerical stability properties and

an increasingly variegation of its reportoire of applications, simple and efficient recur-

sive algorithms, with the wish for utilizing power of computers for geometric design

applications.

Karl Weierstrass gave the first proof of his (fundamental) theorem on approximation

by algebraic and trigonometric polynomials, in 1885. This was important for devel-

opment of Approximation Theory. It was a long and complicated proof and leaded a

kind of mathematicians to find simpler and more useful proofs. In 1912, the Russian

mathematician Sergei N. Bernstein formulated a sequence of polynomials namely the

1



Bernstein Polynomials:

Bn( f ; x) =
n∑

k=0

f
(

k
n

)(
n
k

)
xk(1− x)n−k (1.0.1)

for any f ∈C [0,1] , x ∈ [0,1] and n ∈ N.

2



Chapter 2

BERNSTEIN POLYNOMIALS

In this chapter we study basic properties of Bernstein Polynomials.

2.1 Properties of Bernstein Polynomials

Property 2.1.1 [2] A Recursive Definiton of Bernstein Polynomials

The Bernstein Polynomial of degree n can be introduced by combining two (n− 1)st

degree Bernstein polynomials with each other. That is, the kth nth- degree Bernstein

polynomial can be formulated by

Bk,n (t) = (1− t) Bk,n−1 (t)+ tBk−1,n−1 (t) .

Proof. To prove this, we will use the basic definition of the Bernstein polynomials

which is given by

Bk,n (t) =
(
n
k

)
tk (1− t)n−k

where

(
n
k

)
=

n!
k! (n− k)!

3



for k = 0,1, ..,n.

(1− t) Bk,n−1 (t)+ tBk−1,n−1 = (1− t)
(
n−1

k

)
tk (1− t)n−1−k + t

(
n−1
k−1

)
tk−1 (1− t)n−1−(k−1)

=

(
n−1

k

)
tk (1− t)n−k +

(
n−1
k−1

)
tk (1− t)n−k

=

[(
n−1

k

)
+

(
n−1
k−1

)]
tk (1− t)n−k

=

(
n
k

)
tk (1− t)n−k

= Bk,n (t) .

Property 2.1.2 [2] The Bernstein Polynomials are All Non-Negative

f (t) is a non-negative function over the closed interval [a,b] if f (t) ≥ 0 for t ∈ [a,b]. In

this case the Bernstein polynomials with the degree n is non-negative over the interval

[0,1] .

Proof. To prove this we use the mathematical induction with the recursive definition

of Bernstein polynomials. It is shown that the functions B0,1 (t) = 1− t and B1,1 (t) = t

are both non-negative over the interval [0,1] . If we suppose that all Bernstein polyno-

mials of degree less than k are non-negative, the other case we can use the recursive

definition of the Bernstein polynomial and it is written by

Bn,k(t) = (1− t) Bn,k−1 (t)+ tBn−1,k−1 (t)

and prove that Bn,k (t) is also non-negative over the interval [0,1], since all components

on the right-hand side of the equation are non-negative components over the interval

[0,1]. By induction, all Bernstein polynomials are non-negative over the interval [0,1] .

4



At the same time, we have proved that each Bernstein polynomial is positive when

t ∈ (0,1).

Property 2.1.3 [2] The Bernstein Polynomials form a Partition of Unity

If the summation of all values of t is one, then fn (t) is a called a partition unity. The

kth degree k+1 Bernstein polynomials form a partition of unity in that they all sum to

one.

Proof. If we assume that this is true, it is easy to show an undistinguished different

fact : for each k, the sum of the k+1 of degree k is equal to the sum of the k Bernstein

polynomials of degree k−1. That is,

k∑
n=0

Bn,k (t) =
k−1∑
n=0

Bn,k−1 (t) .

This computation is crystal clear , using the recursive definition of Bernstein polyno-

mial and rearranging the sums :

k∑
n=0

Bn,k (t) =
k∑

n=0

[
(1− t) Bn,k−1 (t)+ tBn−1,k−1 (t)

]
= (1− t)

k−1∑
n=0

Bn,k−1 (t)+Bk,k−1 (t)

+ t

 k∑
n=1

Bn−1,k−1 (t)+B−1,k−1 (t)
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(where we have utilized Bk,k−1 (t) = B−1,k−1 (t) = 0)

= (1− t)
k−1∑
n=0

Bn,k−1 (t)+ t
k∑

n=1

Bn−1,k−1 (t)

= (1− t)
k−1∑
n=0

Bn,k−1 (t)+ t
k−1∑
n=0

Bn,k−1 (t)

=

k−1∑
n=0

Bn,k−1 (t) .

Once we have established this equality, it is simple to write

k∑
n=0

Bn,k (t) =
k−1∑
n=0

Bn,k−1 (t) =
k−2∑
n=0

Bn,k−2 (t) = · · · =
1∑

n=0

Bn,1 (t) = (1− t)+ t = 1.

Property 2.1.4 [2] Degree Raising

Any of the lower-degree Bernstein Polynomials of degree less than n can be defined

as a linear combination of nth degree Bernstein polynomials. In this case, any (n−

1)th degree Bernstein polynomial can be written as a linear combination of nth degree

Bernstein polynomials.

Proof. Firstly, we note that

tBk,n (t) =
(
n
k

)
tk+1 (1− t)n−k

=

(
n
k

)
tk+1 (1− t)(n+1)−(k+1)

=

(
n
k

)(
n+1
k+1

)Bk+1,n+1 (t)

=
k+1
n+1

Bk+1,n+1 (t)

6



and

(1− t) Bk,n (t) =
(
n
k

)
tk (1− t)n−k

=

(
n
k

)(
n+1

k

)Bk,n+1 (t)

=
n− k+1

n+1
Bk,n+1 (t) ,

and finally

1(
n
k

)Bk,n (t)+
1(
n

k+1

)Bk+1,n (t) = tk (1− t)n−k + tk+1 (1− t)n−(k+1)

= tk (1− t)n−k−1 ((1− t)+ t)

= tk (1− t)n−k−1

=
1(

n−1
k

)Bk,n−1 (t) .

Using this final equation, it can be written as

Bk,n−1 (t) =
(
n−1

k

) 1(
n
k

)Bk,n (t)+
1(
n

k+1

)Bk+1,n (t)


=

(
n− k

n

)
Bk,n (t)+

(
k+1

n

)
Bk+1,n (t)

which expresses a Bernstein polynomial of degree n−1 in terms of a linear combination

of Bernstein polynomials of degree n.

7



Property 2.1.5 [2] Converting from the Bernstein Basis to the Power Basis

Any nth degree Bernstein polynomial can be written in terms of the power basis which

is expressed by
{
1, t, t2, ..., tn

}
.

Proof. This can be directly computed by using the definition of the Bernstein polyno-

mials and the binomial theorem, as follows :

Bi,n (t) =
(
n
i

)
ti (1− t)n−i

=

(
n
i

)
ti

n−i∑
k=0

(−1)k
(
n− i

k

)
tk

=

n−i∑
k=0

(−1)k
(
n
i

)(
n− i

k

)
tk+i

=

n∑
k=i

(−1)k−i
(
n
i

)(
n− i
k− i

)
tk

=

n∑
k=i

(−1)k−i
(
n
k

)(
k
i

)
tk.

