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ABSTRACT 

One of the significant techniques to calculate the black hole (BH) temperature and 

understand BH thermodynamics is to employ the semi-classical BH tunneling 

method. In this thesis, by using the Parikh-Wilczek (PW), Hamilton-Jacobi (HJ) and 

Damour-Ruffini-Sannan (DRS) tunneling methods, we aim to explore the Hawking 

radiation (HR) of the Grumiller BH (GBH). This BH is also known as Rindler 

modified Schwarzschild BH. Generally, in the  tunneling method the imaginary part 

of the action (classically forbidden process) is directly proportional to the Boltzmann 

factor or is inversely proportional to the temperature of the BH whose performing the 

Hawking radiation (HR). In the original work of PW, who considered the self-

gravitational effect with the energy conservation, it was shown that the small 

deviations from pure thermal radiation in the HR may cause to a leakage of the 

information from the BH. This phenomenon is summarized and extended to the GBH 

in this dissertation.  

Keywords: Quantum tunneling method, Hawking radiation, Relativistic Hamilton-

Jacobi equation, Parikh-Wilczek method, Damour-Ruffini-Sannan method, Grumiller 

black hole, Rindler acceleration.  
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ÖZ 

Kara delik (BH) sıcaklığını hesaplamak ve BH termodinamiğini anlamak için en 

önemli tekniklerden birisi yarı-klasik BH tünelleme yöntemini kullanmaktır. Bu 

tezde, Parikh-Wilczek (PW), Hamilton-Jacobi (HJ) ve Damour-Ruffini-Sannan 

(DRS) tünelleme yöntemleri kullanarak, biz Grumiller BH (GBH)'un ve Hawking 

radyasyonunu (HR) araştırmayı hedefliyoruz. Bu BH, Rindler modifiyeli 

Schwarzschild BH'u olarak da bilinmektedir. Genel olarak, tünelleme yönteminde 

eylemin (klasik olarak yasaklanmış işlem) sanal kısmı Boltzmann faktörü ile 

doğrudan orantılıdır ya da Hawking radyasyon (HR) gerçekleştiren BH'un sıcaklığına 

ters orantılıdır. Enerji korunumu ile kendini yerçekimi etkisinin dikkate alındığı 

PW'in orjinal çalışmasında, HR'nın saf termal radyasyonundaki küçük sapmaların 

BH'dan bir bilgi sızıntısına neden olduğu gösterilmiştir. Bu olgu, bu tezde özetlenmiş 

ve GBH için genişletilmiştir. 

Anahtar kelimeler: Kuantum tünelleme metodu, Hawking radyasyonu, Relativisitik 

Hamilton-Jacobi denklemi, Parikh-Wilczek metodu, Damour-Ruffini-Sannan 

metodu, Grumiller kara deliği, Rindler ivmesi.  
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Chapter 1 

INTRODUCTION 

A BH is a system in which gravity is so strong that in classical point of view no 

particle or radiation can escape from it. In other words, classically it corresponds to a 

system that everything would go into it but nothing will come out. But this 

phenomenon has a contradiction in defining the temperature for a BH. The reason is 

that it is impossible for any system to maintain the thermal equilibrium with a BH. 

This point was firstly considered by Hawking, who was able to show that BHs can 

radiate when quantum effects are taken in account. Actually, Hawking theoretically 

proved that the radiation from the BH possesses a particular thermal spectrum [1,2]. 

In short, he explained the existence of BH radiation as the tunneling of particles due 

to vacuum fluctuations taken place around the event horizon. These fluctuations 

cause to the generation of particle-antiparticle pair such that one member of the pair 

falls inside the horizon with a negative energy and thus decrease the mass of the BH, 

and the another one having positive energy (outgoing particle) which crosses the 

horizon and flies off from the BH is known as the HR. But in Hawking's seminal 

works it was not clear where the potential barrier for the tunneling is.  

The discovery of the HR also opened up new mysteries which is called "information 

loss paradox". The information loss problem results from the argument of whether 

the HR is pure thermal or not. Because, in the case of HR is pure thermal, it should 

not contain or carry any information due to the quantum mechanics (QM). Namely, 
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after the evaporation of the BH, the information of what made up the BH will be 

erased forever. However, this is against to the conservation of information rule. 

