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ABSTRACT  

In this thesis, we studied the numerical techniques for the solution of two 

dimensional Elliptic partial differential equations such as Laplace's and Poisson's 

equations. These types of differential equations have specific applications in physical 

and engineering models. The discrete approximation of both equations is based on 

finite difference method. In this research, five points finite difference approximation 

is used for Laplace's and Poisson's equations. To solve the resulting finite difference 

approximation basic iterative methods; Jacobi, Gauss-Seidel and Successive Over 

Relaxation (SOR) have been used. 

Several model problems are solved by three different iterative methods and 

concluding remarks are presented. 

Keywords:  Elliptic partial differential equation,   point's finite difference scheme, 

basic iterative methods.  
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ӦZ 
 

Yapılan bu çalışma iki boyutlu Eliptik parçalı diferansiyel denklem problemlerinin 

sayısal analiz teknikleri kullanılarak yaklaşık olarak çözülmesi ile ilgilidir. Eliptik 

parçalı diferansiyel denklemler beş noktalı sonlu farklar yöntemi kullanılarak 

Poisson's ve Laplace denklemlerine uygulanmış ve bu denklemler temel iteratif 

çözüm prosedürü olan Jacobi, Gauss Seidel ve SOR yineleme yöntemleri 

kullanılarak iki farklı problem üzerinde nümerik olarak çözülmüştür. Ayrıca temel 

iteratif çözüm prosedürü teorik olarak incelenmiştir. 

 

 

Anahtar kelimeler: Eliptik parçalı diferansiyel denklem, beş noktalı sonlu farklar 

şeması, temel iteratif yöntemler.  
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Chapter 1 

INTRODUCTION  

1.1 Partial Differential Equation and their Classification  

The solution of partial differential equations is the most important topic in all areas 

of science and engineering (e.g. in Heat transfer, fluid dynamics, quantum 

mechanics, boundary layer theory etc.). Equation involving one or more partial 

derivatives of a function of two or more independent variables is called partial 

differential equations          

The solution for PDEs can be classified into two parts: analytical and numerical 

solutions. The analytical solution finds a function that satisfies the PDE with the 

given boundary and initial conditions. The numerical solution is used to find an 

approximate solution since most of PDEs do not have analytical solutions. Usually, 

to obtain analytical solution is very difficult, instead of that through standard iterative 

methods the computers are used to get numerical approximation solution.   

Many problems are controlled by lots of different partial differential equations. 

Consequently, the general form for linear PDEs of a second-order in more than two 

independent variables      is                     

                                                          (1.1)                                          
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where the coefficients               and    are constants or are functions of the 

independent variables    and  . The first three parts are called principle part of PDEs 

contains the second derivatives       

The nature of the general solution to the equation (1.1) is determined by principle 

part. Indeed, the coefficients of them can be used to classify PDEs. The classification 

is based on the sign of the discriminate           as follows    : 

a) If           the PDEs is called Hyperbolic. For instance, the wave 

equation has                Therefore, it is Hyperbolic.  

b) If           the PDEs is called Parabolic. For instance, the heat 

equation has               Therefore, it is Parabolic. 

c) If           the PDEs is called Elliptic. For instance, the Laplace and 

Poisson equations have            . So, they are Elliptic.  

In practical application, a particular solution for a differential equation requires 

boundary and / or initial conditions. An appropriate numerical method for the 

solution of differential problems depends upon the nature of these conditions. If there 

is only one solution to the differential problem, it is called “properly posed” or “well 

posed”. Otherwise, problem is said to be “ill posed”    . In well posed problem, there 

exists a relatively small change in the solution and we can say that the differential 

problem is well conditioned. If the change in the solution is large, we say that the 

problem is “ill conditioned”       .   
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1.2 Elliptic Partial Differential Equation and Types of Boundary 

Conditions 

In this thesis, we are mainly concerned with the linear Elliptic self-adjoint problems. 