Property 2.1.6 [2] Derivatives

Polynomial of degree n− 1 are derivatives of the nth degree of the Bernstein polyno-

mials. Also, these derivatives can be written as a linear combination of Bernstein

polynomials using the definition of Bernstein polynomials. In this case,

d
dt

Bi,n (t) = n
(
Bi−1,n−1 (t)−Bi,n−1 (t)

)

8



for 0 ≤ i ≤ n. This can be written by direct differentiation

d
dt

Bi,n (t) =
d
dt

(
n
i

)
ti (1− t)n−i

=
in!

i! (n− i)!
ti−1 (1− t)n−i− (n− i)n!

i! (n− i)!
ti (1− t)n−i−1

=
n(n−1)!

(i−1)! (n− i)!
ti−1 (1− t)n−i− n (n−1)!

i! (n− i−1)!
ti (1− t)n−i−1

= n
(

(n−1)!
(i−1)! (n− i)!

ti−1 (1− t)n−i− (n−1)!
i! (n− i−1)!

ti (1− t)n−i−1
)

= n
(
Bi−1,n−1 (t)−Bi,n−1 (t)

)
.

The consequence is that, the derivative of Bernstein polynomials can be shown as the

degree of the polynomial multiplied by the difference of two (n−1)st degree Bernstein

polynomials.

Property 2.1.7 [2] The Matrix Representation of Bernstein polynomials

A matrix representation is useful for the Bernstein polynomials. The linear combina-

tion of Bernstein basis functions for a given polynomial is given by

B (t) = c0B0,k (t)+ c1B1,k (t)+ ...+ ckBk,k (t) .

It is easy to write this as a dot product of two vectors

B (t) =
[
B0,k (t) B1,k (t) . . . Bk,k (t)

]



c0

c1

.

.

.

ck



.

9



We can transform this to

B (t) =
[
1 t t2 . . . tk

]



b0,0 0 0 ... 0

b1,0 b1,1 0 ... 0

b2,0 b2,1 b2,2 ... 0

. . . ... .

. . . ... .

. . . ... .

bk,0 bk,1 bk,2 ... bk,k





c0

c1

c2

.

.

.

ck



,

where the bm,n are the coefficients of the power basis that are used to determine the

respective Bernstein polynomials. We note that the matrix in this case in lower trian-

gular matrix. If we want to give an example, we can give the quadratic case (n = 2)

with the matrix expression

B (t) =
[
1 t t2

]


1 0 0

−2 2 0

1 −2 1




c0

c1

c2


.

Previously, we define the Bernstein polynomials in equation (1.0.1) for each positive

integer n. It will be shown that if f is continuous over the interval [0,1] , its sequence of

Bernstein polynomials converges uniformly to f over the interval [0,1], thus giving a

useful proof of Weierstrass’s theorem. For the proof of Weierstrass Theorem, Bernstein

composed incoming polynomials in place of the known polynomials . For instance,

Taylor polynomials are not useful for all continuous functions, it can be applicable

only infinitely differentiable functions.

10



It is clear from equation (1.0.1) that for all n ≥ 1,

Bn ( f ;0) = f (0) and Bn ( f ;1) = f (1) , (2.1.1)

so that a Bernstein polynomial of f interpolates f at both endpoints of the interval

[0,1] .

Besides, from the binomial expansion it follows that

Bn (1; x) =
n∑

k=0

(
n
k

)
xk (1− x)n−k = (x+ (1− x))n = 1. (2.1.2)

Thus the Bernstein polynomial of the constant function 1 is also 1. In addition, the

Bernstein polynomial of the function f (t) = t is x. In fact since

k
n

(
n
k

)
=

(
n−1
k−1

)

for 1 ≤ k ≤ n, the Bernstein polynomial of the function t is

Bn (t, x) =
n∑

k=0

k
n

(
n
k

)
xk (1− x)n−k = x

n∑
k=1

(
n−1
k−1

)
xk−1 (1− x)n−k

= x
n−1∑
s=0

(
n−1

s

)
xs (1− x)n−1−s = x. (2.1.3)

The Bernstein operator Bn maps a function f , defined over the interval [0,1] to Bn f ,

which is the function Bn f computed at x represented by Bn ( f ; x) . The Bernstein oper-

ator is clearly linear, since it comes from equation (1.0.1) that

Bn (λ f +µg) = λBn f +µBng (2.1.4)

11



for all functions f and g defined over the interval [0,1] and all real λ and µ.

Bn is a monotone operator from the equation (1.0.1), then it follows from the mono-

tonicity of Bn and equation (2.1.2) that

p ≤ f (x) ≤ P, x ∈ [0,1]⇒ p ≤ Bn ( f ; x) ≤ P, x ∈ [0,1] . (2.1.5)

In this case, letting p = 0 in equation (2.1.5), we get

f (x) ≥ 0, x ∈ [0,1]⇒ Bn ( f , x) ≥ 0, x ∈ [0,1] . (2.1.6)

Theorem 2.1.8 [3] The Bernstein polynomial can be written in the following form

Bn ( f ; x) =
n∑

k=0

(
n
k

)
∆k f (0) xk, (2.1.7)

where ∆ is the forward difference operator, shown as

∆ f
(
x j

)
= f

(
x j+1

)
− f

(
x j

)
= f

(
x j+h

)
− f

(
x j

)
,

with step size h = 1
n .

Proof. Beginning with equation (1.0.1) and extending the term (1− x)n−k , we have

Bn ( f ; x) =
n∑

k=0

f
(

k
n

)(
n
k

)
xk

n−k∑
s=0

(−1)s
(
n− k

s

)
xs.

Let us put t = k+ s. We might write

n∑
k=0

n−k∑
s=0

· · · =
n∑

t=0

t∑
k=0

· · · . (2.1.8)

12



Also we have

(
n
k

)(
n− k

s

)
=

(
n
t

)(
t
k

)
,

and so we might write the double summation as

n∑
t=0

(
n
t

)
xt

t∑
k=0

(−1)t−k
(
t
k

)
f
(

k
n

)
=

n∑
t=0

(
n
t

)
∆t f (0) xt,

on using the expansion for a higher-order forward difference.

Theorem 2.1.9 [3] The derivative of the Bernstein polynomial Bn+1 ( f ; x) can be writ-

ten in the following form

B′n+1 ( f ; x) = (n+1)
n∑

k=0

∆ f
(

k
n+1

)(
n
k

)
xk (1− x)n−k (2.1.9)

for n ≥ 0, where ∆ is applied with step size h = 1
(n+1) . Otherwise, if f is monotonically

increasing or monotonically decreasing over the interval [0,1] , so are all its Bernstein

polynomials.

Theorem 2.1.10 [3] For any integer m ≥ 0, the mth derivative of Bn+m ( f ; x) can be

expressed in terms of mth differences of f as

B(m)
n+m ( f ; x) =

(n+m)!
n!

n∑
k=0

∆m f
(

k
n+m

)(
n
k

)
xk (1− x)n−k (2.1.10)

for all n ≥ 0. Here ∆ is applied with step size h = 1
n+k .