In the same line of thought another method was proposed by Kraus and Wilczek 

(KW) [3,4] in 1995. They managed to describe the HR in the framework of tunneling 

process. In 2000, KW's idea was moved a step forward, and finishing touches were 

made by PW [5]. Their contribution to KW's work was about the potential barrier 

which is tunneled by the BH's particles. They threw an idea into the pot that the 

barrier depends on the tunneling particle itself. According to their method BH’s mass 

can fluctuate but to conserved energy, the energy of the spacetime should remain 

fixed. Thus, when a particle of energy   is radiated, the BH mass reduces to    . 

In other words, particle’s self gravitation was also taken into account. So, the HR 

spectrum carries the loss of mass of the BH. The obtained radiation by this method is 

not a pure black body spectrum, which renders possible the leakage of the 

information. By introducing Painleve-Gullstrand (PG) coordinate transformation 

[6,7], which is well behaved across the horizon, the metric becomes stationary but 

not static. It is shown that such a choice of coordinate is particularly useful to 

describe the HR in the PW method. After [5]., several works have been done to 

explain the HR for a large class BHs using the PW’s tunneling process. For the 

topical review, one can refer to [8]. 

As we mentioned above, the discovery of the PW method justifies the energy 

conservation and makes praiseworthy the treatment of the HR’s self-gravity. The 

intent of the HJ method is to give a particle description of the HR under the 

assumption that the emitted (scalar) particle’s action, ignoring its self-gravitation, 
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does satisfy the Lorentzian HJ relativistic equation [9]. This method applies to any 

regular coordinate system across the event horizon. 

In the DRS method [10,11], one uses an approach which only requires the existence 

of a future horizon. This method is completely independent of any dynamical details 

of the process leading to the formation of the horizon. It assumes analyticity 

properties of the wave function in the complexified manifold of the BH spacetime. 

The aim of this thesis is to calculate explore the HR of the GBH by using three 

different methods, which are PW, HJ and DRs methods. The present thesis is 

organized as follows: In chapter 2, we firstly make a brief review of the PW's 

tunneling method. Then, we adopt the PW method to the GBH in order to evaluate 

the imaginary part of the action and read its tunneling rate. Chapter 3 is devoted to 

the application of the HJ method in the GBH geometry. DRS method is employed for 

the GBH in chapter 4. The conclusions are given in chapter 5.  
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 Chapter 2  

HR OF THE GBH VIA THE PW METHOD  

2.1 The PW Method  

In this section, for reviewing the PW method we shall consider the Schwarzschild 

BH as an example line-element.  

The four dimensional (4D) static and spherically symmetric metric [12] is given by 

 
2 2 1 2 2ds fdt f dr Rd       (2.1)   

in which the line-element of the unit 2-sphere is 

                                                  2 2 2 2Ωd d sin d     (2.2)   

The metric functions of the Schwarzschild read 

     22
1

M
f f r       and         R R r r ,

r
       (2.3)   

When 0f  , then the root  r r 2h M   denotes the event horizon. The surface 

gravity of metric (2.1) is given by [12]  

 
1

  lim ( ) 
2hr r

f r


    (2.4)   

From now on, a prime over a quantity denotes the derivative with respect to its 

argument. After taking the derivative of the metric function (2.3) and substitute it 

into Eq. (2.4) we get surface gravity  
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1

4
  

M
     (2.5)   

 Making use of the definition of the Hawking temperature (T )BH
 which is 

2
BH

κ
T

π
  

we obtain  

 
1 1 1

2 2 8h
h

BH r r
r r

T lim f ( r )
M 




    (2.6)   

Entropy of the BH is defined by 

 
BH

BH

d
S

M
 

T
     2.7  

where 
BH BHdM T dS  the first law of thermodynamics. After evaluating the integral, 

the entropy of the BH becomes 2

4

h
BH hS

A
πr  .   

2.2 PG Coordinates  

PG coordinates [6,7] are known as the first coordinate system in the literature, which 

is regular at the event horizon. They are used for to describe the considered 

spacetime on either side of the event horizon of a static BH. In order to have the PG 

coordinate system, we can start to our operations with the following transformation. 

  dt d Fdr     2.8   

in which   is a function of   and   is called as the PG time. Thus 

 
2 2 2 2 2dt d F dr Fd dr      (2.9)   

Substituting Eq. (2.9) into the metric (2.1), we get 

                    
2 2 2 2 2ds fd fF dr fFd dr     1 2 2f dr Rd     (2.10)   

If we choose 
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 2 1 1 1F f f      
   

          1fF f                                                (2.11)  

Eq. (2.10) reduces to 

 
2 2 2 22ds fd dr Ffd dr Rd          2.12   

Thus, we obtain the PG coordinates as follows. 