Elliptic partial differential equations arise usually from equilibrium or steady- state 

problems and represent in many fields of engineering and science      . The partial 

differential equations are called self-adjoint Elliptic, if equation       can be 

replaced by  

 

  
(      

  

  
)  

 

  
(      

  

  
)                                           

The self-adjoint Elliptic partial differential equation       is said to be Poisson’s 

equation, when                 and     in the domain   and it is given by  

   

   
 

   

   
                                                                         

and equation       is Laplace’s equation, when            in       , it is in the 

form  

   

   
 

   

   
                                                                              

The solution       , satisfies the boundary conditions on      where    is the 

boundary of domain   on the square region 

  {                       

as shown in Figure (1.1). 
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In generally, three distinct problems involving equations             and       arise 

depending on the boundary conditions prescribed on           .  

a) Dirichlet condition  

The value of the function is prescribed, when                on the boundary 

   

b)  Neumann condition  

The value of the derivative normal to the boundary is prescribed, when   
  

  
 

       on the boundary     

c)  Robin’s condition   

A combination of the function and its normal derivative is specified on the 

boundary,            
  

  
  is prescribed on the boundary   .   

 

 

 

 

Y 

X 

𝝏𝛀 

𝛀 

𝒃 

𝒂 𝒃 

  Figure 1.1: General characteristics of Elliptic PDFs 
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There are different methods to find numerical solution such as finite element, finite 

difference and finite volume methods. Finite difference method is going to be 

evolved in the next Chapter in detail.     

In Chapter 3, we presented a detailed analysis for the solution of sparse linear 

systems using three basic iterative methods: Jacobi, Gauss Seidel and Successive 

Over Relaxation (SOR). 

In Chapter 4, we presented the numerical results from solving two model problems 

and concluding remarks are given for each model problem.  

In Chapter    we presented overall chapters' conclusion. 
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Chapter 2 

 SOUTION OF ELLIPTIC PDEs BY FINITE 

DIFFERENCE METHOD 

The finite difference method is one of the several techniques for the numerical 

solution of partial differential equations. The method is based on discrete 

approximation of the partial derivatives in partial differential equations obtained by 

Taylor’s expansion near the point of interests    . 

In this Chapter, the finite difference method for the solution of the Elliptic partial 

differential equations is discussed.   

2.1 Basic Approximations 

Assume that three points on        separated by a distance   , as shown in 

Figure          and consider the value of the function        at these three points 

                           denoted by             and      respectively    .  

 

 

 

                                                                                          

 

 

𝒊  𝟏 𝒊  𝟏 𝒊 

X 

Y 

𝒋  𝟏 

𝒋 

𝒋  1 

  

(a) 

(b) 
 

Figure 2.1:  Finite Difference along x and  y 
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We can write the two Taylor's expansion for      and      respectively as follows. 

        
  

  
|
  

  
   

   
|
  

  

  
 

   

   
|
  

  

  
 

   

   
|
  

  

  
                            

        
  

  
|
  

  
   

   
|
  

  

  
 

   

   
|
  

  

  
 

   

   
|
  

  

  
                             

where    
  means that the derivative is computed at the point   , adding equations 

      and       side by side, we get;  

               
   

   
|
  

    
   

   
|
  

 
  

  
                                    

After some rearrangement, equation       reduces to,  

   

   
|
  

 
             

  
                                                  

The right hand side of equation      is called the second order accurate central 

difference approximation of second derivative. Subtracting equation (2.1) from 

equation (2.2), we get 

           
  

  
|
  

  
   

   
|
  

  

 
                                        

   

  

  
|
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Equation       is called second order accurate central difference approximation of 

first derivative. In the similar way, we can take three points along the        by a 

distance   , as shown in Figure        . We get  

   

   
|
  

 
             

  
                                                 

    

  

  
|
  

 
         

  
                                                             

By combining the arguments of Figure         and         , we obtain the five 

point stencil in Figure            gets two subscripts, one of them for the   on the   

direction and the other for   on the   direction. By combining the 

equations         and       , we write  

(
   

   
 

