
A Hardware Oriented Algorithm for 3D AOA

Mobile Positioning

Marwan Hasan

Submitted to the

Institute of Graduate Studies and Research

in partial fulfillment of the Requirements for the Degree of

Master of Science

in

Computer Engineering

Eastern Mediterranean University

June 2014

Gazimağusa, North Cyprus

ii

Approval of the Institute of Graduate Studies and Research

 Prof. Dr. Elvan Yılmaz

 Director

I certify that this thesis satisfies the requirements as a thesis for the degree of Master

of Science in Computer Engineering.

 Prof. Dr. Işik Aybay

 Chair, Department of Computer Engineering

We certify that we have read this thesis and that in our opinion it is fully adequate in

scope and quality as a thesis for the degree of Master of Science in Computer

Engineering.

 ___________________________ _______________________________

 Asst. Prof. Dr. Emre Özen Assoc. Prof. Dr. Mustafa İlkan

 Co-Supervisor Supervisor

 Examining Committee

1. Assoc. Prof. Dr. Mustafa İlkan _________________________________

2. Assoc. Prof. Dr. Muhammad Salamah _________________________________

3. Asst. Prof. Dr. Gürcü Öz _________________________________

4. Asst. Prof. Dr. Emre Özen ________________________________

5. Asst. Prof. Dr. Ahmet Ünveren _________________________________

iii

ABSTRACT

The determination of a mobile object’s location in a cellular network becomes very

important with the new US Federal Communication Commission (FCC) standards

regarding the wireless Enhanced 911 (E911) emergency calling systems. Most

commonly used methods for location can be addressed as Time of Arrival (TOA),

Time difference of Arrival (TDOA) and Angle of Arrival (AOA). The importance of

finding the location of a mobile object in 3D becomes much more important

especially after Federal Communication Commission’s announcement which asks

about the vertical position estimation of a mobile object.

There exist general approaches to simple algorithms for 2D positioning techniques in

cellular networks and adhoc networks. Such an approach is missing for 3D

positioning. The aim of this project is via using AOA signal measurement technique

to form a simple algorithm for 3D positioning that could be implemented both as

hardware and software.

Four new 3D AOA algorithms; MEM-1, MEM-2, DMEM-1 and DMEM-2 are

proposed in this study. At the end of simulation from the results it is clear that our

proposed algorithms outperform the traditional algorithm in terms of computational

cost and execution simplicity.

Keywords : Positioning algorithm, Angle of Arrival, 3D positioning.

iv

ÖZ

ABD Federal İletişim Komisyonunun (FİK) kablosuz genişletilmiş acil çağrı (E911)

standartlarında değişikliğe gitmesi ile mobil cihazların hücresel ağlar içerisindeki

yerlerinin belirlenmesi çok önemli bir hal almıştır. Konum bulmak için yaygın olarak

kullanılan yöntemler; varış zamanı (VZ), varış zamanı farkı (VZF) ve varış açısı

(VA) olarak listelenebilir. Mobil cihazların konumunu üç boyutlu olarak bulma,

FİK’nun mobil cihazların dikey konum tahmininin gerekli olduğunu açıklamasından

sonra önem kazanmıştır.

Halihazırda hücresel ağlar içerisindeki mobil cihazların yerlerinin iki boyutlu olarak

belirlenmesini sağlayan algoritmalar mevcuttur. Fakat üç boyutlu yer belirlemede

kullanılabilecek algoritmalar yoktur. Bu çalışmanın amacı, VA yöntemini kullanarak

üç boyutlu yer belirlemede kullanılabilecek bir algoritma geliştirmektir.

Bu çalışmada MEM-1, MEM-2, DMEM-1 ve DMEM-2 adlarında dört tane yeni

algoritma geliştirilmiştir. Bu algoritmalar VA yöntemini kullanarak mobil cihazların

yerlerinin üç boyutlu olarak bulunmasını sağlamaktadırlar. Simülasyon sonuçları

geliştirilen algoritmaların geleneksel olandan daha verimli çalıştığını göstermektedir.

Anahtar kelimeler : konum bulma algoritması, varış açısı, üç boyutlu yer belirleme

v

To Family

vi

ACKNOWLEDGMENT

I am deeply indebted to my Assoc. Prof. Dr. Mustafa İlkan for the continuous

support for my master study and thesis. I could not have imagined having a better

advisor from him for my master study.

I would like to thank for my co-supervisor Asst. Prof. Dr. Emre Özen for his help

and valuable comments.

My special thanks for Prof. Dr. Işık Aybay chairman of the Department of Computer

Engineering for his help.

Words cannot express my gratefulness to my dear family for their support to me for

travel from Iraq to North Cyprus for my study. Thanks for all of them.

vii

TABLE OF CONTENTS

ABSTRACT ... ii

ÖZ .. iiii

DEDICATION ... v

ACKNOWLEDGMENT ... vi

LIST OF TABLES ... x

LIST OF FIGURES .. xi

LIST OF ABBREVIATIONS .. xii

1 INTRODUCTION .. 1

2 POSITIONING TECHNIQUES ... 4

2.1 Cell-ID ... 4

 2.1.1 Time of Arrival (TOA) Positioning Systems ... 5

2.1. 2 Time Difference of Arrival (TDOA).. 8

2.1.3 Angle of Arrival (AOA) .. 9

2.1.4 Traditional AOA Algorithm .. 10

2.1.5 SDB Algorithms ... 11

3 PROPOSED HARDWARE-ORIENTED ALGORITHM FOR AOA 18

3.1 MEM-1 Algorithm .. 19

3.2 MEM-2 Algorithm ... 24

3.3 DMEM-1 Algorithm .. 37

3.4 DMEM-2 Algorithm .. 39

viii

4 SIMULATION RESULTS ... 41

5 CONCLUSION…………………………………………………………................46

REFERENCES ... 48

APPENDICES………………………………………………………………………50

 Appendix A : Source Code of the MEM-1 Algorithm…..…….…....……..…51

 Appendix B :Source Code of the MEM-2 Algorithm …………………..…...55

 Appendix C : Source Code of Mobile Object Location Generat Algorithm....61

 Appendix D : Source Code of the DMEM-1 Algorithm…………….….....…62

 Appendix E :Source Code of the DMEM-2 Algorithm ……………..….....…68

x

LIST OF TABLES

Table 4.1 : Weights of Operations..41

Table 4.2 : Confidence Interval Calculations for MEM-2…………..........................44

Table 4.2 : Average Computational Costs Versus Step Size......................................45

xi

LIST OF FIGURES

Figure 2.1 : Cell-ID Positioning Method..4

Figure 2.2 : TOA Positioning……………..………………………………………......5

Figure 2.3 : TOA 3D Positioning Method..7

Figure 2.4 : TDOA Positioning Method...8

Figure 2.5 : AOA Positioning Technique...9

Figure 2.6 : Traditional AOA Algorithm..10

Figure 2.7 : Circular Vector Rotation...12

Figure 2.8 : Vector Length Incrementation...14

Figure 2.9 : SDB Algorithm for the General Scheme ..14

Figure 2.10 : Parallel Incrementation of Vector..15

Figure 2.11: Parallel Decrementation of Vector..17

Figure 3.1 : Mobile Object’s Position in 3D Space..19

Figure 3.2 : Circular Vector Rotation..20

Figure 3.3 : The Vector Lengthening for Finding z1..22

Figure 3.4 : Vector Lengthening on X-Z axis...23

Figure 3.5 : The General Scheme for MEM-1 Algorithm …………….....................23

Figure 3.6 : Circular Vector Rotation ..24

Figure 3.7 : Vector Lengthening on X-Y axis...27

Figure 3.8 : The General Scheme for MEM-2 Algorithm on X-Y axis.....................27

Figure 3.9 : Parallel Incrementation of Vector..28

Figure 3.10 : Parallel Decrementation of Vector...30

Figure 3.11 : Circular Vector Rotation for MEM-2..31

Figure 3.12 : Vector Lengthening on X-Z axis…...33

xii

Figure 3.13 : The General Scheme for MEM-2 Algorithm on X-Z axis....................33

Figure 3.14 : Parallel Incrementation of Vector on X-Z axis34

Figure 3.15 : Parallel Decrementation of Vector on X-Z axis36

Figure 4.1 : Average Error in Sin (α), Cos (α) Versus the Step Rotation..................42

Figure 4.2 : Error Estimation of the Mobile Location Versus ΔD..............................43

xiii

LIST OF ABBREVIATIONS

AOA Angle of Arrival

BS Base Station

DMEM-1 Dynamic Mustafa Emre Marwan One

DMEM-2 Dynamic Mustafa Emre Marwan Two

FCC Federal Communication Commission

FPGA Field Programmable Gate Array

GPS Global Positioning System

LOB Line of Bearing

LOS Line of Sight

MEM-1 Mustafa Emre Marwan -1

MEM-2 Mustafa Emre Marwan -2

MO Mobile Object

MS Mobile Station

PSTN Public Switched Telephone Network

RISA Reduced Instruction Set Computer

SDB Salamah Doukhnitch Bayramer

SMLC Service Mobile Location Center

TDOA Time Difference of Arrival

TOA Time of Arrival

1

Chapter 1

1INTRODUCTION

In recent years Global Positioning system (GPS) has attracted a considerable

attention as it is useful for the purposes of system administration and emergency

situations that depend on knowing the exact position of mobile devices that are vital

for many services. GPS services can be used in security, tour guide, emergency

rescue and location based billing and other applications. [1]

GPS is useful for specifying the position of a mobile object. In the issue of location-

sensitive billing, network operator can provide distinctive rates depending on the

location of the mobile phone. This neglects the usage of Public Switched Telephone

Network (PSTN) to offer competitive prices for variant calls and provides accurate

information to network operators. From the standpoint of security, it also enables

automatic determination of position information in emergency cases similar to those

available for fixed phones calls, and this improve response time and efficiency used

in resources.

The position of a mobile station (MS) can be determined through the use of GPS.

This can be used in dispatching fleets of vehicles and detecting traffic congestion.

And also can be used in Intelligent Transport Systems (ITS).

2

 Estimation to the position of a MS in wireless cellular networks is an important

issue for the network performance enhancement. Long-term MS positioning can be

monitored to provide inputs for better cellular network planning and in the short-term

for matching the requirements of Federal Communications Commission (FCC) to

locate 911 emergency calls.

In the middle of 1996, the FCC pronounced its delegation to perform gradually

increasing emergency service for cellular system users. That could be referred to

Position Location site (PL) information which permits agencies to supply quick and

efficient emergency service to help anyone in need. For that, in mid 90’s, FCC

handled three phase regulations under position determination E-911 service. In the

first phase, the providers of this service can verify transmitting Mobile Identification

Number (MIN) from those who are demanding 911 call ignoring all validation and

charge cases, this phase was applied one year after FCC regulation settlement. In the

second phase, service providers must supply a technique that includes cell site

location for matching callers’ phone numbers. In the third phase, the service

providers could fulfill the goal of determining the location of mobile users who are

seeking 911 calls with at least 67 percent of success throughout a circle of a 125

meters radius.

In order to locate cellular mobile station, two main classes are used; network based

where one or more (BS) receive (MS) signals and determine the location inside the

server. Because of the large number of messages between (BS) and (MS), the

network is expensive even though the handsets don’t have to be changed. The second

class is the mobile based, where the mobile station reports its position based on

measurements made form received signals. The position is reported via a wireless

3

network to the service provider. These methods support high position accuracy

although legacy phones cannot be used. Different techniques can be used to

determine the location of a MS in any cellular system. Positioning measurement can

be done via time of arrival (TOA), time difference of arrival (TDOA), angle of

arrival (AOA), cell identity (Cell-ID) and more [2], [3], [4]. However, AOA, TOA

and TDOA methods can work with the existing cellular infrastructure without using

any extra investments; otherwise, they are low cost methods that simplify integration

through a high accuracy. AOA is a method which includes two base stations, where

smart antennas can be used at the base/mobile station to determine angle of the

received information.

This study focuses on the AOA technique which can be addressed as a low cost

method with more applications. And also this thesis is devoted to the new location

estimation algorithms in 3D that can be implemented as hardware.

There is a considerable advantage in selecting AOA which depends on wireless

location system used for carriers of cellular and personal services because there is no

need to change the existing MS which surpass 50 million. Aside from tracking the

MS, it is possible to monitor the movement of reverse traffic channel.