 2 2 2 22 1ds fd dr f d dr Rd          (2.13)  

Now, the coordinate singularity arising at the event horizon is completely removed. 

The radial null geodesics ( 0ds  ) for the metric Eq.(2.13) is found as  

 1 1r ( f  )      (2.14)   

where
dr

r
dτ

  . We can evaluate the imaginary part of the action for an outgoing 

positive energy particle which crosses the horizon outwards from 
in outr to r  as 

  
0

 
out out r

in in

r r p

r r
r r

Im I Im p dr Im dp dr                             (2.15)  

where 
outr  and 

inr stand for the final and initial radius, respectively. Recalling the 

Hamilton's equations of motion 

 
r

dH
dp

r
   (2.16)  

where    shows the canonical momentum, and settingdH dM , we have  

  
out

in

r M

r M

dH
 Im I Im dr       

r



     (2.17)  

Here M and M   correspond to the mass of the BH before and after the HR, 

respectively. Using the radial null geodesics (2.13) in the above equation, one obtains 
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                           
 

1

21 1

out

in

r

r
I

dMdr
m I Im

f






 
    (2.18)  

 which is equivalent to 

  
 

1

21 1out

in

r

r

f
Im I Im  dM dr   

f

   





 
     (2.19)   

Taylor expansion of the metric function f around the event horizon 
hr  (

hr r ) is 

given by 

      
hh h r r hf f r f r r r  │  

 
   

2

....
2! 2!h

h h

r r

f r r r


 
 


│      (2.20)  

Finally, it can be approximated to 

     
hh r r h hf f r f r r r     │     (2.21)  

Substituting Eq. (2.21) into Eq. (2.19) , we find out  

                        
 

  

1

21 1out

in

r
  

r
h h

f
Im I Im  dr  dM  

f r r r





 


      (2.22)   

If we solely consider the integration which is with respect to  ;  

 
 

  

1

21 1

h h

f
dr

f r r r




 


   (2.23)  
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we should use the residue technique. Because in Eq. (2.23) we see that there is a 

simple pole (
hr r ) at horizon. This can be overcome by the contour around the 

pole. In short, we obtain   

 
 

 

1 1 )( h

h

f r
i

f r
 

 
 


  (2.24)  

Since ( ) 0hf r  , it becomes 

 
 
2

h

i
f r

 


    (2.25)  

and imaginary part of the action reads 

   2
M

M
h

'

f ( r

dM
Im I   

)






 
   (2.26)  

Then ,we have relationship between 
HT and  is  

 
2

HT



   (2.27)  

and  

 
2

hf (r )



   (2.28)   

After combing Eqs.(2.28) and (2.27), we get 

 4h Hf ( r ) T    (2.29)  

Now put it back to Eq. (2.26). 

  
1

2

M

M
H

dM
Im I  

T



 


   (2.30)  

In general, the change in entropy is given by 
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BH

H

dQ
S

T
     (2.31)  

where it takes the following form for the BHs as 

 
H H

dQ dM
dS

T T

 
    (2.32)   

Thus it leads us to modify Eq. (2.26) as follows 

  
1

2

M

M
Im I dS



     (2.33)   

so that it gives 

   
1

2
S M S         

 
1

2
S     (2.34)   

As one already knows from basic QM [13], the tunneling rate is defined as   

  2exp Im I       (2.35)   

Therefore it reads 

  exp S     (2.36)   

where S is the difference of the Bekenstein-Hawking entropy between before  and 

after the HR.  Since, the total entropy of a BH is given by 

                                                            
1

4
BH h  S A     (2.37)   

where 2( 4 )hA r  is called the area of the BH. Then 
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 2 24BH h  S r M    (2.38)  

where M represents the total mass of the BH before the HR. After the emission of 

the particle, the mass of the BH become decreases to M   so that Eq. (2.38) 

becomes : 

    
2

4S M M       (2.39)   

Then, the change of entropy results in  

  
2 24 4BHS M M        

 4 2( M )      (2.40)   

Now, we have obtained the original result derived by PW. That produces the semi-

classical tunneling rate as 

 
8

2BH
(M )

S
e e


 


     (2.41)   

where we have expressed the result more naturally in terms of the change in    . 