   

   
)|

   

 
                   

  
 

                   

  
                          

 

  

𝒊 𝒋 

𝒊 𝒋  𝟏 

𝒊 𝒋  𝟏 

𝒊  𝟏 𝒋 𝒊  𝟏 𝒋 

 
 Figure 2.2: Five point stencil 
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2.2 Difference Schemes for the Elliptic PDE's 

Consider Laplace's equation and Poisson's equation    

   

   
 

   

   
                                                                            

    

   

   
 

   

   
                                                                       

defined over    {               respectively with Dirichlet boundary 

conditions 

                                                                     

Using square grid and by implementing the five point approximation scheme Figure 

(2.3), the finite difference approximation for Laplace's and Poisson's equation at the 

point     has the following form; 

                                                                        

    

                                                                      

Equations        and        are called the five point finite difference approximation 

for Laplace's and Poisson’s equation respectively. The five point stencil of these 

approximations is shown in Figure                
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Figure 2.3: Five point stencils for the Laplace and Poisson equation 

Equations        and        are then assembled into a linear system 

                                                                                

If the difference equations are taken in the natural order of the points, the coefficient 

matrix   is 

  

 

 

 

 

 

 

where  

  

 𝟒 

𝟏 

𝟏 

𝟏 𝟏 

𝑩 

𝑪 𝑩 

𝑩 𝑪 𝑪 

𝑪 

𝟎 

𝟎 

𝑨   
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[
 
 
 
 
 
 
 
 
 
 4 1 . . . . . 0

1 4 1 .

. 1 4 1 .

. 1 . .

. . .

. . 1 .

. 1 4 1

0 . . . . . 1 4









 ]
 
 
 
 
 
 
 
 
 
 

           

[
 
 
 
 
 
 
 
 
 
 1 0 . . . . . 0

0 1 0 .

. 0 1 0 .

. 0 . .

. . .

. . 0 .

. 0 1 0

0 . . . . . 0 1

 

]
 
 
 
 
 
 
 
 
 
 

 

The structure of the matrix   is sparse matrices with   nonzero diagonals    . 

2.3 Boundary conditions 

 For Elliptic PDEs, there are given boundary conditions where in some property of   

is specified     with either Laplace's or Poisson's equations. We can define three 

types of boundary conditions       . 

a) Dirichlet condition 

When the node of grid      is close to the boundary condition. Then this node is 

either close to one boundary node or two boundary nodes. See Figure     .  

 

  
𝑢𝑖 𝑗   

𝑢𝑖 𝑗   

𝑢𝑖 𝑗 
𝑢𝑖   𝑗 𝑢𝑖   𝑗 𝑢𝑖   𝑗 𝑢𝑖   𝑗 𝑢𝑖 𝑗 

𝑢𝑖 𝑗   𝜕Ω 𝜕Ω 

𝑢𝑖 𝑗   

 𝑎    𝑏   

 Figure 2.4: 5 points stencil close to boundary 
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In the Figure          the boundary node (      ) is known value (given). So, the 

five points of finite differences for Laplace's equation can be written as:    

                                                               

and for the Poisson's equation can be written as: 

                                                             

Also, in the Figure          the boundary nodes (             ) are known the values 

(given)    . So, the five points of finite differences for the Laplace's equation can be 

written as:     

                                                                 

and for the Poisson's equation can be written as: 

                                                          

b) Neumann condition: 

When              is on the boundary   , then when using the   point 

difference scheme, three of the node lie on the boundary line, one inside the 

boundary at        and the fifth at        , we consider a fictitious grid point outside 

the domain as shown in Figure          .  
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To find the node        we use the central differences approximation: 

       
                

  
                                                      

we rewrite equation (2.20) as 

                                                                      

So, the five points of finite differences for Laplace's equation can be written as:     

                                                          

and for Poisson's equation can be written as: 

                                                                