13



Proof. We write

Bn+m ( f ; x) =
n+m∑
k=0

f
(

k
n+m

)(
n+m

k

)
xk (1− x)n+m−k

and differentiate m times to get

B(m)
n+m ( f ; x) =

n+m∑
k=0

f
(

k
n+m

)(
n+m

k

)
p (x) , (2.1.11)

where

p (x) =
dm

dxm xk (1− x)n+m−k .

Now, we use the Leibniz rule which is

dm

dxm ( f (x)g (x)) =
m∑

k=0

(
m
k

)
dk

dxk f (x)
dm−k

dxm−k g(x),

to differentiate the product of xk and (1− x)n+m−k . First we find that

ds

dxs xk =


k!

(k−s)! xk−s,k− s ≥ 0,

0,k− s < 0

and

dm−s

dxm−s (1− x)n+m−k =


(−1)m−s (n+m−k)!

(n+s−k)! (1− x)n+s−k,k− s ≤ n

0,k− s > n.

Accordingly the mth derivative of xk(1− x)n+m−k is

p(x) =
∑

s
(−1)m−s

(
m
s

)
k!

(k− s)!
(n+m− k)!
(n+ s− k)!

xk−s(1− x)n+s−k, (2.1.12)

14



where the last summation is over all s from 0 to m, with the limitations 0 ≤ k− s ≤ n.

Now, we replace l with k− s, such that

n+m∑
k=0

∑
s
· · · =

n∑
l=0

m∑
s=0

· · · . (2.1.13)

We also note that

(
n+m

k

)
k!

(k− s)!
(n+m− k)!
(n+ s− k)!

=
(n+m)!

n!

(
n

k− s

)
. (2.1.14)

It then follows from equations (2.1.11), (2.1.12), (2.1.13) and (2.1.14) that the mth

derivative of Bn+m( f ; x) is

(n+m)!
n!

n∑
l=0

m∑
s=0

(−1)m−s
(
m
s

)
f
(

l+ s
n+m

)(
n
l

)
xl(1− x)n−l.

Finally, we note that

m∑
s=0

(−1)m−s
(
m
s

)
f
(

l+ s
n+m

)
= ∆m f

(
l

n+m

)
,

where the operator ∆ is applied with step size h = 1
n+m . Whence the result.

Theorem 2.1.11 [3] If f ∈Cm [0,1] , for some m ≥ 0, then

p ≤ f (m) (x) ≤ P, x ∈ [0,1]⇒ cm p ≤ B(m)
n ( f ; x) ≤ cmP, x ∈ [0,1] ,

for all n ≥ m, where c0 = c1 = 1 and

cm =

(
1− 1

n

)(
1− 2

n

)
...

(
1− m−1

n

)
,2 ≤ m ≤ n.
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Proof. The former relation in the theorem can also be seen in equation (2.1.5) if we let

m = 0. For m ≥ 1 we begin with equation (2.1.10) and replace n by n−m. Then, we use

∆p f (x0)
hp = f (p)(ξ), where ξ ∈

(
x0, xp

)
, xp = x0+ ph

with h = 1
n , we write

∆m f (
k
n

) =
f (m)(ξk)

nm , (2.1.15)

where k
m < ξk <

k+m
n . Thus

B(m)
n ( f ; x) =

n−m∑
k=0

cm f (m)(ξk)xk(1− x)n−m−k,

and the theorem follows easily from the latter equation.

Theorem 2.1.12 [3] If f is a function of C [0,1] and ε > 0 is arbitrary, then there

exists an integer N such that

| f (x)−Bn ( f ; x)| < ε,0 ≤ x ≤ 1,

for all n ≥ N.

The above statement says that Bernstein polynomials of a function f is continuous over

the interval [0,1] converging uniformly to f over the interval [0,1] .

Proof. We start with the identity

(
k
n
− x

)2

=

(
k
n

)2

−2
(

k
n

)
x+ x2,

16



multiply each term by
(

n
k

)
xk(1− x)n−k and sum from k = 0 to n, to give

n∑
k=0

(
k
n
− x

)2 (
n
k

)
xk(1− x)n−k = Bn(t2; x)−2xBn(t; x)+ x2Bn(1; x).

It then follows from equations (2.1.2), (2.1.3) and

Bn(t2; x) = x2+
1
n

x (1− x) ,

that

n∑
k=0

(
k
n
− x

)2 (
n
k

)
xk(1− x)n−k =

1
n

x(1− x). (2.1.16)

For any fixed x ∈ [0,1] , let us approximate the sum of the polynomials pn,k(x) over all

values of k for which k
n is not close to x. To make this notation exact, we take a number

δ > 0 and let S δ indicate the set of all values of k satisfying
∣∣∣ k
n − x

∣∣∣ ≥ δ implies that

1
δ2

(
k
n
− x

)2

≥ 1. (2.1.17)

Then, using equation (2.1.17), we have

∑
k∈S δ

(
n
k

)
xk(1− x)n−k ≤ 1

δ2

∑
k∈S δ

(
k
n
− x

)2 (
n
k

)
xk(1− x)n−k.

The last mentioned sum is not greater than the sum of the same expression over all k.

Using equation (2.1.16), we have

1
δ2

n∑
k=0

(
k
n
− x

)2 (
n
k

)
xk(1− x)n−k =

x (1− x)
nδ2 .
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Since 0 ≤ x(1− x) ≤ 1
4 on [0,1] , we have

∑
k∈S δ

(
n
k

)
xk(1− x)n−k ≤ 1

4nδ2 . (2.1.18)

Let us write

n∑
k=0

· · · =
∑
k∈S δ
· · ·+

∑
k<S δ

· · · ,

where the last mentioned sum is therefore over all k such that
∣∣∣ k
n − x

∣∣∣ < δ. Having seper-

ate the summation into two parts, which depend on a choice of δ that we still have to

make. Now we are ready to approximate the difference between f (x) and its Bernstein

polynomial. Using equation (2.1.2), we have

f (x)−Bn( f ; x) =
n∑

k=0

(
f (x)− f

(
k
n

))(
n
k

)
xk(1− x)n−k

and hence

f (x)−Bn( f ; x) =
∑
k∈S δ

(
f (x)− f

(
k
n

))(
n
k

)
xk(1− x)n−k+

∑
k<S δ

(
f (x)− f

(
k
n

))(
n
k

)
xk(1− x)n−k.

Thus we get the inequality

| f (x)−Bn( f ; x)| ≤
∑
k∈S δ

∣∣∣∣∣∣ f (x)− f
(

k
n

)∣∣∣∣∣∣
(
n
k

)
xk(1− x)n−k+

∑
k<S δ

∣∣∣∣∣∣ f (x)− f
(

k
n

)∣∣∣∣∣∣
(
n
k

)
xk(1− x)n−k.

Since f ∈ C [0,1] , it is bounded over the interval [0,1] and we have | f (x)| ≤ M, for

some M > 0. Hence we can denote

∣∣∣∣∣∣ f (x)− f
(

k
n

)∣∣∣∣∣∣ ≤ 2M
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for all k and all x ∈ [0,1] , and thus

∑
k∈S δ

∣∣∣∣∣∣ f (x)− f
(

k
n

)∣∣∣∣∣∣
(
n
k

)
xk(1− x)n−k ≤ 2M

∑
k∈S δ

(
n
k

)
xk(1− x)n−k.