When the factor
2  is neglected in Eq.(2.40), the tunneling rate (2.41) reduces to the 

black body radiation, which is pure thermal that permits the leakage of the 

information from the system and expressed by a Boltzmann factor       in which 

  
 

 
. Namely, the existence of 

2 is due to the the physics of energy conservation. 

Besides, it gives rise to a deflection from the pure thermal radiation of the BH and 

therefore leads to a information escaping from the BH. This phenomenon is 

significant on the resolution of the information loss problem. 
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2.3 GBH Geometry and its HR within the Concept of the PW 

Method 

In this section, getting inspired from the previous section we shall apply the PW 

method to the GBH spacetime. 

The line-element of GBH in spacetime [14-16] is given by  

  
2

2 2 2 2 2 2dr
ds fdt r d sin d

f
            (2.42)  

where now the metric function f reads 

 
2

1 2
M

f ar
r

     (2.43)  

by which   is called the Rindler acceleration. In the limit of    , metric (2.42) 

reduces to the well-known Schwarzschild BH. GBH has only one horizon which 

makes ( ) 0f r   is located at 

 
1 1 16

4
h

Ma
r

a

  
     (2.44)  

The metric (2.42) has coordinate singularity at the horizon which can be removed by 

transforming it into the PG coordinates. To this end, we change the time to 

 
1 f

  dt d dr
f




    (2.45)   

Whence, the line-element (2.42) converts to 

 2 2 2 2 22 1ds fdt f  dtdr dr R d           (2.46)  

On the other hand, the radial outgoing null geodesics in this geometry can be 

expanded as: 
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    

  

21
1 1 1 1

2

1

2

h h h h

h h

r f f ( r ) f r r r r r

r f r r r

        



 



 (2.47)  

Next , differentiate Eq.(2.43) with respect to r  gives 

   2

2
2h

h

M
 f r a

r
    (2.48)  

Substituting it into the null geodesics Eq. (2.47), one gets 

 
2

2
2

2

h

h

( r r ) M
r ( a)

r


    (2.49)  

Combining the above with the event horizon (2.44), we obtain  

 
  216

2
2 1 8 1 16

hr r Ma
r a  

Ma Ma

  
  

   
  (2.50)  

  

Here M  denotes the total mass of the GBH before HR. After the radiation, the null 

geodesics modifies to 

 
 

   

216
2

1 8 1 16

M a
r   a  

M a M a



 

 
  
      

       (2.51)  

Using the general form of the imaginary part of the action for the outgoing particles 

with positive energy, i.e., 

  
0

out out r

in in

r r p

r
r r

Im I Im p dr Im dpdr      (2.52)  

and inserting the canonical momentum  
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r

dH
dp     

r
   (2.53)  

into Eq. (2.52), we find out 

  
0

out r

in

r p

r

dr
Im I Im dH

r
     (2.54)  

In this equation, we have used the fact that if the particles have tunneled out, then the 

BH will lose some of its energy. This means a change in the Hamiltonian as 

H M M    . Thus we  can rewrite Eq. (2.54) as 

 

  
0

out

in

r

r
Im I Im ( d )  

r

dr 

     (2.55)  

Near the horizon the radial outgoing null ( ̇  geodesics before radiation takes the 

following form 

  
2

h
h

r r
r f r ( M )


   (2.56)  

However, after the radiation it changes to 

     
2

h
h

h QKr  f r M r
r r

r    


      (2.57)  

Combining Eqs. (2.57) and (2.55), we obtain 

  
 0

out

in

r

r
h

dr
Im I Im dw  

r r





 
   

 
        (2.58)  

The minus sign appears in Eq. (2.58) is because of (dH   d )  which implies the 

shrinking of the horizon. Now the integral can be evaluated by deforming the contour 

where its semicircle centered at pole 
hr . Therefore Eq. (2.58) turns out to be 
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  
0

d
Im I   

 


     (2.59)  

Recalling the Hawking temperature: 

 
2

HT



   (2.60)  

we can rewrite expression (2.59) as 

  
0

1 1 1

2 2 2

M M

M M
H H

d dM
Im I dS

T T

    