For Laplace's equation, the totality of equations at the       grid points of the 

square leads to the matrix equation      

                                                           

where    is a matrix of order        given by 

𝑢𝑖 𝑗   
𝜕Ω 

𝑢𝑖   𝑗 
𝑢𝑖   𝑗 𝑢𝑖 𝑗 𝑓𝑖𝑐𝑡𝑖𝑡𝑖𝑜𝑢𝑠 

Figure 2.5:  Fictitious grid point outside the domain 𝜕Ω 

𝑢𝑖 𝑗   
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With   the identity matrix of order       , and   matrix of order       given by 
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The vectors     and     of equation         are respectively given by: 

  [                                     ]
 
 

  [                                                              ]
 
   . 

c) Robin condition: 

The boundary conditions of the form        and         can be incorporated into the 

difference equations for the boundary nodal points by an extension of the methods 

outlined in the Dirichlet and Neumann problems    . 
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Chapter 3 

SOLUTION TECHNIQUES FOR ELLIPTIC PDE’s 

3.1 Introduction   

In Chapter 2, we saw that the discretization of an Elliptic partial differential equation 

led to the solution of a large sparse linear algebraic system. In this Chapter, our target 

is to solve linear algebraic system 

                                                                         

generated from the discretization of an Elliptic partial differential, where   is large, 

sparse and typically positive definite      matrix. This means that relatively few 

entries of positive definite matrix   are nonzero. Methods of solution equation       

belong essentially to the class of iterative methods and such that if a direct solver 

such as Gauss elimination is applied to the sparse system, we introduce a large 

number of additional entries into the coefficient matrix. These fill in values will 

destroy the sparse structure of the problem and those increase the storage 

requirements significantly    .  

As an alternative, to the direct methods, we may apply an iterative solver to the 

system of equations      . Such methods start with initial guess      for the solution  

       and compute a sequence of approximation {    } which hopefully 

converges to   . When using an iterative method, the coefficient matrix   is involved 

only in terms of matrix by vector products. Thus, there is no need for storing the zero 
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entries of  , and is possible to implement algorithms that are extremely cost effective 

with respect to computing time as well as storage       . Another advantage of an 

iterative procedure is that does not accumulate rounding in the same way as a direct 

method: traditionally, iterative methods for problems like equation        have been 

closely connected to splitting of the coefficient matrix   as follows; 

Consider the splitting  

                                                                    

Where   and   are     matrices and   is nonsingular and easily invertible. Using 

the splitting equation       we may write the original system equation       is. 

         

        

               

      ̃                                                              

The iterative form is  

                                                                 

which is equivalently as  

                                                                 

or                                                

                            ̃                                                        
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Where               ̃         

Then the recursive error equation generated from subtracting equations       

and      .  

             ̃         ̃ 

                   

                                                                                 

Where 

         , and   is the exact solution of equation               

Definition and theorem are given according to following; 

1) Directed graph, connectedness and irreducibility. 

2) M-matrices. 

3) Regular splitting.  

Definition 3.1: (graph of a matrix)      

Let         be matrix corresponding to index set  . The following subset of all 

pairs from     is denoted as the graph      of the matrix  . 

     {                }                                                    

Definition 3.2:     

A directed graph is said to be strongly connected if to each ordered pair of disjoint 

points        there exists a directed path in the graph,        ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗       ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗          
   ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ 

with               
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Theorem 3.1:                                                                                                     

A matrix is irreducible if and only if its directed graph is connected.   

According from the definition           and theorem       we may conclude that 

the directed graph      is strongly connected and also irreducible.    

In the following we will outline some of the special type of matrices and their 

characteristics. 

Definition 3.3: (M-matrix) [1] [11] 

A matrix         is an M-matrix if       for all       is nonsingular and 

     . If    is irreducible and |   |  ∑|   | with strict inequality for at least on  , 

then   is an M-matrix   

Definition 3.4: (diagonally dominant and irreducible diagonally dominant)      

The matrix   is said to be strictly diagonally dominant if  

   ∑|   |

 

   

 |   | 

Diagonally dominant if 

   ∑|   |

 

   

 |   | 

And irreducible diagonally dominant if   is irreducible and  

1)    |   |. 