Consequently, the background of positioning techniques and traditional method are

reviewed in Chapter 2. Chapter 3 contains the proposed hardware-oriented 3D

positioning algorithms for AOA technique. Simulation results and comparisons

between the traditional and the proposed techniques have been presented in Chapter

4. Finally, conclusion is revealed in Chapter 5.

4

Chapter 2

2POSITIONING TECHNIQUES

There are a number of technical alternatives for assigning positions of the user

equipment. Most of the traditional techniques use site attributes of mobile signal for

location, such as; 1) the identity of the cell (cell-ID), 2) the time of arrival (TOA), 3)

the time difference of arrival (TDOA), and 4) the angle of arrival (AOA), which will

be discussed in this chapter.

2.1 Cell-ID

Estimating the location of a mobile device drive by determining the location of the

base station or antenna can be considered as the most basic and simple way of

assigning locations throughout cell areas, this is demonstrated in Figure 2.1. Cell-ID

is the simplest form of GPS technology, which focuses on the network. In spite of the

bad locating accuracy of this method; it is simple, fast and cheap.

Figure 2.1: Cell-ID Positioning Method

5

For positioning method using Cell-ID, location measurement of MS’s position could

be conducted by registering MS to the assigned cell depending on the information

available in the network and the MS. The geographic location of a Cell-ID can be

determined with the use of the network operator knowledge. This is known as mast-

based location which uses coverage database at the Serving Mobile Location Center

(SMLC). Mobile network always knows the whereabouts of the mobile phone that is

registered to region level, during a call it can determine the intended cell among the

cells in the region communicating with this phone. Data base and MS roaming

subscribers can be supported by estimating the mobile object’s location done by cell

center. According to the accuracy level, the cell size can be determined. The simplest

shape of positioning technology is the network centric. The main disadvantage is

that the size of the cells could be different between rural and urban areas, leading to

changes in the position accuracy.

2.1.1 Time of Arrival (TOA) Positioning Algorithms

TOA technique finds the location of moving objects building at the intersection of

measuring the distance from the base stations BS using circles group relying on the

proportional relation of radio wave propagation time with its converse [11].

Figure 2.2: Time of Arrival

6

In order to determine the location exactly, there is a need for three base stations of

measurements, that is demonstrated in Figure 2.3. The circles can be used in 2D

space as areas in 3D space.

The range between BSi and the MO can be expressed as

22)()(|||| MOiMOiMOii yyxxxxD 
 (2.1)

Where xi, yi, zi are known as coordinates of the i
th

 base station and Dis are the range

estimations respectively. The Mobile Object (MO) location which will be estimated

is noted as xmo, ymo and zmo for x, y, z coordinates. Then via combining and

substituting the formulation for (2.2), xmo, ymo and zmo could be estimated.

The formulation could be as follow :

222)()()(MOiMOiMOii zzyyxxD 
 (2.2)

7

 Figure 2.3: TOA 3D Position[11]

Assume that the coordinates of BS1, BS2 and BS3 in a local right-handed orthogonal

coordinate system are (X1,Y1, Z1), (X2,Y2, Z2) and (X3,Y3, Z3), respectively. The axis

is parallel to a station baseline, and another axis is orthogonal to the two station

baseline, or station plane. Therefore according to the TOA from each of the three

base stations, the mobile object (MO) position (Xp, Yp, Zp) is the intersection of the

three spheres centered at BS1 (X1, 0, 0), BS2 (X2, Y2, 0) and BS3 (X3, Y3, 0) with

radiuses d1, d2 and d3, respectively[11]. The conventional algorithm for 3-D

positioning which can be decomposed into a sequence of 2-D rotations.

8

2.1.2 Time Difference of Arrival (TDOA) Positioning Algorithm

Instead of absolute time, this method relies on using time difference of arrived

signals. For example, signal can be received by three antennas at variant times while

it can be sent out at unknown time by a mobile device, as in Figure 2.4.

Figure 2.4: TDOA Positioning Method

The TDOA is known as a hyperbolic system because a hyperbolic curve can be

addressed by two base stations related to the constant distance difference due to time

difference. Also TDOA does not require any time reference point to determine

Round Trip Delay (RTD), while TOA does. Estimating the time difference of

arriving signal from the source at multiple base stations is the core work of TDOA.

The TDOA can be referred as Hyperbolic Position Location (HPL) method where the

intersection of two hyperbolas specifies the position. When another hyperbola which

defines another base station takes place in the process, then the intersection of

hyperbolas results in location estimation of MS by utilizing both pairs of for

that. Consequently, the function of relative BS geometric locations can determine the

accuracy of the system.

MS

9

2.1.3 Angle of Arrival (AOA) Positioning Algorithm

The Angle of Arrival technique that determines the position of a mobile object by

utilizing triangulation for position estimation by knowing the angles between the

mobile station and two base station in the Line of Sight (LOS) as shown in Figure

2.5. AOA also does not demand precise timing signal on each side.

Figure 2.5: AOA Positioning Method

In mobile radio systems, because of the hardness of employing antenna arrays in a

mobile station, the antenna arrays are typically located at base station. Those

antennas or specifically directional antennas are usually used to measure AOA.

Throughout the current technology, antenna array could be located in the BS

properly. Otherwise, AOA is measured in the up link even the angle measurements

are performed in the uplink or downlink. The measurement of AOA limits the source

location along a line in the direction of the angle that connects the BS and the MS

which is called Line of Bearing (LOB).

10

2.1.4 Traditional AOA Algorithm

The angle of arrival depend on 2-D position technique of location is based on lines

coming from the base stations which determines the position of the mobile station

(MS) at the position of intersection using bearings. Consider(X, Y) as the mobile

objects position that will be obtained as shown in Figure 2.7. The coordinates of the

MS-vector can be calculated using which is the absolute distance between MS and

BS1, the 1
st
 vector angle becomes α1. becomes the displacement out dated in

distance separating the base station account and the X coordinates of MS,

and α is defined as the angle of the vector.

 Figure 2.6: Traditional AOA Algorithm

Using simple equations it can be written as :

 = . tan α (1)

 = . tan α (2)

11

D = + (3)

So base station one and base station two, the distance between them is D.

then, equation (3) is written as follow as:

 = D – (4)

By deducting (2) from (1), equation (5) is obtained :

 . tan α – . tan α = 0 (5)

Substituting equation four into equation five gives :

 = (D . tan α) / (tan α - tan α) (6)

After determining , (that is allocation of MS at x-axis) which is calculated from

equation four, and then y is calculated from equation one or two.

2.1.5 SDB Algorithm

The algorithm is based on AOA which will use the same origin of information as the

conventional one [12]. Solely subtract, add and shift operations have been used to

find the mobile location without implementing any trigonometric equation. Therefore

it can be carried out via hardware using, for instance, FPGA.

Mainly the algorithm is formed from two parts, in the first part, parallel and circular

rotations of the vectors to determine the parameters cos (), sin (), cos (), sin

(). Whereas parallel vector rotation and parallel incrementation are used in the

second part to find the MS position. For finding the sin and cos of and sin and cos

of , parallel circular rotations of vectors can be used as stated in Figure 2.7 below :

12

Figure 2.7: Circular Vector Rotation

The circulation rotation matrix M can be derived from equation (5) and is written as



















cossin

sincos
M

 (7)

The step rotation angle in radians which is α. Taking the sin function as :

Sin α = (8)

Since

 α α (9)

Then it is possible to denote the cos function as:

cos α = √ α = √ (10)

Then, it can be written as :

√ ≤ 1− (11)

Inequality (11) correct where is squaring for each sides gives :

 ≤ 1- 2. +

= 1- +

13

For k more than or equal to four, one acquire ≤ < . However, can

be an accuracy of ε = , cos σ could converge as :

Cos σ = 1− = 1− () = 1- u (12)

Therefore, vector coordinates are repeatedly rotated for using matrix (7) So, the

rotation equations for the first vector are written as :

 = - - (13)

 = - + (14)

Where σ is the step rotation angle with initial values which is = 1, = 0. So

the cumulative angle is written as :

σ = σ + (15)

The stop condition which is the 1
st
 rotation will be :

 Δσ = σ - σ ≤ ε (16)

And the last iterated = cos (), and = sin ().

Likely, the stop condition which is the second rotation where the initial values are

 =1, = 0, will be as follows :

Δ = (– π/2) - ≤ ε (17)

 (), = cos ().

The second part of the algorithm can be implemented after finding the sin and cos of

 and sin and cos of . The vital idea is the incremental length of the vector as

shown in Figure2.8. This vector holds polar coordinates (R, α) and increase factor of

± which can be increased in length R. Also its orthogonal coordinates are

modified and will be written as :

 + s cos (18)

 = + s sin (19)

14

Where s denotes the incremental factor. For each given cos () sin ()

can be calculated.

Figure 2.8: Vector Length Incrementation

Figure 2.9, below shows the flowchart that demonstrates the procedure of finding the

mobile position by the proposed algorithm.

Let the coordinates of 1 be (1 , 1)=(0, 0); and 2 be

(2, 2)= (2,0)

Determine the parameters {sin 1 , cos 1, sin 2 , cos

 2} through circular rotation

Determine the mobile objects’ position using parallel vector

lengthening

End

Start

1

2

3

 Figure 2.9: SDB Algorithm for the General Scheme [12]

15

As illustrated in Figure2.10, the coordinates of both which could be set down as

the point of origin to implement parallel vector increments. The vectors are increased

for both d1 and d2 until their heads intersects.

α1

1

α2

1

 d 1

α

MS

𝑌1,𝑖

𝑦2,𝑖
𝑑2

 Figure 2.10: Parallel Incrementation of Vectors

Before the beginning of operation, it can be check to find the one with smaller angle

(i.e min {π - α }), because it needs more increments. This is because of the equation

(18), (19), and the vectors where y coordinates of the vectors heads after lengthening

depends on α and α .Thus, if the value (π- α) is proposed as the greatest, the

conditions of vector lengthening will be as follows :

(0,0) BS2

D

(0,0)

y

x

16

While (| D – (1, + 2,) |) ˃ ɛ

 Increment 2

While (2, - 1,) ˃ ɛ)

 Increment 1

End while

End while

The new coordinates of the first vector after the first step from the lengthening are :

 = + . ΔD. cos α (20)

 = + . ΔD. sin α (21)

After one step of lengthening, the coordinates of the vector, similarly for the second

vector will become as follows :

 = + . ΔD . cos α (22)

 = + . ΔD . sin α (23)

Where ΔD is , and is a sign parameter (i.e. = -1). In order to speed up the

process, the commencing values which correspond to the parallel increments could

be written as :

 = 0.5 cos (α),

 = 0.5 sin (α),

 = 0.5 cos (π - α),

 = 0.5 sin (π - α),

Also si = sign (D - (+)).

The location of the MS can be viewed from point of intersection (x, y) = (,)

which can be acquired from the final iteration.

If values at the beginning which denotes the vector coordinates are above theposition

of the mobile station, = -1, decrease (as illustrated in Figure 2.11) will be applied

instead of increase.

17

 MS
d 1

d 2

𝑦2,𝑖

𝑦1,𝑖

𝐵𝑆1

1

𝐵𝑆2 𝑥2,𝑖 𝑥1,𝑖

D

 Figure 2.11: Parallel Decrementation of Vectors

Hence, if the value (π -) is supposed to be the greater, then the terms increase are

written :

While (| D – (1, + 2,) |) ˃ ɛ

 decrement 2

While (2, - 1,) ˃ ɛ)

 decrement 1

End while

End while

The location of the MS can be viewed from the point intersection (x, y) = (,)

which can be acquired from the final iteration.

18

Chapter 3

3PROPOSED HARDWARE-ORIENTED ALGORITHM

FOR AOA

This method is based on determining the angle of the signals that reaches the

antenna. In this chapter a new hardware-oriented algorithm is presented. This

approach can be preceded or carried out using some simple operations such as shift,

add and subtract. This will be helpful to let the algorithms being more attractive to

Reduced Instruction Set Computer (RISC) processors, as they are to Field-

Programmable Gate Array (FPGE) chips as well. The reasons of preferring to use

RISC processors more than other types available in the market are such that; they are

faster and cheaper to design, test and manufacture.

Figure 3.1 demonstrates the location of a mobile object in 3D space where α1, α2, α3

and α4 are the angles that are going to be used to determine the location of MS via

AOA based algorithms.

19

Figure 3.1: Mobile Object’s Position in 3D Space

3.1 MEM-1 Algorithm

Fixed points of access to the network are usually used by most known wireless

networks which are called base stations (BS). If the position of two fixed transmitters

are known then the receiver can figure out its own position by determining the angle

at which these transmitters are located with respect to each other. With respect to

AOA, (, ,) represents the coordinate of the position that comes out from the

intersection of the two spheres centered at (0, 0, 0), (, 0, 0) with

radius and respectively. A mobile station will be located between and

 with xp, yp with zp, if the vectors of these spheres intersect a mobile station.