          (2.61)  

     BH 

1 1
     

2 2
S M S M S           (2.62)  

where 
BHS is the change in entropy of the GBH before and after the HR. According 

to Eq. (2.62) which originally comes from [5], it is also equal to 

  2BHS Im I       (2.63)  

For the GBH, its explicit form can be computed as  

  2
1 16 8 1 16

8
GBHS Ma a M a

a


        

 
     (2.64)  

One can see that if we expand the above to the series by using the Taylor series for 

the Rindler parameter a ,  the leading term gives us the Schwarzschild entropy, i.e., 

  2 2 2 2 3

2
32 32

8
GBH M a (M ) a aS

a


          (2.65) 

 8
2

GBH Schw.S S M  



 

     
 

  (2.66)   
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Now, with the aid of Eq. (2.63) , one can easily read the tunneling rate of the GBH 

as: 

 
2 GBHSIm( I )~ e e

     (2.67)   
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Chapter 3 

HR OF THE GBH VIA THE HJ METHOD 

In this chapter , we will consider an alternate method for calculation the imaginary 

part of the action which is the so-called HJ method based on the relativistic HJ 

equation (see for instance [17] and references therein). The relativistic HJ equation is 

given by 

 
2 0g I I m

         (3.1)  

where g   stands for the metric tensor and m for mass of the test particle. For the 

GBH line-element (2.42), we read its covariant and contravariant forms as  

 

 
2 2

2 2 2

1 0 0 0

0 0 0

0 0 1 0

0 0 0 1 sin

f

f
g

r d

r d





 

 
 
 
 
 
 

  (3.2) 

 
2 2

2 2 2

0 0 0

0 1 0 0

0 0 0

0 0 0 sin

f

f
g

r d

r d




 

 
 
 
 
 
 

  (3.3) 

After substituting them into Eq. (3.1), the resulting equation is  

 00 11 22 33 2

0 0 1 1 2 2 3 3 0g I I g I I g I g I I m               (3.4)  

which is equivalent to 
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2 2 2 2 2( ) ( ) ( ) ( ) 0tt rr

t rg I g I g I g I m 

            (3.5)  

Therefore, we get 

 
1 2 2 2 2 2 2 2 2( ) ( ) ( ) sin ( ) 0t rf I f I r I r I m                (3.6)  

If we set the following the Ansatz for the action  

 iI Et W (r) J(x )      (3.7)  

which yields 

 
t rI E, I W , I J J , I J J     

                 (3.8)  

Next ,we substitute the above action (3.6) in to the H.J Eq.(3.4) and obtain 

 

 
1 2 2 2 2 2 2 2 2 0f E fW r J r sin J m            (3.9)  

Then , if we solve it for W , it yields 

 

 2 2 2 2 2 2 2 2 2W f E r f ( J J sin m r             (3.10)  

which corresponds to    

 
2 2 2 2 2 2 2 2W f E r f ( J J sin m r                 (3.11)  

and 

 
1

2 2 2 2 2 2 2W f E r f ( J J sin m r  


            (3.12)  

In the GBH metric, f can be redefined as  

 1 1 21 2 2 (2 2 )f Mr ar r ar r M         (3.13)  
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So for finding the horizon the equation 
22 2ar r M  =0 should be solved. 

Therefore, we obtain the event horizon as   

 
1 1 16

4
h

Ma
r

a

  
   (3.14)  

 The other root is 

 
0

1 1 16

4

aM
r

a

  
      (3.15)  

which cannot be considered as a kind of horizon due to its negative value. With the 

aid of above roots, one can set the metric function as  

 
1

02 hf ar ( r r )(r r  )       (3.16)  

Around the horizon Eq. (3.12) behaves as 

 
E

W dr
f

    (3.17)  

If we expand the metric function f  around the horizon 
hr , 

 ( ) ( ) ( )( ) .......h h hf r f r f r r r      (3.18)  

we can get 

 ( ) ( )( )h hf r f r r r    (3.19)  

so that   

 
h

E
W dr

f ( r r )
 

    

 
( )h

E
i c

f r
  


  (3.20)  
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where c  is an integration constant. Since 
( )

2

hf r



 , we rewrite the above equation 

as  

 
2

i E
W c




     (3.21)  