2)    |   | at least one index  .   
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Definition 3.5: (L-matrix)      

A matrix         is an L-matrix if                 for                    

Lemma 3.1:     

A is monotone matrix if and only if   is nonsingular and         

Theorem 3.2: [1][10]   

If         is a real     matrix with       for all    , then the following are 

equivalent.  

1.   is nonsingular and       

2. The diagonal entries of   are positive real numbers   

If we consider the matrix   in equation      , we can say that matrix   is     and     

matrix, irreducible diagonally dominant and also monotone according to definitions  

          lemma       and theorem      . 

We turn now to the question of convergence of the basic iterative method 

equation       

Definition 3.6:     

Let           Then       is called  

1) A regular splitting if   is monotone and      

2) A convergent splitting if   is nonsingular and              

A necessary and sufficient condition for convergence of the iterative method 

              or corresponding formula                is           

[1][10][11]. Illustrate the necessary and sufficient conditions for convergence of the 

method given by                 
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Theorem 3.3:      

If       is a regular splitting of the matrix   and       then  

        
       

         
                                              

Thus the matrix      is convergent and iterative method of equation       

converges for any initial vector         

Proof:  

Assume that   is nonsingular with      , since  

                      

                          

                                    

                           

                                  

                    

Let             

               

Because this relation if   is any eigenvector of   corresponding to the eigenvalue  , 

Then        

      

and  
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If follows that   is also eigenvector of      corresponding to the eigenvalue   

given by 

                     
 

   
  

       
 

   
  

We can maximize   by choosing        then  

        
       

         
                                           

3.2 Basic Linear iterative methods    

There are several iterative methods on the splitting of the coefficient matrix  . In this 

section we introduce classical iterative schemes, namely Jacobi, Gauss-Seidel and 

SOR methods. For example, if the diagonal entries of the matrix   as the matrix sum 

                                                                

Where           {                and   and   are respectively strictly 

lower and upper triangular     matrices. Then the following choices are available 

based on the matrix splitting equation       for three classical methods    . 

3.2.1 Jacobi and Gauss-Seidel Method  

Consider a linear system        equation      , using equation      , we write 

equation       in the form 
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and consider the iteration  

                                                                        

This has the form of equation       with  

                    ̃                                                

Where     is called the iteration matrix or error propagation of Jacobi method and  ̃ 

is constant vector. The scalar form of equation         is        ; 

  
     

  ∑
   

   

 

       

  
   

 
  

   
                                                  

If the equations        or        are applied solve the system of finite difference 

equations for Laplace's equation and Poisson’s equation, we obtain the Jacobi 

iteration formula                  

    
     

 
 

 
*      

   
       

   
       

   
       

   
+                                      

and 

    
     

 
 

 
*      

   
       

   
       

   
       

   
       +                           

respectively. Updates to the solution at       are computed as a weighted average of 

solutions at its four neighboring points. Contrary to solution obtained by direct 

methods, parallel computational techniques are easily used with Jacobi’s method 

since the solution state at iteration       is explicit    . 

Convergence of Jacobi’s method is too slow for practical serial computation. Gauss-

Seidel iteration uses the latest solution information as soon as it becomes 
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available    . Thus when computing   
     

 according to equation         we could 

use latest iterates   
     

              on the right to obtain  

  
     

  ∑
   

   

   

   

  
     

 ∑
   

   

 

     

   
   

 
  

   
                                              

In the matrix form of equation         this is equivalent to  

                                                                     

or 

                                                                

This has the form of equation       with  

                   ̃                                                    

Where     is called the iteration matrix or error propagation of Gauss-Seidel method 

and  ̃ is constant vector. If the equations        or        are applied solve the 

system of finite difference equations for Laplace's equation and Poisson's equation, 

we obtain  

    
     

 
 

 
*      

     
       

     
       

   
       

   
+                                      

and 

    
     

 
 

 
*      

     
       

     
       

   
       

   
        +                          

respectively. 
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In section (3.2), we showed that the matrix   generated from the   point finite 

difference approximation is an M-matrix and irreducible diagonally dominant. 