Therefore for there is α and for there is α

20

For finding the sin and cos of . The parallel circular rotations of vectors that can be

used are stated in Figure 3.2 below :

Figure 3.2: Circular Vector Rotation

The circulation rotation matrix M can be derived from equation (5) and is written as



















cossin

sincos
M

 (24)

The step rotation angle in radians which is α. Taking the sin function as :

Sin α = (25)

Since

 α α (26)

Then it is possible to denote the cos function as:

cos α =√ α = √ (27)

Then, it can be written as :

√ ≤1−. (28)

21

Inequality (28) correct where is squaring for each sides gives :

 ≤ 1-2. +

= 1- +

For k more than or equal to four, one acquire ≤ < . However, for

an accuracy of ε= , cos σ could convergeas :

Cos σ = 1− = 1− ()= 1- u (29)

Therefore, vector coordinates are repeatedly rotated using matrix (24). So, the

rotation equations for the first vector can be written as :

 = - - (30)

 = - + (31)

Where σ is the step rotation angle with initial values which is = 1, = 0. So

the cumulative angle is written as :

 = + (32)

The stop condition which is the 1
st
 rotation will be :

 Δ = - ≤ ε (33)

And the last iterated = cos (), and = sin ().

Since X can be calculated, it is possible to lengthen the vector on plane X-Z and

when vector reaches to the actual size of X then Z will be found as shown in Figure

3.3 below :

22

X1

Z

Z1

1

X

X=1

𝛼3

𝐵𝑆1 x
 Figure 3.3: Vector Lengthening for Finding Z1

The second part of the algorithm can be implemented after finding the sin and cos

of . As stated in Figure 3.4, the vital idea is the incremental of length for the

vector. This vector holds polar coordinates (R, α) and increases by the factor of

± which can be increased in length R. Also its orthogonal coordinates are

modified and written as :

 + s cos (34)

 = + s sin (35)

where s denotes the incremental factor. For each given , cos () and sin () can

be calculated.

23

 Figure 3.4: Vector Lengthening on X-Z axis

The flowchart of the proposed algorithm that can find the location of the MS for the

third dimension (Z) is show in Figure 3.5.

Let the coordinates of 𝐵𝑆1 be (𝑥1 ,𝑧1) = (0, 0)

Determine the parameters {sin𝛼 3 , cos 𝛼 3 } through

circular rotation

DetermineMobile Station Position using parallelvector

lengthening

End

Start

1

2

3

 Figure 3.5: General Scheme of MEM-1 Algorithm

24

The location of the MS can be viewed from point of intersection (x, z) = (,)

which can be acquired from the final iteration.

3.2 MEM-2Algorithm

The proposed algorithm is based on AOA which will use the same origin of

information as the conventional one. Solely subtract, add and shift operations have

been used to find the mobile location without implementing any trigonometric

equation. The algorithm consists of two parts, in the first part, parallel and circular

rotations of the vectors will take place and the parameters cos (), sin (), cos

(), sin () for x with y and cos (), sin (), cos (), sin () for x with z will

be determined. Whereas vector lengthening is used in the second part to find the

position of MS. For finding the sin and cos of and sin and cos of . The parallel

circular rotations of vectors can be applied as stated in Figure 3.6 below :

 Figure 3.6: Circular Vector Rotation

25

The circulation rotation matrix M can be derived from equation (5) and is written as















cosαsinα

sinαcosα
M

 (36)

The step rotation angle in radians where sin function is taking the α as :

Sin α = (37)

 (38)

Then it is possible to denote the cos function as:

cos α = √ = √ (39)

Then, it can be written as :

√ ≤ 1 −. (40)

Inequality (40) holds where squaring each sides gives :

 ≤ 1- 2. +

= 1- +

For k more than or equal to four, one acquire ≤ < . However, for

an accuracy of ε = , cos σ could converge as :

Cos σ = 1− = 1− () = 1- u (41)

Therefore, vector coordinates are repeatedly rotated using matrix (36). So, the

rotation equations for the first vector are written as :

 = - - (42)

 = - + (43)

Where is the step rotation angle with initial values which is = 1, = 0. So

the cumulative angle is written as :

 = + (44)

26

The stop condition which is the 1
st
 rotation will be :

 Δ = - ≤ ε (45)

And the last iterated = cos (), and = sin ().

Likely, the stop condition which is the 2
nd

 rotation where the initial values are

 =1, = 0, will be as follows :

Δ = (– π/2) - ≤ ε (46)

 (), = cos ().

The second part of the algorithm can be implemented after finding the sin and cos of

 and sin and cos of . The vital idea is the vector lengthening as shown in Figure

3.7. This vector holds polar coordinates (R, α) with increase factor of ± which

can be used to increase the length of R. Also its orthogonal coordinates are modified

and will be written as :

 + s cos (47)

 = + s sin (48)

Where (s) denotes the incremental factor. For each given k cos () sin

() can be calculated.

27

Figure 3.7: Vector Lengthening on X-Y axis

Figure 3.8, below shows the flowchart that demonstrates the procedure of finding the

MS position by the proposed algorithm.

Let the coordinates of 1 be (1 , 1)= (0, 0); and 2 be

(2, 2)= (2, 0)

Determine the parameters {sin 1 ,cos 1, sin 2, cos 2 }

through circular rotation

Determine MS Position using parallel vector

lengthening

End

Start

1

2

3

 Figure 3.8: General Scheme of MEM-2 Algorithm on X-Y axis

28

As illustrated in Figure 3.9, the coordinates of both which could be set down as

the point of origin to implement parallel vector incrementation. The vectors are

lengthened until their heads intersects.

α1

1

α2

1

 d 1

α

MS

𝑌1,𝑖

𝑦2,𝑖
𝑑2

 Figure 3.9: The Parallel Incrementation of Vectors

Before the beginning of operation, the angles can be compared to findthe smaller

angle (i.e min {π - α }), because it needs more incrementation. This is because of

the equation (47) and (48), and the algorithm increasesthe vectors sizes where y

coordinates of the vectors heads meets after incrementation based on α and α . Thus,

if the value (π-α) is proposed as the greatest, the conditions of vector lengthening

will become as follows :

(0,0) BS2

D

(0,0)

y

x

29

While (| D – (1, + 2,) |) ˃ ɛ

 Increment 2

While (2, - 1,) ˃ ɛ)

 Increment 1
End while

End while

The new coordinates of the vector orientation for the first vector one step away from

the rotation are :

 = + . ΔD. cos (49)

 = + . ΔD. sin (50)

After one step of rotation, the coordinates of the vector head, similarly for second

vector will become as follows:

 = + . ΔD. cos (51)

 = + . ΔD. sin (52)

Where ΔD is , and is a sign parameter (i.e. si = -1). For fast convergence, the

commencing values which correspond to the parallel increments will be written as

below :

 = 0.5 cos (),

 = 0.5 sin (),

 = 0.5 cos (π -),

 = 0.5 sin (π -),

Also si = sign (D - (+)).

The location of the MS can be viewed from point of intersection(x, y) = (,)

which is acquired from the final iteration. So, if the initial values of vector

coordinates which can be lie above the coordinates of position of the mobile station.

 = -1, and decrease (as illustrated in Figure 3.10) will be applied instead of increase.

30

 MS
d 1

d 2

𝑦2,𝑖

𝑦1,𝑖

𝐵𝑆1

1

𝐵𝑆2 𝑥2,𝑖 𝑥1,𝑖

D

 Figure 3.10: The Parallel Decrementation of Vectors

While (| D – (1, + 2,) |) ˃ ɛ
 decrement 2

While (2, - 1,) ˃ ɛ)
 decrement 1

End while
End while

For finding the sin and cos of and sin and cos of . The parallel circular rotations

of vectors can be used as :

31

Figure 3.11: Circular Vector Rotation

The circular rotation matrix M can be derived from equation (5) and is written as



















cossin

sincos
M

 (53)

The step rotation angle in radians where the sin function is taking α as:

Sin α = (54)

Since

 (55)

Then it is possible to denote the cos function as :

cos α = √ = √ (56)

where it can be written as :

√ ≤ 1− (57)

Inequality (57) holds where squaring each sides gives :

 ≤ 1-2. +

= 1- +

32

For k more than or equal to four, one acquire ≤ < . However, for

an accuracy of ε = , cosσcould converge as:

Cos σ = 1− = 1− ()= 1- u (58)

Therefore, vector coordinates are repeatedly rotated for using matrix (53). So, the

rotation equations for the first vector are written as :

 = - - (59)

 = - u + (60)

Where is the step rotation angle with initial values = 1, = 0. The

cumulative angle is written as :

 = + (61)

The stop condition which is the 1
st
 rotation will be :

 Δ = - ≤ ε (62)

And the last iterated = cos (), and = sin ().

Likely, the stop condition which is the 2
nd

 rotation where the initial values are

 =1, = 0, will be as follows :

Δ = (– π/2) - ≤ ε (63)

 (), = cos ().

The second part of the algorithm can be implemented after finding the sin and cos of

 and sin and cos of . The vital idea is the length incrementation of the vectors as

shown in Figure 3.12. This vector holds polar coordinates (R, α) and increase factor

of ± which can be used to increase the length of R. And also its orthogonal

coordinates are modified and can be written as :

 + s cos (64)

 = + s sin (65)

33

Where s denotes for the increment factor. Foreachgiven k, cos (α) and

sin() can be calculated.

Figure 3.12: Vector Lengthening on X-Z axis

The flowchart of the proposed algorithm that can find the location of MS is

demonstrated in Figure 3.13.

Let the coordinates of 1 be (1 , 1) =(0, 0); and 2

be (2, 2) = (xx2, 0)

Determine the parameters {sin 3 , cos 3 , sin 4 , cos

 4 } through circular rotation

Determine MS location using parallel vector lengthening

End

Start

1

2

3

 Figure 3.13: General Scheme of MEM-2 Algorithm on X-Z axis

34

In Figure 3.14, the coordinates of BSs which could be considered as the origin to

implement parallel vector incremenation demonstrated. Both vectors are increased

until their heads intersect each other.

𝛼3 𝛼4

 d 1

MS

𝑧1,𝑖

𝑧2,𝑖
𝑑2

z

x

(0, 0)𝐵𝑆1 (0, 0)𝐵𝑆2

𝑋2+𝑖

𝑋1+𝑖

D
 Figure 3.14: Parallel Incrementation of Vectors on X-Z axis

Before the beginning of operation, the angles can be compared to find the smaller

angle (i.e min {π-α }), because it needs more incrementation. This is because of the

equation (64) and (65), and the algorithm increasesthe vectors sizes where y

coordinates of the vectors heads meets after incrementation based on α and α .

Thus, if the value (π-α) is proposed to be the greatest, the conditions of vector

lengthening will be as follows:

35

While (| D – (1, + 2,) |) ˃ ɛ

 Increment 2

While (2, - 1,) ˃ ɛ)

 Increment 1
End while

End while

The new coordinates of the vector orientation for the first vector one step away from

the rotation are :

 = + . ΔD. cos (66)

 = + . ΔD. sin (67)

After one step of rotation, the coordinates of the vectors’ head, similarly for the

second vector will become as follows :

 = + . ΔD. cos (68)

 = + . ΔD. sin (69)

Where ΔD is , and is a sign parameter (i.e. si = -1). In order to speed-up the

process, the values before starting the process can be written as follow as :

 = 0.5 cos (),

 = 0.5 sin (),

 = 0.5 cos (π -),

 = 0.5 sin (π -),

Also si = sign (D - (+)).

The location of the MS can be found from the intersection point (x, z) = (,)

which is acquired from the last iteration.

36

If the values of vectors coordinates before starting lies above the MSs’ coordinates,

then = -1, and decrease (as illustrated in Figure 3.15) will be applied instead of

increase.

 D

 MS
d 1

d 2

𝑧2,𝑖

𝑧1,𝑖

𝐵𝑆1

1
𝐵𝑆2

𝑥2,𝑖 𝑥1,𝑖

 Figure 3.15: Parallel Decrementation of Vectors on X-Z axis

While (| D – (1, + 2,) |) ˃ ɛ
 decrement 2

While (2, - 1,) ˃ ɛ)
 decrement 1

End while
End while

The location of the MS is the intersection point that will be in(x, z) = (,)

which is obtained from the final iteration.