Using equation (2.1.18), we obtain

∑
k∈S δ

∣∣∣∣∣∣ f (x)− f
(

k
n

)∣∣∣∣∣∣
(
n
k

)
xk(1− x)n−k ≤ M

2nδ2 . (2.1.19)

Since f is continuous, it is also uniformly continuous over the interval [0,1] . Hence,

related to any selection of ε > 0 there is a number δ > 0, depending on ε and f such

that

∣∣∣x− x′
∣∣∣ < δ =⇒ ∣∣∣ f (x)− f (x′)

∣∣∣ < ε

2

for all x, x′ ∈ [0,1] . Hence, for some k < S δ, we have

∑
k<S δ

∣∣∣∣∣∣ f (x)− f
(

k
n

)∣∣∣∣∣∣
(
n
k

)
xk(1− x)n−k <

ε

2

∑
k<S δ

(
n
k

)
xk(1− x)n−k

<
ε

2

n∑
k=0

(
n
k

)
xk(1− x)n−k,

and using equation (2.1.2) one more time we find that

∑
k<S δ

∣∣∣∣∣∣ f (x)− f
(

k
n

)∣∣∣∣∣∣
(
n
k

)
xk(1− x)n−k <

ε

2
. (2.1.20)

On combining the equations (2.1.19) and (2.1.20), we get

| f (x)−Bn( f ; x)| < M
2nδ2 +

ε

2
.
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It comes from the line above that if we select N > M
(εδ2)

, then

| f (x)−Bn( f ; x)| < ε

for all n ≥ N and hence the result.

Theorem 2.1.13 [3] If f ∈Cm [0,1], for some integer m ≥ 0, then B(m)
n ( f ; x) converges

uniformly to f (m) (x) on [0,1].

Proof. The case when m = 0 holds by Theorem (2.1.12). For m ≥ 1 we begin with the

expression for B(m)
n+m( f ; x) given in equation (2.1.10) and write

∆m f
(

k
n+m

)
=

f (m)(ξk)
(n+m)t ,

where k
n+m < ξk <

k+m
n+m , as we do computations in equation (2.1.15). We then approxi-

mate f (m) (ξk
)
, writing

f (m) (ξk
)
= f (m)

(
k
n

)
+

(
f (m) (ξk

)− f (m)
(

k
n

))
.

We thus obtain

n!(n+m)m

(n+m)!
B(m)

n+m( f ; x) = S 1(x)+S 2(x), (2.1.21)

where

S 1(x) =
n∑

k=0

f (m)
(

k
n

)(
n
k

)
xk(1− x)n−k

20



and

S 2(x) =
n∑

k=0

(
f (m) (ξk

)− f (m)
(

k
n

))(
n
k

)
xk (1− x)n−k .

In S 2(x), we can make
∣∣∣ξk − k

n

∣∣∣ < δ for all k, for any selection of δ > 0, by taking n

sufficiently large. So, given any ε > 0, we can select a positive value of δ such that

∣∣∣∣∣∣ f (m) (ξk
)− f (m)

(
k
n

)∣∣∣∣∣∣ < ε,
for all k, by the uniform continuity of f (m). Hence S 2 (x) → 0 uniformly over the

interval [0,1] as n→∞. We can simply justify that

n!(n+m)m

(n+m)!
→ 1 as n→∞,

and we can see from Theorem (2.1.12) with f (m) in place of f that S 1(x) converges

uniformly to f (m)(x) over the interval [0,1]. Whence the result.
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Chapter 3

GENERALIZED BERNSTEIN POLYNOMIALS

In this chapter we mention about the generalized Bernstein polynomials based on the

q−integers, which were introduced by Phillips as given below ;

Bn ( f ,q; x) =
n∑

k=0

f
(

[k]q

[n]q

)[
n
k

]
q
xk

n−1−k∏
s=0

(
1−qsx

)
, n = 1,2, ... (3.0.1)

When we put q = 1 in this equation, we get the classical Bernstein polynomial ex-

pressed by

Bn( f ; x) =
n∑

k=0

f (
k
n

)
(
n
k

)
xk(1− x)n−k.

3.1 Basic Information on q-Bernstein Polynomials

First of all, basic information on q-Bernstein polynomials will be given. The function

f is evaluated at ratios of the q−integers [k]q and [n]q, where q is a positive real number

and

[k]q =


1−qk

1−q ,q , 1

k,q = 1.

Let us define

Nq =
{
[k]q ,with k ∈ N

}
, for any given q > 0
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and use the definition

Nq =
{
0,1,1+q,1+q+q2,1+q+q2+q3, · · ·

}
.

It is obvious that the set of q−integers Nq generalizes the set of non-negative integers

N, which we recover by putting q = 1.

Let q > 0 be given. We define a q−factorial, [k]q!, of k ∈ N, as

[k]q! =


[k]q [k−1]q ... [1]q ,k ≥ 1,

1,k = 0.

The q−binomial coefficient
[
n
k

]
q

by

[
n
k

]
q
=

[n]q [n−1]q ... [n− k+1]q

[k]q!
=

[n]q!
[k]q! [n− k]q!

,

for integers n ≥ k ≥ 0.

The q−binomial coefficients are also called Gaussian polynomials, named after C. F.

Gauss.

Lemma 3.1.1 The Gaussian polynomials satisfy the Pascal-type relations

[
n
k

]
q
= qn−k

[
n−1
k−1

]
q
+

[
n−1

k

]
q

and

[
n
k

]
q
=

[
n−1
k−1

]
q
+qk

[
n−1

k

]
q
. (3.1.1)
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Proof. Considering the equation (3.1.1), we get

[
n
k

]
q
=

[n−1]q!
[k−1]q! [n− k]q!

+qk [n−1]q!
[k]q! [n− k−1]q!

=
[k]q [n−1]q ... [n− k+1]q

[k]q!
+qk

[
[n−1]q ... [n− k]q

[k]q!

]
=

[n−1]q ... [n− k+1]q

[k]q!

[
[k]q+qk [n− k]q

]
=

[n−1]q ... [n− k+1]q

[k]q!

[
1−qk

1−q
+qk

[
1−qn−k

1−q

]]
=

[n−1]q ... [n− k+1]q

[k]q!

[
1−qk +qk −qn

1−q

]
=

[n−1]q ... [n− k+1]q

[k]q!

[
1−qn

1−q

]
=

[n]q!
[k]q! [n− k]q!

.

In this chapter, we will give problems of convergence properties of the sequence

{Bn ( f ,q; x)}∞n=1. Here, it is shown that in general, these properties are essentially dif-

ferent from those in the classical case q = 1.