According to theorem       and the following theorems both Jacobi and Gauss-

Seidel methods are convergent. 

Theorem 3.4:     

Let   be an M-matrix. Then both       and           result in regular 

splitting. Furthermore  

                                                            

Theorem 3.5:         

If a matrix   is strictly diagonally dominant or irreducibly diagonally dominant, then 

the associated Jacobi and Gauss-Seidel iterations converge for any          

Theorem 3.6:     

Suppose that the matrix         has following property for any     

                             

for all     {  . Then the following property holds  

If     is an eigenvalue of    for some         then  

  
     

  
 
 

            

Theorem 3.7:     

 If   is consistently ordered, then 

       [ (  )]
 
  

That is, Gauss-Seidel iterations converge twice as fast as Jacobi iterations 

 



25 

 

Proof: 

From theorem (3.6)  

  
     

  
 
 

                        
 
  

                                                       

                             

       [ (  )]
 
                                                         

3.2.2 Successive Over Relaxation (SOR)  

The Gauss Seidel method is adapted to the successive over-relaxation iterative 

method in which extrapolation parameter omega is introduced and each component is 

successively changed to the form of a weighted average between both, the former 

iterate and the computed Gauss-Seidel iterate. By an order of magnitude, the (SOR) 

iterative method converges more quickly than Gauss Seidel iterative method       .  

Definition 3.7:     

Consider   ̃  as an approximation to the solution of the linear system defined 

by     , for this system the residual vector is       ̃ .  

A residual vector, in the processes of both Jacobi and Gauss-Seidel methods, is tied 

to all the calculations of an approximate component to the solution vector. The main 

aim is to generate a sequence of approximation which will result in the residual 

vectors in order to converge quickly to zero. Consider 
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Denote the residual vector for the Gauss-Seidel method corresponding to the 

approximate solution vector   
     

defined by 

  
     

    
     

   
     

       
     

   
   

       
   

   

The     component of   
     

 is  

   
     

    ∑   

   

   

  
     

 ∑   

 

   

  
   

                             

or, equivalently, 

   
     

    ∑   

   

   

  
     

 ∑    

 

     

  
   

      
   

     

                    

In particular, the     component of   
     

 is 

   
     

    ∑   

   

   

  
     

 ∑    

 

     

  
   

      
   

 

So 

     
   

    
     

    ∑   

   

   

  
     

 ∑    

 

     

  
   

                         

Recall, however that in the Gauss-Seidel method,   
     

 is chosen to be    

  
     

 
 

   
[   ∑   

   

   

  
     

 ∑    

 

     

  
   

]                            

So, equation        can be rewritten as 
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Subsequently, the Gauss Seidel method can be characterized as selecting   
     

. To 

satisfy   

  
     

   
   

 
   

     

   
                                                          

Another connection between the residual vectors and the Gauss Seidel technique can 

be derived. Consider the residual vector     
     

, associated with the vector      
     

 

   
     

      
     

     
   

        
   

  . By equation        the     component of 

    
     

  is  

      
     

    ∑   

 

   

  
     

 ∑    

 

     

  
   

 

      
     

    ∑   

   

   

  
     

 ∑    

 

     

  
   

      
     

 

By the manner in which   
     

 is defined in equation        we see that        
     

  . 

In a sense, then, the Gauss-Seidel technique is characterized by choosing each 

    
     

 in such a way that the     component of     
     

 is zero. 

Selecting      
     

 so that one coordinate of the residual vector is zero, however, is not 

necessarily the most efficient way to reduce the norm of the vector       
     

   If we 

modify the Gauss-Seidel procedure, as given by equation       , to      
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We can reduce the norm of the residual vector for certain choices of positive   and 

obtain faster convergence.  