37

3.3 DMEM-1 Algorithm

Aiming to decrease the number of iterations for vector rotations and vector

lengthening, MEM-1 algorithm has been modified. DMEM-1 algorithm uses varying

step sizes (2
-k

) where in MEM-1 the step size is constant. For the 1
st
 step of the

algorithm where the equation is iterated repeatedly, the value of k is changing

dynamically according to the accumulated angle that can be used to define the angle

accumulated in equation (15). Based on the distance between their current heads

positions, if that distance is large rotation should be done via using larger step size

(i.e.k = 5). When the distance becomes smaller, vector rotation lengthening is

considered with smaller step sizes (i.e. k =11). In order to find the step size, the

formulas below can be used :

Δ = -

 While ›

 While Δ ›

 Rotate

 End

 Increment K by 1

 End

The stop condition for the first rotation will be :

Δ = - ≤ ε (70)

 (), = sin ().

Likely, the stop condition for the 2
nd

 rotation and the starting values are :

 = 1, = 0

 = (- π/2) - ≤  (71)

 (), = cos ().

38

In the second step, which is the vector lengthening k was valued constant (MEM-1

algorithm) but for DMEM-1 k can be change dynamically. For DMEM-1 the step

size has been based on the displacement of X coordinates between the vectors’ head

and the position of MS’s x coordinate. Convergence can be assured, via defining the

k with :

∆𝐷 =
2−𝑘 𝑖𝑓 ∆𝑥𝑖 ≥ 2−𝑘 𝑎𝑛𝑑 cos 𝛼𝑚𝑖𝑛 ≤ 0.5

 2−𝑚−𝑡 𝑖𝑓 2−𝑚 ≤ ∆𝑥𝑖 ≤ 2−𝑚+1 𝑎𝑛𝑑 sin 𝛼𝑚𝑖𝑛 ≥ 2−𝑡 , 𝐾 ˂ 𝑀 ≤ 𝑛, 1˂𝑡 ≤ 𝑛 − 𝑚,

 (72)

Where = | D – (+) | .Practically k is 4 and n equals to 11.

In order to converge faster, the values at the beginning for parallel vector lengthening

can be written as :

 = 0.5 cos (),

 = 0.5 sin (),

 = 0.5 cos (π -),

 = 0.5 sin (π -),

Also si = sign (D - (+)).

The location of the MS can be viewed from point of intersection (x, y) = (,)

which is acquired from the final iteration.

 is the step size with initial values which is = 1, = 0. Then the cumulative

angle can be written as:

 = + (73)

The stop condition which is the 1
st
 rotation will be :

 Δ = - ≤ ε (74)

And from the last iteration = cos (), and = sin ().

39

∆𝐷 =
2−𝑘 𝑖𝑓 ∆𝑥𝑖 ≥ 2−𝑘 𝑎𝑛𝑑 cos 𝛼𝑚𝑖𝑛 ≤ 0.5

 2−𝑚−𝑡 𝑖𝑓 2−𝑚 ≤ ∆𝑥𝑖 ≤ 2−𝑚+1 𝑎𝑛𝑑 sin 𝛼𝑚𝑖𝑛 ≥ 2−𝑡 , 𝐾 ˂ 𝑀 ≤ 𝑛, 1˂𝑡 ≤ 𝑛 − 𝑚,

 (75)

Where = () . Practically k is equal to 4 and n equal to 11.

When the vectors coordinates are above the MS coordinates, then si = -1, as a result a

decrease will be applied instead of an increase.

3.4 DMEM-2 Algorithm

In DMEM-2 algorithm the step size for vector lengthening and circular rotations may

vary from one iteration to another. Where is the step rotation angle with initial

values =1, = 0. The cumulative angle can be written as :

Δ = -

 While ›

 While Δ ›

 Rotate

 End

 Increment K by 1

 End

The stop condition for the first rotation will be :

 Δ = - ≤ ε (76)

And from the last iteration = cos (), and = sin ().

Likely, the stop condition for the second rotation where the initial values are

 =1, = 0, will be as follows :

Δ = (– π/2) - ≤ ε (77)

 (), = cos ().

In the third step which is the vector lengthening k was valued constant (MEM-2

algorithm) but for DMEM-2 k can be change dynamically. For DMEM-2 the step

40

size has been based on the displacement of X coordinates between the vectors’ head

and the position of MS’s X coordinate. Convergence can be assured, via defining the

k with :

∆𝐷 =
2−𝑘 𝑖𝑓 ∆𝑥𝑖 ≥ 2−𝑘 𝑎𝑛𝑑 cos 𝛼𝑚𝑖𝑛 ≤ 0.5

 2−𝑚−𝑡 𝑖𝑓 2−𝑚 ≤ ∆𝑥𝑖 ≤ 2−𝑚+1 𝑎𝑛𝑑 sin 𝛼𝑚𝑖𝑛 ≥ 2−𝑡 , 𝐾 ˂ 𝑀 ≤ 𝑛, 1˂𝑡 ≤ 𝑛 − 𝑚,

 (78)

Where = D – ((+)). Practically k is equal 4 and n equal to 1.

In order to converge faster, the values at the beginning for parallel vector lengthening

can be written as :

 = 0.5 cos (),

 = 0.5 sin (),

 = 0.5 cos (π -),

 = 0.5 sin (π -),

Also si = sign (D - (+)).

The location of the MS can be achieved from point of intersection (x, z) =(,)

which is acquired from the final iteration.

∆𝐴 =
2−𝑘 𝑖𝑓 ∆𝑥𝑖 ≥ 2−𝑘 𝑎𝑛𝑑 cos 𝛼𝑚𝑖𝑛 ≤ 0.5

 2−𝑚−𝑡 𝑖𝑓 2−𝑚 ≤ ∆𝑥𝑖 ≤ 2−𝑚+1 𝑎𝑛𝑑 sin 𝛼𝑚𝑖𝑛 ≥ 2−𝑡 , 𝐾 ˂ 𝑀 ≤ 𝑛, 1˂𝑡 ≤ 𝑛 − 𝑚,

 (79)

where =(-). Practically k is equal4 and n equal to 11. When = 1, 2, 3, 4.

When the vectors coordinates are above the MS’s coordinates, then si = -1, as

a result a decrease would utilized instead of an increase. In order to determine the

position of MS in 3D AOA four algorithms presented. The Matlab simulation results

for the algorithms can be found in the next chapter. The level of accuracy, exact

location of MS and the relation between these two will also be discussed.

41

Chapter 4

4SIMULATION RESULTS

To carry out the analysis, to locate the MS in areal coverage of the two base stations

(BS) and to code the programs for traditional, MEM-1, MEM-2, DMEM-1 and

DMEM-2 algorithms, Matlab 8.2 package has been used. In order to achieve the 95%

of the degree of confidence, the experiments were repeated for the mobile station

positions that have arbitrarily been chosen.

To compare the algorithm initiated and developed in this study with the traditional

algorithm, the calculation of the average computational cost is needed to determine

the position of MS in each case. This is done by multiplying the number of

operations by their corresponding weights. 20 bits accuracy has been considered for

weights of the operations, see Table 4.1[13].

 Table 4.1: Weight of Operations[13]
Operatio

n

Addition Subtractio

n

Shift Multiplicatio

n

Divisio

n

Sin Co

s

Tan

Weight 1 1 1 40 40 40

4

40

4

1448

Figure 4.1 illustrates the average error in determining sin (α) and cos (α) versus the

step rotation angle σ = . This average is obtained by calculating the sin (α) and

cos (α) for 0 ≤ α ≤ π/2.

42

As it is seen from the Figure 4.1, the breaking point for accurate solution of sin and

cos function is . Therefore σ = used for our MEM-1 and MEM-2 algorithms.

Figure 4.1: Average Error in sin (α), cos (α) Versus the Rotation Angle

Figure 4.2 illustrates the maximum error in meters while trying to determine the

position of MS against step size ΔD = . All proposed algorithms will satisfy the

E-911 standards at a certain step size.

Accuracy of MEM-2 is better when compared to MEM-1 because in algorithm

MEM-1 to find the Z coordinate we are using the X coordinate that is found in the

first step of algorithm which is an approximation. In MEM-2 to find the Z coordinate

the first step of algorithm will be repeated for X-Z axis and as a result the accuracy

will be preserved for the Z coordinate.

43

Due to the dynamic change in step size DMEM-1 and DMEM-2 has a fixed

accuracy. DMEM-2’s accuracy is better than the DMEM-1’s one, because DMEM-2

calculates the location on Z-axis without using the values that are calculated to find

X and Y coordinates’ values. DMEM-1 in order to find the location on Z-axis uses

the value that is found for X-axis which is an estimation. This is the source of having

worse accuracy then DMEM-2.

Figure 4.2: Error Estimation of the Mobile Location Versus ΔD

For the simulation results, generally the confidence interval is a measure for the

accuracy of the results when the precision is satisfied, so it will be invisible in the

manuscript. This can be determined from the equation shown hereinafter. If
 the

model average and 



n

i

zi
n

z
1

1
demonstrates sample set of size n (i.e number of runs),

44

S is standard deviation and S = √ where 
 




n

i

i

n

zz
S

1

2

2

1

)(
, z is the average of

population with n-1 as the degree of freedom. For the results of simulation model,

n = 10, α/2 = (1- 0.95) /2 (the aim is to calculate for 95% confidence interval).

Table 4.2: Confidence interval calculation for MEM-2 algorithm
Number

of Runs

Error

in Location

Estimation

1 40.36619

2 46.52688

3 49.02575

4 49.05569

5 49.148

6 50.0805

7 54.69675

8 55.99025

9 60.44481

10 61.56756

mean 63.53338

The upper and lower bound limits could be calculated as :

n

S
tz n 1,2/  

 and
n

S
tz n 1,2/  

Ƒ = n-1= 9

95% =100 (1- α) %, then α could be calculated as α = 0.05

When
9,025.0,2/ tt f 
 (using the table named as percentage point of the t distribution

in [14]). For 95% confidence, equation (1) should be satisfied,

 = 2.262 and

45

achieved. As it can be seen in Table 4.2, the obtained results for error through the

simulation are between lower 50.22082and upper53.15958 bounds of the interval

with 95% confidence.

 Table 4.3: Average Computational Costs versus Step Size

Ste

p

size

Computationa

l

Cost of

traditional

Algorithm

Average

computationa

l

 of

cost MEM-1

Average

computationa

l cost for

MEM-2

Average

computationa

l cost for

DMEM-1

Average

computationa

l cost for

DMEM-2

 7128

4831.73 7550.43

 2805.07

4405.44

 9489.55 14452.84

 18630.64 28648.12

 35503.47 58998.35

 75758.01 114122.7

 150122.5 235386.2

 295695.6 470531.9

As it can be seen from table 4.3 above, MEM-1 only for step size outperforms

the traditional one which is not sufficient for E-911 standards. For the location

estimation, DMEM-1 and DMEM-2 outperform the traditional algorithm and also

satisfies the E-911 standards for the location estimation of a MS.

46

Chapter 5

5CONCLUSION

The advantages of low-cost and broader applicability of AOA based wireless

location systems have been highlighted in this work. It seems that mobile-based

position determination will become more and more attractive than those which

depend on network.

Since the energy source of a Mobile Station is a battery pack, energy consumption

should be reduced to a minimum. To attain this, minimizing and simplifying the

instructions carried out in MS represents an essential factor in the determination of

location.

The main idea of this work was to propose a new hardware oriented algorithm that

extends the angle of arrival 2D positioning into 3D space. To achieve this goal four

new algorithms proposed. These are MEM-1, MEM-2, DMEM-1 and DMEM-2.

Every process in these algorithms use simple shift and add operations as a result

RISC processors could be used to implement the proposed algorithms as hardware.

The results demonstrate that an accuracy of a good level is obtainable which satisfy

the E911 standards for all four proposed algorithms. The traditional algorithm out

performed by the proposed algorithms DMEM-1 and DMEM-2 and demands less

time in terms of computational cost.

47

 The distinct advantages of proposed algorithms over the traditional one are : low

computational overhead and implementation simplicity. The algorithms named

MEM-1 and MEM-2 show worse results (in terms of computational cost) when

compared to the tradition one. The proposed algorithms DMEM-1 and DMEM-2

have 61% and 40% reduction for the computational cost respectively. DMEM-2

algorithm has a better accuracy when compared to DMEM-1 algorithm.

As a work for future, a new algorithm for 3D TDOA positioning could be proposed

and a survey for 3D TOA, AOA and TDOA could be presented.

48

REFERENCES

[1] H.Laitinen et al : cellularlocationTechnology, CELLO project Technical Report,

CELLO-WP2-VTT-DO3-007-Int, November , 2001.

[2] Y.Zhao, ‘’Standardization of mobile phonepositioningfor 3G systems,”IEEE

communicationsMaganzine, No.4, vol. 40,(July 2002) 108-116.