Property 3.1.2 Let Bn ( f ,q; x) be defined by the equation (3.0.1). Then,

Bn (at+b,q; x) = ax+b (3.1.2)

for all q > 0 and all n = 1,2, · · ·

Bn ( f ,q;0) = f (0) ; Bn ( f ,q;1) = f (1) (3.1.3)

for all q > 0 and all n = 1,2, · · · .
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Proof. Let

Bn (at+b,q; x) =
n∑

k=0

(
a

[k]q

[n]q
+b

)[
n
k

]
q
xk

n−1−k∏
s=0

(
1−qsx

)
= a

n∑
k=0

[k]q

[n]q

[
n
k

]
q
xk

n−1−k∏
s=0

(
1−qsx

)
+b

n∑
k=0

[
n
k

]
q
xk

n−1−k∏
s=0

(
1−qsx

)
.

Then we set

Pnk (q; x) =
[
n
k

]
q
xk

n−1−k∏
s=0

(
1−qsx

)
. (3.1.4)

Since Pnk (q; x) is a probability function, Pnk (q; x) ≥ 0 for q ∈ (0,1) and x ∈ [0,1], then

n∑
k=0

Pnk (q; x) = 1 (3.1.5)

for all n = 1,2, . . ..

According to this, we have

Bn (at+b,q; x) = a
n∑

k=0

[k]q

[n]q

[
n
k

]
q
xk

n−1−k∏
s=0

(
1−qsx

)
+b

n∑
k=0

Pnk (q; x)

= a
n∑

k=0

[k]q

[n]q

[
n
k

]
q
xk

n−1−k∏
s=0

(
1−qsx

)
+b

= a
n∑

k=0

[k]q

[n]q

[n]q!
[k]q! [n− k]q!

xk
n−1−k∏

s=0

(
1−qsx

)
+b

= a
n∑

k=0

[n−1]q!
[k−1]q! [n− k]q!

xk
n−1−k∏

s=0

(
1−qsx

)
+b

= ax
n−1∑
k=1

[
n−1
k−1

]
q
xk−1

n−1−(k−1)−1∏
s=0

(
1−qsx

)
+b


n→ n−1

k→ k−1


= ax+b.

25



Theorem 3.1.3 [1] Let a sequence (qn) satisfy 0 < qn < 1 and qn→ 1 as n→∞. Then

for any function f ∈C [0,1],

Bn ( f ,qn; x)⇒ f (x) [x ∈ [0,1] ;n→∞] .

We always assume that q ∈ (0,1) and f is a real continuous function over the interval

[0,1].

Let (Ω,z,P) be a probability space and Z : Ω→ R be a random variable. We use the

standard notation EZ for the mathematical expectation and VarZ for the variance of

the random variable Z and define :

EZ :=
∫
Ω

Z (ϖ) P (dω) ; VarZ := E
(
Z2

)
− (EZ)2 .

Consider a random variable Yn (q; x) having the probability distribution

P
{

Yn (q; x) =
[k]q

[n]q

}
= Pnk (q; x) , k = 0,1, ,n ;n = 1,2, . . . . (3.1.6)

Obviously, by definition of Bn and expectation, Bn ( f ,q; x) = E f (Yn (q; x)). Let us now
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show this relation.

Bn ( f ,q; x) =
n∑

k=0

f
(

[k]q

[n]q

)[
n
k

]
q
xk

n−1−k∏
s=0

(
1−qsx

)
=

n∑
k=0

f (Yn (q; x)) Pnk (q; x)

=

n∑
k=0

f (Yn (q; x)) P (Yn (q; x))

= E f (Yn) .

It is not difficult to see that the limits as n→∞ of both the values of Yn (q; x) and the

probabilities of these values exist, which will be shown below.

Theorem 3.1.4 [1] For all k = 0,1,2, . . .

lim
n→∞

[k]q

[n]q
= 1−qk, (3.1.7)

and

lim
n→∞

Pnk (q; x) =
xk

(1−q)k [k]q!

∞∏
s=0

(
1−qsx

)
=: P∞k (q; x) . (3.1.8)

Proof. Let us consider the equation (3.1.7). We know that

[k]q =
1−qk

1−q

and

[n]q =
1−qn

1−q
.
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However,

[k]q

[n]q
=

1−qk

1−qn ,

then take a limit when n→∞ to get

lim
n→∞

[k]q

[n]q
= 1−qk.

Also, consider the equation (3.1.8), we know that

Pnk (q; x) =
[
n
k

]
q
xk

n−k−1∏
s=0

(
1−qsx

)
.

If we expand
[
n
k

]
q
,

Pnk (q; x) =
[n]q!

[k]q! [n− k]q!
xk

n−k−1∏
s=0

(
1−qsx

)

where

[n]q! =
1−qn

1−q
· 1−qn−1

1−q
· ... ·1 =

(1−qn)
(
1−qn−1

)
...

(
1−qn−k+1

) (
1−qn−k

)
...1

(1−q)n

and

[n− k]q! =
1−qn−k

1−q
· 1−qn−k−1

1−q
· ... ·1 =

(
1−qn−k

) (
1−qn−k−1

)
...1

(1−q)n−k ,

then

[n]q!
[k]q! [n− k]q!

=
(1−qn)

(
1−qn−1

)
...

(
1−qn−k+1

)
[k]q! (1−q)k .
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Now, we put these equations into Pnk (q; x) to get

Pnk (q; x) =
(1−qn)

(
1−qn−1

)
...

(
1−qn−k+1

)
[k]q! (1−q)k xk

n−k−1∏
s=0

(
1−qsx

)
,

then take limit when n→∞

lim
n→∞

Pnk (q; x) = lim
n→∞

(1−qn)
(
1−qn−1

)
...

(
1−qn−k+1

)
[k]q! (1−q)k xk

n−k−1∏
s=0

(
1−qsx

)
= lim

n→∞
xk

(1−q)k [k]q!

∞∏
s=0

(
1−qsx

)
= P∞k (q; x) .

Note that unlike Pnk (q; x) , the functions P∞k (q; x) are transcendental entire functions

rather than polynomials.

Theorem 3.1.5 [1] P∞k (q; x) ≥ 0 for x ∈ [0,1] and by the Euler’s identity, we have

∞∑
k:=0

P∞k (q; x) = 1 (3.1.9)

for all x ∈ [0,1] .

Proof. Since Pnk (q; x) is a probability function so does P∞k (q; x) . We also know that

P∞k (q; x) =
xk

(1−q)k [k]q!

∞∏
s=0

(
1−qsx

)
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then

∞∑
k:=0

P∞k (q; x) =
∞∑

k:=0

xk

(1−q)k [k]q!

∞∏
s=0

(
1−qsx

)
=

∞∏
s=0

(
1−qsx

) 1+ ∞∑
k=1

xk

(1−q)k [k]q!


=

∞∏
s=0

(
1−qsx

) 1+ ∞∑
k=1

xk

(1−q)k ·
(1−q)k

(1−q)
(
1−q2) ... (1−qk)


=

∞∏
s=0

(
1−qsx

) 1+ ∞∑
k=1

xk

(1−q)
(
1−q2) ... (1−qk)

 .
Here we will use the Euler Identity where the Euler Identity is

1+
∞∑

n=1

tn

(1−q)
(
1−q2) ... (1−qn)

=

∞∏
n=0

(
1− tqn)−1 .