Methods regarding equation        are known as relaxation methods. The choice of  

   with       , the procedures are known as under-relaxation methods. We will 

be interested in choices of   with      , and these are known as over-relaxation 

methods. They are used to accelerate the convergence for systems that are 

convergent by the Gauss-Seidel technique. The methods are abbreviated as SOR, to 

Successive Over-Relaxation, and are especially useful for solving the linear systems 

that can be seen in the numerical solution of certain partial-differential 

equations         

Before instancing the advantages of the SOR method, we note that by 

using                , we can reformulate equation        for calculation purposes 

as 

  
     

        
   

 
 

   
[    ∑       

     
 ∑      

   

 

     

   

   

] 

                                                                       

To determine the matrix form of the SOR method, we rewrite this as 

     
     

  ∑       
     

   

   

           
   

  ∑      
   

 

     

     

So, that in vector form, we have 
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That is  

                                                            

Letting                          and    ̃            , gives the 

SOR method as         

               ̃    

If the equation        is applied in the solving the system of finite difference 

equations for the Laplace's equation and Poisson's equation results 

    
     

          
   

 
 

 
(      

     
       

     
       

   
       

   
)                               

    
     

          
   

 
 

 
(      

     
       

     
       

   
       

   
      )                 

respectively. 

Theorem 3.8:     

If       for each           then               it means that if       

the SOR method converges in this period.   

Theorem 3.9:      

If   is a positive definite matrix and      , then the SOR method converges for 

any choice of initial approximate vector,        

 

 

 

 

 

 



30 

 

Theorem 3.10:         

Suppose that   is consistently ordered that   has only real eigenvalues and that   

      . Then SOR iteration converges for every         and the spectral radius 

of the SOR matrix is  

      

{
 

 
    

 

 
       √    

    

 
                                    

                                                                                                   

 

Where  

     
 

  √    
     

Proof: 

From theorem (3.6)  

  
     

  
 
 

                   

                            

or 

    (    
 

 
    )            

  
 (    

 
     )  √ (    

 
     )

 

        

 
 

  (    
 

 
    )  √(    

 

 
    )

 

         

  (    
 

 
    )  √
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  (    
 

 
    )    √

 

 
                                           

or 

  
 

 
*   √            +

 

                                             

If    is an eigenvalue of   then both roots   are eigenvalues of   .  Since   is real 

the term inside the square root from                is negative if  

 

 
           

or 

                                                         

Then if                                then  

 ̃  
    √     

  
                                               

and in this case from         

  
 

 
*    √            +

 

 

| |  
 

 
                                          ̃     

If                then the two solution      are real and  

   {|  | |  |  (    
 

 
    )   | |√
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where 

                                      

For converge we require       to be as small as possible when          this 

implies  

  
    √     

  
 

 

  √    
   

where                                        

              
 

  √    
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Chapter 4 

 NUMERICAL RESULTS  

In this Chapter, the performance of various iterative methods described in Chapter 3 

will be tested for the solution of the model problems listed below.  

Problem 1 

                                                    {               

                                                                            

                                                                               

Problem 2 

                               {               

                                                                           

                                                                            

The generated linear system of the above model problems from the five point 

difference discretization are solved using the following iterative methods.  

1. Jacobi Method 

2. Gauss Seidel method 

3. Successive Over relaxation Method (SOR) 
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The iterative algorithm of the above methods with different values of mesh size 

  
 

  
    

 

  
    

 

  
 has been computed numerically according to the fixed 

starting iterative vector and the iteration has been terminated according to the 

following criteria  

‖           ‖         

To increase the convergence rates of the SOR methods through the application of the 

model problems, optimum relaxation parameter has been calculated for different 

values of mesh size   using the following formula  

     
 

  √    
 

One of the considered comparison factors to evaluate the performance of the 

methods is the maximum error reduction through the iterative procedure. Figures 

      and       illustrate the maximum error reduction for each iteration method to 

solve problem   and problem   using the proposed iterative methods with various 

values of   
 

  
    

 

  
    

 

  
 respectively. These figures indicate that SOR 

iterative method requires less iteration than Jacobi and Gauss Seidel methods. 