[3] M. Salamah, E. Doukhnitch, and D. Devrim, ‘‘ A Fast Hardware-Oriented

Algorithm for Cellular Mobiles Positioning, ”Lecture Notes on Computer

Science LNCS 3280, РP. 267-277, October, 2004.

[4] Jean-Michel Muller :Elementary Function Algorithms and Implementation,

Birkhauser, 1997.

[5] Yuan Zhang, ShutangLiu, ZhongtianJia, Localization Using Joint Distance and

Angle Information for 3D Wireless Sensor Networks, IEEE Communication

Letters, 2012.

[6] E. Doukhnitch, M. Salamah, E. Ozen, An efficientapproachfortrilateration in 3D

positioning,Computer Communications, 2008.

[7] M. Salamah, E. Doukhnitch, General Approachesto Simple Algorithmsfor 2D

positioning techniques in Cellular Networks, Computer Communications, 2008.

[8] M. Salamah, E. Douknitch, An efficientalgorithmfor mobile objectlocalization,

Journal of CommunicationSystems, 2008.

49

[9] I. Jami, M. Ali, and R. F. Ormondroyd : Comparison of Methods of Locating

and Tracking Cellular Mobiles, Novel Methods of Location and Tracking of

Cellular Mobiles and Their System, Ref. No. 1999/046, IEE Colloquium,

London UK, 1/1-1/6.

[10] E. Doukhnitch, M. Salamah, and A. Sandouka “A Novel Hardware-Oriented

Algorithms for TDOA Positioning Technique in Cellular Networks, “ Accepted

for publication in the International Symposium on Mathematical Methods in

Engineering MME-06, Ankara, Turkey.

[11] E. Ozen, "Design of a Low Computational Cost Algorithm for 3-D TOA

Mobile Positioning”, Ph.D. Thesis, 2009.

[12] C. Bayramer, " A hardware-oriented Algorithm for Angle of Arrival Positioning

Technique n Cellular Network", M.Sc. Thesis, 2006.

[13] Jean- Michael Muller : Elementary Function Algorithms and Implementation.

Birkhauser (1997).

[14] Montgomery D., Design and Analysis of Experiments, John wile & Sons, Inc.,

1993.

50

APPENDICES

51

Appendix A : Source code of the MEM-1 Algorithm

clc;
clear;
format long;
fr=fopen('rnds.txt','r');
fw=fopen('results.txt','w');
cost=0;
costm=0;
while ~feof(fr)
 alphainp1=fscanf(fr,'%d',1);
 alphainp2=fscanf(fr,'%d',1);
 w1=fscanf(fr,'%d',1); % wont be used
 alphainp3=fscanf(fr,'%d',1);
 alphainp4=fscanf(fr,'%d',1);
 w2=fscanf(fr,'%d',1); %wont be used
%initial inputs
alpha1=(alphainp1*pi)/180;
alpha2=(alphainp2*pi)/180;
alpha3=(alphainp3*pi)/180;
% pause on; %to stop
D=16; % distance between two base stations. x=8 y=6 hyp=10
%constants
k=8;
v=2^-k;
u=2^-(2*k+1);
err=2^-4;

% first side rotation for angle x1,y1
x1=1;
y1=0;
ro=0;
if (alpha1>pi/2)
 sign=-1;
 delta=pi-alpha1;
else
 sign=1;
 delta=alpha1;
end

while((delta-ro)>=err)
 oldx1=x1;
 x1=x1-x1*u-y1*v;
 cost=cost+4;
 y1=y1-y1*u+oldx1*v;
 cost=cost+4;
ro=ro+2^-k;
 cost=cost+2;
end%while
cosalpha1=sign*x1;
sinalpha1=y1;
% end of first side rotation fo angle

% 3d z-side rotation for angle x1,y1
xx1=1;
z1=0;
ro=0;

52

if (alpha3>pi/2)
 sign=-1;
 delta=pi-alpha3;
else
 sign=1;
 delta=alpha3;
end

while((delta-ro)>=err)
 oldxx1=xx1;
 xx1=xx1-xx1*u-z1*v;
 cost=cost+4;
 z1=z1-z1*u+oldxx1*v;
 cost=cost+4;
ro=ro+2^-k;
 cost=cost+2;
end%while
cosalpha3=sign*xx1;
sinalpha3=z1;
% end of 3d-z side rotation fo angle

% second side rotation for angle x2,y2
x2=1;
y2=0;
ro=0;
if (alpha2>pi/2)
 sign=-1;
 delta=pi-alpha2;
else
 sign=1;
 delta=alpha2;
end
while((delta-ro)>=err)
 oldx2=x2;
 x2=x2-x2*u-y2*v;
 cost=cost+4;
 y2=y2-y2*u+oldx2*v;
 cost=cost+4;
ro=ro+2^-k;
 cost=cost+2;
end%while
cosalpha2=sign*x2; % in documentation sin
sinalpha2=y2; %documentation cos
% end of second side rotation for angle

% to speed up convergence
%x1=0.5*cosalpha1;
%y1=0.5*sinalpha1;
%x2=0.5*cosalpha2;
%y2=0.5*sinalpha2;
%sign=(D-(abs(x1)+abs(x2)))/abs(D-(abs(x1)+abs(x2)));
% end of speed up

increment=2^-k;
if ((pi-alpha2)>=alpha1)
while (abs(D-(abs(x1)+abs(x2)))>err)
 x2=x2+sign*increment*cosalpha2;
 cost=cost+3;
 y2=y2+sign*increment*sinalpha2;
 cost=cost+3;
while (abs(y2)-abs(y1)>err)

53

 x1=x1+sign*increment*cosalpha1;
 cost=cost+3;
 y1=y1+sign*increment*sinalpha1;
 cost=cost+3;
end% inner while
end% while
else%if
while (abs(D-(abs(x1)+abs(x2)))>err)
 x1=x1+sign*increment*cosalpha1;
 cost=cost+3;
 y1=y1+sign*increment*sinalpha1;
 cost=cost+3;
while (abs(y2-y1)>err)
 x2=x2+sign*increment*cosalpha2;
 cost=cost+3;
 y2=y2+sign*increment*sinalpha2;
 cost=cost+3;
end% inner while
end% while
end%if

%finding rotation for 3d z-dimension
 xx1=cosalpha3;
 z1=sinalpha3;
 increment=2^-k;
while ((abs(x1)-abs(xx1))>err)
 xx1=xx1+sign*increment*cosalpha3;
 cost=cost+3;
 z1=z1+sign*increment*sinalpha3;
 cost=cost+3;
end% inner while
%end finding rotation for 3d z-dimension

% manual calculation
if (alphainp1==alphainp2)
 mx2=D/2; %replaced with trigonometric formula;
costm=costm+40;
else
 mx2=(D*tan(alphainp1))/(tan(alphainp1)-tan(alphainp2));
costm=costm+4425;
end
mx1=D-mx2;
costm=costm+1;
my1=mx1*tan(alphainp1);
costm=costm+1488;
my2=mx2*tan(alphainp2);
costm=costm+1488;
cost=cost+4;
err1=mx1-x1;
err2=my1-y1;
err3=mx2-x2;
err4=my2-y2;
err5=mx1-xx1; % from x-z axis
err6=x1-xx1; % from x-z axis
costm=costm+6;

% end of manual calculation

fprintf(fw,'%4d\t%4d\t%4d\t%4d\t%4d\t%4d\t%2.8f\t%2.8f\t%2.8f\t%2.8f

\t%2.8f\t%2.8f\t%2.8f\t%2.8f\t%2.8f\t%2.8f\t%2.8f\t%2.8f\t%2.8f\t%2.

8f\t%2.8f\t%2.8f\t%2.8f\t%2.8f\n',alphainp1,alphainp2,w1,alphainp1,a

54

lphainp1,w2,x1,y1,x2,y2,xx1,z1,mx1,my1,mx2,my2,err1,err2,err3,err4,e

rr5,err6,cost,costm);

% %calculated first base station stuff
% hyp1=sqrt(x1^2+y1^2);
% calculatedalpha1=(asind(y1/hyp1)*pi)/180;
% disp('********From First Base Station********')
% disp(strcat('x1=',num2str(x1,8)));
% disp(strcat('y1=',num2str(y1,8)));
% disp(strcat('hyp1=',num2str(hyp1,8)));
% disp(strcat('alpha1=',num2str(alpha1,8)));
% disp(strcat('angle=',num2str(alpha1*180/pi,8)));
% disp(strcat('calculatedalpha1=',num2str(calculatedalpha1,8)));
%

disp(strcat('calculatedangle=',num2str(calculatedalpha1*180/pi,8)));
%
% %calculated second base station stuff
% hyp2=sqrt(x2^2+y2^2);
% calculatedalpha2=pi-((asind(y2/hyp2)*pi)/180);
% disp('********From Second Base Station********')
% disp(strcat('x2=',num2str(x2,8)));
% disp(strcat('y2=',num2str(y2,8)));
% disp(strcat('hyp2=',num2str(hyp2,8)));
% disp(strcat('alpha2=',num2str(alpha2,8)));
% disp(strcat('angle2=',num2str(alpha2*180/pi,8))); %alpha2=((180-

asind(0.6))*pi)/180;
% disp(strcat('calculatedalpha2=',num2str(calculatedalpha2,8)));
%

disp(strcat('calculatedangle2=',num2str(calculatedalpha2*180/pi,8)))

;

end% while ~feof(fid)
k=5:11;
i=1;
for k=5:11
v(i)=2^(-k);
u(i)=2^-(2*k+1);
errr(i)=abs(u(i)-1+sqrt(1-(v(i))^2));
fprintf('%4d\t',errr(i));
i=i+1;
end
p=plot(v,errr,'b:+');
set(p,'Color','blue','LineWidth',2);
hold on;
fclose(fr);
fclose(fw);

55

Appendix B : Source code of the MEM-2 Algorithm

clc;
clear;
Format long;

for k=12:12 %5:11
fr=fopen(strcat(pwd,'\','rnds.txt'),'r');
fw=fopen(strcat(pwd,'\','results2ndver',num2str(k),'.txt'),'w');
fprintf(fw,'%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t

%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\n','a1','

a2','a3','a4','x1','y1','x2','y2','xz1','z1','xz2','z2','mx1','my1',

'mx2','my2','mx3','mz1','mx4','mz2','Ex1','Ex2','Ey1','Ey2','Exz1','

Exz2','Ez1','Ez2','Cost');
counter=0;
Eavgx1=0;
Eavgx2=0;
Eavgy1=0;
Eavgy2=0;
Eavgxz1 =0;
Eavgxz2 =0;
Eavgz1 =0;
Eavgz2 =0;
avgcost=0;
while ~feof(fr)
 cost=0;
 counter=counter+1;
 alphainp1=fscanf(fr,'%d',1);
 alphainp2=fscanf(fr,'%d',1);
 winp1=fscanf(fr,'%d',1); % wont be used
 alphainp3=fscanf(fr,'%d',1);
 alphainp4=fscanf(fr,'%f',1);
 winp2=fscanf(fr,'%f\n',1); %wont be used

%initial inputs
alpha1=(alphainp1*pi)/180;
alpha2=(alphainp2*pi)/180;
w1=(winp1*pi)/180;

alpha3=(alphainp3*pi)/180;
alpha4=(alphainp4*pi)/180;
w2=(winp2*pi)/180;
% pause on; %to stop
D=16; % distance between two base stations. x=8 y=6 hyp=10
%constants
%k=5;
v=2^-k;
u=2^-(2*k+1);
err=10^-5;

% first side rotation for angle x1,y1
x1=1;
y1=0;
ro=0;
if (alpha1>pi/2)
 sign=-1;
 delta=pi-alpha1;
else

56

 sign=1;
 delta=alpha1;
end

figure(1);
hold on;
title('1st rotation');
axis([-1 1 -1 1]);
grid on;
xlabel('X');
ylabel('Y');
while((delta-ro)>=err)
 oldx1=x1;
 x1=x1-x1*u-y1*v;
 y1=y1-y1*u+oldx1*v;
ro=ro+2^-k;
 plot(x1,y1,'Color', [1.0, 0.0, 0.0], 'Marker', '+');
 cost=cost+9;
end%while
cosalpha1=sign*x1;
sinalpha1=y1;
 plot(cosalpha1,sinalpha1,'Color', [0.0, 0.0, 1.0], 'Marker', '+');
% end of first side rotation for angle