It means that we have two solutions. One of them belongs to an outgoing scalar 

particle (moving away from the BH) and the other one possesses to an ingoing 

particle (moving toward the BH). Namely, the outgoing one has 

 
2

i E
W c




     (3.22)  

and ingoing one belongs to 

 
2

i E
W c







    (3.23)  

According to the definition of the tunneling probability: 

 2P exp[ Im(I)]    (3.24)  

Hence, we read the ingoing and outgoing probabilities at the horizon as follows 

  2inP exp Im(W )    (3.25)  

and 

  2outP exp Im(W )    (3.26)  

According to the definition of a classical BH, a BH is a system which must absorb all 

the particles crossing its horizon. This sentence implies that 1inP  . In the other 

words 
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 2 2 0
E

Im(W ) Im( c )



      (3.27)  

That means that the probability is normalized, so that any incoming particle crossing 

the horizon has a 0
0100  chance of entering the BH. Thus, we understand that 

 
2

E
Im( c )




     (3.28)  

If we substitute the above result into Eq. (3.26): 

 
2

out

E
P exp( )




    (3.29)  

so that we can derive the tunneling rate from the following definition 

 2

E

Im( I ) T
oute P e


     (3.30)   

 and  

 
2 E E

Te e



 

   (3.31)  

Therefore  

 0

2 2

h

h

a(r r )
T

r



 


    (3.32)  

which is equivalent to the Hawking temperature of the GBH.  
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Chapter 4 

HR OF THE GBH VIA THE DRS METHOD 

In this section, we employ the DRS method [10, 11] for calculating the entropy and 

the horizon temperature of the GBH. The Klein-Gordon (KG) equation in a curved 

spacetime [12] is given by 

 

 
21

0( gg )
x xg



 


 
   

 
  (4.1)  

where   is the mass of the scalar particle (bosons). If we use the above equation for 

the metric described in Eqs. (3.2) and (3.3) with  

 
2 sing r     (4.2)   

we have  

 2

2

1
sin

sin

tt

t tr g
r




         

 2

2

1
sin

sin

rr

r rr g
r




       

 2

2

1
sin

sin
r g

r



 


         

 2 2

2

1
sin 0

sin
r g

r



  


          (4.3)  

Then, we get the resulting equation as     
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 2 1 2 2 2

2

1
( ) ( ) (sin ) ) 0

sin
tt r rr f r r r   



 
           
 

  (4.4)  

If we use the method of separation of variables, we may set the Ansatz for the scalar 

field as 

 1
2

1 1
(r, t)Y ( , )

(4 )
mR

r
  


    (4.5)   

Thus 

1 2

,

( )

4

tt
tt

Rf Y r r

r


   

2

4
,rr r r

Y R
r f ( r )

r

  
      

  
 

  
1

4
,

R
cos Y sin Y

r
   


      

 
1

4
,

R
Y

r
 


    (4.6)  

Now, we can transform the angular part of the equation to the spherical harmonics 

which has an eigenvalue 1L( L )  where L  denotes the orbital quantum number. 

Furthermore,   becomes the energy of the particle. After a straightforward 

calculation, we get the radial equation as 

  
2

2 1 2 2 2

2
( 1)r

R R
r f r f r L L

t t r r

   
       

  
  (4.7)  

Introducing 
R

r

  , 
2s r , y sf and  1L L   , Eq. (4.7) reduces to   
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  
2

1 2sf y s
t r r

    
       

   
  (4.8)  

In order to change this equation to a Schrödinger like wave equation which is the so-

called Zerilli equation [18], we introduce the tortoise coordinate: 

 

 
dr

dr
f

    (4.9)   

Whence  

  1 2 2

r r rf f f r
 

 


           (4.10)  

by which  

   2

r r ry y y r        

  2

2 r

y y
r f r

f f  


        (4.11)  

Thus, we can rewrite the Eq. (4.8)  as 

 

 
2 2

2

r r

r

y yf y f
f

t s sf sf s




 



   
           
   

  (4.12)  

Let us simplify this equation. To this end, one may set 

 

 
y yf y

r f r
s sf s

 

    
       

   
  

 
s

f r
s




    (4.13)  

Thus we have  
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2 2

2

2 2

r

s
f r f f

t s s








  
         
   

    (4.14)  

Near the horizon 
hr r  or 0f  ,  the above wave equation reduces to 

 
2 2

2 2
0

rt


  
    
   

  (4.15)  