Then we get

∞∑
k:=0

P∞k (q; x) =
∞∏

s=0

(
1−qsx

) 1+ ∞∑
k=1

xk

(1−q)
(
1−q2) ... (1−qk)


=

∞∏
s=0

(
1−qsx

) ∞∏
k=0

(
1−qkx

)−1

=

∞∏
s=0

(
1−qsx

) · (1−qsx
)−1
= 1.

Hence the result.

We can now consider the random variables Y∞ (q; x) given by the following probability

distributions:

P
{
Y∞ (q; x) = 1−qk

}
= P∞k (x) , k = 0,1, ... for x ∈ [0,1] (3.1.10)

P {Y∞ (q;1) = 1} = 1. (3.1.11)
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For f ∈C [0,1], we set

B∞ ( f ,q; x) := E f (Y∞ (q; x)) .

It follows from equations (3.1.10) and (3.1.11) that

B∞ ( f ,q; x) =


∑∞

k=0 f
(
1−qk

)
P∞k (q; x) , if x ∈ [0,1)

f (1) , if x = 1.
(3.1.12)

3.2 Main Results on Convergence

Our main results on convergence of generalized Bernstein polynomials are Theo-

rems below.

Theorem 3.2.1 [1] For any f ∈C [0,1] ,

B∞ ( f ,q; x)⇒ f (x)
[
x ∈ [0,1] ;q ↑ 1

]
.

Proof. By the equations (3.1.3) and (3.1.12)

Bn ( f ,q;1) = B∞ ( f ,q;1) = f (1) ,

for all q > 0. It sufficies to prove that

B∞ ( f ,q; x)⇒ f (x)
[
x ∈ [0,1] ;q ↑ 1

]
.
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We know that

P∞k (q; x) =
xk

(1−q)k [k]q!

∞∏
s=0

(
1−qsx

)
,

then we set

ψ := ψ (q; x) :=
∞∏

s=0

(
1−qsx

)
(3.2.1)

and write for k = 1,2, . . .

P∞k (q; x) =
xkψ

(1−q)
(
1−q2) . . . (1−qk) .

By direct computations we get,

E (Y∞ (q; x)) =
∞∑

k=1

(
1−qk

)
P∞k (q; x)

=

∞∑
k=1

(
1−qk

) xkψ

(1−q)
(
1−q2) ... (1−qk)

= xψ+ x
∞∑

k=2

xk−1ψ

(1−q) ...
(
1−qk−1)

= x

ψ+ ∞∑
k=2

xk−1ψ

(1−q) ...
(
1−qk−1)

 .
Replacing (k−1) with k and then k with j, we get

E (Y∞ (q; x)) = x
∞∑
j=0

P∞ j (q; x) = x,
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and

E
(
(Y∞ (q; x))2

)
=

∞∑
k=1

(
1−qk

)2 xkψ

(1−q)
(
1−q2) . . . (1−qk)

=

∞∑
k=1

(
1−q+q−qk

)
xkψ

(1−q)
(
1−q2) . . . (1−qk−1)

=

∞∑
k=1

(1−q)
[
q
(
1−qk−1

)]
xkψ

(1−q)
(
1−q2) . . . (1−qk−1)

= qx2
∞∑

k=2

xk−2ψ

(1−q)
(
1−q2) . . . (1−qk−2)

+ (1−q) x
∞∑

k=1

xk−1ψ

(1−q)
(
1−q2) . . . (1−qk−1)

= qx2+ (1−q) x.

Thus,

Var (Y∞ (q; x)) = E
(
x2

)
− (E (x))2

= qx2+ (1−q) x+ x2

= −x2 (1−q)+ (1−q) x

= (1−q) x (1− x) ≤ (1−q)
4

(max. value of x (1− x) ≤ 1
4

)

and it tends to 0 uniformly with respect to x ∈ [0,1] as q ↑ 1. Now, we show that

B∞ ( f ,q; x) = E ( f (Y∞ (q; x)))⇒ f (x)
[
x ∈ [0,1),q ↑ 1

]
.

Let ε > 0 be given. We choose δ > 0 in such a way that | f (t′)− f (t′′)|< ε
2 for |t′− t′′|< δ,

t′, t′′ ∈ [0,1] denote C =max {| f (t)| : t ∈ [0,1]} and A = {ω ∈Ω : |Y∞ (q; x)− x| ≥ δ} . We
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use Chebyshev’s inequality

P (|xn− x| ≥ δ) ≤ var (x)
δ2 ,

to get

P (|Y∞ (q; x)− x| ≥ δ) ≤ VarY∞ (q; x)
δ2

=
1−q
4δ2 → 0;q ↑ 1.

Thus,we obtain

|B∞ ( f ,q; x)− f (x)| ≤
(∫

A
+

∫
Ω\A

)
| f (Y∞ (q; x)− f (x))|P (dω)

≤ 2CP (|Y∞ (q; x)− x| ≥ δ)+ ε
2

≤ 2C
(1−q)

4δ2 +
ε

2

≤ C (1−q)
2δ2 +

ε

2
⟨ ε, if q ↑ 1. (3.2.2)

Theorem 3.2.2 [1] Let 0 < α < 1. Then for any f ∈C [0,1]

Bn ( f ,q; x)⇒ B∞ ( f ,q; x) ,
[
x ∈ [0,1] ,q ∈ [α,1] ;n→∞]

.

Before passing to the proof of the above Theorem, use need to give the following

lemmas.

Lemma 3.2.3 [1] For any ε > 0, there exists a small ηε > 0 and a positive integer Nε
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such that

|Bn ( f ,q; x)− f (x)| < ε

for all x ∈ [0,1] , q ∈ [1−ηε,1) and η > Nε.

Proof. We use Korovkin’s Theorem such that

Bn (1,q; x) = 1 , Bn (t,q; x) = x , Bn
(
t2,q; x

)
= x2+

x (1− x)
[n]q

and have

EYn (q; x) = x , EYn (q; x)2 = x2+
x (1− x)

[n]q
.

Thus

VarYn (q; x) = x2+
x (1− x)

[n]q
− x2

= x (1− x)
(
1+q+q2+ ...+qn−1

)−1
.

Let | f (x)| ≤C for all x ∈ [0,1] . Let δ > 0 be chosen to such a degree that | f (t)− f (x)| ≤

ε
2 , whenever |t− x| ≤ δ.
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Applying Chebyshev’s Inequality, we obtain

|Bn ( f ,q; x)− f (x)| ≤
∫

[0,1]
| f (t)− f (x)|PYn(q;x) (dt)

≤
∫
|t−x|≤∆

+

∫
|t−x| ⟩ ∆

≤ ε

2
+2Cδ−2VarYn (q; x)

≤ ε

2
+

2C
δ2 ·

1
4

(
1+q+q2+ ...+qn−1

)−1

≤ ε

2
+

C
2δ2

(
1+q+q2+ ...+qn−1

)−1 (
q→ 1−ηε

)
≤ ε

2
+

C
2δ2 ·

1− (
1−ηε

)n

ηε

(
1− (

1−ηε
)n ≥ 1

2
,
(
1−ηε

)n ≤ 1
2

)
.