% second side rotation for angle x2,y2
figure(2);
hold on;
title('2nd rotation');
axis([-1 1 -1 1]);
grid on;
xlabel('X');
ylabel('Y');
x2=1;
y2=0;
ro=0;
if (alpha2>pi/2)
 sign=-1;
 delta=pi-alpha2;
else
 sign=1;
 delta=alpha2;
end
while((delta-ro)>=err)
 oldx2=x2;
 x2=x2-x2*u-y2*v;
 y2=y2-y2*u+oldx2*v;
ro=ro+2^-k;
 plot(x2,y2,'Color', [1.0, 0.0, 0.0], 'Marker', '+');
 cost=cost+9;
end%while
cosalpha2=sign*x2; % in documentation sin
sinalpha2=y2; %documentation cos
% end of second side rotation for angle
plot(cosalpha2,sinalpha2,'Color', [0.0, 0.0, 1.0], 'Marker', '+');
% to speed up convergence
%x1=0.5*cosalpha1;
%y1=0.5*sinalpha1;
%x2=0.5*cosalpha2;
%y2=0.5*sinalpha2;
%sign=(D-(abs(x1)+abs(x2)))/abs(D-(abs(x1)+abs(x2)));
% end of speed

57

figure(3);
hold on;
title('MS Location from Alpha1 & Alpha 2 on X Y axis');
axis([-16 16 -16 16]);
grid on;
xlabel('X');
ylabel('Y');

sign=1;
increment=2^-k;
if ((alpha2)>=alpha1)
while ((D-(x1+x2))>err)
 x2=x2+sign*increment*cosalpha2;
 y2=y2+sign*increment*sinalpha2;
 plot(x2,y2,'Color', [1.0, 0.0, 0.0], 'Marker', '+');
 cost=cost+4;
while ((y2-y1)>err)
 x1=x1+sign*increment*cosalpha1;
 y1=y1+sign*increment*sinalpha1;
 plot(x1,y1,'Color', [0.0, 1.0, 0.0], 'Marker', '+');
 cost=cost+4;
end% inner while
end% while
else%if
while ((D-(x1+x2))>err)
 x1=x1+sign*increment*cosalpha1;
 y1=y1+sign*increment*sinalpha1;
 plot(x1,y1,'Color', [0.0, 1.0, 0.0], 'Marker', '+');
 cost=cost+4;
while ((y1-y2)>err)
 x2=x2+sign*increment*cosalpha2;
 y2=y2+sign*increment*sinalpha2;
 plot(x2,y2,'Color', [1.0, 0.0, 0.0], 'Marker', '+');
 cost=cost+4;
end% inner while
end% while
end%i
% 3d z-side rotation for angle x1,y1
% first side rotation for angle xz1,z1
xz1=1;
z1=0;
ro=0;
if (alpha3>pi/2)
 sign=-1;
 delta=pi-alpha3;
else
 sign=1;
 delta=alpha3;
end

figure(4);
hold on;
title('1st rotation (X-Z)');
axis([-1 1 -1 1]);
grid on;
xlabel('X');
ylabel('Z');
while((delta-ro)>=err)
 oldxz1=xz1;
 xz1=xz1-xz1*u-z1*v;
 z1=z1-z1*u+oldxz1*v;

58

ro=ro+2^-k;
 plot(xz1,z1,'Color', [1.0, 0.0, 0.0], 'Marker', '+');
 cost=cost+9;
end%while
cosalpha3=sign*xz1;
sinalpha3=z1;
 plot(cosalpha3,sinalpha3,'Color', [0.0, 0.0, 1.0], 'Marker', '+');
% end of first side rotation fo angle

% second side rotation for angle xz2,z2
figure(5);
hold on;
title('2nd rotation');
axis([-1 1 -1 1]);
grid on;
xlabel('X');
ylabel('Z');
xz2=1;
z2=0;
ro=0;
if (alpha4>pi/2)
 sign=-1;
 delta=pi-alpha4;
else
 sign=1;
 delta=alpha4;
end
while((delta-ro)>=err)
 oldxz2=xz2;
 xz2=xz2-xz2*u-z2*v;
 z2=z2-z2*u+oldxz2*v;
ro=ro+2^-k;
 plot(xz2,z2,'Color', [1.0, 0.0, 0.0], 'Marker', '+');
 cost=cost+9;
end%while
cosalpha4=sign*xz2; % in documentation sin
sinalpha4=z2; %documentation cos
% end of second side rotation for angle
plot(cosalpha4,sinalpha4,'Color', [0.0, 0.0, 1.0], 'Marker', '+');

% to speed up convergence
%xz1=0.5*cosalpha3;
%z1=0.5*sinalpha3;
%xz2=0.5*cosalpha4;
%z2=0.5*sinalpha4;
%sign=(D-(abs(xz1)+abs(xz2)))/abs(D-(abs(xz1)+abs(xz2)));
% end of speed up

figure(6);
hold on;
title('MS Location from Alpha3 & Alpha 4 on X Z axis');
axis([-16 16 -16 16]);
grid on;
xlabel('X');
ylabel('Z');

sign=1;
increment=2^-k;

59

if ((alpha4)>=alpha3)
while ((D-(xz1+xz2))>err)
 xz2=xz2+sign*increment*cosalpha4;
 z2=z2+sign*increment*sinalpha4;
 plot(xz2,z2,'Color', [1.0, 0.0, 0.0], 'Marker', '+');
 cost=cost+4;
while ((z2-z1)>err)
 xz1=xz1+sign*increment*cosalpha3;
 z1=z1+sign*increment*sinalpha3;
 plot(xz1,z1,'Color', [0.0, 1.0, 0.0], 'Marker', '+');
 cost=cost+4;
end% inner while
end% while
else%if
while ((D-(xz1+xz2))>err)
 xz1=xz1+sign*increment*cosalpha3;
 z1=z1+sign*increment*sinalpha3;
 plot(xz1,z1,'Color', [0.0, 1.0, 0.0], 'Marker', '+');
 cost=cost+4;
while ((z1-z2)>err)
 xz2=xz2+sign*increment*cosalpha4;
 z2=z2+sign*increment*sinalpha4;
 plot(xz2,z2,'Color', [1.0, 0.0, 0.0], 'Marker', '+');
 cost=cost+4;
end% inner while
end% while
end%if
%end finding rotation for 3d z-dimension
% manual calculation
mcost=0;
v1=D*sin(alpha2)/sin(w1);
mcost=mcost+40+404+40+404;
mx1=cos(alpha1)*v1;
mcost=mcost+404+40;
my1=mx1*tan(alpha1);
mcost=mcost+1448+40;

v2=D*sin(alpha1)/sin(w1);
mcost=mcost+40+404+40+404;
mx2=cos(alpha2)*v2;
mcost=mcost+404+40;
my2=mx2*tan(alpha2);
mcost=mcost+1448+40;
v3=D*sin(alpha4)/sin(w2);
mcost=mcost+40+404+40+404;
mx3=cos(alpha3)*v3;
mcost=mcost+404+40;
mz1=mx3*tan(alpha3);
mcost=mcost+1448+40;
v4=D*sin(alpha3)/sin(w2);
mcost=mcost+40+404+40+404;
mx4=cos(alpha4)*v4;
mcost=mcost+404+40;
mz2=mx4*tan(alpha4);
mcost=mcost+1448+40;
% end of manual calculation
%errors
Ex1=abs(mx1-x1); % error of X from BS1
Ex2=abs(mx2-x2); % error of X from BS2
Ey1=abs(my1-y1); % error of y from BS1
Ey2=abs(my2-y2); % error of Y from BS2

60

Exz1=abs(mx3-xz1); % error of X from BS1
Exz2=abs(mx4-xz2); % error of X from BS2
Ez1=abs(mz1-z1); % error of Z from BS1
Ez2=abs(mz2-z2); % error of Z from BS2
%end of erros
%average errors
Eavgx1=Eavgx1+Ex1;
Eavgx2=Eavgx2+Ex2;
Eavgy1=Eavgy1+Ey1;
Eavgy2=Eavgy2+Ey2;
Eavgxz1 =Eavgxz1 +Exz1;
Eavgxz2 =Eavgxz2 +Exz2;
Eavgz1 =Eavgz1 +Ez1;
Eavgz2 =Eavgz2 +Ez2;
avgcost=avgcost+cost;
%end of averages
fprintf(fw,'%2.8f\t%2.8f\t%2.8f\t%2.8f\t%2.8f\t%2.8f\t%2.8f\t%2.8f\t

%2.8f\t%2.8f\t%2.8f\t%2.8f\t%2.8f\t%2.8f\t%2.8f\t%2.8f\t%2.8f\t%2.8f

\t%2.8f\t%2.8f\t%2.8f\t%2.8f\t%2.8f\t%2.8f\t%2.8f\t%2.8f\t%2.8f\t%2.

8f\t%2.8f\n',alpha1,alpha2,alpha3,alpha4,x1,y1,x2,y2,xz1,z1,xz2,z2,m

x1,my1,mx2,my2,mx3,mz1,mx4,mz2,Ex1,Ex2,Ey1,Ey1,Exz1,Exz2,Ez1,Ez2,cos

t);

close all;
end% while ~feof(fid)
Eavgx1=Eavgx1/counter;
Eavgx2=Eavgx2/counter;
Eavgy1=Eavgy1/counter;
Eavgy2=Eavgy2/counter;
Eavgxz1=Eavgxz1/counter;
Eavgxz2=Eavgxz2/counter;
Eavgz1=Eavgz1/counter;
Eavgz2=Eavgz2/counter;
avgcost=avgcost/counter;

fprintf(fw,'%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\n','Eavgx1','Eavg

x2','Eavgy1','Eavgy2','Eavgxz1','Eavgxz2','Eavgz1','Eavgz2','AvgCost

','Mcost');
fprintf(fw,'%2.8f\t%2.8f\t%2.8f\t%2.8f\t%2.8f\t%2.8f\t%2.8f\t%2.8f\t

%2.8f\t%2.8f\t%2.8f\n',Eavgx1,Eavgx2,Eavgy1,Eavgy2,Eavgxz1,Eavgxz2,E

avgz1,Eavgz2,avgcost,mcost);
fclose(fr);
fclose(fw);
end
h = msgbox('Operation Completed');

61

Appendix C : Source code of Mobile Object location

Generator Algorithm

clc;
clear;
format long;
fid=fopen(strcat(pwd,'\','rnds.txt'),'w');
samplesize=100;
i=1;
while(i<=samplesize)
% creation of angles for x-y plate
a1=10+ceil(rand()*60);
a2=10+ceil(rand()*60);
w1=180-(a1+a2);

% arrangement of angles for x-z plate
D=16;
alpha1=(a1*pi)/180;
alpha2=(a2*pi)/180;
wr1=(w1*pi)/180;

v1=D*sin(a2)/sin(wr1);
x1=cos(alpha1)*v1;
x2=D-x1;

a3=10+ceil(rand()*60);
ta4=x2/x1*tand(a3);
a4=abs(atand(ta4));
w2=180-(a3+a4);
j=0;
while ((a4<10)||(w2<10))
 a3=10+ceil(rand()*60);
 ta4=x2/x1*tand(a3);
 a4=abs(atand(ta4));
 w2=180-(a3+a4);
 j=j+1;
if (j>1000)
break;
end
end

if (j<1000)
fprintf(fid,'%d\t%d\t%d\t%d\t%f\t%f\n',a1,a2,w1,a3,a4,w2);
i=i+1;
end
end%while
fclose(fid);
h = msgbox('Operation Completed')

62

Appendix D : Source code of the DMEM-1 Algorithm

clc;
clear;
format long;
fr=fopen(strcat(pwd,'\','rnds.txt'),'r');
fw=fopen(strcat(pwd,'\','results1stDynaver.txt'),'w');
fprintf(fw,'%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t

%s\t%s\t%s\t%s\t%s\t%s\t%s\n',' a1',' a2','

a3',' a4',' x1',' y1',' x2','

y2',' xx1',' z1',' mx1',' my1','

mx2',' my2',' mz',' Ex1',' Ex2','

Ey1',' Ey2',' Ez',' Cost');
counter=0;
Eavgx1=0;
Eavgx2=0;
Eavgy1=0;
Eavgy2=0;
Eavgz =0;
avgcost=0;
while ~feof(fr)
 cost=0;
 counter=counter+1;
 alphainp1=fscanf(fr,'%d',1);
 alphainp2=fscanf(fr,'%d',1);
 winp1=fscanf(fr,'%d',1); % wont be used
 alphainp3=fscanf(fr,'%d',1);
 alphainp4=fscanf(fr,'%f',1);
 winp2=fscanf(fr,'%f\n',1); %wont be used

%initial inputs
alpha1=(alphainp1*pi)/180;
alpha2=(alphainp2*pi)/180;
w1=(winp1*pi)/180;

alpha3=(alphainp3*pi)/180;
alpha4=(alphainp4*pi)/180;
w2=(winp2*pi)/180;
% pause on; %to stop
D=16; % distance between two base stations. x=8 y=6 hyp=10
%constants
%k=5;

err=10^-5;