Exact and approximate solutions of problem   and problem   with    
 

  
 are 

illustrated in Figures       and       respectively. We observed from these figures 

that proposed iterative methods work well and each iterative method produce a 

reasonable approximate solution. 
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The other factors of comparison worth to consider is the total number of iteration for 

each iterative method. Tables       and       illustrate the total numbers of iteration 

for each iterative method with various values of     for the solution of problem   and 

problem   respectively. In comparisons between proposed iterative methods, we 

observed from these tables that SOR method requires less total number of iteration 

than Jacobi and Gauss Seidel method and also Gauss Seidel method is twice as faster 

as Jacobi method, (see Theorem     )     
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Figure 4.1: The maximum error reductions per each iteration step using Jacobi, 

Gauss- Seidel and SOR methods. For                       and           

for problem 1  

 𝑎  

 𝑏  

 𝑐  
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Figure 4.2: Exact and approximate solution of u using Jacobi, Gauss-Seidel and SOR 

methods with         for problem    
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Table 4.1: Total number of iterations for Jacobi, Gauss Seidel and SOR methods with 

different values of   
 

  
    

 

  
    

 

  
 for problem    

 

h 

Jacobi Gauss-Seidel SOR 

Number of 

iteration 

Number of 

iteration 

Number of 

iteration  
     

 

  
 

 

171 

 

93 

 

24 

 

1.5279 

 

  
 

 

576 

 

317 

 

45 

 

1.7295 

 

  
 

 

1858 

 

1042 

 

85 

 

1.8545 
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Figure 4.3: The maximum error reductions per each iteration step using Jacobi, 

Gauss-Seidel and SOR methods for                       and           

for problem    

 𝑐  

 𝑎  

 𝑏  
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Figure 4.4: Exact and approximate solution of u using Jacobi, Gauss-Seidel and SOR 

methods with         for problem    
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Table 4.2: Total number of iterations for Jacobi, Gauss Seidel and SOR methods 

with different values of   
 

  
    

 

  
    

 

  
 for problem   

 

h 

Jacobi Gauss-Seidel SOR 

Number of 

iteration 

Number of 

iteration 

Number of 

iteration  
     

 

  
 

 

211 

 

115 

 

30 

 

1.5279 

 

  
 

 

740 

 

403 

 

57 

 

1.7295 

 

  
 

 

2518 

 

1381 

 

111 

 

1.8545 
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Chapter 5 

CONCLUSION  

In this thesis, we emphasized on the numerical solution of Elliptic problem using   

points finite difference discretization. The generated linear system is then solved by 

basic iterative methods namely; Jacobi, Gauss-Seidel and Successive Over 

Relaxation methods. The structures of the matrices generated from the   point's finite 

difference discretization are sparse and symmetric positive definite. For that aspect 

related theorems and definitions are described for the solution of linear system of 

equations.  

Two practical problems were solved for various values of   in order to compare the 

efficiency of the basic iterative methods. The analyses of results show that the 

Gauss-Seidel method converges faster than the Jacobi method because it uses more 

recent numbers to make it guess. Due to this, the eigenvalues of Gauss-Seidel 

method will always be lower than the Jacobi method according to Theorem     . An 

even faster method is Successive Over Relaxation method. A numerical result shows 

that SOR method for a suitable chosen value of optimum relaxation parameter.  

We also observed that, Jacobi, Gauss-Seidel and SOR methods are easy to 

implement. But, impractical for problems with large number of grids and also 

Successive Over Relaxation requires the optimum value of relaxation parameter for 
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fast convergence, which needs on extra computation. Thus, the SOR could be 

considered more efficient of three methods for small grids.                 
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