Now we set ηε =
εδ2

2C and take Nε in a such way that for all n ≥ Nε. The following

inequality holds

1+
(
1−ηε

)
+

(
1−ηε

)2
+ ...+

(
1−ηε

)n−1 ≥ 1
2
(
1− (

1−ηε
))
=

1
2ηε

.

Then for q > 1−ηε , n ≥ Nε and all x ∈ [0,1], we have

|Bn ( f ,q; x)− f (x)| ≤ ε

2
+

C
2δ2

(
1+q+q2+ ...+qn−1

)−1

≤ ε

2
+

C
2δ2 ·2 ·

εδ2

2C

≤ ε

2
+
ε

2
= ε.

With the above result, the theorem is proved.

Lemma 3.2.4 [1] Let 0 < α < β < 1 and let Pnk (q; x) (k = 0, ...,n , n = 1,2, ...) and

P∞k (q; x) (k = 0,1, ...) be functions given by equations (3.1.4) and (3.1.8), respectively.
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Then for any k = 0,1,2, . . .

Pnk (q; x)⇒ P∞k (q; x)
[
x ∈ [0,1] , q ∈ [

α,β
]
; n→∞]

.

Proof. We note that
[
n
k

]
q
→

(
(1−q)k [k]q!

)−1
as n → ∞ uniformly with respect to

q ∈ [
α,β

]
. Therefore, it suffices to prove that

n−1−k∏
s=0

(
1−qsx

)→ ∞∏
s=0

(
1−qsx

)
(n→∞)

uniformly with respect to q ∈ [
α,β

]
. This follows from the estimate :

0 ≤
n−1−k∏

s=0

(
1−qsx

)− ∞∏
s=0

(
1−qsx

)
(Take common parentheses)

≤
n−1−k∏

s=0

(
1−qsx

) 1− ∞∏
s=n−k

(
1−qsx

)
≤ 1−

∞∏
s=n−k

(
1−qsx

) ≤ 1−
∞∏

s=n−k

(
1−βs)→ 0, n→∞ .

Now, let ε > 0 be given. By Theorem 3.2.1, there exists a small number ζε > 0 such

that for all x ∈ [0,1] and all q ∈ [1− ζε,1), we have

|B∞ ( f ,q; x)− f (x)| ≤ ε.

Let ηε > 0 and Nε be numbers pointed out in Lemma 3.2.3. We set ζ = min
{
ηε, ζε

}
.

Then for all x ∈ [0,1] , n > Nε and q ∈ [1− ζε,1) we get

|Bn ( f ,q; x)−B∞ ( f ,q; x)| ≤ 2ε.
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To complete the proof of the Theorem, it sufficies to show that Bn ( f ,q; x)→ B∞ ( f ,q; x)

uniformly with respect to x ∈ [0,1] and q ∈ [α,1− ζε]. By equations (3.1.3) and (3.1.12),

Bn ( f ,q;1) = f (1) = B∞ ( f ,q;1)

for all q.

We choose a ∈ (0,1) in such a way that | f (t)− f (1)| < ε
3 for a ≤ t ≤ 1. Let R be a

positive integer satisfying the condition 1−qR+1 ≥ a for all q ∈ [
α,1− ζε

]
. We estimate

the difference

∆ := |Bn ( f ,q; x)−B∞ ( f ,q; x)|

for n > R and x ∈ [0,1). Using equations (3.1.5) and (3.1.9) we obtain

∆ = |Bn ( f ,q; x)−B∞ ( f ,q; x)|

= |Bn ( f ,q; x)− f (1)+ f (1)−B∞ ( f ,q; x)|

= |Bn ( f ,q; x)−Bn ( f ,q;1)+B∞ ( f ,q;1)−B∞ ( f ,q; x)|

=

∣∣∣∣∣∣∣∣
n∑

k=0

 f


[
kq

]
[n]q

− f (1)

Pnk (q; x)−
∞∑

k=0

(
f
(
1−qk

)
− f (1)

)
P∞k (q; x)

∣∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣∣
R∑

k=0

 f


[
kq

]
[n]q

− f (1)

Pnk (q; x)−
R∑

k=0

(
f
(
1−qk

)
− f (1)

)
P∞k (q; x)

∣∣∣∣∣∣∣∣
+

n∑
k=R+1

∣∣∣∣∣∣∣∣ f

[
kq

]
[n]q

− f (1)

∣∣∣∣∣∣∣∣Pnk (q; x)+
∞∑

k=R+1

∣∣∣∣ f (1−qk
)
− f (1)

∣∣∣∣P∞k (q; x)

= S 1+S 2+S 3.
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Using Lemma 3.2.4 and the fact that f
(

[k]q
[n]q

)
→ f

(
1−qk

)
as n→∞ for all k = 1,2, ...,R

uniformly with respect to q ∈ [
α,1− ζε

]
,we compute S 1 as follows:

S 1 =

∣∣∣∣∣∣∣∣
R∑

k=0

 f


[
kq

]
[n]q

− f (1)

Pnk (q; x)−
R∑

k=0

(
f
(
1−qk

)
− f (1)

)
P∞k (q; x)

∣∣∣∣∣∣∣∣
= − f (1)

R∑
k=0

[
Pnk (q; x)−P∞k (q; x)

]
+

R∑
k=0

∣∣∣∣∣∣ f
(

[k]q

[n]q

)
Pnk (q; x)− f

(
1−qk

)
P∞k (q; x)

∣∣∣∣∣∣
− f

(
[k]q

[n]q

)
P∞k (q; x)+ f

(
[k]q

[n]q

)
P∞k (q; x)

= − f (1)
R∑

k=0

[
Pnk (q; x)−P∞k (q; x)

]
+

R∑
k=0

f
(

[k]q

[n]q

) [
Pnk (q; x)−P∞k (q; x)

]
−
[

f
(
1−qk

)
− f

(
[k]q

[n]q

)]
P∞k (q; x)

=

R∑
k=0

[
f
(

[k]q

[n]q

)
− f (1)

] [
Pnk (q; x)−P∞k (q; x)

]
.

If n→∞ , Pnk (q; x)→ P∞k (q; x) , thus we conclude that S 1 <
ε
3 .Using equation (3.1.5)

and positivity of Pnk (q; x), we estimate S 2

S 2 <
ε

3

n∑
k=R+1

Pnk (q; x) ≤ ε
3
.

Similarly,

S 3 <
ε

3

∞∑
k=R+1

P∞k (q; x) ≤ ε
3
.

Hence, ∆ < ε .

Corollary 3.2.5 [1] If f is a polynomial of degree ≤ m, then B∞ ( f ,q; x) is also a

polynomial of degree ≤ m.

Theorem 3.2.6 [1] If f is a polynomial, then deg B∞ ( f ,q; x) = deg f .
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The function B∞ ( f ,q; x) is the limit of the sequence of generalized Bernstein poly-

nomials Bn ( f ,q; x) when q ∈ (0,1) is fixed. We say that f ∈C [0,1] satisfies the Lipschitz

condition at the point 1 if there exist α > 0, M > 0 such that

| f (t)− f (1)| ≤ M |t−1|α

for t ∈ [0,1] .

Proof. We use mathematical induction on m = deg f .