Its solution gives us both the ingoing wave  

 

 ( )i t rin e   
      (4.16)  

and the outgoing one 

 ( )i t rout e   
    (4.17)  

On the other hand, GBH spacetime has singularity at the horizon. So we may 

transform it to a new coordinate system which is non-singular at 
hr . For this goal, we 

introduce the advanced Eddington-Finkelstein coordinate system [19,20] which is 

performed by 

 t r     (4.18)  

By using the tortoise coordinate given in Eq. (4.9), we get a relationship as follows 

 2 2 2 2dt d dr d dr       (4.19)  

After substituting Eqs. (4.18) and (4.19) in the line-element (2.42), the GBH metric 

becomes 

 2 2 2 22ds fd fd dr r d         (4.20)   
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recalling that fdr dr   

 2 2 2 22ds fd d dr r d        (4.21)  

As it can be seen above, the coordinate singularity appearing at the horizon is 

removed. Thus, this coordinate transformation leads to modify the solutions of 

ingoing and outgoing waves at the event horizon i.e., Eqs. (4.17) and (4.18) as 

follows  

 

 2i rout ie e
      (4.22)  

 in ie     (4.23)  

We are only interested in the outgoing waves. But it is vanishes at the horizon. This 

can be best seen from the following calculations.  

According to the definition of tortoise coordinate 
dr

r
f

   , we get 

 
  

1

2 h

rdr
r

a r r r r
 

    (4.24)  

By solving this integral, one obtains the result as the following 

 
 

0 0

0

1

2

h
h

h h

r r
r r ln( ) r ln( r r )

a r r r


 
   

  
  (4.25)   

and 

 
0

0

1
2

h h

h

i

r rr
r

r

( )
exp( i r ) exp ln

( r r )





 

  
   

    

  (4.26)  
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    
0

02 1 h

i

i r

r

h

r
exp i r r r

r










 
   
 

  (4.27)   

Finally, by using the above equation we can rewrite outgoing wave solution (4.22) as 

  
0

0 h

i

i r
out ih r

h

r r
r r e

r







  

   
 

   4.28   

As mentioned above it is terminates at the horizon. Therefore, its present form 

describes only the outgoing particles outside the horizon and cannot represent the 

ones belonging to the inside of the horizon. In order to include the particle behavior 

at the inside of the horizon, we analytically extend Eq. (4.28)  into the horizon as 

follows 

    i i

h h hr r r r e r r e          4.29   

Thus, we express the outgoing wave inside the horizon as  

  
 

 
0

h

i
i i r

hout i
r

h

h

r r e
r r r r e

r


  





 

 
    

 
   

 2i r ie e e



      (4.30)  

With the aid of the Eqs. (3.54) and (3.64), the emission rate of the outgoing particles 

reads  

 
 

 

2

2
2

2

2

out i r i
h

out
i r ih

r r e e
e

r r
e e e




 




 










 
   

 
  (4.31)   

So it reveals that    
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2

Te e
 


 

     

 
2

T



   (4.32)  

the Hawking temperature of the GBH (3.32) is impeccably recovered via the DRS 

method. 
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Chapter 5 

CONCLUSION 

In this thesis, we have derived the emission rate from the GBH by using three 

different methods: the PW method, the HJ method and the DRS method. Firstly, we 

have employed the PW method. For this purpose, the energy conservation and self-

gravitational effects during the HR of the GBH have been taken into account. As a 

result, we have found that the GBH's HR is no longer a purely thermal spectrum. 

This is meant the information conservation. For the sake of QM, the obtained result 

is consistent with the unitarity. Secondly, the HJ method has been considered. 

According to this approach, the action of the tunneling particle of the GBH is found 

by the relativistic HJ equation. Consequently, it has been featly shown that the action 

yields the true horizon temperature of the GBH, i.e., Eq. (3.32). Finally, we have 

applied the DRS method to study the HR of scalar particles of the GBH. In 

accordance with this purpose, we have used the KG equation in the GBH geometry. 

It has been revealed that the outgoing wave solution (3.54) is logarithmically singular 

at the horizon. After extending it to the inside of the BH by performing an analytical 

continuation, we have managed to find out the tunneling rate of the radiating scalar 

particles. From the thermal spectrum (3.63), we can obtain the Hawking temperature 

of the GBH, which takes the same form as Eq. (3.32). 

.  
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