% first side rotation for angle x1,y1
x1=1;
y1=0;
ro=0;
if (alpha1>pi/2)
 sign=-1;
 delta=pi-alpha1;
else
 sign=1;
 delta=alpha1;
end

63

figure(1);
hold on;
title('1st rotation');
axis([-1 1 -1 1]);
grid on;
xlabel('X');
ylabel('Y');
k=4;
while((delta-ro)>=err)
ro=ro+2^-k;
if ((abs(delta-ro)<2^-k) && (k<11))
ro=ro-2^-k;
 k=k+1;
ro=ro+2^-k;
 cost=cost+1+2+2;%1 for k +2 for ro +2 for u
end
 v=2^-k;
 u=2^-(2*k+1);
 oldx1=x1;
 x1=x1-x1*u-y1*v;
 y1=y1-y1*u+oldx1*v;
 plot(x1,y1,'Color', [1.0, 0.0, 0.0], 'Marker', '+');
 cost=cost+9;
end%while
cosalpha1=sign*x1;
sinalpha1=y1;
 plot(cosalpha1,sinalpha1,'Color', [0.0, 0.0, 1.0], 'Marker', '+');

% end of first side rotation fo angle

% second side rotation for angle x2,y2
figure(2);
hold on;
title('2nd rotation');
axis([-1 1 -1 1]);
grid on;
xlabel('X');
ylabel('Y');
x2=1;
y2=0;
ro=0;

if (alpha2>pi/2)
 sign=-1;
 delta=pi-alpha2;
else
 sign=1;
 delta=alpha2;
end

k=4;
while((delta-ro)>=err)
ro=ro+2^-k;
if ((abs(delta-ro)<2^-k) && (k<11))
ro=ro-2^-k;
 k=k+1;
ro=ro+2^-k;
 cost=cost+1+2+2;%1 for k +2 for ro +2 for u
end
 v=2^-k;
 u=2^-(2*k+1);

64

 oldx2=x2;
 x2=x2-x2*u-y2*v;
 y2=y2-y2*u+oldx2*v;

 plot(x2,y2,'Color', [1.0, 0.0, 0.0], 'Marker', '+');
 cost=cost+9;
end%while
cosalpha2=sign*x2; % in documentation sin
sinalpha2=y2; %documentation cos
% end of second side rotation for angle
plot(cosalpha2,sinalpha2,'Color', [0.0, 0.0, 1.0], 'Marker', '+');

% to speed up convergence
%x1=0.5*cosalpha1;
%y1=0.5*sinalpha1;
%x2=0.5*cosalpha2;
%y2=0.5*sinalpha2;
%sign=(D-(abs(x1)+abs(x2)))/abs(D-(abs(x1)+abs(x2)));
% end of speed up

figure(3);
hold on;
title('MS Location from Alpha1 & Alpha 2 on X Y axis');
axis([-16 16 -16 16]);
grid on;
xlabel('X');
ylabel('Y');

sign=1;
k=4;
increment=2^-k;
if ((alpha2)>=alpha1)
while ((D-(x1+x2))>err)
 ox2=x2;
 oy2=y2;
 ox1=x1;
 oy1=y1;
 x2=x2+sign*increment*cosalpha2;
 y2=y2+sign*increment*sinalpha2;
 plot(x2,y2,'Color', [1.0, 0.0, 0.0], 'Marker', '+');
 cost=cost+4;
while ((y2-y1)>err)
 x1=x1+sign*increment*cosalpha1;
 y1=y1+sign*increment*sinalpha1;
 plot(x1,y1,'Color', [0.0, 1.0, 0.0], 'Marker', '+');
 cost=cost+4;
end% inner while
%dynaaproach
dif=D-(x1+x2);
if ((dif<0) && (k<11))
 k=k+1;
 increment=2^-k;
 x2=ox2;
 y2=oy2;
 x1=ox1;
 y1=oy1;
 cost=cost+2;
end
% end of dyna approach
end% while
else%if

65

while ((D-(x1+x2))>err)
 ox1=x1;
 oy1=y1;
 ox2=x2;
 oy2=y2;
 x1=x1+sign*increment*cosalpha1;
 y1=y1+sign*increment*sinalpha1;
 plot(x1,y1,'Color', [0.0, 1.0, 0.0], 'Marker', '+');
 cost=cost+4;
while ((y1-y2)>err)
 x2=x2+sign*increment*cosalpha2;
 y2=y2+sign*increment*sinalpha2;
 plot(x2,y2,'Color', [1.0, 0.0, 0.0], 'Marker', '+');
 cost=cost+4;
end% inner while
%dynaaproach
dif=abs(D-(x1+x2));
if ((dif<0) && (k<11))
 k=k+1;
 increment=2^-k;
 x2=ox2;
 y2=oy2;
 x1=ox1;
 y1=oy1;
 cost=cost+2;
end
end% while
end%if

% 3d z-side rotation for angle x1,y1
figure(4);
hold on;
title('3rd rotation');
axis([-1 1 -1 1]);
grid on;
xlabel('X');
ylabel('Z');
xx1=1;
z1=0;
ro=0;
if (alpha3>pi/2)
 sign=-1;
 delta=pi-alpha3;
else
 sign=1;
 delta=alpha3;
end

k=4;
while((delta-ro)>=err)
ro=ro+2^-k;
if ((abs(delta-ro)<2^-k) && (k<11))
ro=ro-2^-k;
 k=k+1;
ro=ro+2^-k;
 cost=cost+1+2+2;%1 for k +2 for ro +2 for u
end
 v=2^-k;
 u=2^-(2*k+1);
 oldxx1=xx1;

66

 xx1=xx1-xx1*u-z1*v;
 z1=z1-z1*u+oldxx1*v;
 plot(xx1,z1,'Color', [1.0, 0.0, 0.0], 'Marker', '+');
 cost=cost+9;
end%while
cosalpha3=sign*xx1;
sinalpha3=z1;
plot(cosalpha3,sinalpha3,'Color', [0.0, 0.0, 1.0], 'Marker', '+');

% end of 3d-z side rotation for angle

figure(5);
hold on;
title('MS Location from Alpha3 Up to Z using Ms location foun d from

Alpha1 & Alpha 2 for X axis');
axis([-16 16 -16 16]);
grid on;
xlabel('X');
ylabel('Z');
plot(0,x1,'Color', [0.0, 1.0, 0.0], 'Marker', '+');
plot(0,x2,'Color', [1.0, 0.0, 0.0], 'Marker', '+');

%finding rotation for 3d z-dimension
 xx1=cosalpha3;
 z1=sinalpha3;
 sign=1;
 k=4;
while ((x1-xx1)>err)
if ((abs(x1-xx1)<((2^-k)*cosalpha3)) && (k<11))
 k=k+1;
 cost=cost+1+1; % last +1 is for the next increment
end
 increment=2^-k;
 xx1=xx1+sign*increment*cosalpha3;
 z1=z1+sign*increment*sinalpha3;
 plot(xx1,z1,'Color', [0.0, 0.0, 1.0], 'Marker', '+');
 cost=cost+4;
end% inner while
%end finding rotation for 3d z-dimension
% manual calculation
mcost=0;
v1=D*sin(alpha2)/sin(w1);
mcost=mcost+40+404+40+404;
mx1=cos(alpha1)*v1;
mcost=mcost+404+40;
my1=mx1*tan(alpha1);
mcost=mcost+40+1448;

v2=D*sin(alpha1)/sin(w1);
mcost=mcost+40+404+40+404;
mx2=cos(alpha2)*v2;
mcost=mcost+404+40;
my2=mx2*tan(alpha2);
mcost=mcost+40+1448;

mz=mx1*tand(alphainp3);
mcost=mcost+40+1448;
% end of manual calculation

67

%errors
Ex1=abs(mx1-x1); % error of X from BS1
Ex2=abs(mx2-x2); % error of X from BS2
Ey1=abs(my1-y1); % error of y from BS1
Ey2=abs(my2-y2); % error of Y from BS2
Ez=abs(mz-z1); % error of Z from BS1
%end of erros

%average errors
Eavgx1=Eavgx1+Ex1;
Eavgx2=Eavgx2+Ex2;
Eavgy1=Eavgy1+Ey1;
Eavgy2=Eavgy2+Ey2;
Eavgz =Eavgz +Ez;
avgcost=avgcost+cost;
%end of averages

fprintf(fw,'%2.8f\t%2.8f\t%2.8f\t%2.8f\t%2.8f\t%2.8f\t%2.8f\t%2.8f\t

%2.8f\t%2.8f\t%2.8f\t%2.8f\t%2.8f\t%2.8f\t%2.8f\t%2.8f\t%2.8f\t%2.8f

\t%2.8f\t%2.8f\t%2.8f\n',alpha1,alpha2,alpha3,alpha4,x1,y1,x2,y2,xx1

,z1,mx1,my1,mx2,my2,mz,Ex1,Ex2,Ey1,Ey2,Ez,cost);

close all;

end% while ~feof(fid)

Eavgx1=Eavgx1/counter;
Eavgx2=Eavgx2/counter;
Eavgy1=Eavgy1/counter;
Eavgy2=Eavgy2/counter;
Eavgz =Eavgz/counter;
avgcost=avgcost/counter;
fprintf(fw,'%s\t%s\t%s\t%s\t%s\t%s\t%s\n','Eavgx1','Eavgx2','Eavgy1'

,'Eavgy2','Eavgz','AvgCost','MCost');
fprintf(fw,'%2.8f\t%2.8f\t%2.8f\t%2.8f\t%2.8f\t%2.8f\t%2.8f\t%2.8f\n

',Eavgx1,Eavgx2,Eavgy1,Eavgy2,Eavgz,avgcost,mcost);

fclose(fr);
fclose(fw);
h = msgbox('Operation Completed');

68

 Appendix E : Source code of the DMEM-2 Algorithm

clc;
clear;
format long;
fr=fopen(strcat(pwd,'\','rnds.txt'),'r');
fw=fopen(strcat(pwd,'\','results2ndDynaver.txt'),'w');
fprintf(fw,'%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t

%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\n','a1','

a2','a3','a4','x1','y1','x2','y2','xz1','z1','xz2','z2','mx1','my1',

'mx2','my2','mx3','mz1','mx4','mz2','Ex1','Ex2','Ey1','Ey2','Exz1','

Exz2','Ez1','Ez2','Cost');
counter=0;
Eavgx1=0;
Eavgx2=0;
Eavgy1=0;
Eavgy2=0;
Eavgxz1 =0;
Eavgxz2 =0;
Eavgz1 =0;
Eavgz2 =0;
avgcost=0;
while ~feof(fr)
 cost=0;
 counter=counter+1;
 alphainp1=fscanf(fr,'%d',1);
 alphainp2=fscanf(fr,'%d',1);
 winp1=fscanf(fr,'%d',1); % wont be used
 alphainp3=fscanf(fr,'%d',1);
 alphainp4=fscanf(fr,'%f',1);
 winp2=fscanf(fr,'%f\n',1); %wont be used

%initial inputs
alpha1=(alphainp1*pi)/180;
alpha2=(alphainp2*pi)/180;
w1=(winp1*pi)/180;

alpha3=(alphainp3*pi)/180;
alpha4=(alphainp4*pi)/180;
w2=(winp2*pi)/180;
% pause on; %to stop
D=16; % distance between two base stations. x=8 y=6 hyp=10
%constants
err=10^-5;

% first side rotation for angle x1,y1
x1=1;
y1=0;
ro=0;
if (alpha1>pi/2)
 sign=-1;
 delta=pi-alpha1;
else
 sign=1;
 delta=alpha1;
end

69

figure(1);
hold on;
title('1st rotation');
axis([-1 1 -1 1]);
grid on;
xlabel('X');
ylabel('Y');

k=4;
while((delta-ro)>=err)
ro=ro+2^-k;
if ((abs(delta-ro)<2^-k) && (k<11))
ro=ro-2^-k;
 k=k+1;
ro=ro+2^-k;
 cost=cost+1+2+2;%1 for k +2 for ro +2 for u
end
 v=2^-k;
 u=2^-(2*k+1);
 oldx1=x1;
 x1=x1-x1*u-y1*v;
 y1=y1-y1*u+oldx1*v;
 plot(x1,y1,'Color', [1.0, 0.0, 0.0], 'Marker', '+');
 cost=cost+9;
end%while
cosalpha1=sign*x1;
sinalpha1=y1;
 plot(cosalpha1,sinalpha1,'Color', [0.0, 0.0, 1.0], 'Marker', '+');
% end of first side rotation fo angle