Bn
(
f m,q; x

)
=

n∑
k=0

f
(

[k]q

[n]q

)[
n
k

]
xk

n−1−k∏
s=0

(
1−qsx

)
.

For m = 1 the statement true. Let us suppose that the statement is true for degree

1 ≤ m and consider B∞
(
tm+1,q; x

)
. By equation (3.2.1) we have

B∞
(
tm+1,q; x

)
=

∞∑
k=1

(
1−qk

)m+1 xkψ

(1−q) ...
(
1−qk)

=

∞∑
k=1

(
(1−q)+q

(
1−qk−1

))m xkψ

(1−q) ...
(
1−qk−1)

=

m∑
k=0

(
m
k

)
qk (1−q)m−k x

∞∑
r=1

(
1−qr−1

)k xr−1ψ

(1−q) ...
(
1−qr−1)

=

m∑
k=0

(
m
k

)
qk (1−q)m−k xB∞

(
tk,q; x

)
.

By the induction assumption this is a polynomial of degree m+1.

Theorem 3.2.7 [1] For any f ∈C[0,1], the function B∞ ( f ,q; x) is continuous on [0,1]

and analytic in the unit disk x : |x| < 1 . If f satisfies the Lipschitz condition at 1, then

B∞ ( f ,q; x) is differentiable from the left at 1.

40



Proof. Continuity of B∞ ( f ,q; x) with respect to x on [0,1] follows immediately from

the fact that B∞ ( f ,q; x) is a limit of uniformly convergent sequence of polynomials.

To prove analyticity we write for |x| < 1,

B∞ ( f ,q; x) = ψ (q; x)
∞∑

k=0

f
(
1−qk

)
(1−q) ...

(
1−qk) xk (3.2.3)

where ψ (q; x) defined by equation (3.2.1) is an entire function. If k = 0 in equation

(3.2.3) the denominator is taken to be 1, since

lim
k→∞

(1−q) ...
(
1−qk

)
=

∞∏
s=1

(
1−qs) , 0

It follows that the sequence


f
(
1−qk

)
k∏

s=1

(1−qs)



∞

k=1

is bounded. Thus the sum in equation

(3.2.3) is an analytic function for |x| < 1 and so is B∞ ( f ,q; x) . Now assume that f

satisfies Lipschitz condition at the point 1.Using equations (3.1.9), (3.1.12) and (3.2.1),

we get

B∞ ( f ,q; x)−B∞ ( f ,q;1) = B∞ ( f ,q; x)− f (1)

=

∞∑
k=0

(
f
(
1−qk

)
− f (1)

)
P∞k (q; x)

= ψ (q; x)
∞∑

k=0

(
f
(
1−qk

)
− f (1)

)
(1−q)k [k]q!

= (1− x)ψ1 (q; x)u (q; x) ,

where

ψ1 (q; x) = −
∞∏

s=1

(
1−qsx

)
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and

u (q; x) =
∞∑

k=0

(
f
(
1−qk

)
− f (1)

)
(1−q)k [k]q!

. (3.2.4)

Since the sequence
{((

1−qk
)
[k]q!

)−1
}∞

k=0
is bounded and

∣∣∣∣ f (1−qk
)
− f (1)

∣∣∣∣ ≤M (qα)k ,

it follows that the series in equation (3.2.4) is uniformly convergent on [0,1] . Here, the

function u (q; x) is continuous on [0,1]. Thus,

lim
x↑1

B∞ ( f ,q; x)−B∞ ( f ,q;1)
x−1

= −ψ1 (q;1)u (q;1) ,

and so B∞ ( f ,q; x) is differentiable at 1 from the left.

Theorem 3.2.8 [1] If f
(
1−qk

)
= 0 for all k = 0,1,2, ... then B∞ ( f ,q; x) = 0 on [0,1] .

If B∞ ( f ,q; x) = 0 for an infinite number of points having an accumulation point on

[0,1], then f
(
1−qk

)
= 0 for all k = 0,1,2, ..

Theorem 3.2.9 [1] Let f ∈ C [0,1] . Then B∞ ( f ,q; x) = f (x) for all x ∈ [0,1] if and

only if f (x) = ax+b, where a and b are constants.

Proof. It can readily be seen from equation (3.1.12) that for a fixed q ∈ (0,1) there

exist different continuous functions f , g such that B∞ ( f ,q; x) = B∞ (g,q; x). This

is because B∞ ( f ,q; x) is defined only by the values of f at the points
{
1−qk

}∞
k=0

. In

particular, there exist non-linear function f such that B∞ ( f ,q; x) are linear function. If

f (x) = ax+b, then by equation (3.1.2) Bn ( f ,q; x) = ax+b = f (x) for all n = 1,2, ... and

therefore

B∞ ( f ,q; x) = lim Bn ( f ,q; x) = f (x) .
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Now we suppose that B∞ ( f ,q; x) = f (x) for every x ∈ [0,1] . Let us consider the func-

tion g (x) = f (x)− ( f (1)− f (0)) x. It is evident that g (0) = g (1) and B∞ ( f ,q; x) = g (x) .

Now, we will prove that g (x) = g (0) = g (1) for all x ∈ [0,1] . Let M =maxx∈[0,1] g (x) .

Now assume that M > g (1) , then M = g (z) for some z ∈ (0,1) and g
(
1−qk

)
< M for

sufficiently large k. Using equation (3.1.9) and positively of P∞k (q; x) we have

M = g (z) =
∞∑

k=0

g
(
1−qk

)
P∞k (q; x) < M.

The contradiction show that g (x) ≤ g (1) for all x ∈ [0,1] . In a similar way, it can be

proven that g (x) ≥ g (1) for all x ∈ [0,1] . Hence, g (x) ≡ b for some b ∈R and as a result

f (x) = ax+b.

Theorem 3.2.10 [1] Let f ∈C [0,1] and

B∞
(

f ,q j; x
)
= a jx+b j , (x ∈ [0,1])

for a sequence q j such that q j ↑ 1. Then f is a linear fuction.

Proof. Let B∞
(

f ,q j; x
)
= a jx+ b j , (x ∈ [0,1]) . From equation (3.1.2) and Theorem

3.2.8 it follows that

f (x) = a jx+b j for x ∈
{
1−qk

j

}∞
k=0

.

Since q j ↑ 1 and f ∈C [0,1] , we obtain f (x) = ax+b for some a,b ∈ R.
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Chapter 4

CONCLUSION

The thesis contains basic properties of Bernstein polynomials and generalized Bern-

stein polynomials and convergence rate of Bernstein polynomial also we introduced

some probabilistic considerations.

We proved that the most important properties of Bernstein polynmials and as it is a

recursive definition of Bernstein polynmials, degree raising, the Bernstein polynomials

form a partition of unity, converting from the Bernstein basis to the power basis, the

Bernstein polynomials are all nonnegative, derivatives and a matrix representation for

Bernstein polynomials.

The final part of the study is concerned with the generalized Bernstein polynomials and

related with the q- integers. We gave the basic definition and properties of q- integers.

Then we studied the convergence rate of Bernstein polynomials and we proved some

related theorems. After all we preserved some probabilistic considerations of Bernstein

polynomials.
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