% second side rotation for angle x2,y2
figure(2);
hold on;
title('2nd rotation');
axis([-1 1 -1 1]);
grid on;
xlabel('X');
ylabel('Y');
x2=1;
y2=0;
ro=0;
if (alpha2>pi/2)
 sign=-1;
 delta=pi-alpha2;
else
 sign=1;
 delta=alpha2;
end
k=4;
while((delta-ro)>=err)
ro=ro+2^-k;
if ((abs(delta-ro)<2^-k) && (k<11))
ro=ro-2^-k;
 k=k+1;
ro=ro+2^-k;
 cost=cost+1+2+2;%1 for k +2 for ro +2 for u
end
 v=2^-k;
 u=2^-(2*k+1);
 oldx2=x2;

70

 x2=x2-x2*u-y2*v;
 y2=y2-y2*u+oldx2*v;

 plot(x2,y2,'Color', [1.0, 0.0, 0.0], 'Marker', '+');
 cost=cost+9;
end%while
cosalpha2=sign*x2; % in documentation sin
sinalpha2=y2; %documentation cos
% end of second side rotation for angle
plot(cosalpha2,sinalpha2,'Color', [0.0, 0.0, 1.0], 'Marker', '+');

% to speed up convergence
%x1=0.5*cosalpha1;
%y1=0.5*sinalpha1;
%x2=0.5*cosalpha2;
%y2=0.5*sinalpha2;
%sign=(D-(abs(x1)+abs(x2)))/abs(D-(abs(x1)+abs(x2)));
% end of speed up

figure(3);
hold on;
title('MS Location from Alpha1 & Alpha 2 on X Y axis');
axis([-16 16 -16 16]);
grid on;
xlabel('X');
ylabel('Y');

sign=1;
k=4;
increment=2^-k;
if ((alpha2)>=alpha1)
while ((D-(x1+x2))>err)
 ox2=x2;
 oy2=y2;
 ox1=x1;
 oy1=y1;
 x2=x2+sign*increment*cosalpha2;
 y2=y2+sign*increment*sinalpha2;
 plot(x2,y2,'Color', [1.0, 0.0, 0.0], 'Marker', '+');
 cost=cost+4;
while ((y2-y1)>err)
 x1=x1+sign*increment*cosalpha1;
 y1=y1+sign*increment*sinalpha1;
 plot(x1,y1,'Color', [0.0, 1.0, 0.0], 'Marker', '+');
 cost=cost+4;
end% inner while
%dynaaproach
dif=D-(x1+x2);
if ((dif<0) && (k<11))
 k=k+1;
 increment=2^-k;
 x2=ox2;
 y2=oy2;
 x1=ox1;
 y1=oy1;
 cost=cost+2;
end

71

% end of dyna approach
end% while
else%if
while ((D-(x1+x2))>err)
 ox1=x1;
 oy1=y1;
 ox2=x2;
 oy2=y2;
 x1=x1+sign*increment*cosalpha1;
 y1=y1+sign*increment*sinalpha1;
 plot(x1,y1,'Color', [0.0, 1.0, 0.0], 'Marker', '+');
 cost=cost+4;
while ((y1-y2)>err)
 x2=x2+sign*increment*cosalpha2;
 y2=y2+sign*increment*sinalpha2;
 plot(x2,y2,'Color', [1.0, 0.0, 0.0], 'Marker', '+');
 cost=cost+4;
end% inner while
%dynaaproach
dif=abs(D-(x1+x2));
if ((dif<0) && (k<11))
 k=k+1;
 increment=2^-k;
 x2=ox2;
 y2=oy2;
 x1=ox1;
 y1=oy1;
 cost=cost+2;
end
end% while
end%if

% 3d z-side rotation for angle x1,y1
% first side rotation for angle xz1,z1
xz1=1;
z1=0;
ro=0;
if (alpha3>pi/2)
 sign=-1;
 delta=pi-alpha3;
else
 sign=1;
 delta=alpha3;
end

figure(4);
hold on;
title('1st rotation (X-Z)');
axis([-1 1 -1 1]);
grid on;
xlabel('X');
ylabel('Z');
k=4;
while((delta-ro)>=err)
ro=ro+2^-k;
if ((abs(delta-ro)<2^-k) && (k<11))
ro=ro-2^-k;
 k=k+1;
ro=ro+2^-k;

72

 cost=cost+1+2+2;%1 for k +2 for ro +2 for u
end
 v=2^-k;
 u=2^-(2*k+1);

 oldxz1=xz1;
 xz1=xz1-xz1*u-z1*v;
 z1=z1-z1*u+oldxz1*v;

 plot(xz1,z1,'Color', [1.0, 0.0, 0.0], 'Marker', '+');
 cost=cost+9;
end%while
cosalpha3=sign*xz1;
sinalpha3=z1;
 plot(cosalpha3,sinalpha3,'Color', [0.0, 0.0, 1.0], 'Marker', '+');
% end of first side rotation for angle

% second side rotation for angle xz2,z2
figure(5);
hold on;
title('2nd rotation');
axis([-1 1 -1 1]);
grid on;
xlabel('X');
ylabel('Z');
xz2=1;
z2=0;
ro=0;
if (alpha4>pi/2)
 sign=-1;
 delta=pi-alpha4;
else
 sign=1;
 delta=alpha4;
end
k=4;
while((delta-ro)>=err)
ro=ro+2^-k;
if ((abs(delta-ro)<2^-k) && (k<11))
ro=ro-2^-k;
 k=k+1;
ro=ro+2^-k;
 cost=cost+1+2+2;%1 for k +2 for ro +2 for u
end
 v=2^-k;
 u=2^-(2*k+1);
 oldxz2=xz2;
 xz2=xz2-xz2*u-z2*v;
 z2=z2-z2*u+oldxz2*v;
 plot(xz2,z2,'Color', [1.0, 0.0, 0.0], 'Marker', '+');
 cost=cost+9;
end%while
cosalpha4=sign*xz2; % in documentation sin
sinalpha4=z2; %documentation cos
% end of second side rotation for angle
plot(cosalpha4,sinalpha4,'Color', [0.0, 0.0, 1.0], 'Marker', '+');

% to speed up convergence
%xz1=0.5*cosalpha3;

73

%z1=0.5*sinalpha3;
%xz2=0.5*cosalpha4;
%z2=0.5*sinalpha4;
%sign=(D-(abs(xz1)+abs(xz2)))/abs(D-(abs(xz1)+abs(xz2)));
% end of speed up

figure(6);
hold on;
title('MS Location from Alpha3 & Alpha 4 on X Z axis');
axis([-16 16 -16 16]);
grid on;
xlabel('X');
ylabel('Z');

sign=1;
k=4;
increment=2^-k;
if ((alpha4)>=alpha3)
while ((D-(xz1+xz2))>err)
 oxz2=xz2;
 oz2=z2;
 oxz1=xz1;
 oz1=z1;
 xz2=xz2+sign*increment*cosalpha4;
 z2=z2+sign*increment*sinalpha4;
 plot(xz2,z2,'Color', [1.0, 0.0, 0.0], 'Marker', '+');
 cost=cost+4;
while ((z2-z1)>err)
 xz1=xz1+sign*increment*cosalpha3;
 z1=z1+sign*increment*sinalpha3;
 plot(xz1,z1,'Color', [0.0, 1.0, 0.0], 'Marker', '+');
 cost=cost+4;
end% inner while
%dynaaproach
dif=D-(xz1+xz2);
if ((dif<0) && (k<11))
 k=k+1;
 increment=2^-k;
 xz2=oxz2;
 z2=oz2;
 xz1=oxz1;
 z1=oz1;
 cost=cost+2;
end
% end of dyna approach
end% while
else%if
while ((D-(xz1+xz2))>err)
 oxz1=xz1;
 oz1=z1;
 oxz2=xz2;
 oz2=z2;
 xz1=xz1+sign*increment*cosalpha3;
 z1=z1+sign*increment*sinalpha3;
 plot(xz1,z1,'Color', [0.0, 1.0, 0.0], 'Marker', '+');
 cost=cost+4;
while ((z1-z2)>err)
 xz2=xz2+sign*increment*cosalpha4;
 z2=z2+sign*increment*sinalpha4;
 plot(xz2,z2,'Color', [1.0, 0.0, 0.0], 'Marker', '+');

74

 cost=cost+4;
end% inner while
%dynaaproach
dif=D-(xz1+xz2);
if ((dif<0) && (k<11))
 k=k+1;
 increment=2^-k;
 xz2=oxz2;
 z2=oz2;
 xz1=oxz1;
 z1=oz1;
 cost=cost+2;
end
% end of dyna approach
end% while
end%if
%end finding rotation for 3d z-dimension

% manual calculation
mcost=0;
v1=D*sin(alpha2)/sin(w1);
mcost=mcost+40+404+40+404;
mx1=cos(alpha1)*v1;
mcost=mcost+404+40;
my1=mx1*tan(alpha1);
mcost=mcost+1448+40;

v2=D*sin(alpha1)/sin(w1);
mcost=mcost+40+404+40+404;
mx2=cos(alpha2)*v2;
mcost=mcost+404+40;
my2=mx2*tan(alpha2);
mcost=mcost+1448+40;

v3=D*sin(alpha4)/sin(w2);
mcost=mcost+40+404+40+404;
mx3=cos(alpha3)*v3;
mcost=mcost+404+40;
mz1=mx3*tan(alpha3);
mcost=mcost+1448+40;

v4=D*sin(alpha3)/sin(w2);
mcost=mcost+40+404+40+404;
mx4=cos(alpha4)*v4;
mcost=mcost+404+40;
mz2=mx4*tan(alpha4);
mcost=mcost+1448+40;
% end of manual calculation
%errors
Ex1=abs(mx1-x1); % error of X from BS1
Ex2=abs(mx2-x2); % error of X from BS2
Ey1=abs(my1-y1); % error of y from BS1
Ey2=abs(my2-y2); % error of Y from BS2

Exz1=abs(mx3-xz1); % error of X from BS1
Exz2=abs(mx4-xz2); % error of X from BS2
Ez1=abs(mz1-z1); % error of Z from BS1
Ez2=abs(mz2-z2); % error of Z from BS2
%end of erros

75

%average errors
Eavgx1=Eavgx1+Ex1;
Eavgx2=Eavgx2+Ex2;
Eavgy1=Eavgy1+Ey1;
Eavgy2=Eavgy2+Ey2;
Eavgxz1 =Eavgxz1 +Exz1;
Eavgxz2 =Eavgxz2 +Exz2;
Eavgz1 =Eavgz1 +Ez1;
Eavgz2 =Eavgz2 +Ez2;
avgcost=avgcost+cost;
%end of averages

fprintf(fw,'%2.8f\t%2.8f\t%2.8f\t%2.8f\t%2.8f\t%2.8f\t%2.8f\t%2.8f\t

%2.8f\t%2.8f\t%2.8f\t%2.8f\t%2.8f\t%2.8f\t%2.8f\t%2.8f\t%2.8f\t%2.8f

\t%2.8f\t%2.8f\t%2.8f\t%2.8f\t%2.8f\t%2.8f\t%2.8f\t%2.8f\t%2.8f\t%2.

8f\t%2.8f\n',alpha1,alpha2,alpha3,alpha4,x1,y1,x2,y2,xz1,z1,xz2,z2,m

x1,my1,mx2,my2,mx3,mz1,mx4,mz2,Ex1,Ex2,Ey1,Ey1,Exz1,Exz2,Ez1,Ez2,cos

t);

close all;
end% while ~feof(fid)
Eavgx1=Eavgx1/counter;
Eavgx2=Eavgx2/counter;
Eavgy1=Eavgy1/counter;
Eavgy2=Eavgy2/counter;
Eavgxz1=Eavgxz1/counter;
Eavgxz2=Eavgxz2/counter;
Eavgz1=Eavgz1/counter;
Eavgz2=Eavgz2/counter;
avgcost=avgcost/counter;

fprintf(fw,'%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\n','Eavgx1','Eavg

x2','Eavgy1','Eavgy2','Eavgxz1','Eavgxz2','Eavgz1','Eavgz2','AvgCost

','Mcost');
fprintf(fw,'%2.8f\t%2.8f\t%2.8f\t%2.8f\t%2.8f\t%2.8f\t%2.8f\t%2.8f\t

%2.8f\t%2.8f\t%2.8f\n',Eavgx1,Eavgx2,Eavgy1,Eavgy2,Eavgxz1,Eavgxz2,E

avgz1,Eavgz2,avgcost,mcost);
fclose(fr);
fclose(fw);

h = msgbox('Operation Completed');

76

